
One-Shot Generation of Near-Optimal Topology through

Theory-Driven Machine Learning

Ruijin Canga, Hope Yaoa, Yi Rena,∗

aMechanical Engineering, Arizona State University, Tempe

Abstract

We introduce a theory-driven mechanism for learning a neural network model that per-
forms generative topology design in one shot given a problem setting, circumventing the
conventional iterative process that computational design tasks usually entail. The proposed
mechanism can lead to machines that quickly response to new design requirements based on
its knowledge accumulated through past experiences of design generation. Achieving such
a mechanism through supervised learning would require an impractically large amount of
problem-solution pairs for training, due to the known limitation of deep neural networks
in knowledge generalization. To this end, we introduce an interaction between a student
(the neural network) and a teacher (the optimality conditions underlying topology optimiza-
tion): The student learns from existing data and is tested on unseen problems. Deviation
of the student’s solutions from the optimality conditions is quantified, and used for choos-
ing new data points to learn from. We call this learning mechanism “theory-driven”, as it
explicitly uses domain-specific theories to guide the learning, thus distinguishing itself from
purely data-driven supervised learning. We show through a compliance minimization prob-
lem that the proposed learning mechanism leads to topology generation with near-optimal
structural compliance, much improved from standard supervised learning under the same
computational budget.

Keywords: Topology Optimization, Meta-learning, Active Learning

1. Introduction

This paper is motivated by the observation that experienced human engineers can quickly
generate solutions based on accumulated knowledge, while algorithms are only programmed
to solve individual problems from scratch, even when the problems are structured similarly.
The lack of ability to generalize from experience makes algorithms often too slow to respond
to real-world challenges, especially when a stringent time or cost budget is in place. For

∗Corresponding author
Email addresses: cruijin@asu.edu (Ruijin Cang), houpu.Yao@asu.edu (Hope Yao), yiren@asu.edu

(Yi Ren)
URL: designinformaticslab.github.io (Yi Ren)

Preprint submitted to Computer-Aided Design December 31, 2018

ar
X

iv
:1

80
7.

10
78

7v
3

 [
cs

.L
G

]
 2

7
D

ec
 2

01
8

example, the design of vehicle body-in-white is often done by experienced structure engineers,
since topology optimization (TO) on full-scale crash simulation is not yet fast enough to
respond to requests from higher-level design tasks, e.g., geometry design with style and
aerodynamic considerations, and thus may slow down the entire design process1.

Research exists in developing deep neural network models that learn to create structured
solutions in a one-shot fashion, circumventing the need of iterations (e.g., in solving systems
of equations [1], simulating dynamical systems [2], or searching for optimal solutions [3,
4, 5]). Learning of such models through data, however, is often criticized to have limited
generalization capability, especially when highly nonlinear input-output relations or high-
dimensional output spaces exist [6, 7, 8]. In the context of TO, this means that the network
may create structures with unreasonably poor physical properties when it responds to new
problem settings. More concretely, consider a topology with a tiny crack in one of its trusses.
This design would be far from optimal if the goal is to lower compliance, yet standard data-
driven learning mechanisms do not prevent this from happening, i.e., they don’t know that
they don’t know (physics).

Our goal is to create a learning mechanism that knows what it does not know, and
thus can self-improve in an effective way. Specifically, we are curious about how physics-
based knowledge, e.g., in the forms of dynamical models, theoretical bounds, and optimality
conditions, can be directly injected into the learning of networks that perform one-shot
solution generation. We call this type of learning mechanisms “theory-driven”. This idea
is particularly enchanting as such knowledge widely exists in engineering disciplines and is
often differentiable, which is important for gradient-based learning algorithms.

As an initial attempt in this direction, this paper will focus on TO, and uses a compliance
minimization problem [9] as a running example. To overview, we introduce an interaction
between a student (the neural network) and a teacher (the optimality conditions underlying
the TO): The student learns from existing data and is tested on unseen problems. Deviation
of the student’s solutions from the optimality conditions is quantified, and used to choose
new data points for the student to learn from. We use this mechanism to learn a solution
generator from a distribution of compliance minimization problems with different load set-
tings. We show that the proposed method has significantly better performance in predicting
the optimal topologies for unseen loads, than using a static data collection, under the same
computational cost for data acquisition.

The proposed method will enable learning of solution generators for engineering problems
that need to be solved repetitively with variations in their settings, e.g., optimal design
(structures, networks, geometries, etc.) as an inner loop of a larger-scale system design,
or real-time optimal control with context-dependent parameters. The generated solutions
kick-start iterative solvers with good initial guesses and thus shorten the design (solution
searching) processes.

The rest of the paper is structured as follows: In Sec. 2 we review related work at the
intersection of generative design and machine learning, and highlight the new contributions

1The authors learned about this challenge through personal communication with an engineer at a major
car manufacturer.

2

from this paper. We then revisit in Sec. 3 the compliance minimization problem, which
will be used as a running example throughout the paper, and explain the need for learning
one-shot solution generators. Sec. 4 introduces the proposed learning mechanism, which will
then be validated in Sec. 5 against two benchmark methods on the running example. Sec. 6
discusses the connection between the proposed method and recent developments in machine
learning, and suggests future directions. Sec. 7 concludes the paper.

2. Related Work

Existing research on generative design answer three types of questions: (1) What is
the design representation? (2) What is the goodness measure of a design? And based
on these two, (3) how do we search for a good design? Challenges in answering these
questions include high-dimensional or ill-defined design spaces such as for topologies [10, 11],
material microstructures [12, 13, 14], or complex geometries [15, 16], expensive evaluations
of designs and their sensitivities, e.g., due to model nonlinearity [17, 18], coupled materials
or physics [19, 20, 21], or subjective goodness measures [22, 23], or search inefficiency due
to the absence of sensitivities [24, 25, 26] or the existence of random variables [27].

