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Identifying Pythagorean–hodograph curves
closest to prescribed planar Bézier curves

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

Abstract

The problem of identifying the planar Pythagorean–hodograph curve
that is “closest” to a given Bézier curve, and has the same end points
(or end points and tangents), is considered. The “closeness” measure
employed in this context is the root–mean–square magnitude of the
differences between pairs of corresponding control points for the two
curves. The methodology is developed in the context of quintic PH
curves, although it readily generalizes to PH curves of higher degree.
Using the complex representation for planar curves, it is shown that
this problem can be reduced to the minimization of a quartic penalty
function in certain real variables, subject to two quadratic constraints,
which can be efficiently solved by the Lagrange multiplier method. By
expressing the penalty function and constraints in terms of variables
that identify a complex pre–image polynomial, the closest solution is
guaranteed to be a PH curve. Several computed examples are used to
illustrate implementation of the optimization methodology and typical
approximation results that can be obtained.

Keywords: Pythagorean–hodograph curves; complex polynomials;
curve approximation; constrained optimization; Lagrange multipliers.

e–mail: farouki@ucdavis.edu



1 Introduction

The Pythagorean–hodograph (PH) curves are a family of parametric curves
incorporating special algebraic structures that offer significant computational
advantages over “ordinary” polynomial/rational parametric curves — these
include exact measurement of arc length, rational offsets (for planar curves),
and rational rotation–minimizing or minimal–twist frames (for spatial curves),
among many others. For a more comprehensive treatment of the construction
and properties of PH curves, the reader may consult [5, 9, 19].

Although PH curves are compatible with the standard Bézier/B–spline
representations of modern CAD systems, they cannot be directly constructed
and manipulated by the standard control–polygon methodology associated
with those representations. Consequently, the primary means of constructing
them has been by Hermite or spline interpolation of discrete data [2, 6, 7, 10,
11, 12, 15, 16, 21, 25]. An important result concerning the shape flexibility
of PH curves is a Weierstrass–type approximation theorem [3], which shows
that any given planar or spatial C1 curve can be approximated to a prescribed
accuracy by PH curves of a sufficiently high degree.

There have been several prior approaches to defining PH curves by control
polygons. In [23] the C2 planar PH quintic spline associated with a given knot
sequence, end conditions, and control points, was identified as the “good” C2

PH spline interpolant to the nodal points of the ordinary C2 cubic B–spline
specified by the same data. Subsequently, the problem of locally modifying
C2 planar PH quintic spline curves — while preserving their PH nature — was
addressed in [8]. The concept of specifying PH curves through “rectifying”
control polygons has been introduced and further developed in [17, 18, 22].
These are characterized by a number of control points that reflects the shape
freedoms of PH curves of any given degree, and control polygon lengths that
coincide with the total arc lengths of those PH curves.

The present study develops a novel approach to constructing planar PH
curves based on identifying, for a given planar Bézier curve, the “closest” PH
curve of related degree. The measure of closeness employed in this context is
based on the sum of squared distances between corresponding control points
of the two curves. Determination of the closest PH curve amounts to solving
a non–linear constrained optimization problem, which is efficiently achieved
through Newton–Raphson iterations in the context of the Lagrange multiplier
method. This “closest PH curve” paradigm may be preferable to constructing
PH curves by interpolation of discrete data when it is desired to replace an

1



existing set of polynomial curve segments by PH curve segments.
The methodology presented herein is closely related to a scheme presented

in [1], which employs a constrained optimization approach to determine the
PH B–spline curve whose control points are as close as possible to those of
a prescribed “ordinary” B–spline curve. The focus herein is on the closeness
of individual PH and Bézier curve segments, and the optimization variables,
objective functions, and constraint equations are explicitly derived for low–
degree cases of practical interest, to facilitate first–principles implementation.
The computed examples provide an indication of the efficiency and accuracy
attainable for individual curve PH and Bézier curve segments.

The plan for the remainder of this paper is as follows. Section 2 briefly
reviews the complex–variable model for planar PH curves, and some of their
advantageous computational properties. The identification of the PH curve
closest to a given planar polynomial curve is then formulated as a constrained
optimization problem in Section 3, with a particular focus on the quintic PH
curves. Section 4 then illustrates an implementation of the method through
some representative computed examples. Finally, some possible extensions
and generalizations of the methodology are briefly outlined in Section 5, and
Section 6 recapitulates the main contributions of this study.

2 Planar Pythagorean–hodograph curves

A planar polynomial PH curve r(t) = (x(t), y(t)) is characterized by the fact
that its derivative r′(t) = (x′(t), y′(t)) has components satisfying [14] the
Pythagorean condition

x′2(t) + y′2(t) = σ2(t) (1)

for some polynomial σ(t), which defines the parametric speed of r(t), i.e., the
derivative ds/dt of arc length s with respect to the curve parameter t. The
fact that σ(t) is a polynomial (rather than the square root of a polynomial)
endows PH curves with several attractive computational properties.

