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Abstract

The blending or filleting of sharp corners is a common requirement
in geometric design applications — motivated by aesthetic, ergonomic,
kinematic, or mechanical stress considerations. Corner blending curves
are usually required to exhibit a specified order of geometric continuity
with the segments they connect, and to satisfy specific constraints on
their curvature profiles and the extremum deviation from the original
corner. The free parameters of polynomial corner curves of degree ≤ 6
and continuity up to G3 are exploited to solve a convex optimization
problem, that minimizes a weighted sum of dimensionless measures of
the mid–point curvature, maximum deviation, and the uniformity of
parametric speed. It is found that large mid–point curvature weights
result in undesirable bimodal curvature profiles, but emphasizing the
parametric speed uniformity typically yields favorable outcomes (since
the curvature is strongly dependent upon parametric speed variation).
A constrained optimization problem, wherein a particular value of the
corner curve deviation is specified, is also addressed. Finally, the shape
of Pythagorean–hodograph corner curves is compared with that of the
optimized “ordinary” polynomial corner curves.
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1 Introduction

In many design contexts, smooth blends between extended “simple” (linear or
circular) segments are required. Typically, these blending curves are required
to exhibit a prescribed order of geometric continuity with the segments they
connect, and to have well–behaved (e.g., monotone or unimodal) curvature
profiles. In consumer products design, for example, rounded corners are often
preferred to satisfy aesthetic or ergonomic considerations, and in the design
of load–bearing mechanical components, the rounding or “filleting” of sharp
corners is essential in minimizing stress concentration and thereby enhancing
fatigue life. In CNC machining, sharp corners in piecewise–linear toolpaths
must be rounded to permit accurate high–speed execution without incurring
excessive decelerations and accelerations [2, 8, 18, 19, 21, 25, 26, 27, 28, 29].
An analogous concern occurs in the layout of highways or railways, wherein
precise control of the curvature of transition curves is required to guarantee
compatibility with prescribed safe vehicle traversal speeds [1, 17, 23, 24].

For blend curves that connect segments of disparate curvature (e.g., linear
and circular segments, or two circle segments with different radii), monotone
curvature variation is preferred, and such “spiral” blend segments have been
extensively studied [4, 7, 13, 14, 15, 16, 20, 30, 31, 32, 33, 34, 35, 37]. For
blend curves connecting two linear segments, however, a symmetric unimodal
curvature profile that yields the desired change of direction (or turning angle)
is desired [6, 36]. The focus of the present study is on the latter context, and
in particular on the formulation and optimization of an appropriate measure
of the overall quality of corner blending curves.

A number of key features of corner blending curves may be identified:

(1) they should exhibit symmetry about their mid–points, and a prescribed
order of geometric continuity Gk with the linear segments they connect;

(2) they should be free of inflections and have unimodal curvature profiles;

(3) they should represent a reasonable compromise between minimizing the
mid–point curvature κm and deviation δm from the sharp corner.

These considerations often exert conflicting influences in the design of corner
curves. For a symmetric unimodal curvature profile, the maximum curvature
κm occurs at the mid point. However, for a given corner geometry, too much
emphasis on minimizing the mid–point curvature (for aesthetic or kinematic
purposes) can incur an unacceptably large deviation δm or bimodal curvature
distribution. Finally, most applications demand at least G1 (more often G2)
continuity. However, for G3 or higher orders of continuity, the corner curve
can possess extended regions of low curvature at the end points, and a sharp
spike in curvature about the mid point. Thus, the purpose of the optimization
process is to seek a “balance” among these conflicting influences.
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1.1 Contributions of this study

The intent of this paper is to formulate and demonstrate algorithms for the
shape optimization of corner curves, based on the criteria enumerated above.
The algorithms are designed to provide flexibility regarding emphasis on the
design criteria (e.g., minimization of κm versus minimization of δm), to suit
different applications. However, the focus here is on the fundamental corner
curve intrinsic geometry, rather than specific applications. The criteria stated
above are not exhaustive, and the basic metholodogy presented herein can be
adapted on an as–needed basis, to satisfy particular technical constraints —
e.g., by imposing a bound on concave curvatures, for gouge–free machining
with a tool of given radius; or using variable feedrates along corner curves,
to manage axis accelerations in CNC machining or 3D printing.

1.2 Organization of the paper

The remainder of this paper is organized as follows. Section 2 introduces the
“canonical form” of the corner rounding problem, which serves to simplify the
analysis, and discusses key features of the corner curves. The properties of
polynomial corner curves of degrees up to n = 6 and continuity class up to G3

are then presented in Section 3, while Section 4 addresses the formulation of
dimensionless objective functions, based upon the mid–point curvature and
deviation, and uniformity of parameterization of corner blending curves, that
can be used to optimize them with respect to the available free parameters.
Section 5 summarizes the numerical optimization schemes used to determine
the minima of these objective functions, and Section 6 presents a number of
examples to illustrate the optimal corner curves obtained for various choices
of the weights. In Section 7, Pythagorean–hodograph (PH) corner blending
curves are compared with optimized “ordinary” polynomial curves for a given
order of geometric continuity. Since they possess fewer shape freedoms, for a
given turning angle θ, there are unique G1, G2, G3 PH corner curves of degree
3, 5, 7. The G1 PH corners are similar to the optimized ordinary cubics, but
G2 and G3 PH corner curves have smaller deviations δm and larger curvatures
κm than analogous optimized ordinary polynomial curves. Finally, the main
results of the present study are summarized in Section 8, and some issues
that deserve further investigation are identified.

2 Canonical corner blending problem

The rounding of sharp corners in piecewise–linear loci has been considered by
many authors, most frequently in the context of ensuring smoother execution
of G code part programs in CNC machining [2, 6, 8, 21, 27, 28, 29, 36]. The
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Figure 1: Canonical data for a corner blending curve.

emphasis in these studies is mainly on ensuring smooth (G1 or preferably G2)
junctures of corner curves with the linear segments they connect, to preclude
velocity or acceleration discontinuities. A numerical method to minimize the
extremum curvature of a G2 quintic Bézier corner curve was proposed in [25].
Building on prior work, the present study proposes a systematic approach to
exploiting the residual free parameters of corner curves (for a specified order
of geometric continuity) to minimize a combination of extremum curvature,
corner deviation, and parametric speed variation. By different weightings of
these terms, the objective function can be tailored to particular applications,
and it can also be generalized by appending constraint equalities/inequalities,
or introducing additional terms in the optimization objective function.