This paper takes a different angle by focusing on design tasks for which answers to the
above three questions exist, yet applying them to real-world design tasks is computationally
unaffordable, thus the need for algorithms that learn to improve their efficiency through
problem solving. Below we review related work, and explain how this paper is similar and
different from them.

To start with, the task of improving learning efficiency through experience is known as
meta-learning [28, 29] (with close connections to transfer learning [30, 31, 32] and life-long
learning [33]). While there exists a broad range of problem settings within the literature
of meta-learning, the setup commonly involves a student and a learning mechanism that
specifies how the student updates its way of learning or solving problems. The student
outputs a solution for every input problem, for example, the input can be a labeled dataset
and the output a classifier that explains the data, or the input an optimization problem
and the output an optimal solution. In the former case, the student updates its way of
learning a classifier [34] or its hypothesis space of classifiers [28]; in the latter, it updates
its gradient [35] or non-gradient [36] search strategies. These updates are governed by the
learning mechanism, the design of which is driven by a goodness measure of the student,
e.g., the generalization performance of a classifier or the convergence rate of an optimization
solver.

The problem of learning to generate designs can be cast as a meta-learning problem,
where the student is the generator that takes in settings of the design problem (e.g., the
distribution and magnitude of loads, the material properties, or the boundary conditions
for a topology optimization problem) and outputs a design solution, whereas the learning
mechanism updates the architecture or parameters of the generator.

It is worth noting two differences between the proposed method and contemporary meta-
learning. First, typical mechanisms proposed in meta-learning literature are iterative, e.g.,
in forms of recurrent neural networks [34, 35, 37]. This choice of model is due to the iterative

3

nature of problem solving and the need of memory in decision making during the iteration.
In contrary, we model the transition from problem settings to solutions using a feedforward
neural network, which is one-shot in nature. We made this choice based on the finding that
optimal solutions to a distribution of TO problems often form a continuous manifold (see
Sec. 3 for details), which suggests that directly learning the manifold through a feedforward
network might be achievable, in which case we circumvent the challenges from modeling
iterative solvers.

Secondly, we note that existing meta-learning tasks are often set in contexts where large
data acquisition is affordable. This does not hold in our case, since finite element analysis
and design sensitivity analysis are costly yet necessary for training the neural network. This
requires us to focus on adaptively choosing data points to improve the generator, thus ren-
dering our approach somewhat more similar to active learning [38, 39], where the goal is to
improve data efficiency of learning by querying data based on the learned model. Nonethe-
less, active learning strategies are usually statistics-based. For example, in the context of
classification, new data points are chosen based on uncertainty of their predicted labels [40]
or their predicted contribution to the prediction error of the learned model [41]. These
methods, however, are not suitable for our case since we care about the physical optimal-
ity of the generated topologies, rather than the pixel-wise matching between the generated
topologies and the corresponding true optima (e.g., l2-norm or cross-entropy defined on
image differences often used as metrics of prediction error). The method we introduce is
thus distinctively different from active learning, as we choose data based on the optimality
conditions of TO, which are problem-dependent and theory-driven.

Lastly, the proposed learning method is aligned with the recent surge of machine learn-
ing techniques with integrated physics knowledge. Among this body of work, [42] proposes
to learn a neural network for predicting intrinsic physical properties of objects with the
assistance of a physical simulator that computes object interactions based on the predicted
properties. [43] developed an encoder that computes object positions and velocities from
images of objects, by enforcing these properties to be compliant with common sense. Sim-
ilarly, [44] proposed a physics-based regularization to learn object trajectories and human
movements from videos. Instead of being taught physics, [45] demonstrated a grounded way
for machines to acquire an intuition of the physical world through reinforcement learning.
Our paper is similar to those learning mechanisms with injected physics constraints, while
employing adaptive sampling rather than batch-mode training to avoid expensive simula-
tions. In addition, the use of theory-driven constraints for learning also aligns our method
with Q learning, where values are learned to satisfy Bellman’s equation.

3. Problem Statement

3.1. One-shot solution generator

We define a one-shot solution generator as a feedforword neural network x = g(s,θ) that
computes a solution x ∈ X (e.g., a topology) given problem settings s ∈ S (e.g., loads) and
network parameters θ, where X is a solution space, and S is a problem space (e.g., a space of
locations and orientations of loads). The generator is one-shot in the sense that computing

4

x through g is much less expensive than using an iterative algorithm. We also define the
generalization performance of the generator (denoted by F (θ)) as the expected performance
of its solutions over a distribution of problems specified by a probability density function
p(s):

F (θ) = Ep(s)f(g(s,θ), s), (1)

where f(x, s) measures the performance of x under s.

3.2. The compliance minimization problem

We now review the mechanical compliance minimization problem introduced in [9] to
substantiate f(x, s). In this context, a solution x is a N -by-1 vector with values between
0 and 1, elements of which control a density vector, denoted as ρ, of the corresponding
physical elements of a meshed structure through the following relation:

ρe =
tanh(β/2) + tanh(β(x̃e − 0.5))

2 tanh(β/2)
, (2)

where xe and ρe are the elements of x and ρ, respectively, for e = 1, · · · , N . The shape
parameter β controls the sharpness of the transition to the density ρe from a filtered variable
x̃e, which is a weighted average of neighbours of xe:

x̃e =

∑
i∈Me

ωi,exi∑
i∈Me

ωi,e

, (3)

where Me is the set of neighbours of element e, and weights ωi,e are defined as

ωi,e = 1− ||zi − ze||2/re, (4)

with zi the coordinates of meshed element i, and re the filter radius. In TO, this filter
(Eq. (3)) is used to prevent convergence to impractical checkerboard topologies [9].

