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Graphical Abstract

Finite Element Implicit 3D Subsurface Structural Modeling⋆

Modeste Irakarama, Morgan Thierry-Coudon, Mustapha Zakari, Guillaume Caumon

The input data (initial CT data courtesy of IFPEN and C&C Reservoirs) is used to create a mesh that is discontinuous
across fault surfaces (1), the resulting mesh is then used for finite element implicit stratigraphic modeling (2), from
which a sealed subsurface structural model is extracted (3) as the final output.



Highlights

Finite Element Implicit 3D Subsurface Structural Modeling

Modeste Irakarama, Morgan Thierry-Coudon, Mustapha Zakari, Guillaume Caumon

� A finite element discretization of the Laplacian with-
out imposing any boundary condition

� A finite element discretization of the Hessian without
imposing any boundary condition

� Building 3D subsurface numerical models using finite
elements

� The Laplacian may not be as adequate for interpo-
lation on tetrahedra as it is on triangles
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Abstract

We introduce a method for 3D implicit geological structural modeling from sparse sample points, where several con-
formable geological surfaces are represented by one single scalar field. Laplacian and Hessian regularization energies are
discretized on a tetrahedral mesh using finite elements. This scheme is believed to offer some geometrical flexibility as
it is readily implemented on both structured and unstructured grids. While implicit modeling on unstructured grids is
not new, methods based on finite elements have received little attention. The finite element method is routinely used
to solve boundary value problems. However, because boundary conditions are typically unknown in implicit subsurface
structural modeling, the traditional finite element method requires some adjustments. To this end, we present boundary
free discretizations of the Laplacian and Hessian energies that do not assume vanishing Neumann boundary conditions,
thereby eliminating the boundary artifacts usually associated with that assumption. Furthermore, we argue that while
an appropriate discretization of the Laplacian can be used to minimize the curvature of a function on triangulated
meshes, it may fail to do so on tetrahedral meshes.

Keywords: Subsurface modeling, implicit modeling, data interpolation, finite elements, Laplacian energy, Hessian
energy

Introduction

The 3D numerical representation of subsurface geological
structures is typically performed from borehole data and
seismic image interpretation points sampling the interfaces
between different rock materials. Geological structural
modeling refers to the creation of surfaces and layers from
these sparse sample points, for instance horizons (which
have a constant geological age) and faults (finite surfaces
which shift rock units tangentially in response to tectonic
forces)[see 1, for a recent review]. In this paper, we con-
sider the implicit geological structural modeling problem
[2, 3, 4, 5, 6, 7, 8, 9, 10]. A typical workflow is illus-
trated in Figure 1, where the input data comes from the
analogue model examined by [11, 12]. This problem is sim-
ilar to implicit surface reconstruction techniques [13], but
it very often represents several non-intersecting horizons
with one single scalar field, and it additionally needs to
consider multiple discontinuities (faults) within the model-
ing domain. Implicit structural modeling has traditionally
been separated into two main classes [7, 1]: (1) mesh-free
methods [2, 3, 14, 6, 15, 16, 17, 18] , and (2) mesh-based
methods [4, 19, 5, 7, 8, 20, 21, 22]. We also acknowledge an
increasing interest in methods based on machine learning
[23]. The method presented here is a mesh-based method,
which starts by generating a mesh conforming to discon-
tinuities such as faults [see 24, 25, 26, 27, 28, for suitable
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mesh generation techniques]. The principle of mesh-based
methods is to use available data to define structural con-
straints that are discretized on a discrete computational
domain, and then assemble those constraints into a sys-
tem of linear equations, which is supplemented with an
additional linear system of smoothing regularization con-
straints [29, 30, 31]. In particular, the problem can be
stated as that of finding a scalar function ϕ(x) that satis-
fies, in a least-squares sense, a system of linear equations
of the form [ ¯̄D

¯̄R

] [
Φ̄
]
=

[
f̄
0̄

]
, (1)

where the data system

¯̄DΦ̄ = f̄ (2)

is assembled from geological interpretation data collected
from the field and/or from seismic images. Geological data
are often sparse; as a result, the data system is usually un-
determined and has to be regularized by the regularization
system

¯̄RΦ̄ = 0̄. (3)

We only focus on the regularization system in this paper.