Consider the rounding of two linear segments that meet at a corner point
pc. The sharp corner is to be “rounded” by a smooth curve r(ξ), ξ ∈ [ 0, 1 ]
that begins at a point pi on the incoming line segment, and ends at a point
po on the outgoing line segment, i.e., r(0) = pi and r(1) = po, and to ensure
a symmetric solution we require that ‖pc − pi‖ = ‖po − pc‖ (see Figure 1).
For brevity, we consider this problem using “canonical” data with

pi = (−1, 0) , pc = (0, 0) , po = (cos θ, sin θ) , (1)

where θ is the corner turning angle as shown in Figure 1. The curve must have
at least G1 continuity with the line segments, i.e., it must have end tangents
t(0) = r′(0)/‖r′(0)‖ = (1, 0) and t(1) = r′(1)/‖r′(1)‖ = (cos θ, sin θ). By a
suitable translation, rotation, and scaling, the corner curve r(ξ) can be used
to smoothly blend any sharp corner in a piecewise–linear locus.

The parametric speed of the curve r(ξ) = (x(ξ), y(ξ)) is defined by

σ(ξ) = ‖r′(ξ)‖ =
√

x′2(ξ) + y′2(ξ) =
ds

dξ
, (2)

where s is arc length along r(ξ). The curvature and its arc–length derivative
[9] are

κ =
(r′ × r′′) · z

σ3
,

dκ

ds
=

(r′ × r′′′) · z− 3 σ2σ′κ

σ4
, (3)
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where z is a unit vector orthogonal to the (x, y) plane. Note here that κ and
dκ/ds are intrinsic shape properties of the curve r(ξ), specified as functions
of the curve parameter ξ. The derivatives of the parametric speed may be
expressed as

σ′ =
r′ · r′′
σ

, σ′′ =
r′ · r′′′ + ‖r′′‖2 − σ′2

σ
.

In the context of applications, two features of the corner rounding curve are
of particular interest — the deviation δm of the mid–point from the original
exact corner (0, 0) and the mid–point curvature magnitude, namely

δm = ‖ r(1
2
) ‖ and κm = | κ(1

2
) | . (4)

As two “extreme” solutions to the corner rounding problem, we note that
the original corner (i.e., the piecewise–linear path from pi to pc to po) has
δm = 0 and κm = ∞ (i.e., an impulse in curvature at pc), while the short–cut
linear path from pi to po has κm = 0 and δm = | sin 1

2
θ |. The goal is thus to

identify smooth curves, satisfying prescribed continuity conditions at pi and
po, that balance the desire to subdue both δm and κm.

3 Polynomial corner curves

Consider the use of a planar degree n Bézier curve

r(ξ) =
n

∑

k=0

pk b
n
k(ξ) , bnk(ξ) =

(

n

k

)

(1− ξ)n−kξk , (5)

symmetric about the normal line at the mid–point r(1
2
), to define a corner

curve. For even n, there is an odd number of control points, and we set

p0 = pi , pn/2 = pc , pn = po , (6)

with the remaining control points pk for 0 < k < n/2 and n/2 < k < n to
be determined. For odd n, we again set p0 = pi and pn = po, but since the
number of control points is even, it is not possible to symmetrically assign
them so that one control point coincides with pc.

3.1 The case n = 2

The control points (6) achieve a G1 connection with incoming and outcoming
linear segments at angles 0 and θ relative to the x–axis, with minimum degree
n = 2 (i.e., a parabola segment). For the case n = 2, we have

p0 = (−1, 0) , p1 = (0, 0) , p2 = (cos θ, sin θ) ,
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and the corner curve is unique (there are no free parameters). Its parametric
speed and curvature are

σ(ξ) = 2
√

(1− ξ)2 + cos θ 2(1− ξ)ξ + ξ2 , κ(ξ) =
4 sin θ

σ3(ξ)
,

and the quantities (4) reduce to

δm = 1

2
| sin 1

2
θ | , κm =

√
2 | sin θ |

(1 + cos θ)3/2
.

For a given turning angle θ, this case offers no control over the quantities (4).

3.2 The case n = 3

In the case n = 3, a G1 connection is achieved by control points of the form

p0 = (−1, 0) , p1 = λ(−1, 0) , p2 = λ(cos θ, sin θ) , p3 = (cos θ, sin θ) ,

with λ ∈ [ 0, 1 ] a free parameter. For the cubic corner curve, the parametric
speed and curvature are

σ(ξ) =
√

f(ξ) , κ(ξ) =
g(ξ)

σ3(ξ)
(7)

where f(ξ) is the quartic polynomial defined by the Bernstein coefficients

f0 = f4 = 9 (1− λ)2 , f1 = f3 = 9 (1 + cos θ)(1− λ)λ ,

f2 = 3 cos θ (1− λ)2 + 12 (1 + cos θ) λ2 ,

and g(ξ) is the quadratic polynomial

g(ξ) = 18 sin θ (1− λ) [λ (1− ξ)2 + 1

2
(1− λ) 2(1− ξ)ξ + λ ξ2 ] .

The quantities (4) reduce to

δm =
| sin 1

2
θ |

4
(3 λ+ 1) , κm =

8
√
2 | sin θ |

3 (1 + cos θ)3/2
1− λ

(1 + λ)2
. (8)

Note that δm is monotone–increasing with λ, having its minimum value when
λ = 0 with p1 = p2 = (0, 0). On the other hand, κm is monotone–decreasing
with λ, having its minimum value when λ = 1 with p0 = p1 = (−1, 0) and
p2 = p3 = (cos θ, sin θ). Figure 2 shows examples of these degree 3 corner
curves for the turning angle θ = 1

2
π. The case λ = 1 is exceptional, having

the undesirable property that the parametric speed (2) vanishes at both end
points: σ(0) = σ(1) = 0. The end–point curvature magnitude

|κ(0)| = |κ(1)| = 2 λ

(1− λ)2

is formally infinite in this case, reflecting the fact that the graph of r(ξ) for
unrestricted ξ is a multiply–traced straight line, that instantaneously reverses
direction at the end points ξ = 0 and ξ = 1.

5



Figure 2: Corner curves of degree 3 (left) and degree 4 (right) for the turning
angle θ = 1

2
π and the sequence of parameter values λ = 0.0, 0.1, . . . , 1.0.