The connection from x to the global stiffness matrix of the topology (denoted as K) can
be established through the density vector ρ. Given loads s and boundary conditions, the
displacement u of the structure can be found by solving Ku = s, under the assumption that
K is independent of u (e.g., linear elastic material and small displacement). The compliance
minimization problem can be formulated as

min
x

f(x, s) =
1

2
uTKu

subject to Ku = s,

xe ∈ [0, 1], ∀e ∈ {1, · · · , N},

g0(x) =
1

N

∑
e

ρe − α ≤ 0,

g1(x) = ||ρ̄||p − α ≤ 0.

(TO)

Here the constraint g0 (g1) limits the global (local) density of the structure to be lower than
a threshold α. ||x||p = (1

N

∑
e x

p
e)

1/p is the p-norm defined on RN . p is set to 16 following

5

[9] so that ||x||p approximately computes the maximum of |x| while being differentiable.
The averaged local density ρ̄e = (

∑
i∈Ne

ρi)/(
∑

i∈Ne
1) is defined on the neighborhood Ne =

{i| ||xi−xe||2 ≤ Re} with radius Re. Note that Re for the local density constraint is different
from the filter radius re. The optimality conditions of (TO) are listed as follows

∇xL := −uT ∂K

∂x
u + µ0∇xg0 + µ1∇xg1 + µT

u − µT
l = 0T

xe ∈ [0, 1], ∀e ∈ {1, · · · , N},
g0 ≤ 0, g1 ≤ 0, µ0g0 = 0, µ1g1 = 0,

µT
l x = 0,µT

u (x− 1) = 0

µ0 ≥ 0, µ1 ≥ 0, µu ≥ 0, µl ≥ 0,

(5)

where ∇xy(x, ·) is the partial derivative of function y with respect to variables x, and is
defined as a row vector. Finding a solution to comply with Eq. (5) can be done through
a gradient-based solver, e.g., an augmented Lagrangian algorithm (see Sec. 7). However,
we need to note that the computational cost for converging to an optimal solution usually
does not scale well. In particular, solving Eq. (5) with a problem size N = 4800 requires on
average around 5000 finite element analyses (i.e., computing u from Ku = s).

3.3. Learning a solution generator

With the above setup, the problem of learning a one-shot solution generator can be
formulated as follows:

min
θ

F (θ) = Ep(s)f(x, s)

subject to x = g(s,θ),

Ku = s,

f(x, s) =
1

2
uTKu

g0(x) =
1

N

∑
e

ρe − α ≤ 0,

g1(x) = ||ρ̄||p − α ≤ 0.

(P)

We will force network outputs to be within (0, 1)N by attaching sigmoid activations to its
output layer.

4. Learning with a Physics-based Criterion

(P) can be solved by matching the input-output pairs of the generator to a dataset
D = {xD

i , s
D
i }ni=1 where xD

i are optimal for sDi . This leads to the data-driven learning
formulated as follows:

min
θ

∑
D

||g(sDi ,θ)− xD
i ||22. (P1)

6

As we reviewed in the last section, collecting D can be costly due to the iterative na-
ture of solving the topology optimization problem (TO). On the other hand, checking the
compliance of an arbitrary topology x to the optimality conditions (Eq. (5)) only requires
solving Ku = s once. This finding indicates that the optimality conditions may offer afford-
able means to identify new data point that will most effectively improve the generalization
performance of g. Specifically, we define the deviation of solution x from the optimality
conditions as

d(x,µ) = ||∇xL||22 + w0g
2
0 + w1g

2
1 (6)

where the algorithmic parameters w0 and w1 weight the penalties on constraints g0 and g1,
respectively. One issue in evaluating d is that we do not know the values of the Lagrangian
multipliers (which are denoted by µT = [µ0, µ1,µ

T
l ,µ

T
u]) before solving the problem. To

this end, we propose to find µ∗ that minimizes the deviation of ∇xL from 0 subject to their
constraints from (P):

min
µ

||∇xL||22

subject to µ ≥ 0, µTg = 0.
(P2)

By solving (P2) for all s in a validation set Sv, we can then choose a new training data
point (s∗,x∗) for which the minimal deviation d(g(s∗,θ),µ∗) is the largest among Sv. It is
worth noting that (P2) is a (2N + 2)-dimensional quadratic programming problem and can
be solved efficiently using standard solvers (e.g., sequential quadratic programming).

The learning algorithm can now be summarized in Alg. 1. Details on setting the initial
training set S0, the validation set Sv, the computational budget B, and the budget lower
bound b will be introduced along the case studies in Sec. 5.

5. Case Studies

This section presents two case studies where we demonstrate the superior learning ef-
ficiency of the proposed algorithm in comparison with two benchmark mechanisms. The
first benchmark uses a static dataset (Dstatic) for training, and is denoted as Benchmark I.
The second benchmark, denoted as Benchmark II, is similar to the proposed approach, but
chooses data points using a different heuristic. For all three learning mechanisms (Bench-
marks I, II, and ours), the topology optimization problem is solved by an Augmented La-
grangian algorithm, details of which is deferred to the appendix.

5.1. The heuristic of Benchmark II

In Benchmark II, we evaluate the performance of the generator g by measuring the
difference between the compliance produced by g and the predicted compliance based on
the training data D:

dh(g(si,θ
∗)) = |f(g(si,θ

∗), si)− f̂(si)|, (7)

where si comes from the validation set Sv, and f̂ is an ordinary least square model that
fits to {(s∗i , f(x∗i , s

∗
i) | (x∗i , s

∗
i) ∈ D}. In this study, polynomial models are used for curve

fitting. The validation data point with the highest value of dh is chosen, and its true optimal
topology is then computed and used to improve the generator.