We examine two regularization operators based on a bound-
ary free finite element discretization of the Laplacian: the
first one will discretize the Laplacian

R1ϕ(x) = ∂2xϕ(x) + ∂2yϕ(x) + ∂2zϕ(x), (4)
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Figure 1: Implicit subsurface structural modeling. (a) The input data (point sets from 8 horizons and 27 fault surfaces, initial CT data
courtesy of IFPEN and C&C Reservoirs) is used to create a mesh that is discontinuous across fault surfaces (1), the resulting mesh is then
used for finite element implicit stratigraphic modeling (2), from which a sealed structural model is extracted (3) as the final output (b: layers
view, c: surfaces view).
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and the second one will discretize each component of the
Laplacian independently

R3ϕ(x) =


∂2xϕ(x)

∂2yϕ(x)

∂2zϕ(x)

. (5)

We also examine a Hessian based regularization operator,
in which we discretize each component of the Hessian ma-
trix independently

R6ϕ(x) =



∂2xϕ(x)

∂2yϕ(x)

∂2zϕ(x)
√
2∂2xyϕ(x)

√
2∂2yzϕ(x)

√
2∂2zxϕ(x)

. (6)

The index i in the notation Ri indicates the number of
independent equations in the regularization operator at
each point. In all three cases, the challenge will be to pro-
pose a discretization that does not impose any boundary
constraints. These regularization operators are intended
to measure the curvature of the function ϕ(x). In our
application, the goal is to find a function ϕ(x) that inter-
polates data and yet has minimal curvature. Minimization
of curvature is achieved by imposing Equation 3 where the
matrix ¯̄R is assembled by discretizing one of the regular-
ization operators above. Following [20, 22], we consider
the function ϕ(x) to have zero curvature at the point x
if, by definition, the second directional derivative ∂2kϕ(x)
(and hence the curvature) along all directions dk vanishes
at that point. In particular, given the Hessian matrix

¯̄H =

∂x(∂xϕ) ∂x(∂yϕ) ∂x(∂zϕ)
∂y(∂xϕ) ∂y(∂yϕ) ∂y(∂zϕ)
∂z(∂xϕ) ∂z(∂yϕ) ∂z(∂zϕ)

 ,
the function ϕ(x) is defined to have zero curvature at x if

dTk
¯̄Hdk = 0, (7)

for all directional vectors dk at that point. Clearly a func-
tion satisfying

R6ϕ(x) = 0

has zero curvature as defined in Equation 7. On the other
hand, functions satisfying

R1ϕ(x) = 0 or R3ϕ(x) = 0

may not necessarily have zero curvature as those opera-
tors do not involve cross derivatives. Nevertheless, the
operators R1,R3 are still useful in practice. In fact, we
will later show that the discretization of R1 proposed here

on tetrahedral meshes is equivalent to the constant gradi-
ent regularization operator of Frank [5] that has been the
workhorse of mesh-based implicit structural modeling for
over a decade [7, 32, 33, 1].

As seen above, the Hessian minimization has an interesting
potential for minimizing the curvature in all directions. It
has recently been implemented on Cartesian grids in 3D
[22], where faults exhibit a stairstep effect. One of the
goals of this paper is to consider the use of tetrahedral
meshes, which can be generated conformably to faults and
other geological discontinuities. In Section 1 we briefly de-
scribe the problem with a straightforward boundary free
discretization of R1, which introduces artifacts because
it assumes vanishing Neumann boundary conditions. We
then propose a slight modification of the straightforward
discretization that does not impose any boundary con-
straints for R6; however, the modification introduces an
additional constraint on the mesh that has proven chal-
lenging to satisfy in practice for geological modeling be-
cause of discontinuities. In Section 2.1, we propose a dis-
cretization of R1 that does not impose any constraints on
the boundary and does not impose any additional con-
straints on the mesh; we propose an equivalent discretiza-
tion for R3 and R6 in Section 2.2. In section 3 we com-
pare our work to existing related literature; we equate R1

to the regularization operator of [5] and argue that while
minimizing this operator minimizes the curvature of the
implicit function on triangulated meshes, it may fail to do
so on tetrahedral meshes.

Our attention to details in boundary effects comes from
the way faults and other discontinuities are handled in
structural modeling. Consider the example in Figure 1,
the grid generated from the input data is conformal to
faults and vertices on faults are duplicated to introduce
discontinuities in the grid; as a result, each discontinuity
surface introduces an internal boundary [e.g. 34, 7, 9, 22].

The main contributions of this paper are:

1. We propose a finite element discretization of the Lapla-
cian that does not impose any boundary condition.
Related effort, such as [35, 36], that discretize the
Laplacian using finite elements with Neumann and/or
Dirichlet boundary conditions are inadequate for our
application, where boundary conditions are unknown.

2. We reveal that the celebrated constant-gradient reg-
ularization operator of [5] is a finite element of the
Laplacian in disguise; the constant-gradient operator
was originally derived from geometrical arguments
[see chapter 1 in 37].

3. We show that while appropriate discretizations of the
Laplacian, such as those in [38, 39], are sufficient to
minimize the curvature of a function on triangulated
meshes, they may not be sufficient on tetrahedral
meshes.
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4. We propose a finite element discretization of the Hes-
sian that does not impose any boundary condition.

