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Abstract

Simplifying rational parametrizations of surfaces is a basic problem in CAD (computer-aided design). One
important way is to reduce their tracing index, called proper reparametrization. Most existing proper
reparametrization work is symbolic, yet in practical environments the surfaces are usually given with
perturbed coefficients hence need a numerical technique of reparametrization considering the intrinsic
properness of the perturbed surfaces. We present algorithms for reparametrizing a numerically rational
space curve or surface. First, we provide an efficient way to find a parametric support transformation
and compute a reparametrization with proper parametric support. Second, we develop a numerical
algorithm to further reduce the tracing index, where numerical techniques such as sparse interpolation
and approximated GCD computations are involved. We finally provide the error bound between the
given rational curve/surface and our reparametrization result.

Keywords: Numerical/symbolic reparametrization, Space curve, Rational surface, Approximately
improper/proper

1. Introduction

Rational curves and surfaces are widely used in the original design of engineering, geometric mod-
eling and computer aided design. A significant basic problem is to simplify the parametrization to a
proper one, i.e., the rational representation that traces the curve or surface only once. The reason is
threefold (see [22]): First, parametrization of smaller degrees can be represented with less data; second,
implicitization is easier when the degree is smaller; third, it is easier to find rational curves of smaller
degrees on the given surface. Extensive research has considered the problem of proper reparametrization
for curves [9, 17, 23, 28] and surfaces [7, 10, 11, 15, 17, 18], mostly in a symbolic computational approach.
However, in the practical designing of engineering and modeling applications, the rational curves and
surfaces are usually presented by numerical coefficients. Therefore, a proper reparametrization that well
“approximates” the original numerical representation is needed.

In the past studies, the parametrization such as splines or Bézier curves, are generally assumed to be
proper. However, the parametrization obtained in practical computation may not be proper as expected.
To our knowledge, only the recent work [26] considers the proper reparametrization for a given planar
curve defined parametrically with perturbed float coefficients. For an approximately improper curve,
[26] presents an algorithm of computing a proper reparametrization of the curve, which shows more
advantages than the commonly used method presented in [5] of simplifying the curve by degree-reduction
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(see Figure 1). Consideration of the intrinsic properness of the curve leads to the better result than those
of the other approximate algorithms. For rational surfaces, there are no papers studying the approximate
properness, since the proper reparametrization problem of rational surfaces is not solved completely even
in symbolic consideration. In this paper, we extend this idea to numerically improper rational space
curves and rational surfaces based on the latest symbolic results.

a) P(t) v.s. its approx. proper one b) P(t) v.s. its degree reduced one

Figure 1: Numerical proper reparametrization ([26]) and degree reductions using Eck’s method ([5]). The input curve has
degree 6 (red color), and its approximately proper one (dash in a)) and degree reduced one by Eck’s method (dash in b))
are all of degree 3.

Luroth’s theorem [28] shows that a proper rational parametrization always exists for a rational curve,
and there are several algorithms on proper reparametrization of exact rational curves [9, 17, 23]. Hence,
for numerical rational space curves, we propose a proper reparametrization algorithm (based on the
symbolic algorithm presented in [17]) with parallel numerical analysis as in [26]. Unfortunately, much
difficulty arises when generalizing the algorithm to the rational surfaces. There are symbolic algorithms
that compute the tracing index for the rational surfaces [3, 19], and algorithms of computing the proper
reparametrization which are only developed for several special situations of surfaces (see [11, 15, 17,
18]). In particular, the problem of symbolic reparametrization is associated to the problem of functional
decomposition of polynomials, which has been the subject of many papers (see e.g. [7], [11], and [10]). In
[7], given a set of u polynomials h = (h1, . . . , hu) over a polynomial ring K[x1, . . . , xn] (K is an arbitrary
field) the algorithm presented recovers, if any, f = (f1, . . . , fu) ∈ K[x1, . . . , xn] and g = (g1, . . . , gu) ∈
K[x1, . . . , xn] such that h = (f1(g1, . . . , gu), . . . , fu(g1, . . . , gu)). In [10], it is discussed several notions
of decomposition for multivariate polynomials, focussing on the relation with Lüroth’s theorem in field
theory. These results can be applied to some very particular cases of parametrizations of surfaces as for
instance, those that admit a multi–univariate polynomial decomposition. Similar ideas are considered in
[11], where algorithms for multi–univariate polynomial decomposition and uni–multivariate polynomial
decomposition are obtained. One may check that the results in [18] are not covered by these papers. In
fact, in [18], it is presented an algorithm that computes a rational parametrization Q of a given surface
defined parametrically by P such that the degree of the rational map induced by Q is less than the degree
induced by P. The rational parametrization P of the surface is defined by any three rational functions (see
details in Section 5). Some other results concerning the reparametrization problem for curves and surfaces
are presented in [17]. In particular, in [17], the reparametrization problem for surfaces is solved but only
for some special surface’s parametrizations. Another remarkable work on the proper reparametrization
problem is to consider the parametric support and coefficient separately (see [2]). The tracing index
of the parametric support is a factor of the tracing index of the rational surface. Moreover, a support
transformation naturally induces a reparametrization. Hence, this method gives a simple way to reduce
the tracing index of a rational parametrization if the parametric support is not improper.

In this paper, we do not deal with the symbolic reparametrization problem, but with the study of
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some particular symbolic results of the proper reparametrization problem which can be extended to
the numerical situation. For a given rational surface with perturbed float coefficients, we first develop
an approach of reparameterizing the surface to a new one with a proper parametric support using the
simpler support transformation based on the Hermite form. But even with a proper parametric support,
a rational parametrization may still be improper which comes to the classical open problem. To settle
this problem, we present the numerical version of the latest proper reparametrization algorithm (see
[18]). We remark that we consider the results presented in [18] since they consider general rational
parametrizations of surfaces and they are suitable to extend to numerical computations. For practical
use, we further examine the numerical error bound between a rational surface and its reparametrization
surface.

The paper is organized as follows: in Section 2, some preliminaries and notations are introduced. In
Section 3, we give some basic concepts concerning the parametric support transformation and propose
an efficient algorithm to find a support transformation (see Subsection 3.1) for an improper support. In
Subsection 3.2, we consider general perturbed cases. In Section 4, after reviewing the symbolic proper
reparametrization algorithm for an algebraic space curve, we present a numerical algorithm that solve the
reparametrization problem from the numerical point of view. In Section 5, we consider the reparametriza-
tion problem but for a given algebraic rational surface. We first summarize the algorithm presented in
[18], where the symbolic reparametrization problem for surfaces is partially solved, and afterwards we
deal with the numerical reparametrization problem of surfaces (see Subsection 5.1). In Subsection 5.2,
we prove the correctness of the algorithm and the error analysis.

2. Preliminaries

Let K be an algebraically closed field of characteristic zero. For an affine rational variety V, let P( t )
be a rational affine parametrization of V over K, and we write its components as

P( t ) =
(
p1( t ), p2( t ), p3( t )

)
∈ K( t )3, pi( t ) =

pi,1( t )

pi,2( t )
, gcd(pi,1, pi,2) = 1, i = 1, 2, 3, (1)

where t = t ∈ K for a rational space curve, and t = (t1, t2) ∈ K2 for a rational surface. Without
loss of generality, we assume that pi, i = 1, 2, 3, are not constant. In addition, if P defines a surface
parametrization, we may assume that {∇p1, ∇p2} are linearly independent as vectors in K( t )2. This
assumption is needed to apply the results in [18] (see Section 3).

For a rational function in reduced form R = M/N ∈ K(x ) where x = (x1, . . . , xn), the degree of R
with respect to xi is denoted by degxi(R) = max{degxi(M),degxi(N)}. The degree of the rational map
induced by P is denoted by deg(φP). That is, φP : Kj −→ V; t 7−→ P( t ) (where j = 1 for the case of
curves, and j = 2 for the case of surfaces), and the degree of φP is defined as the degree of the finite field
extension φP(K(V)) ⊂ K( t ); i.e. deg(φP) = [K( t ) : φP(K(V))] (see e.g. [13] pp.80, or [24] pp.143). As
an important result, the properness of P( t ) is characterized by deg(φP) (it is also denoted as index(P),
and we refer to it as the tracing index ). Precisely, P( t ) is proper if and only if deg(φP) = 1, otherwise
P( t ) is improper (see [13] and [24]). Also, deg(φP) is the cardinality of the fibre of a generic element
(see Theorem 7, pp. 76 in [24]). That is,

FP(P ) = P−1(P ) = { t ∈ Kj | P( t ) = P},

where FP(P ) is the fibre of a point P ∈ V. Associated with the parametrization P, we consider the
polynomials

HPi ( t , s ) = pi,1( t )pi,2( s )− pi,2( t )pi,1( s ) ∈ (K[ s ])[ t ], i = 1, 2, 3,
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where s is a new variable, and s = s ∈ K for a rational space curve, and s = (s1, s2) ∈ K2 for a rational
surface. Let F = K( s ) be the algebraic closure of K( s ). We have that

φ−1P (P( s )) = { t ∈ Fj | HPi ( t , s ) = 0, i = 1, 2, 3} (2)

and
deg(φP) = Card(φ−1P (P( s ))) (3)

3. Reparametrization by support transformation

A parametrization P( t ) always consists on the coefficients and the associated parametric supports.
If the parametric support of the parametrization P( t ) is not improper, then there exists a support trans-
formation that maps the improper support to a proper support. The support transformation naturally
induces a reparametrization to reduce the tracing index of a rational parametrization (see [2]). In this
section, we introduce the parametric support method but with a new support transformation algorithm
with low complexity. For this purpose, we consider two different subsections: first, in Subsection 3.1,
we focus on a simple way to compute a support transformation for the improper parametric supports.
Afterwards, in Subsection 3.2, we consider general perturbed cases.

3.1. Parametric support transformation

Let f( t ) =
∑
f i t

i , i ∈ Zk, k = 1 or 2 be a polynomial over K. The set of all the integer lattice
points i such that f i 6= 0 is called the parametric support of f . Since the parametric support of a space
curve is simpler than that of the surfaces, we now representatively discuss the parametric support of the
surface, i.e., k = 2. Then, each lattice point i = (i1, i2) corresponds to a monomial ti11 t

i2
2 .

Let P be a rational surface defined by (1). The parametric support of P, denoted by S, is defined to
be the union set of parametric supports of polynomials pi,1, pi,2, i = 1, 2, 3 of P. |S| is the number of
lattice points in S. The support can be written as a lattice matrix

MS =
(
i
)
i∈S ∈ Z|S|×2,

|S| ≥ 2, and the rank of MS is two, since the surface reduces to a curve if the rank is one. Furthermore,
we assume that (0, 0) ∈ S without loss of generality (see Lemma 2 in [25]).

Let N(S) be the normalized area of the Newton polygon of S, and A(S) the algebraic degree of

the general surface defined on S. Then, the tracing index of S is defined to be index(S) = N(S)
A(S) . A

support S is improper if index(S) > 1 and is proper if index(S) = 1. Considering a parametric support
transformation

τ : (i1, i2) ∈ Z2 7→ (a · i1 + b · i2, c · i1 + d · i2) ∈ Z2

where a, b, c, d are rational numbers, the support transformation induces a reparametrization transforma-
tion for P as

t1 = ua1u
c
2, t2 = ub1u

d
2

with new parameters u1 and u2.