For a primitive curve r(t) with gcd(x′(t), y′(t)) = constant, a sufficient
and necessary condition for satisfaction of (1) is that x′(t) and y′(t) must be
expressible [20] in terms of two polynomials u(t), v(t) with gcd(u(t), v(t)) =
constant as

x′(t) = u2(t)− v2(t) , y′(t) = 2u(t)v(t) .
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This structure is embodied in the complex representation [4], wherein a PH
curve of degree n = 2m+1 is generated from a degree–m complex polynomial

w(t) = u(t) + i v(t) =
m∑

k=0

wk

(
m

k

)
(1− t)m−ktk (2)

with Bernstein coefficients wk = uk + i vk by integration of the expression

r′(t) = w2(t) . (3)

Because the parametric speed σ(t) = |w(t)|2 is a polynomial, the cumulative
arc length function

s(t) =

∫ t

0

σ(ξ) dξ

is also a polynomial in t. Moreover, the unit tangent, normal, and curvature
of r(t) are rational functions of t, specified [4] by

t(t) =
w2(t)

σ(t)
, n(t) = t(t)× z , κ(t) = 2

Im(w(t)w′(t))

σ2(t)
, (4)

where z is a unit vector orthogonal to the plane, are all rational functions of
t. Consequently, the offset curves

rd(t) = r(t) + dn(t)

at each distance d can be exactly represented as rational curves.
We focus here on quintic PH curves, since they are known [5] to possess

sufficient shape freedoms for free–from design applications. The methodology
can be readily extended to other contexts, although it is more cumbersome
for PH curves of higher degree. A quintic PH curve r(t) may be generated
by substituting a quadratic complex polynomial

w(t) = w0(1− t)2 + w12(1− t)t+ w2t
2 (5)

into (3) and integrating. The control points of the Bézier representation

r(t) =
5∑

k=0

pk

(
5

k

)
(1− t)5−ktk
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are then determined from the coefficients w0,w1,w2 as

p1 = p0 +
1

5
w2

0 ,

p2 = p1 +
1

5
w0w1 ,

p3 = p2 +
1

5

2 w2
1 + w0w2

3
,

p4 = p3 +
1

5
w1w2 ,

p5 = p4 +
1

5
w2

2 , (6)

with p0 being freely chosen. The end–point derivatives of r(t) are r′(0) = w2
0

and r′(1) = w2
2, and the end–point curvatures are κ(0) = 4 Im(w0w1)/|w0|4

and κ(1) = 4 Im(w1w2)/|w2|4.

3 Constrained optimization problem

Based on a suitable measure of “closeness,” the task of identifying the planar
PH curve r(t) closest to a prescribed Bézier curve q(t) can be formulated as
a constrained polynomial optimization problem. The objective function and
constraints may be expressed in terms of the coefficients of the pre–image
polynomial (2) of r(t) and constants determined by the control points of q(t).

It is advantageous to use the complex representation [4] of planar Bézier
curves and planar PH curves, wherein control points are regarded as complex
values. Since ordinary Bézier cubics and planar PH quintics are both defined
by four complex values — the four control points of the former, and the initial
control point and three coefficients of the pre–image polynomial (5) for the
latter — they have similar shape freedom, and it is natural to commence by
identifying the planar PH quintic closest to a given planar Bézier cubic.

For brevity, we consider curves in canonical form, whose initial and final
points coincide with the values 0 and 1 on the real axis. A plane curve can be
mapped to canonical form by a translation/rotation/scaling transformation,
and can be mapped back to its original position, orientation, and scale by
the inverse of that transformation. A canonical–form PH quintic r(t) must
satisfy the condition∫ 1

0

r′(t) dt =

∫ 1

0

w2(t) dt = r(1)− r(0) = 1 .
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Substituting (5) and evaluating the integral yields a quadratic constraint on
the complex coefficients w0,w1,w2 of (5) — namely,

2 w2
1 + 3 (w0 + w2)w1 + 3 (w2

0 + w2
2) + w0w2 − 15 = 0 . (7)

In identifying the PH curve r(t) closest to a given ordinary planar Bézier
curve q(t), it is desirable to impose end conditions on r(t). At minimum, we
will require coincident end points — i.e., r(0) = q(0) and r(1) = q(1). In the
context of smoothly joined curve segments, coincidence of the end tangents
may also be required. Both theses cases are treated below. However, as more
end constraints are imposed, the number of free parameters available in the
optimization problem diminishes, and consequently the closeness of the PH
curve to the given Bézier curve will generally be reduced.

3.1 G0 PH quintic closest to an ordinary cubic

Consider a planar cubic Bézier curve given in canonical form,

q(t) =
3∑

k=0

ck

(
3

k

)
(1− t)3−ktk , (8)

whose control points satisfy c0 = 0 and c3 = 1. The first step is to elevate
the degree of q(t) from 3 to 5, which results in the representation

q(t) =
5∑

k=0

qk

(
5

k

)
(1− t)5−ktk , (9)

with control points qk = xk + i yk given by

q0 = c0 , q1 =
2 c0 + 3 c1

5
, q2 =

c0 + 6 c1 + 3 c2

10
,

q3 =
3 c1 + 6 c2 + c3

10
, q4 =

3 c2 + 2 c3

5
, q5 = c3 .