3.3 The case n = 4

To achieve a G2 connection with the incoming/outgoing linear segments, we
require κ(0) = κ(1) = 0. This can be achieved with minimum degree n = 4,
and one can verify from the expression for κ(ξ) in (3) that this implies that
p0,p1,p2 must be colinear, and p2,p3,p4 must be colinear. For a symmetric
corner curve, the control points must therefore be of the form

p0 = (−1, 0) , p1 = λ(−1, 0) , p2 = (0, 0) ,

p3 = λ(cos θ, sin θ) , p4 = (cos θ, sin θ) ,

where λ ∈ [ 0, 1 ] is a free parameter. For the quartic corner curve specified
by these control points, the polynomials f(ξ) and g(ξ) in (7) are of degree 6
and 4, with Bernstein coefficients

f0 = f6 = 16 (1− λ)2 , f1 = f5 = 16 (1− λ)λ ,

f2 = f4 =
16

5
(cos θ 2(1− λ)λ+ 3 λ2) , f3 =

8

5
cos θ ((1− λ)2 + 9 λ2) ,

and

g0 = g4 = 0 , g1 = g3 = 24 sin θ (1− λ)λ , g2 = 8 sin θ ((1− λ)2 + 3 λ2) .

Hence, the quantities (4) have the values

δm =
| sin 1

2
θ |

8
(4 λ+ 1) , κm =

6
√
2 | sin θ |

(1 + cos θ)3/2
1

(2 λ+ 1)2
. (9)

Note that, with θ 6= 0, we have

dδm
dλ

=
| sin 1

2
θ |

2
> 0 and

dκm

dλ
= − 24

√
2 | sin θ |

(1 + cos θ)3/2
1

(2 λ+ 1)3
< 0 .
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Examples of these degree 4 corner curves are shown in Figure 2. As in the case
n = 3, note that δm is monotone–increasing with λ, having its minimum value
when λ = 0 with p1 = p2 = p3 = (0, 0), whereas κm is monotone–decreasing
with λ, having its minimum value when λ = 1 with p0 = p1 = (−1, 0) and
p2 = p3 = (cos θ, sin θ). For the case λ = 1, the parametric speed (2) again
vanishes at both end points, σ(0) = σ(1) = 0, as seen from the coefficients of
the polynomial f(ξ). The polynomial g(ξ) also vanishes at both end points,
but application of l’Hôpital’s rule indicates that the curvature has the finite
value 0 (as expected from the imposition of G2 continuity).

3.4 The case n = 5

To achieve a G2 connection using a quintic curve, the control points p0,p1,p2

must be colinear, and p3,p4,p5 must be colinear — i.e., we must have

p0 = (−1, 0) , p1 = λ(−1, 0) , p2 = µ(−1, 0) ,

p3 = µ(cos θ, sin θ) , p4 = λ(cos θ, sin θ) , p5 = (cos θ, sin θ) ,

λ, µ ∈ [ 0, 1 ] being free parameters with λ ≥ µ. In this case, the polynomials
f(ξ) and g(ξ) in (7) are of degree 8 and 6 in ξ, respectively. For brevity,
we omit their coefficients, but observe that we again have r′(0) = r′(1) = 0

when λ = 1. The quantities (4) can be expressed as

δm =
| sin 1

2
θ |

16
(5 λ+ 10µ+ 1) , κm =

64
√
2 | sin θ |

5 (1 + cos θ)3/2
λ− 2µ+ 1

(3 λ+ 2µ+ 1)2
.

Note that δm is monotone–increasing with λ and µ, and thus has its minimum
value when λ = µ = 0, i.e., p1 = p2 = p3 = p4 = (0, 0). The behavior of κm

is more complicated, as is evident from its partial derivatives ∂κm/∂λ and
∂κm/∂µ, which are proportional to

14µ− 3 λ− 5

(3 λ+ 2µ+ 1)3
and

4µ− 10 λ− 6

(3 λ+ 2µ+ 1)3
.

The condition ∂κm/∂λ = ∂κm/∂µ = 0 identifies a local stationary point of
κm at (λ, µ) = (−1/2, 1/4) but this lies outside the domain 0 ≤ µ ≤ λ ≤ 1.

3.5 The case n = 6

To achieve a G3 connection with the incoming/outgoing linear segments, we
must have κ(0) = dκ/ds(1) = 0 and κ(1) = dκ/ds(0) = 0. This requires a
curve of minimum degree 6. One can verify from expressions (3) that these
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conditions imply that p0,p1,p2,p3 must be colinear, and p3,p4,p5,p6 must
be colinear — i.e., we must have

p0 = (−1, 0) , p1 = λ(−1, 0) , p2 = µ(−1, 0) , p3 = (0, 0) ,

p4 = µ(cos θ, sin θ) , p5 = λ(cos θ, sin θ) , p6 = (cos θ, sin θ) ,

λ, µ ∈ [ 0, 1 ] being free parameters with λ ≥ µ. In this case, the polynomials
f(ξ) and g(ξ) in (7) are of degree 10 and 8 in ξ, respectively. For brevity,
we omit their coefficients, but note again that r′(0) = r′(1) = 0 when λ = 1.
The quantities (4) can be expressed as

δm =
| sin 1

2
θ |

32
(6 λ+ 15µ+ 1) , κm =

80
√
2 | sin θ |

3 (1 + cos θ)3/2
2 λ− µ+ 1

(4 λ+ 5µ+ 1)2
.

Again, δm is monotone–increasing with λ and µ, and has its minimum value
when λ = µ = 0, i.e., p1 = p2 = p3 = p4 = p5 = (0, 0). The behavior of
κm is more complicated: its partial derivatives with respect to λ and µ are
proportional to

18µ− 8 λ− 6

(4 λ+ 5µ+ 1)3
and

5µ− 24 λ− 11

(4 λ+ 5µ+ 1)3
.

The condition ∂κm/∂λ = ∂κm/∂µ = 0 identifies a local stationary point of
κm at (λ, µ) = (−3/7, 1/7) but this lies outside the domain 0 ≤ µ ≤ λ ≤ 1.

4 Corner curve optimization

Ideally, a corner blending curve should exhibit a small deviation δm from the
original sharp corner point, and a small mid–point curvature magnitude κm.
However, minimizing these quantities incurs conflicting demands on the free
parameters defining the corner curve, so a compromise must be sought.