Under these conditions, we have the following theorem summarized from Theorem 1, 2 and 3 in [2].

Theorem 1. Let S be a parametric support of P. Then

(1) index(S) = gcd{N(S′) |S′ ⊆ S, |S′| = 3}.

(2) There exists a support transformation τ mapping S to Sτ such that index(Sτ ) = 1.
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(3) If index(Sτ ) = 1 then deg(φP) = deg(φPτ ) index(S), where Pτ is the reparametrization of P.

(4) If index(S) = 1, then with a generic coefficient set deg(φP) = 1.

For an improper support S, an algorithm was proposed to compute the tracing index of S and a
support transformation, τ , was found such that τ(S) is proper. This algorithm computes the gcd of the
areas of all the triangular sub-supports in S, and the computation complexity was not less than O(|S|2)
(see the proof of Theorem 1 in [2]). Here we will compute the tracing index from the Hermite of the
integral matrix and then, the support transformation is easily derived. The computational complexity of
the Hermite form for an integral |S|×2-matrix with rank k is O(4|S|) (see [12]). A support S determines
the feature complex of a variety and it is, in general, much greater than the dimension k, i.e., |S| >> k.

Let MS ∈ Z|S|×2 be the integer support matrix consisting of all the lattice points in S, and let HS be
the Hermite form of MS. Then we have

HT
S =

(
h11 0 0 · · · 0
h12 h22 0 · · · 0

)
,

where h11h22 6= 0 since the rank of MS is two.

Theorem 2. index(S) = h11h22 and

τ : (i, j) 7→ (i, j)

(
h11 h12
0 h22

)−1
defines a support transformation mapping S to Sτ with index(Sτ ) = 1.

Proof. By Theorem 1 and linear algebra, one can find that the index is equivalent to the product of
diagonal elements of the Smith form of MS. Hence the index is also equivalent to the product of diagonal

elements of the Hermite form H and T =

(
h11 h12
0 h22

)−1
defines a support transformation for S such

that index(Sτ ) = 1.

3.2. STLN-based sparse approximation

The reparametrization based on support transformation is determined by the support structure. Hence
the existence of terms of P plays an essential role. When we consider the general perturbed cases, dense
terms are often brought into, but the target rational surfaces may not need the dense structure. In
this subsection, a method is proposed to remove some tiny influent terms from the parametrization
P( t ) and refine the coefficients of the remaining support such that the sparse parametrization Pe( t ) =(
p̃1( t ), p̃2( t ), p̃3( t )

)
∈ K( t )3, p̃i( t ) =

p̃i,1( t )

p̃i,2( t )
, i = 1, 2, 3, is close to the given P( t ).

To find a sparse approximation in an interval, a simple way is to approximate the numerators and the
denominators of the rational functions within an interval respectively, i.e.,∥∥p̃i,1( t )− pi,1( t )

∥∥
2
≤ ε and

∥∥p̃i,2( t )− pi,2( t )
∥∥
2
≤ ε for i = 1, 2, 3,

where ‖ · ‖2 returns the 2-norm of the coefficient vector of a polynomial. We can also consider the
approximations for the rational functions, i.e.∥∥∥∥ p̃i,1( t )

p̃i,2( t )
− pi,1( t )

pi,2( t )

∥∥∥∥
2

≤ ε for i = 1, 2, 3. (4)

Here ‖ · ‖2 returns the 2-norm of the numerator coefficient vector of a rational function. To solve the
above problems, we need to consider two sub-problems:
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P1 Get the sparse support by removing some tiny influent terms for the given tolerance ε.

P2 Refine the coefficients corresponding to the resulted support from P1 with a given tolerance ε.

The problems P1 and P2 are both similar to bivariate rational function interpolation problem. Prob-
lem P1 is simpler and can be solved explicitly since the candidate support of the rational function is

known. After normalizing the rational function
pi,1( t )

pi,2( t )
, the sparse support can be obtained by removing

terms whose coefficients are less than the given tolerance ε.
As mentioned above, P2 is a subproblem of rational function interpolation. Our goal is to find a

sparse parametrization such that
p̃i,1( t )

p̃i,2( t )
is as sparse as possible under

∥∥∥ p̃i,1( t )
p̃i,2( t )

− pi,1( t )

pi,2( t )

∥∥∥
2
≤ ε, i = 1, 2, 3

for each t = (t1, t2) ∈ K2. Therefore, the problem of computing the coefficients can be transformed
to that of preserving matrix structure (Vandermonde-block) total least squares (see Section 4 of [14]).
Problem P2 can also be solved by the STLN method (see [16]).

Example 1. Let V be the surface defined parametrically by

P( t ) =
(

2.002 t1
2+0.003 t2

4−0.005 t1t2
0.997+t14+t2+0.001 t12t22 , 2 t2

2+0.005 t2
4−0.002 t1t2

1.001+t14+t22−0.001 t12t ,
0.999−t14−t22+0.001 t2

4−0.001 t1t2
1.002+t14+t22+0.001 t12t22

)
(see Figure 2.a)). We compute a sparse approximation with tolerance ε = 0.001. The discussion region
is [0, 1]× [0, 1]. We get a sparse approximation PS(t1, t2) =

(
p̃1( t ), p̃2( t ), p̃3( t )

)
∈ K( t )3, where

p̃1( t ) = −1.99725741479780994t12

−0.997475460442092454−1.0 t14−0.996661205265358174 t22 ,

p̃2( t ) = 1.98718765468330627t2
2

1.0+0.992465458325022309 t14+0.983860429454241792 t22 ,

p̃3( t ) = 0.993875570416674292−0.997053277031201168 t14−0.993971171354035232 t22

0.997743315877603565+1.0 t14+0.993828950897961527 t22 .

The parametric support of the sparse approximation PS is S = {(0, 0), (2, 0), (0, 2), (0, 4), (4, 0)} and this

support is improper with index(S) = 2. The Hermite form of MS is H =

(
2 0 0 0 0
0 2 0 0 0

)
. Using

the support transformation defined by

τ : (i, j) 7→ (i, j)T,where T =

(
2 0
0 2

)−1
=

(
1/2 0
0 1/2

)
.

This parametric support transformation induces a reparametrization u1 =
√
t1, u2 =

√
t2 (See Figure 2.b).

The reparameterization includes two steps: sparse approximation and reparameterization induced
by the support transformation. For the first step, the difference between the given surface and the
approximated surface is given in equation (4). In the second step, the reparameterization induced by the
support transformation does not involve any error.

According to Theorem 1, a rational parametrization with generic coefficients is proper if the parametric
support is proper. However, a parametrization with perturbed float coefficients can be still improper
even the parametrization has a proper parametric support. Hence, the proper reparametrization problem
comes to the open general situation. In this section 4 and in Section 5, we consider the problem of proper
reparametrization of space curves and surfaces which are assumed to have proper parametric supports.

4. Proper Reparametrization of Space Curves

In this section, we deal with the proper reparametrization of a given parametric space curve from the
symbolic and also from the numerical point of view. For this purpose, we first summarize the symbolic
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a) Given surface b) Approx. surface with proper support c) Given surface v.s. its approx. one

Figure 2: The numerical input surface (a) and the reparametrization (b) generated by Theorem 2 from a sparse approxi-
mation of (a). In the right figure (c), one may check that both surfaces are very close.

algorithm presented in [17] (Section 3) for computing a proper reparametrization of an algebraic space
curve. Afterwards, in Subsection 4.1, we present a numerical algorithm that solve the reparametrization
problem from the numerical point of view.

Review the tracing index formulas of (2) and (3) for a rational space curve P( t ) = P(t) ∈ K(t)3, we
have that

deg(φP) = degt(gcd(HP1 (t, s), HP2 (t, s), HP3 (t, s))). (5)

The following symbolic algorithm is presented in [17] (Section 3) for computing a proper reparametriza-
tion of a parametric algebraic space curve. That is, given a parametrization P(t) ∈ K(t)3 of an algebraic
space curve C over a field K, we find a rational proper parametrization Q(t) ∈ K(t)3 of C, and a rational
function R(t) ∈ K(t) \K such that P(t) = Q(R(t)).

Algorithm 1 (Proper Reparametrization for Space Curves (PRSC)).
Input: a field K, a rational affine parametrization

P(t) = (p1(t), p2(t), p3(t)) ∈ K(t)3, pi(t) = pi,1(t)/pi,2(t), gcd(pi,1, pi,2) = 1

of an algebraic space curve C.
Output: a rational proper parametrization, Q(t) = (q1(t), q2(t), q3(t)) ∈ K(t)3, qi(t) = qi,1(t)/qi,2(t), of
C, and R(t) ∈ K(t) such that P(t) = Q(R(t)).

1. Compute HPj (t, s) = pj,1(t)pj,2(s)− pj,1(s)pj,2(t), j = 1, 2, 3.

2. Determine SP(t, s) = gcd(HP1 (t, s), HP2 (t, s), HP3 (t, s)) = Cm(t)sm + · · · + C0(t), and deg(φP) =
degt(S

P).
3. If deg(φP) = 1, Return Q(t) = P(t), and R(t) = t. Otherwise go to Step 4. [The algorithm

finishes here if P is proper.]
4. Compute a rational function R(t) = Ci(t)/Cj(t) ∈ K(t) \ K, where Cj(t), Ci(t) are two of the

polynomials obtained in Step 2 such that gcd(Cj , Ci) = 1 and CjCi 6∈ K (see Section 2 in [17]).
5. For i = 1, 2, 3, consider the polynomials GPi (t, xi) = xipi,2(t)− pi,1(t), and compute

Li(s, xi) = Rest(G
P
i (t, xi), sCj(t)− Ci(t)) = (qi,2(s)xi − qi,1(s))deg(R).

6. Return the rational function R(t) ∈ K(t) \K, and the proper parametrization

Q(t) = (q1,1(t)/q1,2(t), q2,1(t)/q2,2(t), q3,1(t)/q3,2(t)) ∈ K(t)3.

[The algorithm returns a proper parametrization, Q(t), of C and R(t) such that P(t) = Q(R(t)).]
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Remark 1. Observe that the coefficient field K is not necessarily an algebraically closed field when we
consider the reparametrization of a space curve. Thus, we also may apply the algorithm for P(s, t) ∈
(K(s))(t)3 (that is, for a parametrization of a space curve defined over the field K(s)). The output
parametrization, Q(s, t) is in (K(s))(t)3 (see Section 5).

We give an example to illustrate Algorithm PRSC.

Example 2. Let C be a rational space curve over C defined by the parametrization

P(t) =

(
(t+ 1)2(t2 + 1)

2(t4 + 4t2 + 1 + 2t3 + 2t)
,

2(t2 + t+ 1)

(t+ 1)2
,
−(t2 + 1)(t2 + 1 + 4t)

(t+ 1)4

)
∈ C(t)3.