We want to identify the quintic PH curve r(t) with control points p0, . . . ,p5

“closest” to q(t) that has the same end points. The control points of r(t) are
expressed in terms of perturbations

pk = qk + δqk , k = 0, . . . , 5 , (10)
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to the control points of q(t), such that p0, . . . ,p5 satisfy the relations (6) for
some complex values w0,w1,w2. Choosing δq0 = δq5 = 0 guarantees that
the end points of r(t) are coincident with those of q(t).

With δq0 = δq5 = 0, we define the measure of “closeness” of r(t) to q(t)
by the quantity

∆ = |δq1|2 + |δq2|2 + |δq3|2 + |δq4|2 , (11)

and observe that ∆ = 0 if and only if q(t) is itself a quintic PH curve. From
(6) and (10) with δq0 = δq5 = 0 so that q0 = p0 = 0 and q5 = p5 = 1, the
perturbations δq1, δq2, δq3, δq4 must be expressible in terms of the known
control points of q(t) and three complex values w0,w1,w2 in the form

δq1 =
1

5
w2

0 − q1 ,

δq2 =
1

5
w0(w0 + w1)− q2 ,

δq3 = 1− 1

5
(w1 + w2)w2 − q3 ,

δq4 = 1− 1

5
w2

2 − q4 . (12)

Thus, the quintic PH curve closest to a given “ordinary” cubic Bézier curve
q(t), with the same end points, is identified by substituting (12) into (11)
and minimizing ∆ with respect to w0,w1,w2 subject to the constraint (7).
Substituting (12) into (11), simplifying, omitting terms that do not depend
on w0,w1,w2, using the relation |a−b|2 = |a|2 + |b|2−2 Re(a b̄) for complex
values a and b, and scaling, we obtain the reduced form

∆ = |w0|4 + |w0|2 |w0 + w1|2 + |w1 + w2|2 |w2|2 + |w2|4

− 10 Re(w2
0q̄1 + w0(w0 + w1)q̄2 + (w1 + w2)w2(1− q̄3) + w2

2(1− q̄4))

of (11), where q̄1, q̄2, q̄3, q̄4 are the complex conjugates of q1,q2,q3,q4.
Writing wk = uk + i vk for k = 0, 1, 2 the reduced objective function ∆

depends on the six real variables1 u0, v0, u1, v1, u2, v2 that are subject to two
constraints — the real and imaginary parts of (7). Employing the Lagrange

1Since the modulus |z| of a complex number is not an analytic function of z, the problem
must be expressed in terms of real variables and equations to utilize optimization methods
that employ derivatives.
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multiplier method [26] for constrained optimization problems then yields a
system of 8 real equations in 8 real unknowns — u0, v0, u1, v1, u2, v2 and the
multipliers associated with the real and imaginary parts of (7).

The real and imaginary parts of the contraint equation (7) can be written
as g(u0, v0, u1, v1, u2, v2) = 0 and h(u0, v0, u1, v1, u2, v2) = 0, where

g := 2 (u2
1 − v2

1) + 3 (u0u1 − v0v1) + 3 (u1u2 − v1v2)

+ 3 (u2
0 − v2

0) + 3 (u2
2 − v2

2) + u0u2 − v0v2 − 15 , (13)

h := 4u1v1 + 3 (u0v1 + u1v0) + 3 (u1v2 + u2v1)

+ 6u0v0 + 6u2v2 + u0v2 + u2v0 , (14)

and the objective function is

∆ = (u2
0 + v2

0) [ 2 (u2
0 + v2

0) + u2
1 + v2

1 + 2 (u0u1 + v0v1) ]

+ (u2
2 + v2

2) [ 2 (u2
2 + v2

2) + u2
1 + v2

1 + 2 (u1u2 + v1v2) ]

− 10 [ (u2
0 − v2

0)(x1 + x2) + 2u0v0(y1 + y2) ]

− 10 [ (u0u1 − v0v1)x2 + (u0v1 + u1v0) y2 ]

− 10 [ (u2
2 − v2

2)(2− x3 − x4)− 2u2v2(y3 + y4) ]

− 10 [ (u1u2 − v1v2)(1− x3)− (u1v2 + u2v1) y3 ] . (15)

The goal is to minimize the function (15) of the variables u0, v0, u1, v1, u2, v2

subject to the constraints (13) and (14). By the Lagrange multiplier method,
this can be achieved by solving the system of eight polynomial equations

f1 :=
∂∆

∂u0

+ α
∂g

∂u0

+ β
∂h

∂u0

= 0 , f2 :=
∂∆

∂v0

+ α
∂g

∂v0

+ β
∂h

∂v0

= 0 ,

f3 :=
∂∆

∂u1

+ α
∂g

∂u1

+ β
∂h

∂u1

= 0 , f4 :=
∂∆

∂v1

+ α
∂g

∂v1

+ β
∂h

∂v1

= 0 ,

f5 :=
∂∆

∂u2

+ α
∂g

∂u2

+ β
∂h

∂u2

= 0 , f6 :=
∂∆

∂v2

+ α
∂g

∂v2

+ β
∂h

∂v2

= 0 ,

f7 := g = 0 , f8 := h = 0 .

in the real unknowns u0, v0, u1, v1, u2, v2, α, β (with α, β being the Lagrange
multipliers). Athough the actual values of α, β are of no interest, eliminating
them from the system of equations makes it much more complicated.