1. Problem formulation

Figure 2: An illustrative example of boundary artifacts introduced
by inappropriate boundary conditions. a) Input data, point sets at
two isovalues. b-d) Implicit function, extracted surfaces, and iso-
lines obtained using R1 (based on Equation 17), assuming vanishing
Neumann boundary conditions. e-g) Implicit function, extracted
surfaces, and isolines obtained using R6 (based on Equation 23).

Let us consider a straightforward finite element discretiza-
tion of R1. This will serve to illustrate the problem at
hand, but also to introduce the notation used throughout
the paper and to review the finite element method. The
short review of finite elements presented here follows the
text of [40], to which the reader is referred to for more
details. We denote the domain of interest as Ω, its interior
and its boundary are denoted by ΩI and ΩB respectively
such that

Ω = ΩI ∪ ΩB ,ΩI ∩ ΩB = ∅.

In practice, the domain of interest Ω is discretized into a
set of vertices, edges, triangles, and tetrahedra. We denote
the set of triangles by

T = TI ∪ TB ,TI ∩ TB = ∅, (8)

where TI and TB are the set of internal and boundary
triangles respectively; a triangle is an internal triangle if
it is shared by two tetrahedra, otherwise it is a boundary
triangle. Similarly, we denote the set of vertices by

V = VI ∪ VB ,VI ∩ VB = ∅, (9)

where VI and VB are the set of internal and boundary
vertices respectively; a vertex is a boundary vertex if it

belongs to at least one boundary triangle, otherwise it is
an internal vertex.

To discretize
R1ϕ = ∆ϕ = 0 (10)

on Ω using linear finite elements, one reduces the order of
derivation on ϕ in Equation 10 using integration by parts
and the divergence theorem. In particular, given a test
function w, Equation 10 can be transformed to∫

Ω

w(x)∆ϕ(x) = −
∫
Ω

∇w(x)∇ϕ(x)

+

∫
ΩB

w(x)∇ϕ(x) · n = 0

(11)

= −
∫
Ω

∇w(x)∇ϕ(x) = 0, (12)

where n is the normal on ΩB . The integral over the bound-
ary ΩB in Equation 11 is undesirable as we do not a priori
know the value of ∇ϕ(x) at the boundary; our goal is to
get rid of that integral. For now, we are simply going to
ignore that integral, as often done in the related literature
[see for example Section 2 in 41, and references therein], so
that we end up with Equation 12. Let V (x,xi) denote the
standard piecewise linear Lagrange basis function defined
on the mesh such that

V (xj ,xi) = Vi(xj) = δji for vertices xj ,xi ∈ V; (13)

we use Vi for Lagrange basis functions to remind that these
functions are attached to vertices vi (later, we will intro-
duce basis functions not attached to vertices). Using the
basis functions Vi, we approximate w(x) and ϕ(x) on the
mesh as

w(x) =
∑
xi∈V

Vi(x)wi, (14)

ϕ(x) =
∑
xj∈V

Vj(x)ϕj , (15)

transforming Equation 12 to

0 =
∑
xi∈V

wi
∑
xj∈V

∫
Ω

∇Vi(x)∇Vj(x)ϕj

=
∑
xi∈V

wi
∑
xj∈V

Kijϕj =
∑
xi∈V

wiGi. (16)

Equation 16 should be valid for all wi; because the coeffi-
cients wi are arbitrary, it follows that

Gi =
∑
xj∈V

Kijϕj

=
∑
xj∈V

∫
Ω

∇Vi(x)∇Vj(x)ϕj = 0,∀xi ∈ V.
(17)

The matrix Kij in Equation 17 can then be assembled by
iterating over each tetrahedron independently as is cus-
tomary in finite elements [40].
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By ignoring the boundary integral in Equation 11, we im-
plicitly imposed

∇ϕ(x) · n = 0, for x ∈ ΩB , (18)

since we know from Equation 14 that w(x) may not nec-
essarily vanish on ΩB . To illustrate an example of arti-
facts introduced by this assumption, we interpolate the
two point sets in Figure 2a by imposing Equation 17, the
resulting implicit function is shown in Figure 2b. Figures
2c-d show surfaces and isolines extracted at five equal in-
tervals. We clearly see that curvature of ϕ is not mini-
mized: those isolines tend to concentrate in the middle of
the model and they are not flat at the boundary. For ref-
erence, Figures 2e-g show the results obtained using the
method presented in the next paragraph.