In optimizing a corner blending curve specified by the canonical data
(1), a dimensionless objective function must be adopted, to ensure that the
curve scales uniformly to any desired length L = ‖pc − pi‖ = ‖po − pc‖
of the corner edges. The simplest choice is the product κmδm, but since κm

has a stronger dependence on the free parameters than δm, it dominates in
determining their optimal values. In the cases n = 3 and n = 4, for example,
it can be verified from (8) and (9) that

d

dλ
κmδm < 0 for λ ∈ [ 0, 1 ]

so κmδm is minimized when λ = 1. With this value, however, the corner curve
has a singular parameterization at its end points, since we have p0 = p1 and
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pn−1 = pn and thus σ(0) = σ(1) = 0. Furthermore, the minimization of an
objective function in which κm dominates is observed to frequently produce
an undesirable bimodal curvature profile, exhibiting higher curvatures near
the end points than at the mid point.

To preclude the possibility of singular solutions with σ(0) = σ(1) = 0, we
introduce a dimensionless term dependent on the variation of the parametric
speed in the objective function. The arc length S of the corner curve r(ξ) is
defined in terms of the parametric speed (2) by

S =

∫

1

0

σ(ξ) dξ ,

and the mean value of σ(ξ) is σ̄ = S. A dimensionless measure of the mean
square deviation of σ(ξ) about σ̄ is then defined through the expression

γ =
1

S2

∫

1

0

[ σ(ξ)− σ̄ ]2 dξ =
1

S2

∫

1

0

σ2(ξ) dξ − 1 . (10)

Note that S can be exactly computed for PH curves, but general polynomial
curves require a numerical quadrature. However, the integral on the right in
(10) admits an exact evaluation for any polynomial curve. Although (10) is
not an intrinsic shape measure, including it in the objective function produces
corner curves closer to the ideal of an arc–length parameterization.

Instead of using the product κmδm, we introduce individual dimensionless
measures of κm and δm by dividing them by the values

κ̄m =
| θ |
S

and δ̄m = 1

2
| sin 1

2
θ | .

These are the averages of κm and δm for the two “extreme” solutions identified
in Section 2, namely, the piecewise–linear path from pi to po through pc, and
the direct short–cut linear path from pi to po. We then define the objective
function

f = a (δm/δ̄m) + b (κm/κ̄m) + (1− a− b) γ , (11)

where a, b are non–negative weights such that a+ b ≤ 1. For given choices of
a, b this is to be minimized with respect to the free parameters characterizing
the corner curve r(ξ).

5 Optimization algorithm

For polynomial curves of degree 3 and 4, the optimal corner curve is found
by minimizing a univariate function on the domain λ ∈ [ 0, 1 ]. For curves of
degree 5 and 6, however, the optimal solution is identified by minimizing a
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convex objective function in two variables, λ and µ, subject to linear (equality
and inequality) constraints. In both instances, the optimization procedure
has been implemented in Matlab by using the solver routines in the Matlab
Optimization toolbox. We give below just a brief synopsis of the main ideas
— see [10, 12, 22] for complete details.

5.1 Univariate objective function

In this case, the algorithm employs a combination of the Successive Parabolic
Interpolation method and the Golden Section Search. Successive Parabolic
Interpolation has a superlinear convergence rate, and is based on successive
fitting of parabolas to a unimodal function at three unique points. At each
iteration, the “oldest” point is replaced by the extremum of the current
parabola fit. Only function values (no derivatives) are used, and when the
method converges, its convergence rate is ∼ 1.325. However, it may happen
that the minimum does not lie in the interval determined by the three points,
and in this case two steps of Golden Section Search are usually employed.
This identifies the minimum of a strictly unimodal function by successively
narrowing an interval in which the minimum is known to exist. It derives its
name from the fact that it uses function values at sets of three points whose
distances form the golden ratio, (

√
5 − 1)/2 ≈ 0.6180. It is guaranteed to

identify the minimum, and again does not require function derivatives. As
the interval width is only reduced by the factor of 0.618 at each step, the
method is just linearly convergent.

The above algorithm has been implemented in the Matlab routine “fminbnd,”
a local minimizer of a univariate objective function over a given interval.

5.2 Multivariate objective function

Among available algorithms for solving constrained optimization problems of
the form







min
x
f(x)

hi(x) = 0, i = 1, . . . , ne,
gi(x) ≤ 0, i = 1, . . . , ni,

(12)

in a set of variables x, we opt for the Sequential Quadratic Programming
(SQP) method. SQP is considered a state–of–the–art nonlinear programming
method — see, for instance, [12]. It belongs to the class of methods that solve
the Karush–Kuhn–Tucker (KKT) equations. The main idea behind the KKT
equations — as with the Lagrange multiplier method — is to combine the
objective function and constraints in a single minimization problem, with the
equality constraints multiplied by factors ρi, i = 1, . . . , ne and the inequality
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constraints by factors τi, i = 1, . . . , ni (the so called KKT multipliers, often
also called Lagrange multipliers). The problem then becomes



















∇f(x) +
ne
∑

i=1

∇ρi hi(x) +

ni
∑

i=1

∇τi gi(x) = 0

τi gi(x) = 0 , i = 1, . . . , ni ,
τi ≥ 0 , i = 1, . . . , ni ,

(13)

in addition to the original constraints in (12). Satisfaction of these equations
is a necessary condition for solution of a constrained optimization problem.
If the problem is strictly convex, i.e., f(x) is strictly convex and hi(x), gi(x)
define a convex region, the KKT equations are both necessary and sufficient
for a global optimal solution.

SQPmethods to solve the non–linear system (13) mimic Newton’s method.
We briefly summarize here the main steps (see [22] for complete details). The
basic structure of an SQP method involves major and minor iterations. Its
name comes from the fact that a quadratic programming (QP) subproblem is
solved at each major iteration, to find a direction for a line search procedure.
Writing h = (h1, . . . , hne

)T and g = (g1, . . . , gni
)T , the subproblem objective

function is a quadratic approximation of the Lagrangian function

L(x,ρ, τ ) = f(x)− ρ
Th(x)− τ

Tg(x) , (14)

and the constraints are linearizations of the constraints in (12). Note that
the bound constraints are expressed as inequalities.

In the present context, the method is greatly simplified since the problem
is convex, and the constraints are all linear. Consequently, fast convergence is
observed in practice, with the stopping criterion being met in a few iterations.

Since we employ the Matlab Optimization toolbox, the routine that best
meets our requirements is “fmincon,” which deals with nonlinear constrained
optimization. In addition, we use the option “sqp” to enforce the routine to
employ the SQP methods described above. This, together with the fact that
we are dealing with problems of modest size, ensures a fast convergence rate.
Concerning the starting values for the optimization parameters, we note that
the problem is not very sensitive to their choice, so we simply set them equal
to zero (recall that they must both be in the interval [ 0, 1 ]).