7

Algorithm 1: Theory-driven learning

input : Problem distribution p(s)
output: Learned model parameters θ∗

1 Draw initial problem set S0 from p(s);
2 Find optimal xi for each si in S0;
3 Initialize dataset D = D0 = {(xi, si)}|S0|i=1;
4 Draw validation problems Sv from p(s);
5 Set computation budget B = B0 and budget lower bound b;
6 while B > b do
7 Update θ∗ by solving (P1) based on D;
8 Calculate µ∗i and d(g(si,θ

∗),µ∗i) for all si in Sv based on Eq. (6);
9 Find s∗ ∈ Sv with the highest d value;

10 Derive x∗ for s∗ by solving (TO);
11 Record δB as the number of Ku = s solved in solving (TO) and computing

Eq. (6);
12 Update the budget B = B − δB;
13 D = D + (x∗, s∗), Sv = Sv − s∗;

14 end

5.2. Study setups

The topology optimization problems to be solved follow (TO). Two cases are created
to demonstrate the scalability of the proposed method. In Case 1, the input s represents a
single load applied to a 2D structure represented by a 40-by-120 mesh, see Fig. 1a. In this
case, the input to the generator is the angle of the load, uniformly distributed in between
0 and π, i.e., p(s) = 1/π. In Case 2, s encodes (1) the x- and y-coordinates of the loading,
which is drawn uniformly from all nodes in the highlighted area in Fig. 1b, and (2) the
direction of the point load uniformly drawn from 0 to 2π.

Figure 1: Sample solutions for (a) Case 1, where a point load is applied to the middle node at the tip of
the cantilever beam, with directions uniformly distributed in [0, π], and (b) Case 2, where the point load
is applied to a node in the highlighted square area which occupies one-third of the design space, with its
direction drawn from [0, 2π]

To compare the three learning mechanisms, each is executed 10 times to account for the
randomness in the sampling of the initial dataset D0 (and Dstatic in the case of Benchmark

8

I) and the validation set at each iteration. The generalization performance is measured by

F (θ∗) =
∑
si∈St

f(g(si,θ
∗), si), (8)

where St is a separate test set drawn from p(s). For Case 1, the sample sizes are |S0| = 5,
|Sv| = 100, |St| = 100, and |Dstatic| = 16. For Case 2, since the problem space is much larger,
the sample sizes are set to |S0| = 1000, |Sv| = 6000, |St| = 1000, and |Dstatic| = 7000. In
addition, since validating a large number of inputs becomes expensive, we uniformly sample
100 validation points from |Sv| to perform active learning in each iteration. All previously
sampled points will be removed from Sv. For both cases, the computational budget B0 is
set as bmin|Dstatic|, where bmin is the minimal solution cost among all problems sampled for
Benchmark I. The budget lower bound b is set to the maximal cost among the same set of
problems. This setting ensures that the adaptive methods (Benchmark II and the proposed
method) will always use less computational resource than the static method for topology
optimization, thus creating a comparison in favor of the latter. For the following results,
we set w0 = w1 = 1 for the proposed method. A full parametric study on these hyper-
parameters has not been conducted, yet the effectiveness of the current setting is validated
(Sec. 5.4).

5.3. Architectures of the solution generators

The architectures of the solution generators are summarized in Fig. 2. For Case 1, we
use a two-dimensional input to represent the x- and y-components of the point load. For
Case 2, we use a three-dimensional input to represent the x, y location and the orientation
of the point load. The choice of these input representations are based on empirical tests
of the generalization performance of the learned models. In particular, we found in Case 2
that using a sparse load representation as network inputs will lead to much worse generation
performance for all learning mechanisms.

5.4. Results

Case 1 results. For Case 1, Fig. 3a compares the compliance of the topologies generated
by all three learning mechanisms with the ground truth for all test inputs; Fig. 3b reports
the corresponding compliance gaps produced by these mechanisms. The generalization per-
formance of a learning mechanism is measured by the mean and the standard deviation
of the average compliance gaps across all test inputs. The result shows that the proposed
mechanism outperforms the benchmarks at predicting optimal topologies for unseen loading
conditions in a low-dimensional case. To further demonstrate the difference between the
three mechanisms, we visualize and compare generations for four test loads in Fig. 1. The
loading directions are marked in the last row of the figure, which are 0.3π, 0.4π, 0.45π,0.55π
respectively. The resultant compliance values are shown at the bottom of each topology.

9

Figure 2: Architectures of the solution generators

Figure 3: (a) Comparison between the compliance of the ground truth topologies and those from the
generated solutions from all three learning mechanisms. 10 independent experiments are conducted for each
learning mechanism. The means and the standard deviations are reported. (b) The absolute compliance
gaps.

10

Figure 4: Case 1 topologies predicted by (a) Benchmark I, (b) Benchmark II, (c) the proposed method.
(d) Ground truth computed using the Augmented Lagrangian solver. Compliance values are shown at the
bottom of each topology. Loading directions are marked as the arrows.

Challenges in Case 2. Case 2 examines the performance of the proposed mechanism under a
higher-dimensional and larger input space. We notice that the learning becomes significantly
more challenging in this case. see Sec 6). Specifically, for all three algorithms under the
same budget (which is equivalent to solving 7000 TO problems), there exist inputs for which
the generated topologies have significantly larger compliance than the ground truth. We
mark test data points with a compliance gap of over 1000 as failed designs. For Benchmark
I, II and the proposed method, the mean failure rates over the entire test are 14%, 0.8%, and
0.6% respectively. Some failed generations are shown in Fig. 5 along side the corresponding
ground truth.