The Newton–Raphson iteration offers an accurate and efficient approach
to solving this system of equations. If x = (u0, v0, u1, v1, u2, v2, α, β)T is the
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vector of unknowns, M is the corresponding (symmetric) 8 × 8 Jacobian
matrix with elements

Mij =
∂fi

∂xj

, 1 ≤ i, j ≤ 8 ,

and f = (f1, f2, f3, f4, f5, f6, f7, f8)
T denotes the vector of function values,

the iteration is defined by the relations

xk+1 = xk + δxk , Mk δxk = − fk , (16)

the subscripts on M and f indicating that they are to be evaluated at xk.
The initial vector x0 is defined by taking α = β = 1 and setting

w0 = u0 + i v0 =
√
d0 exp(i1

2
θ0) , w2 = u2 + i v2 =

√
d1 exp(i1

2
θ1) ,

where d0 = |d0|, d1 = |d1| and θ0 = arg(d0), θ1 = arg(d1) are the magnitudes
and arguments of the end derivatives d0 = q′(0) = 5(q1 − q0) and d1 =
q′(1) = 5(q5 − q4) of q(t), and with these values we take w1 = u1 + i v1 to
be the complex root of (7) that yields the smaller value of ∆.

3.2 G1 PH quintic closest to an ordinary cubic

It may be desirable to guarantee that the PH curve r(t) matches not only the
end points, but also the end tangents, of the prescribed Bézier curve q(t).
With d0, d1 and θ0, θ1 as defined above in terms of the end derivatives d0,d1

of q(t) — where d0, d1 > 0 and −π < θ0, θ1 ≤ π — we can achieve this by
setting r′(0) = w2

0 = λ2
0 d0 and r′(1) = w2

1 = λ2
1 d1, and hence

w0 = λ0

√
d0 exp(i 1

2
θ0) , w2 = λ1

√
d1 exp(i 1

2
θ1) . (17)

The complex variables w0,w2 are thus replaced by the real variables λ0, λ1.
With w0,w2 given by (17), the objective function ∆ depends on four real

variables (λ0, λ1 and the real and imaginary parts of w1), subject to two
constraints — the real and imaginary parts of (7). The Lagrange multiplier
method yields a system of 6 equations in 6 real unknowns: u1, v1, λ0, λ1 and
the multipliers α, β associated with the real and imaginary parts of (7).

Substituting from (17), setting w1 = u1 + i v1 and

(c0, s0) := (cos 1
2
θ0, sin

1
2
θ0) , (c1, s1) := (cos 1

2
θ1, sin

1
2
θ1) ,
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the real and imaginary parts of the constraint equation (7) can be written
as g(u1, v1, λ0, λ1) = 0 and h(u1, v1, λ0, λ1) = 0, with

g := 2 (u2
1 − v2

1) + 3
√
d0λ0(c0u1 − s0v1) + 3

√
d1λ1(c1u1 − s1v1)

+ 3 d0(c
2
0 − s2

0)λ
2
0 + 3 d1(c

2
1 − s2

1)λ
2
1 +

√
d0d1(c0c1 − s0s1)λ0λ1 − 15 ,

h := 4u1v1 + 3
√
d0λ0(c0v1 + s0u1) + 3

√
d1λ1(c1v1 + s1u1)

+ 6 d0c0s0λ
2
0 + 6 d1c1s1λ

2
1 +

√
d0d1(c0s1 + c1s0)λ0λ1 .

Similarly, the reduced objective function ∆(u1, v1, λ0, λ1) can be expressed
as

∆ = 2 d2
0 λ

4
0 + 2 d

3/2
0 λ3

0 (c0u1 + s0v1) + d0 λ
2
0 (u2

1 + v2
1)

+ 2 d2
1 λ

4
1 + 2 d

3/2
1 λ3

1 (c1u1 + s1v1) + d1 λ
2
1 (u2

1 + v2
1)