1.1. Towards a boundary free interpolation

Our strategy for developing a boundary free interpolation
will be to look for a test function w(x) that has a vanishing
integral at the boundary ΩB , that is,∫

ΩB

w(x) = 0; (19)

this way, the boundary integral in Equation 11 can be
discarded without implicitly imposing any constraint on
ϕ(x) at the boundary. First, let us consider a test function
w(x) such that

w(x) = 0 for all x ∈ ΩB (20)

as in [42]. Such a function is easily obtained by replacing
Equation 14 with

w(x) =
∑

xi∈VI

Vi(x)wi; (21)

the only difference between this equation and Equation
14 is the domain of summation: the test function defined
in Equation 21 vanishes at the boundary, which follows
from the delta property of the Lagrange basis functions
Vi (Equation 13). In traditional finite elements, one uses
a test function w that vanishes at Dirichlet boundaries
where the values of ϕ are known [40]; here, we want a test
function w that vanishes on the entire boundary and we
do not know the values of ϕ at the boundaries. Inserting
Equations 21 and 15 into the left hand side of Equation
11 leads to∑

xj∈V
Kijϕj =

∑
xj∈V

∫
Ω

∇Vi(x)∇Vj(x)ϕj = 0,∀xi ∈ VI .

(22)
Unlike Equation 17, this equation does not imply

∇ϕ(x) · n = 0

on the boundary. However, because |VI | < |V|, the ma-
trix form of Equation 22 has less rows than columns and

therefore the problem is ill-posed.

Let us now consider the discretization of R6 (Equation 6).
We detail only the first term, the rest of the terms are
discretized in a similar way. Starting with the integral∫

Ω

w(x)∂2xϕ(x) =

∫
z

∫
y

(∫
x

w(x)∂2xϕ(x)

)
=

∫
z

∫
y

(
−
∫
x

∂xw(x)∂xϕ(x) +
[
w(x)∂xϕ(x)

]x2∈VB

x1∈VB

)
,

for some two boundary points x1,x2, we use Equations 21
and 15 to obtain the discretization of ∂2xϕ = 0 as∑
xj∈V

K1
ijϕj =

∫
Ω

∂xVi(x)∂xVj(x)ϕj = 0, for all xi ∈ VI ,

(23)
where the superscript 1 in K1

ij refers to the 1st term of
the operator R6. The complete regularization matrix is
obtained by gathering the six matrices (one for each term)

¯̄K =



¯̄K1

¯̄K2

¯̄K3

¯̄K4

¯̄K5

¯̄K6


. (24)

Like the matrix in Equation 22, this matrix does not im-
pose any constraint on ϕ(x) on the boundary, but unlike in
Equation 22, we now have more rows than columns since
we have six equations at each internal point; this matrix
therefore has enough equations for sparse data interpola-
tion. Figures 2e-g show illustrative results obtained by
discretizing R6 based on Equation 24.

While Equation 21 does not constrain ϕ(x) at the bound-
ary, it imposes a constraint on mesh generation. Consider
for example the illustrative 2D domain in Figure 3a dis-
cretized with nine vertices and eight internal edges. The
mesh has only one internal vertex: v4. Because there is no
edge connecting the boundary vertices v0 and v8 to vertex
v4, the basis function V4 does not overlap with the ba-
sis functions V0, V8; therefore, it follows from Equation 23
that the 1st and 9th columns of the matrix ¯̄K (Equation
24) will contain only zeros. In order to avoid such cases,
each triangle of the mesh should have at least one internal
vertex as shown in Figure 3b. In practice, it has proven
challenging to enforce such a mesh constraint, especially
in the presence of discontinuities, making the strategy pro-
posed in this section of limited use for subsurface modeling
[42].
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Figure 3: Meshing constraint imposed by Equation 21: in a, vertices
0 and 8 will not contribute to the interpolation matrix because they
are not connected to the internal vertex 4; the problem can be solved
by modifying the mesh to have vertices 0 and 8 connected to the
internal vertex 4 as shown in b.

1.2. Problem statement

The problem of interest in this paper is to propose finite
element discretizations of R1 (Equation 4), R3 (Equation
5), and R6 (Equation 6) that do not impose any constraint
on the implicit function ϕ(x) at boundary points x ∈ ΩB
(for example Equation 18), and that do not impose any
constraint on the input mesh (for example Figure 3). Fur-
thermore, we are only interested in discretizations based
on linear basis functions.