Figure 5: Example of failed generations with significant larger compliance than the corresponding ground
truth. Loading conditions are marked at the top and compliance at the bottom. Some generations are
close to the ground truth in the pixel space but miss critical elements, such as the first three. Some of the
generations are simply off, such as the last one.

11

Table 1: Comparisons on the mean count of failures from 1000 test data points and the median compliance
gaps for Case 2

Failure rate: mean (std) Median compliance gap: mean (std)
Benchmark I 5.12% (1.2%) 22.12 (3.34)
Benchmark II 0.64% (0.42%) 6.64 (0.87)
Propose method 0.16% (0.09%) 5.2 (0.6)

An augmented learning objective. To alleviate this issue, we introduce design sensitivity∇xf
at the optimal solution as a weighting factor of the learning loss in (P1), based on the insight
that structural elements with higher sensitivity contribute more to the compliance and thus
should have higher priority during model training. Concretely, the training problem at each
iteration of the active learning process is now formulated as

min
θ

∑
(si,xi)∈D

||g(si,θ)− xi||2Λi
, (9)

where Λi = diag([λi,1, · · · , λi,N]) is a diagonal weighting matrix, λi,e = ∇xf−min(∇xf)
max(∇xf)−min(∇xf)

,

and ||x||2Λ = xTΛx. It is important to note that Λi is a byproduct of computing xi and
does not cost extra budget.

Case 2 results. By introducing this augmentation, the mean rate of failures drops to 5.12%,
0.64%, and 0.16% for Benchmark I, II, and the proposed method, respectively. Since the
compliance distributions are far from normal due to the failed designs, we report the means
and standard deviations of the median compliance gaps from all experiments and learning
mechanisms instead. These results are summarized in Table 1. As a demonstration, we
compare in Fig. 6 the generations from all mechanisms under four test settings. The proposed
method has the closest compliance to the ground truth.

Validity of hyper-parameter settings. For both case studies we set the weights for the local
and global constraints (w0 and w1 in Eq. 6) to be w0 = 1 and w1 = 1. To validate this setting,
we monitor the violation to the constraints by solutions generated for all test inputs. For a
proper measure of constraint satisfaction, test cases where constraints are satisfied will be
ignored in the calculation of the mean violation. It is noted that ground truth topologies have
none-zero violation due to the non-zero error thresholds set in the augmented Lagrangian
algorithm. In Case 1 (Case 2), the mean violation to the global volume fraction constraint is
g0 = 4.89% (3.0%) for the ground truth and g0 = 8.76% (1.6%) for the generated solutions.
In both cases, no violation to the local constraints are observed for either the ground truth or
the generated solutions. This result indicates that the setting of the hyper-parameters leads
to the learning of a generator with reasonable compliance to the global and local volume
fraction constraints. A parametric study is yet needed to fully characterize the tradeoff
between the learning of effective topologies and that of constraint compliance by tuning the
hyper-parameters.

12

Figure 6: Case 2 optimal topologies predicted by (a) Benchmark I, (b) Benchmark II, and (c) the proposed
method. (d) The ground truth topologies with design sensitivity information: cold (warm) color indicates
lower (higher) design sensitivity. The point loads are marked as arrows with detailed input values reported
at the top of the figure. The compliance values are shown at the bottom of each topology. Best viewed
online.

Comparison on solution generation speed. Lastly, we shall note that the computation time
required for generating solutions through the learned model is negligible (in the order of
10−2 seconds per topology on Intel Xeon CPU E5-1620 @ 3.50GHz) compared with that
through a TO solver (in the order of 102 to 103 seconds per topology). It is also worth
mentioning that the run-time cost of the model does not include the data acquisition cost
for training the model, and the above comparison only makes sense for cases where the
expected amount of computation (for all TO problems to be solved) is much larger than
what is required for training the network. We acknowledge, nonetheless, that quantifying
the total computational cost of a design task is challenging (e.g., due to unknown designer
preferences), and theoretical upper bounds on the data size for neural networks are yet to
be established. However, addressing these issues is beyond the scope of this paper.

6. Discussion

We now discuss the remaining issues related to learning manifolds of optimal solutions
using neural networks.

6.1. Curse of dimensionality and potential solutions

So far we assumed that the pre-defined network architecture is able to capture the un-
derlying manifold in high-dimensional spaces. As we see from the two cases, increasing the
latent dimension of the manifold from one to three already raised the data demand signifi-
cantly, indicating that the manifold of optimal topologies underlying Case 2 is much more

13

“complex” than that of Case 1. Indeed, from Narayanan and Mitter [46], the sampling com-
plexity of learning a manifold (to within a specified tolerance) is exponential on the intrinsic
dimension (the dimension of the input), linear on the intrinsic volume (the size of the input
space), and polynomial on the curvature of the manifold.

This leads to two legitimate concerns. The first regards model sufficiency: pre-defining
the network architecture of the generator could be a stab in the dark when a new manifold
is to be learned, as we do not know whether the network is sufficiently flexible to fit to
the manifold. The second regards data sufficiency: real-world design problems may have
solution manifolds that are too data-demanding for active learning alone to handle.

Lei et al. [47] recently proposed an approach to the first concern in the context of piece-
wise linear networks (with ReLU activations). It is shown that both the manifold and the
network complexity can be measured by the number of polyhedral cells induced respec-
tively by the geometry of the manifold and the architecture of the network. Further studies
following these complexity measures may lead to protocols for determining the network ar-
chitecture of the generator before learning of generator weights takes place, essentially by
computing an upper bound on the number of planes needed to locally and linearly approx-
imate the underlying manifold. An efficient algorithm for doing so, however, is yet to be
developed.