6 Computed examples

Since different applications typically entail different criteria concerning what
constitutes an “optimal” corner shape, the approach adopted herein does not
purport to identify a universal shape optimality criterion. Certain properties,
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a b λ δm κm γ
0.0 0.0 0.4751 0.4287 0.9091 1.0174× 10−5

0.1 0.0 0.3295 0.3515 1.4304 1.2696× 10−2

0.4 0.0 0.0001 0.1768 3.7705 1.0845× 10−1

0.0 0.1 0.6336 0.5128 0.5178 1.7649× 10−2

0.8 0.2 0.2611 0.3153 1.7520 2.6286× 10−2

Table 1: Numerical results for cubic corner curves with turning angle θ = 1

2
π.

such as a unimodal curvature, are likely desirable in all cases, but minimum
curvature may be favored over minimum deviation in some applications, and
vice–versa for other applications. The optimization objective function offers
the flexibility (by adjusting the weights) to tailor the measure of corner curve
shape quality to suit the needs of particular applications.

For brevity, we focus here on the representative turning angles θ = 1

4
π, 1

2
π,

3

4
π. Results for degrees n = 3, 4, 5, 6 are presented with turning angle θ = 1

2
π,

and for degrees n = 4, 5 with the angles θ = 1

4
π and 3

4
π. In practice, the cases

n = 4 and 5, which provide G2 continuity with one and two free parameters,
may be considered preferable — the degree 3 corner curve provides only G1

continuity, while on the other hand the G3 continuity of the degree 6 corner
curve can incur severe curvature variation between the end points.

6.1 Turning angle θ = 1
2π

We begin with the right–angle corner, θ = 1

2
π. Figure 3 shows representative

examples of optimized G1 cubic corner curves for this turning angle, obtained
with various weights a, b in the objective function (11). Table 1 indicates the
chosen weights, together with the optimum values for the sole parameter
λ, and the resulting values of δm, κm, γ. With a = b = 0, the objective
function contains only the term (10). This results in a very low value of
γ, reflecting a near–uniform parameterization, and the curvature is nearly
constant (though slightly lower at the center than at the end points). Fixing
b = 0 and increasing a to 0.1 and 0.4 yields “sharper” corner curves, with
smaller δm but substantially larger κm, and in the case a = 0.4 the solution is
nearly singular, with λ approaching 0. The case a = 0, b = 0.1 illustrates the
strong influence of the κm term in (11) — the resulting corner curve is very
“flat” in the center, with very high curvature at the end points. Finally, the
case a = 0.8, b = 0.2 shows a result obtained without the term (10) in the
objective function (11) — the corner curve has a smooth unimodal curvature
profile, with reasonable values for δm and κm.

Results for optimized G2 quartic corner curves are presented in Figure 4
and Table 2. The choice a = b = 0 is again seen to yield an excellent result,
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Figure 3: Optimized cubic corner curves with turning angle 1

2
π and different

values of the weights a, b (left), and the corresponding curvature plots (right).
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Figure 4: Optimized quartic corner curves with turning angle 1

2
π and different

values of the weights a, b (left), and the corresponding curvature plots (right).

a b λ δm κm γ
0.0 0.0 0.6237 0.3089 1.6799 1.3847× 10−3

0.2 0.0 0.4706 0.2548 2.2517 2.1178× 10−2

0.4 0.0 0.0925 0.1211 6.0429 2.0295× 10−1

0.0 0.2 0.8576 0.3916 1.1510 5.5882× 10−2

0.9 0.1 0.3327 0.2060 3.0593 6.8728× 10−2

Table 2: Numerical values for quartic corner curves and turning angle θ = 1

2
π.
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Figure 5: Optimized quintic corner curves with turning angle 1

2
π and different

values of the weights a, b (left), and the corresponding curvature plots (right).

with reasonable values for δm and κm, near–uniform parameterization, and a
unimodal curvature profile. On fixing b = 0 and increasing a to 0.2 and 0.4,
the curvature remains unimodal with a smaller δm and larger κm. However,
the case a = 0 and b = 0.2 produces a rather strange curvature profile that is
actually trimodal. Finally, the weights a = 0.9 and b = 0.1 yield a relatively
low δm value and correspondingly higher κm value.

a b λ µ δm κm γ
0.0 0.0 0.6730 0.3441 0.3450 1.2971 3.2195× 10−7

0.1 0.0 0.7059 0.0000 0.2002 3.1768 1.7527× 10−2

0.4 0.0 0.5106 0.0000 0.1570 4.2658 6.5916× 10−2

0.0 0.2 0.6812 0.6812 0.4958 0.2973 2.8929× 10−2

0.8 0.2 0.3858 0.3858 0.3000 1.2958 8.4877× 10−2

Table 3: Numerical values for quintic corner curves and turning angle θ = 1

2
π.

With the G2 quintic corners, two free parameters are available to optimize
the objective function (11). The results are presented in Figure 5 and Table 3.
Comparing with Figure 4, the curvature profile for the a = b = 0 corner curve
appears superior (being strictly convex) than for the corresponding quartic
curve. Increasing a to 0.1 and 0.4 with b = 0 yields smaller δm and larger
κm values, preserving a unimodal curvature profile — the optimum µ values
in these cases are zero to machine precision, so that p2 = p3 = (0, 0). With
a = 0.0 and b = 0.2 the corner curve has a very “flat” interior, with strong
curvature near the end points (although we still have κ(0) = κ(1) = 0). The
case a = 0.8 and b = 0.2 yields a less pronounced bimodal curvature.