2. Boundary free interpolation

Preliminary – Crouzeix-Raviart basis functions

We now look for a test function w(x) that satisfies Equa-
tion 19 without necessarily satisfying Equation 20. For
this purpose, we are going to use Crouzeix-Raviart basis
functions [43], which we review shortly. Consider a triangle
in 2D in the physical space (Figure 4a) and its mapping
in the reference space (Figure 4b). The Lagrange basis
functions Vi on vertices vi in the reference space are given
by

V0 = 1− ξ − η
V1 = ξ
V2 = η

, (25)

and the scalar Crouzeix-Raviart basis functions Ei on edges
ei are given by

E0 = 1− 2V 0 = −1 + 2(ξ + η)
E1 = 1− 2V 1 = 1− 2ξ
E2 = 1− 2V 2 = 1− 2η

, (26)

where the edge ei is opposite the vertex vi as illustrated in
Figure 4. The functions in Equation 26 have the properties
that ∑

i

Ei = 1, (27)

∇Ei = nik, for some k ∈ R\{0} (28)

where ni is the normal vector of the edge ei and, of par-
ticular interest to our application,∫

ei

Ej = δijk, for some k ∈ R\{0} . (29)

Figure 4: A triangle in the physical space (a) and its mapping into
the reference space (b).

To see that the integral of the function Ej along the edge ei
vanishes when j ̸= i, it suffices to note that Ej vanishes at
the midpoint of edge ei: because Ej is linear, a Gaussian
quadrature with one integration point at the midpoint of
the edge ei would compute that integral exactly (to zero).
Similarly, for a tetrahedron in 3D we have Lagrange basis
functions Vi on vertices vi

V0 = 1− ξ − η − γ
V1 = ξ
V2 = η
V3 = γ

, (30)

and Crouzeix-Raviart basis functions Ti on triangles ti

T0 = 1− 3V 0 = −2 + 3(ξ + η + γ)
T1 = 1− 3V 1 = 1− 3ξ
T2 = 1− 3V 2 = 1− 3η
T3 = 1− 3V 2 = 1− 3γ

(31)

which satisfy∑
i Ti = 1 (a)
∇Ti = nik, for some k ∈ R\{0} (b)∫
ti

Tj = δijk, for some k ∈ R\{0} (c)
(32)

where ni is the normal vector of the triangle ti.

2.1. Interpolation with the Laplacian

We now have all the information needed to propose a
boundary free discretization of R1 (Equation 4). Let us
start by transforming Equation 11 into a sum of integrals
on individual tetrahedra teti of the mesh

0 =

∫
Ω

w(x)∆ϕ(x)

= −
∑
i

∫
teti

∇w(x)∇ϕ(x) +
∑
tj∈TB

∫
tj

w(x)∇ϕ(x) · n (a)

= −
∑
i

∫
teti

∇w(x)∇ϕ(x) +
∑
tj∈TB

∇ϕj · nj
∫
tj

w(x) (b)

,

(33)
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Figure 5: (a) Input data (courtesy of TotalEnergies): point sets from three horizons and 10 fault surfaces. (b) Generation of a grid that is
discontinuous across input faults. (c) Interpolation of horizon data using R1 (Equation 38). (d) Extraction of a sealed structural model.

where ∇ϕj is the gradient of the tetrahedron that con-
tains the boundary triangle tj ∈ TB ; we have pulled out
the gradient from the integral as it is constant for each
tetrahedron. We see that approximating (compare this
with Equation 21)

w(x) =
∑
ti∈TI

Ti(x)wi, (34)

where the basis functions Ti corresponding to triangles ti
are those defined in Equation 31, eliminates the boundary
integral∑
tj∈TB

∇ϕj · nj
∫
tj

w(x) =
∑
tj∈TB

∇ϕj · nj
∫
tj

∑
tk∈TI

Tkwk

(35)

=
∑
tj∈TB

∇ϕj · nj
∑
tk∈TI

wk

∫
tj

Tk

(36)

=
∑
tj∈TB

∇ϕj · nj
∑
tk∈TI

wkδjk = 0.

(37)

The last equality follows from Equations 32c and 8 (tj ∈
TB , tk ∈ TI → j ̸= k). Finally, approximating ϕ(x) with
Lagrange basis functions Vj (Equation 15) leads to the
following matrix representation of Equation 33

0 =
∑
xj∈V

Kijϕj

=
∑
xj∈V

∑
k

∫
tetk

∇Ti(x)∇Vj(x)ϕj , ∀i s. t. ti ∈ TI
,

(38)
which is the proposed discretization of R1. It should be
noted that the row index i runs over internal triangles, re-
sulting in more rows than columns when |TI | > |V|.

Going back to the 2D model in Figure 3a, we see that the
boundary vertex v8 would now contribute to the matrix
Kij in Equation 38 as its basis function V8 overlaps the
basis function E4 of the internal edge e4; a similar argu-
ment holds for the boundary vertex v0. Figure 5 shows
a sealed structural model extracted from a stratigraphic
function based on Equation 38.