In Step 1 of the algorithm, we compute the polynomials HPi (t, s), for i = 1, 2, 3. Next, we compute
SP(t, s). We obtain SP(t, s) = C0(t)+C1(t)s+C2(t)s2, where C0(t) = t, C1(t) = −t2−1, and C2(t) = t.
Since deg(φP) = degt(S

P) > 1, we go to Step 4 of the algorithm, and we consider the rational function

R(t) = −(t2 + 1)/t ∈ C(t).

Note that gcd(C0, C1) = 1. Now, we compute the polynomials

L1(s, x1) = Rest(G
P
1 (t, x1), sC1(t)− C0(t)) = (4x1 + 4sx1 − 2s− s2 + 2s2x1)2,

L2(s, x2) = Rest(G
P
2 (t, x2), sC1(t)− C0(t)) = (2x2 − 2− 2s+ sx2)2,

L3(s, x3) = Rest(G
P
3 (t, x3), sC1(t)− C0(t)) = (4x3 + 4s+ 4sx3 + s2 + s2x3)2,

where GPi (t, xi) = xipi,2(t) − pi,1(t) (see Step 5). Finally, in Step 6, the algorithm outputs the proper
parametrization Q(t), and the rational function R(t):

Q(t) =

(
t(t+ 2)

2(2 + 2t+ t2)
,

2(t+ 1)

2 + t
,
−t(t+ 4)

4 + 4t+ t2

)
∈ C(t)3, R(t) = − t

2 + 1

t
∈ C(t).

4.1. Numerical Algorithm for Proper Reparametrization for Space Curves

The problem of numerical proper reparametrization for space curves solved in this subsection can be
stated as follows: given the field C of complex numbers, a tolerance ε > 0, and a rational parametrization
P(t) ∈ C(t)3 of an algebraic space curve C that is approximately improper (see Definition 1), we find
a rational parametrization Q(t) ∈ C(t)3 of an algebraic space curve D, and a rational function R(t) ∈
C(t) \ C such that Q is an ε-proper reparametrization of P (see Definition 4). In addition, we measure
the closeness between C and D.

In the following we consider a tolerance ε > 0, and a rational parametrization of a given algebraic
space curve C

P(t) = (p1(t), p2(t), p3(t)) ∈ C(t)3, pi(t) =
pi,1(t)

pi,2(t)
, ε-gcd(pi,1, pi,2) = 1, i = 1, 2, 3,

where ε-gcd(pj,1, pj,2) denotes the approximate gcd for the polynomials pi,1 and pi,2 (we remind that P
is expected to be given with perturbed float coefficients). The function ε-gcd(f, g) returns a univariate
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numerical polynomial d such that d is an ε-gcd for the input polynomials f and g, i.e., there are univariate
numerical polynomials u, v satisfy

‖uf + vg − d‖ < ε‖(f, g, u, v, d)‖, ‖f − df1‖ < ε‖f‖, and ‖g − dg1‖ < ε‖g‖,

where the polynomials f1 and f2 are cofactors of f and g with respect to the divisor d, ‖ · ‖ denotes the
infinity norm, and ‖(f, g, u, v, d)‖ := max{‖f‖, ‖g‖, ‖u‖, ‖v‖, ‖d‖}.

At this point, we need to generalize the concept of tracing index to the numerical situation. Intuitively
speaking, the approximate tracing index of P can be defined as the common ε-roots (see e.g. [20]) of
the polynomials HPi (t, s) = pi,1(t)pi,2(s) − pi,1(s)pi,2(t), i = 1, 2, 3, w.r.t the variable t (see Subsection
3.1. in [26]). The formal notion of this intuitive idea will be done in Definitions 1, 2 and 3. Note that
the approximate gcd can also be defined as the approximate common factors associated to the common
ε-roots. However, in our implementations we use the widely used ε-gcd algorithms [1, 4] which can be
generalized to multivariate polynomials [8, 29].

Definition 1. We define the approximate tracing index of P as degt(S
P
ε ), where

SPε (t, s) = ε-gcd(HP1 , H
P
2 , H

P
3 ), HPi (t, s) = pi,1(t)pi,2(s)− pi,1(s)pi,2(t), i = 1, 2, 3.

We denote it as ε-index(P). Furthermore, P is said to be approximately improper or ε-improper if
ε-index(P) > 1. Otherwise, P is said to be approximately proper or ε-proper.

In Definition 2, we present the notion of ε-point for points of the form (t, R(t)) ∈ C(t)2. Furthermore,
throughout the paper, we use the infinity norm denoted as ‖ · ‖, and num(·) returns the numerator of a
rational function. Note that since in our situation all the norms are equivalent, one may reason similarly
with a different norm.

Definition 2. Given a non-zero polynomial A ∈ C[t, s] and R(t) ∈ C(t), we say that A(t, R(t)) ≈ε 0 if
‖num(A(t, R(t)))‖ ≤ ε‖A‖.

Definition 3. Let R(t) ∈ C(t). Let Q(t) = (q1(t), q2(t), q3(t)) ∈ C(t)3, qi(t) =
qi,1(t)
qi,2(t)

, ε-gcd(qi,1, qi,2) =

1, i = 1, 2, 3, be a rational parametrization of a space curve. We say that P(t) ∼ε (Q ◦ R)(t) if
HPQj (t, R(t)) ≈ε 0, where

HPQi (t, s) = pi,1(t)qi,2(s)− qi,1(s)pi,2(t), i = 1, 2, 3.

Now, we are ready to introduce the notions of ε-numerical reparametrization and ε-proper reparametriza-
tion. For this purpose, we use Definition 3.

Definition 4. Let P(t) ∈ C(t)3 be a rational parametrization of a given space curve C. We say that a
parametrization Q(t) ∈ C(t)3 is an ε-numerical reparametrization of P(t) if there exists R(t) = M(t)/N(t) ∈
C(t) \ C, ε-gcd(M,N) = 1, such that P ∼ε Q ◦R. In addition, if ε-index(Q) = 1, then we say that Q is
an ε-proper reparametrization of P.

In the following, we present a result that characterizes whether an ε-numerical reparametrization of
P(t), namely Q, is ε-proper (see Corollary 1 in [26]). This theorem shows that results obtained in the
numerical case are similar and consistent with those obtained in the symbolic case.

Theorem 3. Let Q(t) ∈ C(t)3 be an ε-numerical reparametrization of P(t). It holds that ε-index(P) =
ε-index(Q) deg(R).
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In the following, we give the numerical reparametrization algorithm for rational space curve and we
summarize the error analysis. The algorithm and related results can be proved similarly to those of
the rational planar curve in [26] (see Sections 4 and 5 and in particular, Theorem 5 and the Numeric
Algorithm Reparametrization for Curves).

Algorithm 2 (Numerical Proper Reparametrization for Space Curves (NPRSC)).
Input: a tolerance ε > 0, and a rational affine parametrization

P(t) = (p1(t), p2(t), p3(t)) ∈ C(t)3, pi(t) =
pi,1(t)

pi,2(t)
, ε-gcd(pi,1, pi,2) = 1

of an algebraic space curve C.
Output: a rational parametrization Q(t) = (q1(t), q2(t), q3(t)) ∈ C(t)3, qi(t) = qi,1(t)/qi,2(t), ε-gcd(qi,1,
qi,2) = 1, i = 1, 2, 3, such that ε-index(Q) = 1 and P ∼ε Q ◦R, where R(t) ∈ C(t) \ C.

1. Compute HPj (t, s) = pj,1(t)pj,2(s)− pj,1(s)pj,2(t), j = 1, 2, 3.

2. Determine

SPε (t, s) = ε-gcd(HP1 (t, s), HP2 (t, s), HP3 (t, s)) = Cm(t)sm + · · ·+ C0(t),

and ε-index(P) := `, where ` := degt(S
P
ε ).

3. If ε-index(P) = 1, Return Q(t) = P(t), and R(t) = t. Otherwise go to Step 4. [The algorithm
finishes here if P is ε–proper.]

4. Consider R(t) = Ci(t)/Cj(t) ∈ C(t), such that Cj(t), Ci(t) are two of the polynomials obtained in
Step 2 satisfying that CjCi 6∈ C, and ε-gcd(Cj , Ci) = 1.

5. For i = 1, 2, 3, define the polynomials GPi (t, xi) = xipi,2(t)− pi,1(t), and compute

Li(s, xi) = Rest(G
P
i (t, xi), sCj(t)− Ci(t)).

6. For i = 1, 2, 3, compute the root in the variable xi of the polynomial
∂`−1Li
∂`−1xi

(s, xi). Let q̃i(t) =

q̃i,1(t)/q̃i,2(t) be this root, and let Q̃(t) = (q̃1(t), q̃2(t), q̃3(t)) ∈ C(t)3.

7. Simplify Q̃(t) by removing the approximate gcd from the numerator and denominator of each com-

ponent of Q̃. Let

Q(t) = (q1(t), q2(t), q3(t)) ∈ C(t)3, qk(t) =
qk,1(t)

qk,2(t)
, ε-gcd(qk,1, qk,2) = 1, k = 1, 2, 3,

be the obtained parametrization.

7.1. Check whether the following equality holds

Li(s, xi) = (xiqi,2(s)− qi,1(s))` + ε`Wi(s, xi), ‖num(Wi(R, pi))‖ ≤ ‖HPQi ‖` (?)

(that is, check whether Li can be written as Li(s, xi) = (xiqi,2(s)−qi,1(s))`+ε`Wi(s, xi), where
Wi(s, xi) ∈ C[s, xi]).
If (?) does not hold, look for a new tolerance, ε, such that

Lk(s, xk) = (xkqk,2(s)− qk,1(s))` + ε`Wk(s, xk), ‖num(Wk(R, pk))‖ ≤ ‖HPQk ‖`.
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8. Return the rational function R(t) ∈ C(t) \ C, Q ∈ C(t)3, and the message “Q is an ε-proper
reparametrization of P” or “Q is an ε-proper reparametrization of P”, if a new tolerance, ε, is
considered in Step 7.1. [The algorithm returns an ε–proper parametrization, Q(t), of C and R(t)
such that P ∼ε Q ◦R.]

Remark 2. 1. Generalized from the tracing index in symbolic situation, the approximate tracing index
ε-index(P) of P can be defined as the number of common roots of HPi , i = 1, 2, 3 for all but a
finite number of values of the variable s with respect to a given tolerance ε. One can find that the
ε-index(P) can be obtained by computing the ε-gcd.

2. For the simplification of Q̃ in Step 7, we compute ε-gcd(q̃k,1(t), q̃k,2(t)), k = 1, 2, 3 under the given
tolerance ε, and we remove it from q̃k,1(t) and q̃k,2(t). For this purpose, one may apply well known
ε-gcd algorithms proposed for inexact polynomials (see for instance, [1, 4, 29]). Also, the ε-gcd
computation in Step 2 can be computed by these algorithms. In addition, since the polynomials
HPi , i = 1, 2, 3 and the gcd are symmetric with two variables, we can also use the specially designed
approximate gcd algorithm (see Subsection 5.2.1).

3. Similarly as in the symbolic case, it holds that deg(P) = deg(Q) deg(R), and one may prove that
` = deg(R) (see Corollary 4 in [26]).