− 10 [ a1λ
2
0 + a2λ

2
1 +

√
d0λ0(a3u1 − a4v1) +

√
d1λ1(a5u1 − a6v1) ] . (18)

with the constants

a1 = Re(d0(q̄1 + q̄2)) , a2 = Re(d1(2− q̄3 − q̄4)) , a3 = c0x2 + s0y2 ,

a4 = s0x2 − c0y2 , a5 = c1(1− x3)− s1y3 , a6 = s1(1− x3) + c1y3 ,

being determined by the control points qk = xk + i yk of q(t).
The Lagrange multiplier method then corresponds to solving the system

of six polynomial equations

f1 :=
∂∆

∂u1

+ α
∂g

∂u1

+ β
∂h

∂u1

= 0 , f2 :=
∂∆

∂v1

+ α
∂g

∂v1

+ β
∂h

∂v1

= 0 ,

f3 :=
∂∆

∂λ0

+ α
∂g

∂λ0

+ β
∂h

∂λ0

= 0 , f4 :=
∂∆

∂λ1

+ α
∂g

∂λ1

+ β
∂h

∂λ1

= 0 ,

f5 := g = 0 , f6 := h = 0 ,

in the six real unknowns u1, v1, λ0, λ1, α, β. As before, attempting to directly
eliminate the Lagrange multipliers α and β is not advantageous.

To solve the above system by Newton–Raphson iterations, we choose as
initial values λ0 = λ1 = 1, α = β = 1, together with the real and imaginary
parts of the complex root w1 = u1 + i v1 of (7) — with w0 and w2 defined by
(17) — that yields the smaller value of ∆. The resulting w0,w2 values define
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end derivatives identical to those of the curve being approximated, and the
w1 value ensures satisfaction of the end–point condition (7). To check if the
convergence efficiency and consistency depends on the choice (α, β) = (1, 1),
the Examples below were repeated with (α, β) = (0, 0) and (−1,−1). In all
of these cases, the same converged solution was obtained, with a number of
iterations differing by no more than one.

3.3 G0 & G1 PH quintic closest to an ordinary quintic

The approach described in Sections 3.1 and 3.2 for determining the quintic
PH curve closest to a given cubic Bézier curve, with G0 or G1 end conditions,
can also be applied to quintic Bézier curves by simply omitting the degree
elevation step that maps (8) into (9). A canonical–form quintic Bézier curve
is defined by the four interior control points q1,q2,q3,q4 while a canonical–
form quintic PH curve is effectively defined by just two complex variables —
the coefficients w0,w1,w2 in (5) subject to the complex constraint (7).

Since the quintic Bézier curve has twice as many free shape parameters
as the quintic PH curve, one cannot expect the closest instance of the latter
to always be an accurate approximation of the former. Nevertheless, as will
be seen in the following examples, an accurate approximation can be possible
when the quintic Bézier curve is of relatively simple shape.

4 Computed examples

The methodology described above was implemented using double–precision
arithmetic in a C language program. The complicated nature of the objective
functions and constraints that identify closest G0 and G1 quintic PH curves
precludes a rigorous analysis of the number and nature of the extrema that
the optimization problem admits. Consequently, this issue was investigated
empirically for several test cases by starting the Newton–Raphson iterations
from points on a rectangular array of values u0, v0, u1, v1, u2, v2, α, β (for G0)
and u1, v1, λ0, λ1, α, β (for G1), with each variable in the interval [−2, 2 ]. It
was found that, whenever the procedure converged in a reasonable number
of iterations, the resulting values correspond to a unique solution.

As evident from the examples below, the initial values of the optimization
variables proposed in Section 3 yield rapid convergence (with between 4 and 9
Newton–Raphson iterations) to the unique solution. To assess the agreement

10



of the closest PH quintic r(t) with a prescribed cubic or quintic Bézier curve
q(t), the following two root–mean–square measures are used:

e =

[
1

6

5∑
k=0

|pk − qk|2
]1/2

and ε =

[ ∫ 1

0

|r(t)− q(t)|2 dt

]1/2

. (19)

We note that e = 0 when q(t) is itself a (possibly degree–elevated) PH curve.
However, the quantity ε depends on not only on the loci of q(t) and r(t), but
also on their parametrizations.

4.1 Quintic PH curve closest to a cubic Bézier curve

Example 1. Consider the canonical–form cubic Bézier curve defined by the
control points

c0 = 0.0 + 0.0 i , c1 = 0.3 + 0.5 i , c2 = 0.8 + 0.7 i , c3 = 1.0 + 0.0 i .

The G0 PH quintic converges in 5 Newton–Raphson iterations with a value
∆ = 1.0× 10−14 of (15), and the converged values are

(u0, v0) = (1.197306, 0.675613) ,

(u1, v1) = (0.974560, 0.228594) ,

(u2, v2) = (1.134403,−0.922940) ,

with (α, β) = (0.023645,−0.054670) and values e = 0.023527, ε = 0.007428
for the quantities (19). The G1 PH quintic converges in 4 Newton–Raphson
iterations with a value ∆ = 9.0× 10−15 of (18), and the converged values are

(u1, v1) = (0.907606, 0.182606) ,

(λ0, λ1) = (1.056574, 0.991821) ,

with (α, β) = (0.027887,−0.077594) and values e = 0.028602, ε = 0.012908
for the quantities (19). The end point condition (7) is satisfied to an accuracy
of 10−15 for both the G0 quintic and the G1 PH quintic.