2.2. Interpolation with the Hessian

Numerical evidence has shown that the discretization pre-
sented in Section 2.1 is not convenient to discretize the
individual components of the Hessian matrix, which are
needed for the operators R3 (Equation 5) and R6 (Equa-
tion 6). To gain some intuition on its limitations, consider
the discretization of

−∂2yϕ(x, y) = 0 (39)
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Figure 6: Sealed structural models extracted from stratigraphic functions based on R3 (a) and R6 (b). The stratigraphic functions were
computed in the grid from Figure 5b using the discretization in Equation 46.

on the 2D model in Figure 3b using Equation 38. From fi-
nite differences, we expect the following contributions from
vertices v3, v4, v5

∂2yϕ|v3 = −ϕ0 + 2ϕ3 − ϕ6 (a)
∂2yϕ|v4 = −ϕ1 + 2ϕ4 − ϕ7 (b)
∂2yϕ|v5 = −ϕ2 + 2ϕ5 − ϕ8 (c)

. (40)

Looking at the triangle in Figure 4b and the basis func-
tions in Equations 25 and 26, it can be shown that the
contribution of edge e7 from triangle t0 in Figure 3b using
Equation 38 is

∂2yϕ|t0e7 = ϕ3 − ϕ6,

and, by symmetry, the contribution of edge e7 from trian-
gle t1 is

∂2yϕ|t1e7 = ϕ3 − ϕ0,

bringing the total contribution of e7 to

∂2yϕ|e7 = ∂2yϕ|t0e7 + ∂2yϕ|t1e7 = −ϕ0 + 2ϕ3 − ϕ6.

For the entire model, we find that the non zero contri-
butions will come from edges e0, e2, e3, e4, e6, e7 as given
by

∂2yϕ|e0 = ϕ0 − ϕ1 − ϕ3 + ϕ4 (a)
∂2yϕ|e2 = −ϕ1 + ϕ2 + ϕ4 − ϕ5 (b)
∂2yϕ|e3 = −ϕ2 + 2ϕ5 − ϕ8 (c)
∂2yϕ|e4 = ϕ4 − ϕ5 − ϕ7 + ϕ8 (d)
∂2yϕ|e6 = −ϕ3 + ϕ4 + ϕ6 − ϕ7 (e)
∂2yϕ|e7 = −ϕ0 + 2ϕ3 − ϕ6 (f)

. (41)

We see that this discretization has captured the derivative
∂2yϕ at vertices v3, v5 (see Equations 40a,c and 41c,f) but
has ignored the derivative at vertex v4 (Equation 40b). On
the other hand, consider accumulating the contributions
from all internal edges that are connected to vertex v4, we
find from Equation 41 that

∂2yϕ|v4 = ∂2yϕ|e0 + ∂2yϕ|e2 + ∂2yϕ|e3
+ ∂2yϕ|e4 + ∂2yϕ|e6 + ∂2yϕ|e7

= −2ϕ1 + 4ϕ4 − 2ϕ7,

(42)

which is the equivalent to that expected (Equation 40b)
up to a scaling factor. This observation suggests that a
more appropriate discretization for the individual compo-
nents of the Hessian matrix in 3D at a vertex vi should
accumulate the contribution from each internal triangle tj
that is connected to vi. In particular, let

TI(vi)

denote the set of internal triangles connected to a vertex
vi ∈ V, and let

V ∩ TI
denote the set of vertices vi ∈ V such that

|TI(vi)| > 0.

Define the basis functions

Ni(x) =
∑

tj∈TI(vi)

Tj(x), (43)
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which, by Equations 31 and 37, have the properties

Ni(x) = Vi(x), for all xi ∈ VI∫
tj

Ni(x) = 0, for all tj ∈ TB . (44)

The approximation (compare with Equations 21 and 34)

w(x) =
∑

vi∈V∩TI

Ni(x)wi (45)

satisfies Equation 19, and leads to the following discretiza-
tion of ∂2xϕ = 0 (compare with Equation 23)

0 =
∑
xj∈V

K1
ijϕj

=
∑
xj∈V

∑
k

∫
tetk

∂xNi(x)∂xVj(x)ϕj ,∀vi ∈ V ∩ TI

=
∑
xj∈V

∑
k

∑
tm∈TI(vi)

∫
tetk

∂xTm(x)∂xVj(x)ϕj ,

∀vi ∈ V ∩ TI ,
(46)

as a more appropriate discretization for R3 (Equation 5)
and R6 (Equation 6). In Equation 38, each row of the
matrix Kij is an equation imposed on an internal triangle
ti ∈ TI , while in Equation 46 each row is an equation
imposed on a vertex vi such that there exist an internal
triangle tm ∈ TI that contains vi; vi may be an internal or
a boundary vertex. Figure 6 shows two sealed structural
models extracted from stratigraphic functions based on
Equation 46.