The second concern, however, is more critical to the application of the proposed method.
One potential solution is based on the insight that the governing equations for training can
be derived at arbitrary spatial resolution of the structure. While the intrinsic dimension and
volume do not change across resolutions, we hypothesize that lowering the resolution will
reduce the manifold curvature, and thus reduce the sampling complexity. In the context of
TO, with lower resolution of the structure (i.e., less elements), we expect an easier learning
problem. Based on this hypothesis, it is possible that a hierarchical network architecture can
be learned progressively to alleviate the curse of dimensionality: At each spatial resolution
level, we learn a generator that predicts the transition from coarse solutions to the ones
that satisfy the optimality conditions at this level. The coarse solutions are proposed by
the generator learned from the lower-level resolution. The investigation of this approach
will be reported in a separate paper. It should be reiterated that despite the inevitable
scalability challenge, the value of learning models through domain-specific theories is clearly
demonstrated in this study.

6.2. From theory-driven data selection to full theory-driven learning

Another direction to explore is based on the note that the proposed method does not solve
the learning problem (P) directly. Rather, we collect true solutions and fit a generator (i.e., a
neural network) to it, with the hope that by intelligently collecting true solutions on fly, the
fit model will effectively converge to the true solution manifold governed by the optimality
conditions. An interesting question is whether solving (P) directly through a gradient-based
method can be achieved and will be more effective than the presented method. If we consider
the presented learning mechanism as theory-driven data selection, then solving (P) directly
will be full theory-driven learning. More concretely, in each iteration of the learning, we
would need to solve a batch of TO problems partially, i.e., finding feasible topologies that

14

reduce the violation to the optimality conditions, and use the resultant changes in topologies
to update the solution generator. The key difference between the presented method and a
full theory-driven learning mechanism is that while the former guarantees optimality of
known solutions as long as the network is flexible enough to fit through these solutions, the
latter does not have such a guarantee at any time during the training; instead, it requires
less cost per iteration (since it does not completely solve TO problems), and may afford
more iterations (batches of TO problems). Fig. 7 visualizes the difference between the two
using a simple 2D illustration, where the circle is the unknown solution manifold, the curve
represents a solution generator, and the dots are sampled solutions.

Figure 7: (a) Full theory-driven learning: In each iteration, random inputs are picked to compute the
improvement directions of the model towards the ground truth. (b) Theory-driven adaptive sampling (this
paper): Sample inputs are selected based on their violation to the optimality conditions. The corresponding
ground truth (the crosses) are revealed, which informs the improvement directions of the model. Best viewed
online.

6.3. Interpretability of the generators

One additional challenge we face is the interpretation of the learned generator. Given
the fact that the generators perform reasonably well in the two cases, one would like to
visualize what they learn, e.g., local structural features that serve as puzzle pieces and lead
to low-compliance structures when assembled. However, an investigation into the learned
generators shows that such interpretable knowledge are not evident from the visualization
of the network parameters. One potential reason is that the arbitrarily chosen network
architecture may introduce confounding hidden nodes that decompose interpretable features
that could have existed. One solution could be to impose regularization on all network
parameters to be learned. Yet this will introduce more hyper-parameter tuning as a result.

6.4. Value of learning manifolds of optimal designs to designers

Last but not least, we shall come back to discuss and reiterate why and when learning
manifolds of optimal designs has a value to designers. As we discussed in the introduction,
there are cases where a large number of topology optimization problems (or other forms

15

of optimization problems) need to be solved with only parametric differences. Such cases
include when the TO is nested in a larger-scale system-level optimization, or when problem
settings of the TO are required to be explored by human designers. In addition, designers
may solve problems without knowing that similar ones have been previously solved by others.
The proposed learning mechanism would not only allow a machine to accumulate and learn
from solutions to similar problems, but also effectively practice by itself to reinforce its
intuition at quickly solving common sets of problems, and thus may reduce the computational
and energy cost of design tasks of growing complexity.

On the other hand, the learning itself requires solving more problems during adaptive
sampling. Hence, it would be ideal to understand whether the expected total cost of solving
a set of problems in the future surpasses the potential cost of learning. If so, the learning
mechanism would have a value. The comparison between these two costs, however, will not
be straight forward, as we do not know the learning cost beforehand for a certain performance
threshold of the resultant generator. Therefore, a performance bound of the generator along
the sample size will need to be developed to guide the decision on whether the learning has
a practical value or not.

7. Conclusion

We were motivated by the lack of knowledge accumulation capability of existing compu-
tational solvers for design problems. This drawback of machines hampers them from quickly
creating good solutions in response to changing requirements in real-world design processes.
Our solution to this end was to create a solution generator that adaptively learns from true
solutions from a distribution of problems and predicts solutions to other unseen problems
from the same distribution. The generator was modeled by a feedforward neural network,
and thus produces solutions in one-shot, as opposed to through iterations as in conventional
approaches. Our key contribution was the introduction of problem-specific optimality condi-
tions as a tractable validation measure to enable more effective learning. We highlight that
computing the violation of a generated solution to the optimality conditions requires only a
single finite element analysis, while comparing the generated solution with the ground truth
would require an entire topology optimization process, which requires thousands of finite
element analysis for the problems we studied. We showed through two case studies that the
proposed learning algorithm achieves significantly better generalization performance than
the benchmarks under the same computational cost. While more sophisticated topology
optimization settings should be tested, the proposed method is generally applicable to tasks
of learning distributions of optimal solutions, provided that the optimality conditions can
be derived and computed at low cost. Source codes for reproducing results from the paper
are available here.