Finally, Figure 6 and Table 4 present results for the G3 sextic corners
(with two free parameters). The cases a = b = 0 and a = 0.8, b = 0.2 yield
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Figure 6: Optimized sextic corner curves with turning angle 1

2
π and different

values of the weights a, b (left), and the corresponding curvature plots (right).

a b λ µ δm κm γ
0.0 0.0 0.7054 0.4978 0.2806 1.8115 1.4993× 10−4

0.1 0.0 0.7340 0.3065 0.2210 2.7258 9.8866× 10−3

0.3 0.0 0.7429 0.0000 0.1206 5.9430 6.2701× 10−2

0.0 0.2 0.7535 0.7535 0.3717 1.0922 3.7542× 10−2

0.8 0.2 0.5265 0.5265 0.2664 1.7480 3.6332× 10−2

Table 4: Numerical values for sextic corner curves and turning angle θ = 1

2
π.
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Figure 7: Optimized quartic corner curves with turning angle 1

4
π and different

values of the weights a, b (left), and the corresponding curvature plots (right).

a b λ δm κm γ
0.0 0.0 0.5298 0.1492 0.6342 5.3642× 10−5

0.1 0.0 0.4611 0.1361 0.7280 3.8809× 10−3

0.3 0.0 0.2560 0.0968 1.1768 5.9633× 10−2

0.0 0.4 0.9498 0.2296 0.3200 1.5012× 10−1

0.6 0.4 0.8060 0.2021 0.3943 6.4128× 10−2

Table 5: Numerical values for quartic corner curves and turning angle θ = 1

4
π.

similar favorable curves, while increasing a with b = 0 gives a smaller δm and
larger κm. With a = 0, b = 0.2 a bimodal curvature profile results.

6.2 Turning angles θ = 1
4
π and 3

4
π

For the turning angles θ = 1

4
π and 3

4
π, we restrict our attention to the degree

4 and 5 corner curves, which are the best suited to practical use. Results for
the optimized quartic and quintic corner curves with θ = 1

4
π are presented

in Figure 7 and Table 5 and in Figure 8 and Table 6, respectively.
For quartic curves with θ = 1

4
π, the choice a = b = 0 yields an excellent

result, with a smooth unimodal curvature and reasonable values of δm and κm.
Increasing a to 0.1 decreases δm and increases κm somewhat, and increasing
to a = 0.3 yields larger changes in these quantities. For a = 0.6 and b = 0.4,
a bimodal curvature profile begins to develop, and becomes very pronounced
when a = 0.0 and b = 0.4, so the term γ has zero weight in (11). Quintic
corner curves with θ = 1

4
π are qualitatively similar, with unimodal curvature

if b = 0 and bimodal curvature if b 6= 0. The very small γ values obtained
when a = b = 0, for both the quartic and quintic corner curves, indicate that
they closely approximate a (scaled) arc–length parameterization.
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Figure 8: Optimized quintic corner curves with turning angle 1

4
π and different

values of the weights a, b (left), and the corresponding curvature plots (right).

a b λ µ δm κm γ
0.0 0.0 0.6162 0.2359 0.1540 0.5957 4.4229× 10−8

0.1 0.0 0.6443 0.0000 0.1010 1.0971 6.3183× 10−3

0.4 0.0 0.4553 0.0000 0.0784 1.4920 5.2457× 10−2

0.0 0.4 0.7158 0.7158 0.2807 0.0778 7.7909× 10−2

0.6 0.4 0.4986 0.4986 0.2028 0.2358 8.2103× 10−3

Table 6: Numerical values for quintic corner curves and turning angle θ = 1

4
π.
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Figure 9: Optimized quartic corner curves with turning angle 3

4
π and different

values of the weights a, b (left), and the corresponding curvature plots (right).

17



a b λ δm κm γ
0.0 0.0 0.7827 0.4770 5.7515 1.8447× 10−2

0.1 0.0 0.7321 0.4537 6.2336 2.1340× 10−2

0.3 0.0 0.4944 0.3439 9.5696 9.1073× 10−2

0.0 0.1 0.9371 0.5484 4.5820 5.2798× 10−2

0.9 0.1 0.6564 0.4187 7.0761 3.5010× 10−2

Table 7: Numerical values for quartic corner curves and turning angle θ = 3

4
π.
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Figure 10: Optimized quintic corner curves with turning angle 3

4
π and various

values of the weights a, b (left), and the corresponding curvature plots (right).

Results for the severe turning angle θ = 3

4
π are presented in Figure 9 and

Table 7 for quartics, and in Figure 10 and Table 8 for quintics. The quartics
with a = 0, 0.1, 0.3 and b = 0 show unimodal curvatures with decreasing δm
and increasing κm. The case a = 0.9, b = 0.1 is similar to a = 0.1, b = 0.0
but a = 0, b = 0.1 produces a trimodal curvature. The θ = 3

4
π quintics are

unusual, in that the choice a = b = 0 deviates (slightly) from the unimodal
curvature at smaller angles. For a = 0.1, 0.3 with b = 0, the curvature is
again unimodal, with large κm values. For a = 0, b = 0.1 the curve has a
“flat” interior and strong curvature near the end points. Finally, for a = 0.9,
b = 0.1 the curvature is unimodal, with a near–constant central curvature.

a b λ µ δm κm γ
0.0 0.0 0.7899 0.5547 0.6061 2.7389 2.0610× 10−5

0.1 0.0 0.7867 0.2602 0.4351 6.7907 2.5705× 10−2

0.3 0.0 0.6701 0.0000 0.2512 14.883 8.3100× 10−2

0.0 0.1 0.7658 0.7658 0.7211 0.8109 2.0968× 10−2

0.9 0.1 0.4135 0.4135 0.4159 5.0327 2.2237× 10−1

Table 8: Numerical values for quintic corner curves and turning angle θ = 3

4
π.
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Figure 11: Variation of the parametric speed (2) about the mean value σ̄ = S
for the optimized quintic corner curves with turning angles 1

4
π (left) and 1

2
π

(right) with weights a = b = 0, i.e., only the term (10) in (11) is minimized.

δ∗ λ µ κm γ
0.20 0.5668 0.4528 0.2918 4.4819× 10−3

0.17 0.5992 0.3112 0.4793 5.3864× 10−3

0.15 0.6204 0.2170 0.6271 3.3948× 10−5

0.10 0.6362 0.0000 1.1099 6.9388× 10−3

0.05 0.2181 0.0000 2.5543 2.0113× 10−1

Table 9: Quintic corner curves with θ = 1

4
π and prescribed δm values.

Figure 11 illustrates the variation of the parametric speed (2) about the
mean value σ̄ = S for optimized quintic corner curves with a = b = 0 and
the turning angles θ = 1

4
π and 1

2
π. It is seen that emphasizing the term (10)

in the objective function (11) results in not only reasonable values for δm and
κm, but also close approximation of the (scaled) arc–length parameterization.

6.3 Constrained corner curves

As a variant of the optimization procedure, we consider minimization of (10)
with the imposition of a specified value for the deviation δm as a constraint.
This problem is important in applications where the rounded corners should
not deviate by more than a given tolerance from a prescribed piecewise–linear
locus. We focus on the quintic corner curves, since the introduction of this
constraint leaves no free optimization parameters when n < 5. Note that,
since the expression for δm is linear in λ and µ, we may eliminate one of these
parameters to obtain a univariate optimization problem.