3. Discussion

3.1. Related work

The computer graphics community has extensively explored
smoothing and regularization operators based on the Lapla-
cian and Hessian. We relate our work to some of that al-
ready available in the literature. First, we start with the
work of [5] who also performed sparse data interpolation
on tetrahedral meshes. They proposed the regularization
operator

ni · ∇ϕ0(x)− ni · ∇ϕ1(x) = 0,∀i such that ti ∈ TI , (47)

where ni is the normal vector of the triangle ti and∇ϕ0,∇ϕ1
are the gradients in the two tetrahedra that share ti. This
operator is equivalent to the discretization of R1 proposed
in Equation 38: the ith row of the matrix in Equation 38
implements∑

k

∫
tetk

∇Ti(x)∇ϕk(x)

=

∫
tet0

∇Ti(x)∇ϕ0(x) +
∫
tet1

∇Ti(x)∇ϕ1(x)

=

∫
tet0

ni · ∇ϕ0(x)−
∫
tet1

ni · ∇ϕ1(x)

, (48)

where ni is the normal vector of the triangle ti and∇ϕ0,∇ϕ1
are the gradients in the two tetrahedra tet0, tet1 that share
ti; the first equality follows for the local support of the
basis functions Ti (they are non zero only inside the re-
spective tetrahedra), and the second equality follows from
Equation 32b. While we have omitted examples from this
paper, stratigraphic functions computed using Equation
47 are similar to those obtained using Equation 38.

Most of the related work in computer graphics seeks to dis-
cretize the Laplacian or the Hessian energies on surfaces
in 3D, where those operators are discretized on triangles
as opposed to tetrahedra in our case; we will argue in
Section 3.2 that a successful discretization of a smooth-
ing operator on triangles may not necessarily extend to
tetrahedra. Closely related to our work is that of [41, 44]
who also explore a boundary distortion free finite element
discretization of the Laplacian and Hessian smoothing en-
ergies, but on triangulated surfaces. To show how their
approach differs from ours, consider the problem of mini-
mizing the Lagrangian corresponding to Equation 1

L =

∫
Ω

[∆ϕ(x)]2 +
∑
l

∫
Ω

[ϕ(x)− f(xl)]2; (49)

xl denotes a point inside the lth cell of the mesh, xl may
or may not belong to the set of mesh points V. Using the
mixed finite element formulation of [35]

∆ϕ = 0 →
∣∣∣∣ ψ = 0
∆ϕ = ψ

, (50)

the Lagrangian 49 becomes

L

=
1

2

∫
Ω

ψψ +

∫
Ω

w(∆ϕ− ψ) +
1

2

∑
l

∫
Ω

(ϕl − f l)2 (a)

=
1

2

∫
Ω

ψψ +

∫
Ω

w∆ϕ−
∫
Ω

wψ +
1

2

∑
l

∫
Ω

(ϕ− f l)2 (b)

=
1

2

∫
Ω

ψψ +

∫
ΩB

w(∇ϕ · n)−
∫
Ω

∇w∇ϕ−
∫
Ω

wψ

+
1

2

∑
l

∫
Ω

(ϕ− f l)2 (c),

(51)
where the weight function, w, now plays the role of a La-
grange multiplier. [41] proposes to get rid of the boundary
integral in Equation 51c by requiring w to satisfy Equation
20; in particular, the authors discretize the Lagrangian by
using piecewise linear approximation of ψ, ϕ as in Equa-
tion 15, and Equation 21 to approximate w. This leads to
the discrete Lagrangian
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L =
1

2

∑
xi∈V

∑
xj∈V

∫
Ω

ViVjψiψj

−
∑
xi∈VI

∑
xj∈V

∫
Ω

∇Vi∇Vjwiϕj −
∑
xi∈VI

∑
xj∈V

∫
Ω

ViVjwiψj

+
1

2

∑
l

∫
Ω

( ∑
xj∈V

∑
xi∈V

VjViϕjϕi − 2
∑
xi∈V

Viϕif
l + f lf l

)
,

(52)

with the corresponding system of equations

∂ψk
L = 0 =∑

xi∈V

∫
Ω

VkViψi −
∑
xj∈VI

∫
Ω

VkVjwj ,∀xk ∈ V

∂ϕk
L = 0 =

−
∑
xi∈VI

∫
Ω

∇Vk∇Viwi+
∑
l

∫
Ω

(
∑
xi∈V

VkViϕi−Vkf l),∀xk ∈ V

∂wk
L = 0 =

−
∑
xi∈V

∫
Ω

∇Vk∇Viϕi −
∑
xi∈V

∫
Ω

VkViψi,∀xk ∈ VI . (53)