In order to study the closeness of the curves C and D, where D is the curve defined by the simplified
parametrization Q, and C is the curve defined by P (we remind that P ∼ε Q ◦R, where R(t) ∈ C(t) \C,
and ε-index(P) = deg(R) = degt(S

P
ε ) = ` and ε-index(Q) = 1), we analyze the behavior at affine points.

For this purpose, it is assumed that deg(pi,1) = deg(pi,2), and deg(qi,1) = deg(qi,2), i = 1, 2, 3 (otherwise,
one can apply on both parametrizations a birational parameter transformation). In addition, let

‖p‖ := max{‖p1,1‖, ‖p2,1‖, ‖p1,2‖, ‖p2,2‖, ‖p1,3‖, ‖p2,3‖},

‖q‖ := max{‖q1,1‖, ‖q2,1‖, ‖q1,2‖, ‖q2,2‖, ‖q1,3‖, ‖q2,3‖}.
Finally, we also assume that equality (?) in Step 7.1 of the algorithm holds and then Q is an ε-proper

reparametrization of P. If equality (?) does not hold, then Q an ε-proper reparametrization of P (see
Step 7.1 of Algorithm NPRSC). In this case, the formula obtained in Theorem 4 remains unchanged except
that ε becomes ε.

Under these conditions, in order to analyze the behavior at affine points, we shall restrict to an
interval where the parametrizations P = (p1, p2, p3), pi = pi,1/pi,2, and Q = (q1, q2, q3), qi = qi,1/qi,2,
are both well defined. For this purpose, we consider the interval I := (d1, d2) ⊂ R satisfying that for all
t0 ∈ I, there exists M ∈ N such that |qi,2(R(t0))| ≥ M , and |pi,2(t0)| ≥ M , i = 1, 2, 3. Note that we can
decompose R to a union of finitely many intervals, Ij , j = 1, . . . , n, satisfying the above condition (that
is, the interval without any root of the denominators of the parametrizations; see [21]). Then we shall
reason similarly as in Theorem 4 for each interval Ij , j = 1, . . . , n. The following theorem and Corollary
1 follow from Theorem 5 and Corollary 7 in Section 4 of [26].

Theorem 4. The following statements hold:

1. Let I := (d1, d2) be an interval in R, and M ∈ N be such that for every t0 ∈ I, it holds that
|qi,2(R(t0))| ≥ M , and |pi,2(t0)| ≥ M for i = 1, 2, 3. Let d := max{|d1|, |d2|}. Then, for every
t0 ∈ I,

|pi(t0)− qi(R(t0))| ≤ 2/M2ε ζ‖p‖‖q‖, i = 1, 2, 3, where
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ζ =



ddeg(P)+1

(d− 1)1/`
if d > 1,

1

(1− d)1/`
if d < 1,

`1/` deg(P)1/` if d = 1.

2. Ct∈I is contained in the offset region of Ds∈J at distance 4
√

2/M2ε ζ ‖p‖‖q‖, where J = R(I).
3. Ds∈J is contained in the offset region of Ct∈I at distance 4

√
2/M2ε ζ ‖p‖‖q‖, where J = R(I).

From Theorem 4, we deduce the following corollary:

Corollary 1. Under the conditions of Theorem 4, it holds that:

1. If d ≥ 2, then ζ ≤ ddeg(P)+1.
2. If 1 < d < 2, then ζ ≤ 2deg(P)+1.

In the following, we illustrate Algorithm NPRSC by one example.

Example 3. Let ε = 0.0001, and the rational curve C defined by the parametrization

P(t) = (t6− 3.0002t5 + 6.0001t4− 7t3 + 6t2− 3.0001t+ 6.0001, t6− 3.0001t5 + 6.0002t4− 7t3 + 4.0001t2−
t, t4 − 2.0001t3 + 3t2 − 2.0001t) ∈ C(t)3.

First, one may check that ε-gcd(pi,1, pi,2) = 1, i = 1, 2, 3, using statement 2 in Remark 2. In Step 1 of
the algorithm, we compute the polynomials HPi (t, s), i = 1, 2, 3. Now, we determine the polynomial SPε ,
and we get that SPε (t, s) = C0(t) + C1(t)s+ C2(t)s2, where

C0(t) = t(2530603171874t−2530771894500), C1(t) = −1125t+2530771894500, C2(t) = −2530603170749.

Then, ε-index(P) = degt(S
P
ε ) = 2 (see Definition 1). Now, we apply Step 4 of the algorithm, and we

consider

R(t) =
C0(t)

C3(t)
=
−2t(1265301585937t− 1265385947250)

2530603170749
.

In Steps 5 and 6 of the algorithm, we determine the polynomials Lk(s, xk), and we compute the root in

the variable xk of the polynomial ∂Lk
∂xk

(s, xk), k = 1, 2, 3. We get the rational parametrization Q̃(t). We

simplify Q̃ by removing the approximate gcd from the numerator and denominator of each component of
Q̃ (see statement 2 in Remark 2), and we return the curve D defined by the ε-numerical reparametrization

Q(t) = (t3 + 2.999699996t2 + 2.999899978t+ 6.000099998,
t3 + 3.000050012t2 + 1.000450055t+ 0.0001333620053, t2 + 1.999916672t− 0.00003333377739).

One may check that the equality of Step 7.1 holds. Then, Q is an ε-proper reparametrization of P. In
Figure 3, we plot the input curve C and the output curve D.

We next perform error analysis by Theorem 4. Let the interval I = (0, 0.5). Thus, d = 0.5. Let
M ∈ N be such that for every t0 ∈ I, it holds that |qi,2(R(t0))| ≥M and |pi,2(t0)| ≥M , for i = 1, 2. We
have that M = 1. Then, by Theorem 4 we deduce that

ζ =
1

(1− d)1/`
= 1.414213562,

and for every t0 ∈ I, it holds that

|pi(t0)− qi(R(t0))| < 2/M2ε ζ‖p‖‖q‖ = 0.01187959191, i = 1, 2, 3.

12



− 800− 800

− 400− 400

00

400400
00

− 800− 800

1010

− 600− 600− 400− 400− 200− 200

2020

00 200200 400400

3030

600600
10001000

800800

4040

5050

6060

7070

8080

9090

− 600− 600

− 200− 200

200200

600600
00

− 600− 600− 400− 400− 200− 200

2020

00 200200
12001200

400400 600600 800800

4040

1000100012001200

6060

8080

100100

120120

− 500− 500

00

500500

1000100000

− 500− 500 00 500500

2020

10001000

4040

6060

8080

100100

120120

a) Input curve C b) Output curve D c) Both curves C and D (dash)

Figure 3: The numerical input space curve (a) and the approximated proper reparametrization (b) computed using Algorithm
NPRSC. In the right figure (c), one may check that both curves are very close.

5. Partially Proper Reparametrization of Surfaces

In Section 4, we dealt with both, the symbolic and numerical problem of computing a rational proper
reparametrization of a given improperly parametrized algebraic space curve. The symbolic case is based
on the results presented in Sections 2 and 3 of [17] and the numerical case is deduced from the results in
Sections 4 and 5 of [26].

In this section, we consider the reparametrization problem (also from both points of view, the symbolic
and the numerical situations) but for a given algebraic rational surface. For this case, although it is known
from Castelnuovo’s Theorem that unirationality and rationality are equivalent over algebraically closed
fields, the problem is not solved computationally. That is, there does not exist an algorithm that computes
the proper reparametrization. Only some algorithms to find proper parametrization in several special
cases are proposed (see [11, 15, 17, 18]).

In particular, in [18], given an algebraically closed field K, and P( t ) ∈ K( t )3, t = (t1, t2), a rational
parametrization of a surface V, it is computed a parametrization of V, Q( t ) ∈ K( t )3, and R( t ) =
(S( t ), T (S( t ), t2)), S, T ∈ K( t ), such that

P( t ) = Q(R( t )), and deg(φP) = deg(φQ) degt1(S) degt2(T )

(see Theorem 4 in [18]). Note that from the above equality, it is deduced that if Q is not proper and
degt1(S) degt2(T ) 6= 1, then deg(φQ) < deg(φP) (see Corollary 2 in [18]). In addition, it is established
under which conditions Q is proper (see statement 3 in Remark 3).

The method developed in Section 3 of [18] is obtained by applying the Algorithm PRSC to some partial
parametrizations associated to P which are defined as the parametrizations Pi(tj) := P( t ) ∈ (K(ti))(tj)

3

(that is, P is defined over K(ti)), for i, j ∈ {1, 2} and i 6= j (see statement 4 in Remark 3). Observe that
the partial parametrization Pi(tj) (i 6= j) defines a space curve over K(ti) (we refer to this space curve
as the partial space curve). Note that, since P( t ) is a surface parametrization its jacobian has rank 2,
and therefore the gradient of Pi(tj) (with respect to tj) must have rank 1.

Hence, the goal of the algorithm is to properly reparametrize the partial parametrizations, Pi defined
over the field K(ti), i = 1, 2, by applying the partial parametrizations Algorithm PRSC. The algorithm
outputs a rational parametrization Q( t ) ∈ K( t )3 of V, and R( t ) ∈ K( t )2 such that P( t ) = Q(R( t )),
and deg(φQ) < deg(φP). If some additional properties hold, then Q is proper (see statement 3 in
Remark 3).
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By generalizing the tracing index formula (5) of a given rational space curve for the parametrization
Pi(tj), we get that

deg(φPi) = degtj (gcd(HPi1 (tj , sj), H
Pi
2 (tj , sj), H

Pi
3 (tj , sj))), i, j ∈ {1, 2} and i 6= j

since Pi(tj) is regarded as a rational space curve with respect to tj over K(ti). Note that deg(φP1) deg(φP2)
is a factor of deg(φP). In addition, deg(φP1) deg(φP2) = deg(φP) if some additional properties hold (see
statement 3 in Remark 3).

Algorithm 3 (Reparametrization for Surfaces (RS)).
Input: an algebraically closed field K, and a rational affine parametrization

P( t ) =
(
p1( t ), p2( t ), p3( t )

)
∈ K( t )3, pi( t ) =

pi,1( t )

pi,2( t )
, gcd(pi,1, pi,2) = 1, i = 1, 2, 3

of an algebraic surface V.

Output: a rational parametrization Q( t ) =
(
q1( t ), q2( t ), q3( t )

)
∈ K( t )3, qi( t ) =

qi,1( t )

qi,2( t )
, of V, and

R( t ) ∈ (K( t ) \K)2 such that P( t ) = Q(R( t )), and 1 ≤ deg(φQ) < deg(φP).

1. Check whether P1 and P2 are proper (apply Steps 1 and 2 of Algorithm PRSC). In the affirmative
case, Return the message “you cannot apply the algorithm”. Otherwise, go to Step 2 if P2 is not
proper, or go to Step 3 if P1 is not proper.

2. If P2 is not proper do:

2.1. Apply Algorithm PRSC to P2. [This algorithm returns a parametrization M( t ) ∈ K( t )3, and
S( t ) ∈ K( t ) such that the partial parametrization associated to M, M2(t1) ∈ (K(t2))(t1)3,
is proper and S2(t1) ∈ (K(t2))(t1) satisfies P2(t1) =M2(S2(t1)).]