Figure 12 and Table 9 presents results for optimized quintic corner curves
with turning angle θ = 1

4
π and several values of the normalized displacement

δ∗ := δ/δ̄. The ability to specify a uniform sequence of δ∗ values yields a more
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Figure 12: Optimized quintic corner curves for θ = 1

4
π and different values of

the normalized deviation δ∗ (left), with corresponding curvature plots (right).
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Figure 13: Optimized quintic corner curves for θ = 1

2
π and different values of

the normalized deviation δ∗ (left), with corresponding curvature plots (right).

predictable sequence of corner curve shapes, and κm values, than modifying
the weights a, b in (11). Figure 13 and Table 10 present analogous results
for θ = 1

2
π, and Figure 14 and Table 11 for θ = 3

4
π. Except for the larger δ∗

values, the curvature is unimodal, with larger κm values as δ∗ increases.

7 Pythagorean-hodograph corner curves

Pythagorean–hodograph (PH) curves are a special class of polynomial curves
[5], characterized by a polynomial parametric speed σ(ξ). Consequently, the
PH curves possess several advantageous properties, including exact arc length
computation; versatile algorithms for real–time motion control; and favorable
shape properties [5]. PH corner curves have previously been discussed in the
context of G2 blends of right–angle corners [6]; G2 corner blends and feedrate
functions for general turning angles [8, 21]; and by various other authors in
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δ∗ λ µ κm γ
0.30 0.6883 0.2347 1.7665 1.8686× 10−3

0.25 0.7037 0.1138 2.3969 7.9237× 10−3

0.20 0.7051 0.0000 3.1804 1.7586× 10−2

0.15 0.4788 0.0000 4.5094 7.9984× 10−2

0.10 0.2526 0.0000 7.3393 2.2409× 10−1

Table 10: Quintic corner curves with θ = 1

2
π and prescribed δm values.
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Figure 14: Optimized quintic corner curves for θ = 3

4
π and different values of

the normalized deviation δ∗ (left), with corresponding curvature plots (right).
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δ∗ λ µ κm γ
0.60 0.7901 0.5440 2.8520 6.8098× 10−5

0.50 0.7897 0.3711 5.0046 1.1517× 10−2

0.40 0.7844 0.2005 7.9255 3.4403× 10−2

0.30 0.7761 0.0315 12.028 6.0239× 10−2

0.20 0.4927 0.0000 19.627 1.5448× 10−1

Table 11: Quintic corner curves with θ = 3

4
π and prescribed δm values.

the context of CNC machining applications [18, 19, 26, 27, 28, 36].
For comparison with the polynomial corner curves discussed in Section 3,

we give a brief synopsis of PH corner curves of degree 3, 5, 7 and continuity
G1, G2, G3 for general turning angles. For a given turning angle, these curves
are essentially unique — the curve degree determines the order of continuity.
In the complex representation [3], a planar PH curve of degree n = 2m + 1
is generated by integrating the square of a complex polynomial,

r′(ξ) = w2(ξ) , w(ξ) =
m
∑

k=0

wk

(

m

k

)

(1− ξ)m−kξk , (15)

with coefficients wk = uk + i vk for k = 0, . . . , m.

7.1 G1 PH cubic corner curve

It is well–known that all planar PH cubics are segments of a unique curve —
the Tschirnhaus cubic [5]. For the instance m = 1 of (15), one can verify that
the G1 boundary conditions r(0) = −1, arg(r′(0)) = 0 and r(1) = exp(i θ),
arg(r′(1)) = θ for a PH cubic corner curve are satisfied with

w0 =

√

6 cos 1

2
θ

2 cos 1

2
θ + 1

, w1 =

√

6 cos 1

2
θ

2 cos 1

2
θ + 1

exp(i1
2
θ) ,

and with p0 = (−1, 0), p3 = (cos θ, sin θ) the intermediate control points are

p1 =
(−1, 0)

2 cos 1

2
θ + 1

, p2 =
(cos θ, sin θ)

2 cos 1

2
θ + 1

.

In this case, the quantities (4) are given by

δm =
(cos 1

2
θ + 2) | sin 1

2
θ |

2(2 cos 1

2
θ + 1)

, κm =
4 (2 cos 1

2
θ + 1)| tan 1

2
θ |

3 (cos 1

2
θ + 1)2

.
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7.2 G2 PH quintic corner curve

It was shown in [8] that a G2 PH quintic corner curve defined by the instance
m = 2 of (15), satisfying the boundary conditions r(0) = −1, arg(r′(0)) = 0
and r(1) = exp(i θ), arg(r′(1)) = θ with κ(0) = κ(1) = 0, is identified by the
coefficients

w0 =

√

30 cos 1

2
θ

6 cos 1

2
θ + 1

, w1 = 0 , w2 =

√

30 cos 1

2
θ

6 cos 1

2
θ + 1

exp(i1
2
θ) ,

and with p0 = (−1, 0), p5 = (cos θ, sin θ) the intermediate control points are

p1 = p2 =
(−1, 0)

6 cos 1

2
θ + 1

, p3 = p4 =
(cos θ, sin θ)

6 cos 1

2
θ + 1

.

There are no free parameters, and the quantities (4) are

δm =
(3 cos 1

2
θ + 8) | sin 1

2
θ |

8(6 cos 1

2
θ + 1)

, κm =
32 (6 cos 1

2
θ + 1)| tan 1

2
θ |

15 (cos 1

2
θ + 1)2

.

7.3 G3 degree 7 PH corner curve

The case m = 3 in (15) yields a degree 7 PH corner curve. For a symmetric
curve satisfying the G2 continuity conditions arg(r′(0)) = 0, arg(r′(1)) = θ
and κ(0) = κ(1) = 0, the coefficients must be of the form

w0 = p , w1 = q , w2 = α q exp(i1
2
θ) , w3 = β p exp(i1

2
θ) ,

where p, q are real values and α, β = ±1. Matching the end points r(0) = −1
and r(1) = exp(i θ) then yields the complex equation

1

7

[

w2

0
+w0w1 +

3w2

1
+ 2w0w2

5
+

w0w3 + 9w1w2

10

+
3w2

2
+ 2w1w3

5
+w2w3 +w2

3

]

= 1 + cos θ + i sin θ . (16)

On substituting for w0,w1,w2,w3, separating real and imaginary parts, and
simplifying, we obtain the two real equations

(20 cos 1

2
θ+α) p2 + (10 sec 1

2
θ+4α+4β) pq + (12 cos 1

2
θ+9β) q2 = 140 cos 1

2
θ ,

(20 cos 1

2
θ+α) p2+ (20αβ cos 1

2
θ+4α+4β) pq+ (12 cos 1

2
θ+9β) q2 = 140 cos 1

2
θ .