Figure 1 compares the G0 and G1 PH quintics closest to the cubic Bézier
curve. Although both are seen to closely approximate the given cubic curve,
the G0 case conforms somewhat more closely to it than the G1 case, since it
incorporates more free optimization parameters.
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Figure 1: G0 (left) and G1 (right) quintic PH curves (blue with solid control
polygons) closest to a given “ordinary” cubic Bézier curve (red with dashed
control polygon) for the curve data in Example 1.

Figure 2 shows the C1 PH quintic Hermite interpolant to the end points
and end derivatives of the ordinary cubic Bézier curve. It is evident that the
closest G0 and G1 quintic PH curves are better approximants to the cubic —
for the PH quintic Hermite interpolant, the quantities (19) have the values
e = 0.038276 and ε = 0.026267.

Figure 2: The PH quintic Hermite interpolant (blue & solid control polygon)
to the end points and end derivatives of the “ordinary” cubic Bézier curve
(red & dashed control polygon) in Example 1 — compare with Figure 1.

Example 2. Consider the canonical–form inflectional cubic Bézier curve
specified by the control points

c0 = 0.0 + 0.0 i , c1 = 0.4 + 0.5 i , c2 = 0.7− 0.4 i , c3 = 1.0 + 0.0 i .
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The G0 PH quintic converges in 7 Newton–Raphson iterations with a value
∆ = 1.2× 10−14 of (15), and the converged values are

(u0, v0) = (1.133397, 0.575159) ,

(u1, v1) = (0.969059,−1.043523) ,

(u2, v2) = (0.975987, 0.455088) ,

with (α, β) = (−0.104502, 0.164942) and values e = 0.062425, ε = 0.019455
for the quantities (19). The G1 PH quintic converges in 5 Newton–Raphson
iterations with a value ∆ = 3.0× 10−15 of (18), and the converged values are

(u1, v1) = (0.969380,−1.042813) ,

(λ0, λ1) = (0.915851, 0.878917) ,

with (α, β) = (−0.104838, 0.168749) and values e = 0.063724, ε = 0.021806
for the quantities (19). The end point condition (7) is satisfied to an accuracy
of 10−15 for both the G0 quintic and the G1 PH quintic.

Figure 3: G0 (left) and G1 (right) quintic PH curves (blue with solid control
polygons) closest to a given “ordinary” cubic Bézier curve (red with dashed
control polygon) for the curve data in Example 2.

Figure 3 compares the G0 and G1 PH quintics closest to the cubic Bézier
curve. In this case the PH quintics are not as close as in Example 1, because
of the stronger curvature variation of the cubic curve (the G0 case conforms
more closely to the cubic than the G1 case). Figure 4 shows the PH quintic
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Hermite interpolant to the end points and end derivatives of the cubic Bézier
curve. This has values e = 0.078544 and ε = 0.019839, similar to the closest
G0 and G1 PH quintics, but it is quite “flat” over much of its extent.

Figure 4: The PH quintic interpolant (blue with solid control polygon) to
the end points and end derivatives of the “ordinary” cubic Bézier curve (red
with dashed control polygon) in Example 1 — compare with Figure 3.

Examples 1 and 2 highlight two noteworthy points: (1) quintic PH curves
exhibit more moderate curvature variations than “ordinary” cubic curves [5];
and (2) consequently, the closest PH quintics offer better approximants to
convex cubic segments than to inflectional segments.

4.2 Quintic PH curve closest to a quintic Bézier curve

The following examples illustrate application of the method to quintic Bézier
curves. As noted in Section 3.3, quintic PH curves have only half the number
of shape freedoms of ordinary quintic Bézier curves, so one cannot expect the
closest PH quintic to conform as closely as in the case of cubic Bézier curves.

Example 3. Consider the canonical–form quintic Bézier curve specified by
the control points

q0 = 0.0 + 0.0 i , q1 = 0.2 + 0.5 i , q2 = 0.4 + 0.7 i ,

q3 = 0.6 + 0.7 i , q4 = 0.8 + 0.5 i , q5 = 1.0 + 0.0 i .
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The G0 quintic PH curve converges in 6 Newton–Raphson iterations with
a value ∆ = 1.6 × 10−14, with the end point condition (7) satisfied to an
accuracy of 10−15. The converged values of the solution variables are

(u0, v0) = (1.362842, 0.973626) ,

(u1, v1) = (0.703134, 0.000000) ,

(u2, v2) = (1.362842,−0.973626) ,

with (α, β) = (0.122923, 0.000000) and values e = 0.031728, ε = 0.010500 for
the quantities (19). The symmetry of the solution values, and the fact that
v1 = Im(w1) = 0, reflect the symmetry of the input curve.

The G1 PH quintic converges in just 4 Newton–Raphson iterations with
∆ = 2.6 × 10−14, the end point condition (7) being satisfied to an accuracy
of 10−15. The converged values of the solution variables are

(u1, v1) = (0.596699, 0.000000) ,

(λ0, λ1) = (1.032426, 1.032426)

with (α, β) = (0.144813, 0.000000) and the values of the quantities (19) are
e = 0.038816 and ε = 0.012998.