2.2. Check whether the partial parametrization associated to M, M1(t2) ∈ (K(t1))(t2)3, is proper
(apply Steps 1 and 2 of Algorithm PRSC). In the affirmative case, Return Q := M, and
R( t ) := (S( t ), t2). Otherwise, go to Step 2.3.

2.3. Apply Algorithm PRSC to the partial parametrization associated to M, M1(t2). [This al-
gorithm returns a parametrization Q( t ) ∈ K( t )3, and T ( t ) ∈ K( t ) such that the partial
parametrization associated to Q, Q1(t2) ∈ (K(t1))(t2)3, is proper and T1(t2) ∈ (K(t1))(t2)
satisfies M1(t2) = Q1(T1(t2)).]

2.4. Check whether the partial parametrization associated to Q, Q2(t1) ∈ (K(t2))(t1)3, is proper (ap-
ply Steps 1 and 2 of Algorithm PRSC). In the affirmative case, Return the reparametrization
Q, and R( t ) := (S( t ), T (S( t ), t2)). Otherwise, Return the reparametrization Q, R( t ) :=
(S( t ), T (S( t ), t2)), and the message “you may apply the algorithm again (Step 2) to Q2)”.

3. If P1 is not proper, apply Step 2.3 to P and P1.

Remark 3. Observe that:

1. If deg(φPi) = 1 for i = 1, 2, the algorithm does not start.

2. The algorithm returns a rational reparametrization Q of P. More precisely, we get a rational
parametrization Q, and R( t ) ∈ K( t )2 such that P = Q(R). The output parametrization Q may
not be proper (see statement 3) but it holds that 1 ≤ deg(φQ) < deg(φP) (see Corollary 2 in [18]),
if deg(φPi) 6= 1 for some i = 1, 2 (see statement 1).

3. Let Q be the output parametrization obtained by Algorithm RS, and let us assume that deg(φQi) = 1,
for i = 1, 2. Then, note that the algorithm cannot be applied again. Under these conditions,
deg(φQ) = 1 if and only if deg(φM) = degt2(T ) if and only if deg(φP) = degt1(S) degt2(T ) (see
Corollary 3 in [18]).
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4. In order to apply Algorithm PRSC, we need that the space curves defined by the auxiliary parametriza-
tions Pi are over a field (see Remark 1). Observe that in our situation, they are defined over the
updated field K := K(ti).

5. Note that the algorithm does not loop forever. If it starts, it always outputs a reparametrization Q
satisfying 1 ≤ deg(φQ) < deg(φP) (see Corollary 2 in [18]). In addition, if Q2 is not proper, one
may apply the algorithm again to further decrease deg(φQ) (see Step 2.4). If the algorithm can be
applied (see statement 1) till we get deg(φQ) = 1, the we obtain a proper reparametrization and
then, the reparametrization problem is solved.

Next, we illustrate Algorithm RS with an example, where different steps are applied.

Example 4. Let V be a rational surface defined over the field of the complex numbers, C, by the
parametrization

P( t ) =
(
−(3t82t

4
1 + 2t62t

6
1 + 2t102 t

2
1 + t42t

8
1 + t122 − t42t21 − t22t41 − t62 + 2t22)/t22,

−t21t22 − t41 − t42 + 3t41t
4
2 + 2t61t

2
2 + 2t21t

6
2 + t81 + t82 + t22 + t62, 3 + t21t

2
2 + t41 + t42

)
∈ C( t )3.

We apply Algorithm RS. For this purpose, in Step 1, we apply Algorithm PRSC, and we find that

SP2(t1, s1) = (s1 − t1)(s1 + t1)(s21 + t22 + t21) ∈ (C[t2])[t1, s1]

which implies that P2(t1) is not proper (in fact, deg(φP2
) = degt1(SP2) = 4). Thus, we go to Step 2 and

we apply Algorithm PRSC to P2. We obtain S2(t1) = −t21t22− t41 ∈ (C[t2])[t1]. Furthermore, we determine
the polynomials

Li(s1, xi) = Rest1(GP2
i ( t , xi), s1 − S2(t1)) = (mi,2(s1)xi −mi,1(s1))degt1 (S2),

where GP2
i ( t , xi) = xipi,2( t )− pi,1( t ), for i = 1, 2, 3, and we get

M( t ) =
(
−2− t102 + t42 + 2t1t

6
2 − t1 − t21t22,−t42 + t82 + t22 + t62 + t1 − 2t42t1 + t21, 3 + t42 − t1

)
.

Now, in Step 2.2 of the algorithm, we apply Algorithm PRSC to M1(t2) ∈ (C(t1))(t2)3, and we find that

SM1(t2, s2) = (t2 − s2)(t2 + s2) ∈ (C[t1])[t2, s2].

Thus, since deg(φM1
) = degt2(SM1) = 2, we get that M1 is not proper. Then, we go to Step 2.3. We

apply Algorithm PRSC to M1, and we compute T1(t2) = t22 ∈ (C[t1])[t2], and the polynomials

Li(s2, xi) = Rest2(GM1
i ( t , xi), s2 − T1(t2)) = (qi,2(s2)xi − qi,1(s2))degt2 (T1),

where GM1
i ( t , xi) = ximi,2( t )−mi,1( t ), for i = 1, 2, 3. We obtain

Q( t ) =
(
−2− t1 − t2t21 + t22 + 2t1t

3
2 − t52, t1 + t21 + t2 − t22 − 2t1t

2
2 + t32 + t42, 3− t1 + t22

)
.

Finally, in Step 2.4 of the algorithm, we apply Algorithm PRSC to Q2(t1) ∈ (C(t2))(t1)3. We get that
SQ2(t1, s1) = s1 − t1 ∈ (C[t2])[t1, s1] which implies that Q2 is proper. Therefore, Algorithm RS outputs
the parametrization Q( t ), and

R( t ) = (S( t ), T (S( t ), t2)) = (−t21t22 − t41, t22) ∈ C( t )2.
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5.1. Numerical Algorithm of Partially Reparametrization for Surfaces

In this subsection, we deal with the problem of proper reparametrization for surfaces from the numer-
ical point of view. More precisely, the goal is to generalize Algorithm RS, using the ideas and definitions
presented in Subsection 4.1, so that it can be applied to a given parametrization P with perturbed float
coefficients.

The problem of numerical proper reparametrization for surfaces can be stated as follows: given the
field C of complex numbers, a tolerance ε > 0, and a rational parametrization P(t1, t2) ∈ C(t1, t2)3 of an
algebraic surface V that is approximately improper (see Definition 5), compute a rational parametrization
Q(t1, t2) ∈ C(t1, t2)3 of an algebraic surface W, and R(t1, t2) ∈ (C(t1, t2) \ C)2 such that Q is an ε-
proper reparametrization of P (see Definition 8). In addition, the closeness between V and W should be
measured.

We do not intent to solve the above problem but a particular case using Algorithm RS, and the results
presented in Subsection 4.1. In particular, the purpose of this subsection is to decrease the tracing
index of the given parametrization P (see Definition 5) by analyzing the tracing index of the partial
parametrizations associated to P, P1 and P2 (see Algorithm RS and Subsection 4.1).

For this purpose, we first consider a tolerance ε > 0, and a rational parametrization of a given algebraic
surface V

P( t ) =
(
p1( t ), p2( t ), p3( t )

)
∈ C( t )3, pi( t ) = pi,1( t )/pi,2( t ),

where ε-gcd(pi,1, pi,2) = 1, i = 1, 2, 3 and t = (t1, t2) (we remind that P is expected to be given with
perturbed float coefficients).

Therefore, we need to give the concept of tracing index to the numerical situation for a given
parametrization of an algebraic rational surface. Actually, we generalize Definition 1 and the approx-
imate tracing index of P is defined as the common ε-roots in C(s̄) of the polynomials HPj ( t , s̄) =

pj,1( t )pj,2(s̄)− pj,1(s̄)pj,2( t ), j = 1, 2, 3, w.r.t the variables t .

Definition 5. We define the approximate tracing index of P as the number of the common ε-roots in C(s̄)
of the polynomials HPj ( t , s̄) = pj,1( t )pj,2(s̄)−pj,1(s̄)pj,2( t ), j = 1, 2, 3, w.r.t the variables t . We denote
it as ε-index(P). Furthermore, P is said to be approximately improper or ε-improper if ε-index(P) > 1.
Otherwise, P is said to be approximately proper or ε-proper.

In the following definitions, we generalize Definitions 2 and 3.

Definition 6. Given a non-zero polynomial A ∈ C[ t , s̄] and R( t ) = (r1( t ), r2( t )) ∈ C( t )2, we say that
A( t , R( t )) ≈ε 0 if ‖num(A( t , R( t )))‖ ≤ ε‖A‖.
Definition 7. Let R( t ) ∈ C( t )2 and Q( t ) =

(
q1( t ), q2( t ), q3( t )

)
∈ C( t )3, qi( t ) = qi,1( t )/qi,2( t ),

ε-gcd(qj,1, qj,2) = 1, j = 1, 2, 3, be a rational parametrization of a surface. We say that P( t ) ∼ε (Q ◦
R)( t ) if HPQj ( t , R( t )) ≈ε 0, where HPQj ( t , s̄) = pj,1( t )qj,2(s̄)− qj,1(s̄)pj,2( t ), j = 1, 2, 3.

To introduce the notions of ε-numerical reparametrization and ε-proper reparametrization, we gener-
alize Definition 4.

Definition 8. Let P( t ) ∈ C( t )3 be a rational parametrization of a given surface V. We say that
a parametrization Q(t̄) ∈ C(t̄)3 is an ε-numerical reparametrization of P( t ) if there exists R( t ) ∈
(C( t ) \ C)2, such that P ∼ε Q ◦ R. In addition, if ε-index(Q) = 1, then we say that Q is an ε-proper
reparametrization of P.

Now, we present the numerical algorithm that is based on the Algorithm RS.
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Algorithm 4 (Numerical Reparametrization for Surfaces (NRS)).
Input: a tolerance ε > 0, and a rational affine parametrization

P( t ) =
(
p1( t ), p2( t ), p3( t )

)
∈ C( t )3, pi( t ) = pi,1( t )/pi,2( t ), ε-gcd(pi,1, pi,2) = 1, i = 1, 2, 3

of an algebraic surface V.

Output: a rational parametrization Q( t ) =
(
q1( t ), q2( t ), q3( t )

)
∈ C( t )3, qi( t ) =

qi,1( t )

qi,2( t )
, of V, and

R( t ) ∈ (C( t ) \ C)2 such that P ∼ε Q ◦R, and 1 ≤ ε-index(Q) < ε-index(P).

1. Check whether ε-index(P1) = 1 (P1 is ε-proper) and ε-index(P2) = 1 (P2 is ε-proper). For this
purpose, apply Steps 1 and 2 of Algorithm NPRSC. In the affirmative case, Return the message
“you cannot apply the algorithm”. Otherwise, go to Step 2 if ε-index(P2) 6= 1, or go to Step 3 if
ε-index(P1) 6= 1.