Appendix

Topology optimization through augmented Lagrangian
The topology optimization problem of (TO) is solved using Alg. 2. Note that other

algorithms, such as the method of moving asymptotes [48], are also applicable.

16

Algorithm 2: Topology optimization through Augmented Lagrangian (AL)

input : Problem parameters α, β, p, re, Re, βt, s
output: Design variable x

1 Set algorithmic parameters εal = 1, εopt = 10−3, initial guess x = α1;
2 Pre-compute neighbourhood Me and Ne, and filter weights ωi,j;
3 while β < βt do

/* gradually change the problem */

4 Set AL parameters: r0 = 1, r1 = 1, µ0 = µ1 = 0, η0 = η1 = 0.1, ε = 1, δx = 1061;
5 Compute x̃, ρ, ρ̄, K, u, f , g0, and g1;
6 while max |δx| > εal or g0 > 0 or g1 > 0 do

/* solve the constrained problem */

7 Set δx = 1061;
8 while max |δx| > ε do

/* solve the unconstrained problem */

9 Set learning rate a = 10−3;
10 Compute ∇xf , ∇xg0, ∇xg1, and

δx = ∇xf + (µ0 + 2g0/r0)∇xg0(g0 > 0) + (µ1 + 2g1/r1)∇xg1(g1 > 0);
11 while 1 do

/* line search */

12 Set ∆x = −aδx, clip each element of ∆x to [−0.1, 0.1];
13 Set x′ = x + ∆x;
14 Compute ρ′, ρ̄′, K′, u′, f ′, g′0, and g′1 based on x′;
15 Compute L = f + µ0g0 + 0.5g20/r0 + µ1g1 + 0.5g21/r1;
16 Compute L′ = f ′ + µ0g

′
0 + 0.5g′20 /r0 + µ1g

′
1 + 0.5g′21 /r1;

17 if L′ − L > 0 then
/* if learning rate is too high */

18 Set a = 0.5a;

19 else
20 x = x′;
21 end

22 end

23 end
/* update augmented Lagrangian parameters */

24 for i = 0, 1 do
25 if gi < ηi then
26 Set µi = µi + 2gi/ri, ηi = 0.5ηi;
27 else
28 Set ri = 0.5ri;
29 end

30 end

31 end
32 Set β = 2β;

33 end

17

References

[1] J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating Eulerian Fluid Simulation With
Convolutional Networks, ArXiv e-printsarXiv:1607.03597.

[2] M. Chu, N. Thuerey, Data-driven synthesis of smoke flows with cnn-based feature descriptors, ACM
Transactions on Graphics (TOG) 36 (4) (2017) 69.

[3] R. Giryes, Y. C. Eldar, A. Bronstein, G. Sapiro, Tradeoffs between convergence speed and reconstruction
accuracy in inverse problems, IEEE Transactions on Signal Processing.

[4] I. Sosnovik, I. Oseledets, Neural networks for topology optimization, arXiv preprint arXiv:1709.09578.
[5] E. Ulu, R. Zhang, L. B. Kara, A data-driven investigation and estimation of optimal topologies un-

der variable loading configurations, Computer Methods in Biomechanics and Biomedical Engineering:
Imaging & Visualization 4 (2) (2016) 61–72.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing prop-
erties of neural networks, arXiv preprint arXiv:1312.6199.

[7] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the physical world, arXiv preprint
arXiv:1607.02533.

[8] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, P. Abbeel, Adversarial attacks on neural network
policies, arXiv preprint arXiv:1702.02284.

[9] J. Wu, N. Aage, R. Westermann, O. Sigmund, Infill optimization for additive manufacturingapproaching
bone-like porous structures, IEEE transactions on visualization and computer graphics 24 (2) (2018)
1127–1140.

[10] M. P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization
method, Computer methods in applied mechanics and engineering 71 (2) (1988) 197–224.

[11] T. Guo, D. J. Lohan, R. Cang, M. Y. Ren, J. T. Allison, An indirect design representation for topol-
ogy optimization using variational autoencoder and style transfer, in: 2018 AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, 2018, p. 0804.

[12] R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao, M. Y. Ren, Microstructure representation and reconstruc-
tion of heterogeneous materials via deep belief network for computational material design, Journal of
Mechanical Design 139 (7) (2017) 071404.

[13] R. Cang, H. Li, H. Yao, Y. Jiao, Y. Ren, Improving direct physical properties prediction of heteroge-
neous materials from imaging data via convolutional neural network and a morphology-aware generative
model, Computational Materials Science 150 (2018) 212 – 221.

[14] R. Bostanabad, Y. Zhang, X. Li, T. Kearney, L. C. Brinson, D. W. Apley, W. K. Liu, W. Chen, Compu-
tational microstructure characterization and reconstruction: Review of the state-of-the-art techniques,
Progress in Materials Science 95 (2018) 1 – 41.

[15] G. Stiny, Introduction to shape and shape grammars, Environment and planning B: planning and
design 7 (3) (1980) 343–351.

[16] S.-W. Hsiao, C.-H. Chen, A semantic and shape grammar based approach for product design, Design
studies 18 (3) (1997) 275–296.

[17] G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set
method, Journal of computational physics 194 (1) (2004) 363–393.

[18] D. Jung, H. C. Gea, Topology optimization of nonlinear structures, Finite Elements in Analysis and
Design 40 (11) (2004) 1417–1427.

[19] O. Sigmund, Design of multiphysics actuators using topology optimization–part ii: Two-material struc-
tures, Computer methods in applied mechanics and engineering 190 (49-50) (2001) 6605–6627.