Figure 5: G0 (left) and G1 (right) quintic PH curves (blue with solid control
polygons) closest to a given “ordinary” quintic Bézier curve (red with dashed
control polygon) for the curve data in Example 3.

Figure 5 illustrates the G0 and G1 quintic PH curves closest to the given
“ordinary” quintic Bézier curve. As with the cubic Bézier curves, the closest
quintic PH curves are much better approximants than the PH quintic Hermite
interpolant matching the end points and end derivatives of the Bézier curve.

15



Example 4. As previously noted, quintic Bézier curves have twice as many
free shape parameters as quintic PH curves, so the quintic PH curve closest
to a given quintic Bézier curve may not always be a reasonable approximation
of it. In the preceding example, a good approximation was possible because
of the simple convex nature of the quintic Bézier curve. We now investigate
a more challenging case, defined by the control points

q0 = 0.0 + 0.0 i , q1 = 0.2 + 0.5 i , q2 = 0.4 + 0.7 i ,

q3 = 0.6− 0.7 i , q4 = 0.8− 0.5 i , q5 = 1.0 + 0.0 i .

As seen in Figure 6, this defines an inflectional curve with a strong curvature
variation. The closest G0 and G1 PH quintics converge in 9 and 5 iterations,
with ∆ = 4.3×10−14 and ∆ = 7.0×10−15. The corresponding quantities (19)
have the rather large values: e = 0.285506, ε = 0.120531 and e = 0.350921,
ε = 0.128283. Figure 6 illustrates the G0 and G1 quintic PH curves closest
to the given quintic Bézier curve. The limitations of approximating a Bézier
curve by a PH curve with fewer shape freedoms are clearly apparent.

Figure 6: G0 (left) and G1 (right) quintic PH curves (blue with solid control
polygons) closest to a given “ordinary” quintic Bézier curve (red with dashed
control polygon) for the curve data in Example 4.

One way to address this limitation in identifying the closest PH curve to
a prescribed Bézier of equal degree is to subdivide the latter into segments

16



with simpler curvature variation, and apply the method to the subsegments
individually. Figure 7 shows the result of this approach upon subdividing the
quintic Bézier curve at the inflection point, and a substantial improvement
over the results shown in Figure 6 is evident.

Figure 7: G0 (left) and G1 (right) quintic PH curves (blue with solid control
polygons) closest to an “ordinary” quintic Bézier curve (red, control polygon
not shown) for the data in Example 4 after subdivision at the inflection point.

However it is preferable to seek the closest PH curve whose degree admits
a number of shape freedoms not less than that of the prescribed Bézier curve.
For an odd degree n, a canonical–form Bézier curve is characterized by n− 1
complex values, while a PH curve is characterized by m = 1

2
(n− 1) complex

values — the pre–image polynomial w(t) possesses m+1 complex coefficients
w0, . . . ,wm subject to a generalization of the end–point constraint (7). This
yields a coincidence in the number of shape freedoms for Bézier cubics and
PH quintics, but for Bézier quintics we must proceed to degree 9 PH curves
in order to secure the same number of shape freedoms.

Example 5. As a final example, we modify a quintic PH curve by perturbing
a single control point so that the perturbed curve is no longer a PH curve,
as shown in Figure 8. We then determine the G0 quintic PH curve closest to
the modified curve. The Newton–Raphson scheme converges in 6 iterations,
with values e = 0.101439 and ε = 0.032522 for the quantities (19). A closer
approximation can be obtained by identifying the degree 7 PH curve closest
to the quintic Bézier curve obtained from the modified quintic PH curve.

It is noteworthy that, in all the above examples, the measures (19) satisfy
e > ε. This may be viewed as a consequence of the fact that the Bézier control
polygon “exaggerates” the shape of a curve. Consequently, the measure e of
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Figure 8: Left: a quintic PH curve (solid polygon) modified by displacement
of a single control point (dashed polygon). Right: the PH quintic (blue) that
is closest to the modified curve (red) — which is no longer a PH curve.

the discrepancy between the control points of two similar curves is generally
expected to exceed the integral measure ε of the deviation of corresponding
points (as defined by their parameterizations) on their loci.

5 Extensions and generalizations

The principles developed herein for identifying quintic PH curves closest to
given Bézier curves can be readily generalized to higher–degree PH curves.
The basic approach remains the same, although the objective functions and
constraints, being dependent on more free parameters, become more involved.
We now briefly outline some other possible extensions of the methodology
(for brevity, the discussion is couched in the context of quintic PH curves).

5.1 Arc length constraints

For a planar quintic PH curve to have a specified arc length L, the coefficients
of the quadratic complex polynomial (5) must [6] satisfy the condition

2 |w1|2 + 3 Re((w0 + w2)w1) + 3 |w0|2 + 3 |w2|2 + Re(w0w2) = 15L ,

which may be expressed (in the G1 case) in terms of u1, v1, λ0, λ1 through
the relations w1 = u1 + i v1 and (17). To force the quintic PH curve to have
the same arc length L as a given ordinary cubic curve,2 this condition must

2Note that L must be computed by numerical quadrature.
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be introduced as a constraint with an associated Lagrange multiplier γ. The
optimization problem then incurs a system of 7 equations in 7 real unknowns.