2. If P2 is not ε-proper do:

2.1. Apply Algorithm NPRSC to P2. [This algorithm returns a parametrizationM( t ) ∈ C( t )3, and
S( t ) ∈ C( t ) such that the partial parametrization associated to M, M2(t1) ∈ (C(t2))(t1)3,
is ε-proper and S( t ) ∈ C( t ) satisfies P ∼εM◦ (S, t2).]

2.2. Check whether the partial parametrization associated to M, M1(t2) ∈ (C(t1))(t2)3, is ε-proper
(apply Steps 1 and 2 of Algorithm NPRSC). In the affirmative case, Return Q := M, and
R( t ) := (S( t ), t2). Otherwise, apply Step 3 to M and M1.

3. If P1 is not ε-proper do:

3.1. Apply Algorithm NPRSC to P1. [This algorithm returns a parametrization N ( t ) ∈ C( t )3, and
T ( t ) ∈ C( t ) such that the partial parametrization associated to P, P1(t2) ∈ (C(t1))(t2)3, is
ε-proper and T ( t ) ∈ C( t ) satisfies P ∼ε N ◦ (t1, T ).]

3.2. Check whether the partial parametrization associated to N , N2(t1) ∈ (C(t2))(t1)3, is ε-proper
(apply Steps 1 and 2 of Algorithm NPRSC). In the affirmative case, Return the reparametriza-
tion Q := N , and R( t ) := (t1, T ( t )). Otherwise, Return the reparametrization Q := N , and
R( t ) := (t1, T ( t )), and the message “you may apply the algorithm again (Step 2) to Q and
Q2)”.

We here illustrate the above algorithm with an example.

Example 5. Let ε = 0.001, and the rational surface V defined by the rational parametrization P( t ) =(
p1( t ), p2( t ), p3( t )

)
∈ C( t )3 where

p1( t ) = −3 t14−4 t12t2
2−6.003 t13−2 t12t2−4.003 t1 t22−4 t23−3 t12−2.003 t1 t2−7 t22−0.006 t13t2

3 t14+5.995 t13+3 t12+3 t22+0.002 t13t22−0.004 t1 t22−0.003 t1 t2 ,

p2( t ) = −t14t2+t1
4−2 t13t2+2 t1

2t2
2+1.999 t1

3−11 t12t2+2 t1 t2
2+3 t2

3+t12−10 t1 t2−2.997 t22−0.001 t13t2
2+0.009

2 t14+3.999 t13−t23+2 t12+2.003 t22−0.001 t13t22+0.009 ,

p3( t ) = −8 t23+8 t2
2−0.001 t14t2

2+0.001 t1
4−0.001 t12t2

2+0.002 t1
2

2.001 t14+4 t13+t23+2.002 t12+2 t22−0.001 t14t22−0.001 t12t22 .

This parametrization is approximate improper. We can show this fact by showing the figures of two
patches with intervals (t1, t2) ∈ (0.5, 1.0) × (0.5, 1.0) and (t1, t2) ∈ (−2.0,−1.5) × (0.5, 1.0) and noting
that the two patches are very close (see Figure 4).

This numerical surface has proper support even after sparse approximation, hence the support trans-
formation method (see Section 3) is not applicable and we will apply Algorithm NRS. For this purpose, in
Step 1 , we apply Algorithm NPRSC, and we find that P2 is not ε-proper. More precisely, we compute the
polynomials HP2

i (t1, s1), i = 1, 2, 3, and we have that

SP2
ε (t1, s1) = C0(t1, t2) + C1(t1, t2)s1 + C2(t1, t2)s21 ∈ (C[t2])[t1, s1],
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a) A patch at (−2.0,−1.5)× (0.5, 1.0) b) A patch at (0.5, 1.0)× (0.5, 1.0) c) Two patches of a) and b)

Figure 4: An approximate improper parametrization: the patches with intervals (t1, t2) ∈ (0.5, 1.0) × (0.5, 1.0) (a) and
(t1, t2) ∈ (−2.0,−1.5)× (0.5, 1.0) (b) are very close (c).

where
C0(t1, t2) = −1.0 (−1.64515 t1 + 0.00677173 t2 − 1.57307) t1,

C1(t1, t2) = −1.57307 + 0.00677173 t2, C2(t1, t2) = −1.64515.

Then, ε-index(P2) = degt1(SP2
ε ) = 2 (see Definition 1). Now, we apply Step 2 of Algorithm NRS which

consists essentially in applying Algorithm NPRSC to P2. For this purpose, from SP2
ε (t1, s1), we consider

S( t ) = C0( t )/C2( t ) = 0.607848 (−1.64515 t1 + 0.00677173 t2 − 1.57307) t1.

We determine the polynomials Lk(s1, xk) ∈ (C[t2])[s1, xk], and we compute the root in the variable xk of
the polynomial ∂Lk∂xk

(s1, xk), k = 1, 2, 3. We get the ε-numerical reparametrizationM( t ) = (m1( t ), m2( t ),

m3( t )), where

m1( t ) = (−0.3794280 t2
3 + 0.3808158 t1 t2

2 − 0.0001517840 t1
2t2 − 0.00009970054 t1

3 − 0.6568573 t2
2 +

0.1891787 t1 t2 − 0.2852680 t1
2 + 0.003779722 t2 − 0.01098717 t1 − 0.0004537563)/(0.2851180 t2

2 +
0.001025204 t1 t2 + 0.2852858 t1

2 + 0.0003979236 t2 + 0.01070202 t1 + 0.0005952313),

m2( t ) = (−0.2609498 t2
3 + 0.1746983 t1 t2

2 + 0.08685465 t1
2t2 − 0.00004887348 t1

3 + 0.2613865 t2
2 −

0.8657369 t1 t2 − 0.08729423 t1
2 − 0.01913675 t2 − 0.004494467 t1 − 0.001014182)/(0.08703259 t2

3 −
0.00008747335 t1 t2

2 + 0.0000002466221 t1
2t2 + 0.000005685722 t1

3 − 0.1741250 t2
2 − 0.001190926 t1 t2 −

0.1739044 t1
2 − 0.0002466680 t2 − 0.007163162 t1 − 0.001016453),

m3( t ) = (0.6835082 t2
3 − 0.0003170363 t1 t2

2 + 0.00004202926 t1
2t2 + 0.00009821240 t1

3 −
0.6834193 t2

2 − 0.0007039878 t1 t2 − 0.0001782237 t1
2 + 0.0001590481 t2 + 0.0009338094 t1 −

0.0002863107)/(−0.08545207 t2
3 − 0.0003265848 t1 t2

2 − 0.00003466410 t1
2t2 + 0.00006390510 t1

3 −
0.1707625 t2

2 − 0.0004194026 t1 t2 − 0.1710274 t1
2 − 0.00008676312 t2 − 0.006719450 t1 − 0.0002456190).

Now, in Step 2.2 of the algorithm, we apply Algorithm PRSC to M1(t2) ∈ (C(t1))(t2)3, and we find
that SM1

ε (t2, s2) = t2 − s2 ∈ (C[t1])[t2, s2]. Thus, since deg(φM1
) = degt2(SM1

ε ) = 1, we get that M1 is
proper and thus, Algorithm NRS returns Q( t ) := M( t ) and R( t ) = (S( t ), t2). The result is shown in
Figure 5.

The output parametrization can be further simplified by sparse approximation in some situations. In
this example, a sparse approximation of Q( t ) is QS( t ) =

(
q1( t ), q2( t ), q3( t )

)
, where

q1( t ) = −0.0385129 t1+0.0132489 t2+1.33486 t1 t2
2+0.663120 t1 t2−0.999938 t12−2.30245 t22−1.32999 t23

0.00208644+0.0375133 t1+0.00359360 t1 t2+1.0 t12+0.999412 t22 ,

q2( t ) =−0.00582445−0.0258117 t1−0.109902 t2+0.498806 t1
2t2+1.00329 t1 t2

2−4.97193 t1 t2−0.501331 t1
2+1.50114 t2

2−1.49863 t2
3

−0.00583749−0.0411381 t1−0.00683949 t1 t2−0.998733 t1
2−1.0 t2

2+0.499828 t2
3 ,

q3( t ) = 0.00546000 t1−0.00411623 t1 t2−3.99596 t22+3.99648 t2
3

−0.0392887 t1−1.0 t12−0.998451 t22−0.499640 t23 .
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a) P( t ) at I = (0.5, 1.0)× (0.5, 1.0) b) Q( t ) at J = R(I) = (−1.954,−0.726)× (0.5, 1.0) c) Two patches of a) and b)

Figure 5: The input parametrization, P( t ), at I = (0.5, 1.0)× (0.5, 1.0) (a) and its approximated proper reparametrization,
Q( t ), obtained from Algorithm NRS at J = R(I) = (−1.954,−0.726)× (0.5, 1.0). Both patches are very close (c).

a) The patch on Q( t ) at J b) The patch on QS( t ) at J

c) Two patches of a) and b) d) P( t ) at I v.s. QS( t ) at J

Figure 6: The output parametrization, Q( t ), at J (a) and the sparse approximation of Q( t ), QS( t ), at J . Both patches
are very close (c) and in fact, the input parametrization P( t ) and the sparse approximation QS( t ) are very close (d).

We can find that the sparse approximated parametrization QS( t ), with much less terms and lower
degrees, is very close to Q( t ) and it approximates to the original surface well (see Figure 6) .

5.2. Correctness of the Algorithm NRS

In order to check the correctness of Algorithm NRS, we check the correctness of Step 2 (note that
Step 3 is similar but with another variable). Let us assume that the output of the algorithm is given by
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the rational parametrization Q( t ) :=M( t ), and R( t ) := (S( t ), t2).

Under these conditions, some points have to be verified or clarified:

I. Since Algorithm NPRSC is applied to P2(t1) ∈ (C(t2))(t1):

(a) We have to clarify Steps 2 and 7, where an ε-gcd for polynomials with coefficients in C(t2) has
to be applied (see Subsection 5.2.1).

(b) We have to prove that P ∼ε Q ◦ (S, t1) (see Subsection 5.2.2).
(c) We have to prove that Q2(t1) ∈ (C(t2))(t1)3 is ε-proper (see Subsection 5.2.2).

II. It should be proved that ε-index(Q) < ε-index(P) (see Subsection 5.2.2).

III. The error analysis has to be analyzed (see Subsection 5.2.3).

5.2.1. Computation of ε-gcd (Steps 2 and 7)

To find the ε-index in Step 2 of Algorithm NPRSC, we need the approximate gcd of three poly-
nomials in (C(t2))[t1, s1] (i.e. the coefficient field is C(t2)). Precisely, consider the three polynomi-
als HP2

1 (t1, s1), HP2
2 (t1, s1), HP2

3 (t1, s1) ∈ (C(t2))[t1, s1], and find an approximate gcd of them with a
given error ε. Notice that t1 − s1 must be a factor of the three polynomials. Then, we may focus on
Hi(t2, t1, s1) = HP2

i (t1, s1)/(t1 − s1)(C(t2))[t1, s1], i = 1, 2, 3. Let D(t2, t1, s1) = ε-gcd(H1, H2, H3) be
their approximate gcd and Q1(t2, t1, s1), Q2(t2, t1, s1), Q3(t2, t1, s1) be the cofactors of D(t2, t1, s1) with
respect to Hi(t2, t1, s1), i = 1, 2, 3, respectively. The particular feature yields that our approximate gcd
algorithm must satisfy the following requirements:

a). ‖Hi(t2, t1, s1)−Qi(t2, t1, s1)D(t2, t1, s1)‖ ≤ ε, i = 1, 2, 3;

b). degt1(Hi) = degt1(Qi) + degt1(D), degs1(Hi) = degs1(Qi) + degs1(D), degt2(Hi) = degt2(Qi) +
degt2(D), i = 1, 2, 3;

c). D(t2, t1, s1) = D(t2, s1, t1), Q(t2, t1, s1) = Q(t2, s1, t1), i = 1, 2, 3.