[20] M. Y. Wang, X. Wang, “color” level sets: a multi-phase method for structural topology optimization
with multiple materials, Computer Methods in Applied Mechanics and Engineering 193 (6-8) (2004)
469–496.

[21] B. Zhu, M. Skouras, D. Chen, W. Matusik, Two-scale topology optimization with microstructures,
ACM Transactions on Graphics (TOG) 36 (5) (2017) 164.

[22] Y. Ren, P. Y. Papalambros, A design preference elicitation query as an optimization process, Journal
of Mechanical Design 133 (11) (2011) 111004.

18

http://arxiv.org/abs/1607.03597

[23] G. Orbay, L. Fu, L. B. Kara, Deciphering the influence of product shape on consumer judgments
through geometric abstraction, Journal of Mechanical Design 137 (8) (2015) 081103.

[24] Y. M. Xie, G. P. Steven, A simple evolutionary procedure for structural optimization, Computers &
structures 49 (5) (1993) 885–896.

[25] O. Querin, G. Steven, Y. Xie, Evolutionary structural optimisation (eso) using a bidirectional algorithm,
Engineering computations 15 (8) (1998) 1031–1048.

[26] R. V. Rao, V. J. Savsani, D. Vakharia, Teaching–learning-based optimization: a novel method for
constrained mechanical design optimization problems, Computer-Aided Design 43 (3) (2011) 303–315.

[27] G. Kharmanda, N. Olhoff, A. Mohamed, M. Lemaire, Reliability-based topology optimization, Struc-
tural and Multidisciplinary Optimization 26 (5) (2004) 295–307.

[28] R. Vilalta, Y. Drissi, A perspective view and survey of meta-learning, Artificial Intelligence Review
18 (2) (2002) 77–95.

[29] S. Hochreiter, A. S. Younger, P. R. Conwell, Learning to learn using gradient descent, in: International
Conference on Artificial Neural Networks, Springer, 2001, pp. 87–94.

[30] R. Caruana, Learning many related tasks at the same time with backpropagation, in: Advances in
neural information processing systems, 1995, pp. 657–664.

[31] S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions on knowledge and data engineering
22 (10) (2010) 1345–1359.

[32] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, V. Lempit-
sky, Domain-adversarial training of neural networks, The Journal of Machine Learning Research 17 (1)
(2016) 2096–2030.

[33] S. Thrun, Is learning the n-th thing any easier than learning the first?, in: Advances in neural infor-
mation processing systems, 1996, pp. 640–646.

[34] S. Ravi, H. Larochelle, Optimization as a model for few-shot learning.
[35] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, N. de Freitas, Learning to

learn by gradient descent by gradient descent, in: Advances in Neural Information Processing Systems,
2016, pp. 3981–3989.

[36] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap, M. Botvinick, N. de Freitas,
Learning to learn without gradient descent by gradient descent, arXiv preprint arXiv:1611.03824.

[37] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell, D. Kumaran,
M. Botvinick, Learning to reinforcement learn, arXiv preprint arXiv:1611.05763.

[38] S. Tong, D. Koller, Support vector machine active learning with applications to text classification,
Journal of machine learning research 2 (Nov) (2001) 45–66.

[39] B. Settles, Active learning, Synthesis Lectures on Artificial Intelligence and Machine Learning 6 (1)
(2012) 1–114.

[40] D. D. Lewis, J. Catlett, Heterogeneous uncertainty sampling for supervised learning, in: Machine
Learning Proceedings 1994, Elsevier, 1994, pp. 148–156.

[41] N. Roy, A. McCallum, Toward optimal active learning through monte carlo estimation of error reduc-
tion, ICML, Williamstown (2001) 441–448.

[42] J. Wu, J. J. Lim, H. Zhang, J. B. Tenenbaum, W. T. Freeman, Physics 101: Learning physical object
properties from unlabeled videos., in: BMVC, Vol. 2, 2016, p. 7.

[43] R. Jonschkowski, R. Hafner, J. Scholz, M. Riedmiller, Pves: Position-velocity encoders for unsupervised
learning of structured state representations, arXiv preprint arXiv:1705.09805.

[44] R. Stewart, S. Ermon, Label-free supervision of neural networks with physics and domain knowledge.,
in: AAAI, 2017, pp. 2576–2582.

[45] M. Denil, P. Agrawal, T. D. Kulkarni, T. Erez, P. Battaglia, N. de Freitas, Learning to perform physics
experiments via deep reinforcement learning, arXiv preprint arXiv:1611.01843.

[46] H. Narayanan, S. Mitter, Sample complexity of testing the manifold hypothesis, in: Advances in Neural
Information Processing Systems, 2010, pp. 1786–1794.

[47] N. Lei, Z. Luo, S.-T. Yau, D. X. Gu, Geometric understanding of deep learning, arXiv preprint
arXiv:1805.10451.

19

[48] K. Svanberg, The method of moving asymptotesa new method for structural optimization, International
journal for numerical methods in engineering 24 (2) (1987) 359–373.

20

	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 One-shot solution generator
	3.2 The compliance minimization problem
	3.3 Learning a solution generator

	4 Learning with a Physics-based Criterion
	5 Case Studies
	5.1 The heuristic of Benchmark II
	5.2 Study setups
	5.3 Architectures of the solution generators
	5.4 Results

	6 Discussion
	6.1 Curse of dimensionality and potential solutions
	6.2 From theory-driven data selection to full theory-driven learning
	6.3 Interpretability of the generators
	6.4 Value of learning manifolds of optimal designs to designers

	7 Conclusion