These equations are identical if

10 sec 1

2
θ = 20αβ cos 1

2
θ , (17)
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i.e., if αβ = 1 and cos2 1

2
θ = 1

2
, which corresponds to the case of a right–

angle corner with θ = ±1

2
π. For this particular case there is a one–parameter

family of solutions, as described in [6]. When (17) is not satisfied, subtracting
the two equations yields the condition

(10 sec 1

2
θ − 20αβ cos 1

2
θ) pq = 0 ,

so we must have p = 0 or q = 0. Discounting the case p = 0, since it implies
a singular parameterization with r′(0) = r′(1) = 0, the case q = 0 gives

w0 = p , w1 = w2 = 0 , w3 = α p exp(i1
2
θ) ,

and to satisfy equation (16) we must then have

p2 =
140 cos 1

2
θ

20 cos 1

2
θ + α

.

We henceforth choose α = 1, since α = −1 yields solutions with undesirable
loops. Thus, we obtain control points p0 = (−1, 0), p7 = (cos θ, sin θ) and

p1 = p2 = p3 =
(−1, 0)

20 cos 1

2
θ + 1

, p4 = p5 = p6 =
(cos θ, sin θ)

20 cos 1

2
θ + 1

.

Although the above construction imposes only G2 continuity, the resulting
degree 7 PH curves necessarily define a G3 blend with the incoming/outgoing
line segments, since p0,p1,p2,p3 and p4,p5,p6,p7 are colinear, and from (3)
this implies that κ = dκ/ds = 0 at ξ = 0 and ξ = 1. These G3 corner curves
possess no free parameters, and the quantities (4) are

δm =
(5 cos 1

2
θ + 16) | sin 1

2
θ |

16(20 cos 1

2
θ + 1)

, κm =
96 (20 cos 1

2
θ + 1)| tan 1

2
θ |

35 (cos 1

2
θ + 1)2

.

Figure 15 shows PH corner curves of degree 3, 5, 7 and continuity G1, G2, G3

together with their curvature profiles, for the cases θ = 1

4
π, 1

2
π, 3

4
π. Note that

increasing the order of continuity causes δm to diminish, and κm to increase.
Figure 16 compares the PH corner curves and some optimized “ordinary”

polynomial curves with unimodal curvatures1 for a given geometric continuity
and θ = 1

2
π. The G1 PH cubic and G1 optimized ordinary cubics appear quite

similar. In most instances, the G2 PH quintic has a smaller deviation δm and
a larger curvature κm than the G2 optimized ordinary quartics and quintics,
and this difference becomes more pronounced in comparing the G3 PH septic
and the G3 optimized ordinary sextics.

1These correspond to weights (a, b) equal to (0, 0), (0.1, 0), (0.8, 0.2) for cubics; (0, 0),
(0.9, 0.1) for quartics; (0, 0), (0.1, 0) for quintics; and (0, 0), (0.1, 0), (0.3, 0) for sextics.
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Figure 15: PH corner curves of degree 3, 5, 7 and continuity G1, G2, G3 with
their curvature profiles for angles π/4 (upper), π/2 (center), 3π/4 (lower).

Figure 16: Comparison of the PH and optimized ordinary polynomial corner
curves for the angle θ = 1

2
π. Left: G1 PH cubic (black) with optimized cubics

(red). Center: the G2 PH quintic (black) and optimized quartics (green) and
quintics (red). Right: the G3 PH septic (blue) and optimized sextics (red).
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8 Closure

To satisfy various aesthetic or functional requirements, a precise control over
the shapes of corner blending curves is often desired, as characterized by the
attributes (1)–(3) listed in the Introduction. Polynomial curves of degree ≥ 3
incorporate free parameters to optimize corner shapes, but the formulation of
an appropriate optimization objective function requires careful consideration,
since the free parameters often conflict in achieving these attributes.

The variation of curvature with arc length, constrained by the imposition
of Gk geometric continuity at the end points, is a key measure of corner curve
shape quality. However, global curvature variation measures consistent with
the boundary conditions do not admit closed–form reduction, and exhibit a
complicated dependence on the free parameters. On the other hand, it can be
difficult to ensure unimodality of the curvature profile using a local measure,
such as the mid–point curvature κm, and focusing on the suppression of κm

often incurs unacceptably large values of the deviation δm.
To ensure scale invariance of the corner curves, a dimensionless objective

function must be employed in the optimization. However, the product κmδm
is unsatisfactory, since κm has a stronger dependence on the free parameters
than δm, and this typically yields solutions with singular parameterizations at
the end points. To preclude this problem, an objective function was specified
as a weighted combination of κm and δm, normalized by their mean values,
together with a normalized term measuring the mean square variation of the
parametric speed. The latter term admits closed–form evaluation, and yields
solutions that approximate a (scaled) arc–length parameterization.

Experiments based on the objective function (11) and various weights a, b
indicate that the best corner shapes are obtained when the parametric speed
variation term (10) is dominant. Although this term is not an intrinsic shape
measure, it is strongly correlated with the curvature, as seen from the inverse–
cubic dependence of κ(ξ) on σ(ξ) in (3). A constrained optimization problem
was also addressed, in which the expression (10) was minimized subject to a
specified value of the deviation δm. Finally, the use of PH curves as corner
blends was discussed. These curves have no free parameters, and for higher
orders of geometric continuity they are found to yield smaller deviations δm
and higher curvatures κm than optimized “ordinary” polynomial curves.

The optimization of corner blending curves, so as to exhibit the desirable
attributes (1)–(3) defined in the Introduction, is a more subtle problem than
might appear at first sight. The proposed objective function (11) is scalable,
computationally tractable, and is observed empirically to yield corner curves
of excellent shape and near–uniform parametric speed when the term (10) is
dominant. The present study does not claim to be exhaustive, and a number
of salient points deserve further investigation, including: (i) the identification
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of a priori constraints on the free parameters that ensure unimodality of the
curvature; (ii) the formulation of alternative objective functions that achieve
the desired corner curve attributes; and (iii) investigation of the relationship
between the order Gk of geometric continuity and the extremum curvature.
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