Note that the approximate gcd of the original polynomials HP2
i (t1, s1), i = 1, 2, 3 is (t1− s1)D(t2, t1, s1).

Remark 4. The conditions a) and b) come from the propositions of gcd for numerical case. The poly-
nomials Hi(t2, t1, s1), i = 1, 2, 3 are symmetric with respect to t1 and s1. This fact leads to conditions c)
and helps us to reduce the redundant terms in numerical computations.

Based on the above observation, we implement a particular approximate gcd algorithm satisfying the
above requirements by the following steps:

1. Compute the total degree, k, of the approximate gcd of H1, H2, H3, by several random univariate
projection of H1, H2, H3 by looking for the numerical rank of the corresponding univariate Sylvester
matrices.

2. Construct the k-th Sylvester matrix of H1, H2, H3, and then perform singular values decomposi-
tion (SVD) technique to obtain their cofactors satisfying the symmetric constraint, denoted by
Q1, Q2, Q3.

3. Apply least squares based polynomial division algorithm, to obtain the approximate gcd D from
H1, H2, H3 and the cofactors Q1, Q2, Q3 satisfying the symmetric constraint.

Remark 5. As pointed out in [29], there is an explicit relation between the total degree of gcd for
multivariate polynomials and the dimension of null space of the associated generalized Sylvester matrix.
Particularly, for univariate polynomials, the degree of the gcd is equivalent to the dimension of null space of
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the Sylvester matrix. In Step 1, we wish to determine the total degree of ε-gcd(H1, H2, H3). Similar to [8],
here we also exploit univariate projection technique to determine the total degree of ε-gcd(H1, H2, H3).
Concretely, we start with univariate projection to get the associated univariate polynomials, denoted by
H̃1, H̃2, H̃3, and to construct the Sylvester matrix S1 = S(H̃1, H̃2, H̃3), proceed by determining what the
degree of gcd, k, should be, that is, the numerical rank of S1. Typically, when determining the rank
numerically, one would specify a tolerance ε and find a gap in the singular values of S1:

σm ≥ · · · ≥ σm−k−1 > ε ≥ σm−k ≥ · · · ≥ σ1.
As shown in [8], randomized univariate projection technique can obtain the exact degree of ε-gcd(H1, H2,

H3) with probability one. To obtain the exact degree for our problem, we can try randomized projection
for several times similar to [8]. Precisely, here we exploit randomized univariate projection for several
times, to obtain the associated univariate gcds. Among the degrees of gcds, we select the maximal degree
as the degree of gcd.

Sensitivity. Stated in Section 4.2 of [29], computing the approximate gcd is a regular problem and is
not ill-posed. In this paper, the theoretical analysis provided in [29], including the sensitivity and error
bound, can be generalized to our case: computing the approximate gcd of three polynomials.

Let d,hi and qi be the coefficient vectors of the polynomial D,Hi, Qi, respectively. It is seen that the
problem for computing a gcd with degree k is to solve a quadratic system as following:

F (z) = b, (6)

with the form

F (z) =


rTd− 1
C(q1) d
C(q2) d
C(q3) d

 , z =


d
q1

q2

q3

 , b =


0
h1

h2

h3

 ,

where the matrix C is the Cauchy matrix corresponding to the given coefficient vector, and r is a scaling
vector. The least squares solution to ‖F (z)− b‖2 will be attained at z which satisfies

J(z)H (F (z)− b) = 0,

where J(z) is the Jacobian of F (z),

J(z) =


rH

C(q1) C(d)
C(q2) C(d)
C(q3) C(d)

 . (7)

The fact that Qi, i = 1, 2, 3 are approximate coprime yields that the Jacobian J(z) is of full rank,
which means that its smallest singular value is strictly positive. In this stage, Proposition 2 in [29] can
also be adapted to our case.

Proposition 1. Let (H1, H2, H3) and (H̃1, H̃2, H̃3) be two pairs of polynomials. Suppose D,Q1, Q2, Q3

and D̃, Q̃1, Q̃2, Q̃3 are the gcds and cofactors, respectively. Let J(z), z and r be given in (6) and (7).
Assume that ε ∈ R>0 is a sufficiently small tolerance, and J(z), z and r satisfy ‖F (z) − b‖2 ≤ ε and
J(z)H [F (z) − b] = 0. Let σmin be the smallest singular value of J(z). Assume that (H1, H2, H3) are
sufficiently near (H̃1, H̃2, H̃3). Then∥∥∥∥∥∥∥∥


d̃− d

q̃1 − q1

q̃2 − q2

q̃3 − q3


∥∥∥∥∥∥∥∥
2

≤ 1

σmin

2 ε+

∥∥∥∥∥∥
h̃1 − h1

h̃2 − h2

h̃3 − h3

∥∥∥∥∥∥
2

+ h.o.t.

where h.o.t. is higher order terms of the ε.
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Proposition 1 indicates that the problem for computing approximate gcd is well-posed. The sensi-
tivity of approximate gcd computation under perturbation can be measured once the error of the input
polynomials is sufficiently small.

5.2.2. Properties of the parametrization Q
In this subsection, we first prove that the output of Algorithm NRS, Q( t ), is an ε-reparametrization

of P( t ) (that is, P( t ) ∼ε (Q◦R)( t ), where R( t ) = (S( t ), t2)). For this purpose, we prove the following
theorem that is based on Theorem 2 in [26]. In this new situation, the main difference is that we are
working with polynomials in C[t1, t2] and thus, the norm and the notion of ε-reparametrization is different.
However, as we prove in Theorem 5, we can adapt Theorem 2 in [26] to these new conditions.

Theorem 5. For k = 1, 2, 3, let

Lk(s, t2, xk) = Rest1(Gk( t , xk), sCj( t )− Ci( t )), where Gk( t , xk) = xkpk,2( t )− pk,1( t ).

If for k = 1, 2, 3,

Lk(s, t2, xk) = (xkqk,2(s, t2)− qk,1(s, t2))` + ε`Wk(s, t2, xk), ‖num(Wk(S, t2, pk))‖ ≤ ‖HPQk ‖`,
where ` := degt1(S), S( t ) = Ci( t )/Cj( t ) and ε-gcd(qk,1, qk,2) = 1, then Q( t ) =

(
q1( t ), q2( t ), q3( t )

)
,

qi( t ) = qi,1( t )/qi,2( t ), i = 1, 2, 3, is an ε-numerical reparametrization of P( t ).

Proof. First, we observe that Lk 6= 0 (otherwise, Gk and sCj( t )−Ci( t ) have a common factor depending
on t , which is impossible because gcd(Ci, Cj) = 1). In addition, it holds that degxk(Lk) = degt1(S).
Indeed, since

Lk(s, t2, xk) = Rest1(Gk( t , xk), sCj( t )− Ci( t )),

we get that, up to constants in C(s, t2) \ {0},

Lk(s, t2, xk) =
∏

{α` | sCj(α`,t2)−Ci(α`,t2)=0}

Gk(α`, t2, xk),

(see Sections 5.8 and 5.9 in [27]), and thus

degxk(Lk) = degt1(sCj( t )− Ci( t )) degxk(Gk( t , xk)) = degt1(S).

In addition, from degxk(Lk) = degt1(S), we deduce that degxk(Wk) ≤ `. In fact, since we are working
with approximate mathematical objects, we may assume without loss of generality that degxk(Wk) = `.
Now, taking into account the properties of the resultant (see [27]), one has that

0 = Lk(S( t ), t2, pk( t )) = (pk( t )qk2(S( t ), t2)− qk1(S( t ), t2))` + ε`Wk(S( t ), t2, pk( t )).

Then, for k = 1, 2, 3,

num(HPQk ( t , S( t ), t2))` = ε`ek( t ), where ek := −Wk(S( t ), t2, pk( t ))pk,2( t )`C
` deg(qk)
j .

Since degxk(Wk) = `, and degs(Wk) = ` deg(qk) (see statement 3 in Remark 2), one has that

ek = −num(Wk(S( t ), t2, pk( t ))) ∈ C[ t ]

(i.e. the denominator of Wk(S( t ), t2, pk( t )) is canceled with pk,2( t )`Cj( t )` degt1 (qk)). Therefore, from
num(HPQk ( t , S( t ), t2))` = ε`ek( t ), and using that ‖num(Wk(S( t ), t2, pk))‖ ≤ ‖HPQk ‖`, we get that

‖num(HPQk ( t , S( t ), t2))‖` = ε`‖ek‖ ≤ ε`‖HPQk ‖`,
which implies that HPQk ( t , S( t ), t2) ≈ε 0 (see Definition 2), and then P( t ) ∼ε Q ◦ (S( t ), t2) (see
Definitions 7 and 8).
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In the following, we prove that Q2(t1) is ε-proper. For this purpose, we observe that if Q(t) ∈ C(t)3

is an ε-numerical reparametrization of P(t), it holds that ε-index(P) = ε-index(Q) deg(R) (see Theorem
3). Let us prove now that this property also holds for P2(t1) ∈ (C(t2))(t1)3 and Q2(t1) ∈ (C(t2))(t1)3.
More precisely, we have the following theorem.

Theorem 6. Let Q( t ) ∈ C( t )3 and R( t ) = (S( t ), t2) ∈ C( t )2 be the output of Algorithm NRS. It holds
that

1. ε-index(P2) = ε-index(Q2) degt1(S).

2. ε-index(Q2) = 1.

Proof. We consider t2 = b ∈ C such that ‖num(Wk(S(t1), b, pk(t1, b)))‖ ≤ ‖HPQk (t1, b, s1, b)‖` (note that
since ‖num(Wk(S, t2, pk))‖ ≤ ‖HPQk ‖`, this b ∈ C always exists). Now, taking into account the behaviour
of the resultant under specialization, we have that

Lk(s, b, xk) = Rest1(Gk(t1, b, xk), sCj(t1, b)− Ci(t1, b)) = (xkqk,2(s, b)− qk,1(s, b))` + ε`Wk(s, b, xk).

Since ‖num(Wk(S(t1), b, pk(t1, b)))‖ ≤ ‖HPQk (t1, b, s1, b)‖`, by applying Theorem 2 in [26], we conclude
that Q(t1, b) is an ε-reparametrization of P(t1, b) (P(t1, b) ∼ε Q ◦ (S(t1, b), b)), and ε-index(P(t1, b)) =
ε-index(Q(t1, b)) degt1(S(t1, b)), and ε-index(Q(t1, b)) = 1.
Since we can reason as above for infinitely many values of t2 = b ∈ C, and the ε-index of a parametrization
is invariant for all points in a non-empty Zariski open subset of the curve, we conclude that the equalities
of the theorem hold. That is, ε-index(P2) = ε-index(Q2) degt1(S) and ε-index(Q2) = 1.