5.2 Imposing G2 end conditions

The end–point curvatures of a quintic PH curve are

κ0 = 4
Im(w0w1)

|w0|4
= 4λ0

√
d0 (c0v1 − s0u1) ,

κ1 = 4
Im(w1w2)

|w2|4
= 4λ1

√
d1 (s1u1 − c1v1) .

These equations may be regarded as specifying λ0, λ1 in terms of the known
quantities d0, c0, s0, κ0 and d1, c1, s1, κ1, leaving only u1, v1 as free variables.
Since the end–point condition for a canonical–form PH quintic (amounting
to two scalar constraints) must still be satisfied, there are no remaining free
parameters. It is therefore necessary to employ higher–order PH curves when
G2 end conditions are imposed. The G2 interpolation problem using degree
7 PH curves, including an arc length constraint, is discussed in [13].

5.3 Extension to spatial PH curves

A spatial PH quintic curve r(t) may be generated from a quadratic quaternion
polynomial

A(t) = A0(1− t)2 +A12(1− t)t+A2t
2 (20)

by integrating r′(t) = A(t) iA∗(t), where A∗(t) is the conjugate of A(t). The
control points of r(t) are then specified by

p1 = p0 +
1

5
A0 iA∗0 ,

p2 = p1 +
1

10
(A0 iA∗1 +A1 iA∗0) ,

p3 = p2 +
1

30
(A0 iA∗2 + 4A1 iA∗1 +A2 iA∗0) ,

p4 = p3 +
1

10
(A1 iA∗2 +A2 iA∗1) ,

p5 = p4 +
1

5
A2 iA∗2 . (21)
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For a canonical–form curve with r(0) = (0, 0, 0) and r(1) = (1, 0, 0) we choose
p0 = 0, and setting r(1) = p5 = i imposes the (vector) quadratic condition

6A0 iA∗0 + 3 (A0 iA∗1 +A1 iA∗0)
+ A0 iA∗2 + 4A1 iA∗1 +A2 iA∗0
+ 3 (A1 iA∗2 +A2 iA∗2) + 6A2 iA∗2 = 30 i (22)

on the coefficients of A(t). For a given canonical–form ordinary quintic space
curve q(t) with control points q0, . . . ,q5 we want to identify the coefficients
A0,A1,A2 that minimize the quantity

∆ =
5∑

k=0

|pk − qk|2 .

while satisfying (22). The coefficients of (20) incorporate 12 scalar variables,
and 3 Lagrange multipliers must be associated with the (x, y, z) components
of the vector constraint (22). Hence, for the G0 case, the minimization of ∆
incurs a system of 15 equations in 15 unknowns. However, in the G1 case,
A0 and A2 will each depend on only two scalar variables.

5.4 Extension to PH spline curves

The construction of a planar C2 PH quintic spline curves that interpolate a
given sequence of points was described in [2], and the determination of its
B–spline control polygon was formulated in [8]. As observed in [1], PH spline
curves can be defined directly in terms of the B–spline form, and the problem
of finding the PH spline that most closely approximates a given “ordinary”
spline curve can be formulated in terms of minimizing the sum of the squared
differences of their control points. This incurs objective functions dependent
on many variables, and may be computationally expensive. An alternative is
to extract the individual B–spline curve segments as Bézier curves and apply
the approach described herein, with G1 (or possibly G2) end conditions.

6 Closure

By expressing the sum of squared differences between the control points of a
given planar Bézier and those of a planar PH curve in terms of the coefficients
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of the complex PH curve pre–image polynomial, the task of identifying the
PH curve “closest” to the Bézier curve can be formulated as a constrained
polynomial optimization problem. Invoking the Lagrange multiplier method,
this problem can be efficiently solved to machine precision by a few Newton–
Raphson iterations. This offers a novel route to importing PH curves to CAD
systems, as an alternative to the Hermite and spline interpolation schemes
that are commonly employed to construct PH curves.

The “closest” PH curves are constructed so as to possess the same end
points (or end points and end tangents) as the given Bézier curve. Although
the focus herein was on quintic PH curves, the methodology can be readily
adapted to higher degree PH curves. Quintic PH curves are found to closely
approximate cubic Bézier curves, with which they possess the same number
of shape freedoms. Examples of the approximation of quintic Bézier curves
by quintic PH curves (with fewer shape freedoms) were also presented. Close
approximations can be achieved for curves without severe curvature variation
— otherwise, subdivision methods can be used to improve the accuracy.

A number of extensions and generalizations of the methodology were also
briefly discussed, including imposition of arc length constraints or G2 end
conditions; adaptation to spatial PH curves based on the quaternion form;
and the extension to PH spline curves. Another possibility is the application
to PH curves constructed in more general function spaces [24].
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