Finally, we prove that ε-index(Q) < ε-index(P). For this purpose, we note that clearly statement
1 in Theorem 6 implies that ε-index(P) = ε-index(Q) degt1(S). Therefore, one easily deduces that
ε-index(Q) < ε-index(P).

Theorem 7. Let Q( t ) ∈ C( t )3 and R( t ) = (S( t ), t2) ∈ C( t )2 be the output of Algorithm NRS. It holds
that

ε-index(P) = ε-index(Q) degt1(S).

Therefore, ε-index(Q) < ε-index(P).

5.2.3. Error Analysis

In this subsection, we show how the input surface and the output surface are related using a similar
idea to the one presented in Subsection 4.1. For this purpose, we shall restrict to a region where the
parametrizations P and Q are both well defined. Hence, we consider the intervals Ij := (d1,j , d2,j) ⊂
R, j = 1, 2, satisfying that for all (a, b) ∈ I := I1×I2 ⊂ R2, there exists M ∈ N such that |qi,2(S(a, b), b)| ≥
M , and |pi,2(a, b)| ≥ M , i = 1, 2, 3. Note that we can reason similarly as in Theorem 8 for each I ⊂ R2

we consider. In the following, we denote by ` = degt1(S).

Theorem 8. Let Q( t ) ∈ C( t )3 and R( t ) = (S( t ), t2) ∈ C( t )2 be the output of the Algorithm NRS. The
following statements hold:

1. Let I := (d1,1, d2,1) × (d1,2, d2,2) ⊂ R2, and M ∈ N be such that for every (a, b) ∈ I, it holds that
|qi,2(S(a, b), b)| ≥ M , and |pi,2(a, b)| ≥ M for i = 1, 2, 3. Let d := max{|d1,1|, |d1,2|, |d2,1|, |d2,2|}.
Then, for every (a, b) ∈ I,

|pi(a, b)− qi(S(a, b), b)| ≤ 2/M2ε ζ‖p‖‖q‖, i = 1, 2, 3, where
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ζ =



dµ/`+1 µ1/`

(d− 1)2/`
if d > 1,

1

(d− 1)2/`
if d < 1,

(1/2(µ+ 2)(µ+ 1))1/` if d = 1,

and µ := deg(S) deg(P).

2. V t∈I is contained in the offset region of W s∈J at distance 6
√

3/M2ε ζ ‖p‖‖q‖, where J = R(I).

3. W s∈J is contained in the offset region of V t∈I at distance 6
√

3/M2ε ζ ‖p‖‖q‖, where J = R(I),

Proof. Firstly, statement (1) implies statements (2) and (3). To see this, we note that for almost all real
affine points Q ∈ W there exists an affine real point P ∈ V such that

‖P −Q‖2 ≤ 2
√

3/M2ε ζ ‖p‖‖q‖.

Indeed, using statement (1), we have

‖P −Q‖2 =
√

(p1(a, b)− q1(S(a, b), b))2 + (p2(a, b)− q2(S(a, b), b)2 + (p3(a, b)− q3(S(a, b), b)2 ≤√
(2/M2ε ζ‖p‖‖q‖)2 + (2/M2ε ζ‖p‖‖q‖)2 + (2/M2ε ζ‖p‖‖q‖)2 ≤ 2

√
3/M2ε ζ ‖p‖‖q‖.

Now, reasoning as in Section 2.2 in [6], we deduce statements (2) and (3).

We next prove statement (1). By the proof of Theorem 5, we have

HPQi ( t , S( t ), t2)` = (pi,1( t )q1,2(S( t ), t2)− qi,1(S( t ), t2)p1,2(t))` = ε`ei( t ),

where

ei( t ) = −num(Wi(S( t ), t2, pi( t ))) = ei,0 + ei,1,1t1 + ei,1,2t2 + . . .+ ei,ni,1,1t
ni,1
1 + ei,ni,2,2t

ni,2
2 ∈ C[ t ],

and
‖ei‖ = ‖num(Wi(S( t ), t2, pi( t )))‖ ≤ ‖HPQi ‖`.

In addition, since ei( t ) = −num(Wi(S( t ), t2, pi( t ))), we have ni,1 := degt1(ei) ≤ `degt1(P) for i =
1, 2, 3. Indeed, since degxi(Wi) = ` (from the proof of Theorem 5, we get that degxi(Li) = degxi(Wi) =
degt1(S) = `), we deduce that

ni,1 = degt1(ei) ≤ max{degt1(S) degt1(Wi), `degt1(P)} ≤

max{`degt1(P), `degt1(P)} = `degt1(P) ≤ deg(S) deg(P),

ni,2 = degt2(ei) ≤ max{degt2(S) degt1(Wi),degt2(Wi), `degt2(P)} ≤
max{degt2(S) degt1(P),deg(S) deg(P), `degt2(P)} = deg(S) deg(P).

Under these conditions, let µ := deg(S) deg(P), and for every (a, b) ∈ I, if d 6= 1, it holds that

|HPQi (a, b, S(a, b), b)`| = ε`|ei(a, b)| ≤

ε`(|ei,0|+ |ei,1,1||a|+ |ei,1,2||b|+ . . .+ |ei,ni,1,1||a|ni,1 + |ei,ni,1,2||b|ni,2) ≤
ε`(|ei,0|+ |ei,1,1|d+ |ei,1,2|d+ . . .+ |ei,ni,1,1|dni,1 + |ei,ni,1,2|dni,2) ≤

ε`‖HPQi ‖`(1 + 2d+ 3d2 + . . .+ (µ+ 1)dµ) = ε`‖HPQi ‖` d
µ+1(d(µ+ 1)− µ− 2) + 1

(d− 1)2
, i = 1, 2, 3. (8)
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If d = 1, then

|HPQi (a, b, S(a, b), b)`| ≤ ε`‖HPQi ‖`(1 + |a|+ |b| . . .+ |a|ni,1 + |b|ni,2) ≤

ε`‖HPQi ‖`(1 + 2 + 3 + . . .+ (µ+ 1)) = ε`‖HPQi ‖` 1/2(µ+ 2)(µ+ 1). (9)

Therefore, we conclude that:

1. If d > 1, by (8), and taking into account that |qi,2(S(a, b), b)| ≥M , and |pi,2(a, b)| ≥M for i = 1, 2,
we obtain that

|pi(a, b)− qi(S(a, b), b)| = |HPQi (a, b, S(a, b), b)|
|qi,2(S(a, b), b)pi,2(a, b)| ≤

1/M2ε‖HPQi ‖ (dµ+1(d(µ+ 1)− µ− 2) + 1)1/`

(d− 1)2/`
≤ 1/M2 ε ‖HPQi ‖ d

µ/`+2/` µ1/`

(d− 1)2/`

≤ 1/M2 ε ‖HPQi ‖ d
µ/`+1 µ1/`

(d− 1)2/`
.

2. If d < 1, from (8), and taking into account that 1 − dni+1 < 1, and |qi2(S(a, b), b)| ≥ M , and
|pi2(a, b)| ≥M for i = 1, 2, we obtain that

|pi(a, b)− qi(S(a, b), b)| = |HPQi (a, b, S(a, b), b)|
|qi,2(S(a, b), b)pi,2(a, b)| ≤ 1/M2 ε ‖HPQi ‖ 1

(1− d)2/`
.

3. If d = 1, from (5.2.3), and taking into account that |qi2(S(a, b), b)| ≥ M , and |pi2(a, b)| ≥ M for
i = 1, 2, we obtain that

|pi(a, b)− qi(S(a, b), b)| = |HPQi (a, b, S(a, b), b)|
|qi,2(S(a, b), b)pi,2(a, b)| ≤ 1/M2 ε ‖HPQi ‖(1/2(µ+ 2)(µ+ 1))1/`.

Finally, the theorem is deduced from the above inequalities and taking into account that

‖HPQi ‖ = ‖pi,1( t )qi,2( s )− qi,1( s )pi,2( t )‖ ≤ 2‖p‖‖q‖.

In the following, we present the error bound obtained in the Example 5.

Example 6. Let us consider the rational parametrization P of the surface V introduced in Example 5,
and the output provided by Algorithm NRS. First, one may check that the equality of Step 7.1 holds. In
fact, this equality holds under ε = 10−70. Then, Q is an ε-proper reparametrization of P. In Figure 5,
we plot the input surface V and the output surface W.

We next perform the error analysis using Theorem 4. For this purpose, we first consider I = (0.5, 1)×
(0.5, 1) (see Figure 5). Thus, d = 1. Let M ∈ N be such that for every (a, b) ∈ I, it holds that
|qi,2(S(a, b), b)| ≥ M , and |pi,2(a, b)| ≥ M for i = 1, 2, 3. We have that M = 0.2145301953. Then, by
Theorem 8 we deduce that

ζ = 9.539392014,

and for every (a, b) ∈ I, it holds that

|pi(t0)− qi(R(t0))| < 2/M2ε ζ‖p‖‖q‖ = 1.013787066 10−68, i = 1, 2, 3.

25



6. Conclusion

The proper reparametrization is a classic problem in computer aided geometric design. This problem
is generally studied in the symbolic situation. When approximate objects are being thoroughly studied
as a real-world counterparts to exact mathematical objects, a natural way is to extend the symbolic
algorithms to numerical situations. Certainly, there are differences between the numerical and symbolic
considerations including definitions, algorithms and discussions. Moreover, the error analysis is always an
important task in numerical situations. We propose the numerical proper reparametrization algorithms
for rational space curves and rational surfaces, as well as the detailed error analysis between the given
rational curve/surface and our reparametrized curve/surface. The results propose the approximate proper
reparametrizations and are expected to be helpful in computing the approximate implicit equations with
lower degrees.

Our algorithms are based on the latest symbolic results. As the further work, another way is to
find the reparametrization by interpolation/fitting method. With the consideration of the approximate
properness of the curve/surface, we can find a good degree estimation as the division of the given degree
over the approximate improper index.
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[21] S. Pérez-Dı́az, J. R. Sendra, and C. Villarino. Finite piecewise polynomial parametrization of
plane rational algebraic curves. Applicable Algebra in Engineering, Communication and Computing,
18(1):91 – 105, 2007.

[22] J. Schicho. Simplification of surface parametrizations: A lattice polygon approach. J. Symb. Comput.,
36(3-4):535 – 554, 2003.

[23] T. W. Sederberg. Improperly parametrized rational curves. Computer Aided Geometric Design,
3(1):67 – 75, 1986.

[24] I. Shafarevich. Basic algebraic geometry i and ii. Springer-Verlag, Berlin New York, 1994.

[25] L.-Y. Shen, E. Chionh, X.-S. Gao, and J. Li. Proper reparametrization for inherently improper
unirational varieties. Journal of Systems Science and Complexity, 24(2):367 – 380, 2011.
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