Equation 53 implies

w = ψ = ∆ϕ, (54)

thereby simplifying the system of equations to

∑
k

Vjf
k = −

∑
xi∈VI

Kijwi +
∑
xi∈V

Mjiϕi,∀xj ∈ V (a)

0 = −
∑
xj∈V

Kijϕj −
∑
xj∈VI

Mjiwj ,∀xi ∈ VI (b)
,

(55)
more compactly written as[

− ¯̄Kt
VI ,V

¯̄MV,V
¯̄M t
VI ,VI

¯̄KVI ,V

] [
w̄VI

ϕ̄V

]
=

[
f̄V
0̄VI

]
. (56)

Using Equation 55b

w̄VI
= − ¯̄M−t

VI ,VI

¯̄KVI ,Vϕ̄V

finally leads to

( ¯̄Kt
VI ,V

¯̄M−t
VI ,VI

¯̄KVI ,V + ¯̄MV,V)ϕ̄V = f̄V; (57)

this equation does not impose vanishing Neumann bound-
ary condition since Equation 54 implies

∆ϕ(xi) = 0 → ∇ϕ(xi) = constant,∀xi ∈ VB .

Equation 57 is comparable to our least squares formulation
in Section 1.1, particularly Equation 22, which would lead
to

( ¯̄Kt
VI ,V

¯̄KVI ,V + ¯̄M t
V,V

¯̄MV,V)ϕ̄V = ¯̄M t
V,Vf̄V;

the main difference is that we do not approximate the mass
matrix with a diagonal matrix as done in [35, 41] since our
formulation does not require inverting the mass matrix.

According to [39], most commonly used smoothing opera-
tors on triangulated surfaces are either equivalent to our
R1 discretization in Equation 17 [e.g. 45], or∑
j

Kijϕj =
∑
j

∫
Ω

∇Ei(x)∇Ej(x)ϕj , for internal edges ei, ej ,

[e.g. 38], which is comparable to our R1 discretization in
Equation 38 since, by Equation 26,

∇Ei(x)∇Ej(x) = −2∇Ei(x)∇Vj(x).

3.2. Interpolation on triangles vs tetrahedra

[41] observe qualitatively that their Hessian energy gives
similar results to the smoothing energy proposed by [38]
(comparable to our R1 discretization in Equation 38), which
is derived from the Laplacian. We now give a more quan-
titative argument that minimizing R1 as discretized in
Equation 38 can indeed be interpreted as a minimization
of the Hessian on triangulated meshes; we show, however,
that this interpretation does not carry over to tetrahedral
meshes.

Let ni = (nix, niy) be the unit normal vector of the edge
ei shared by two equal area triangles t0 and t1 in 2D such
that each row of R1 as given by Equation 48 reads

0 =

∫
t0

ni · ∇ϕ0(x)−
∫
t1

ni · ∇ϕ1(x) (a)

= ni · ∇ϕ0(x)− ni · ∇ϕ1(x) (b)

= ∂niϕ0(x)− ∂niϕ1(x) (c)

⇒ ∂2niϕ(x) = 0 (d)

, (58)

where ∂ni and ∂
2
ni denote the first and second directional

derivatives along the normal ni. Now consider a triangle
t with internal edges e0, e1, e2 and corresponding normals
n0,n1,n2; it follows from Equation 58 that this particular
discretization of R1 imposes the following constraints at
the triangle t

∂2n0ϕ = nt0
¯̄Hn0 = n20xHxx + n20yHyy + 2n0xn0yHyx = 0

∂2n1ϕ = nt1
¯̄Hn1 = n21xHxx + n21yHyy + 2n1xn1yHyx = 0

∂2n2ϕ = nt2
¯̄Hn2 = n22xHxx + n22yHyy + 2n2xn2yHyx = 0

,

(59)

where ¯̄H is the 2D Hessian matrix. Because the normals
n0,n1,n2 are linearly independent (assuming the triangle
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t is not degenerate), the matrix
n20x n20y

√
2n0xn0y

n21x n21y
√
2n1xn1y

n22x n22y
√
2n2xn2y

 (60)

appearing in Equation 59 has linearly independent rows
(see Appendix A) and therefore Equation 59 has the
unique solution

Hxx = ∂x(∂xϕ) = 0
Hyy = ∂y(∂yϕ) = 0√
2Hxy =

√
2∂x(∂yϕ) = 0

,

which is the equivalent of

R6ϕ(x) = 0

in 2D. For triangulated surfaces in 3D, one would locally
map the triangle t and its neighbors to the tangent plane
at t and then apply the same argument. It is in this sense
that the minimization of R1 discretized using Equation
38/47/48 can be interpreted to minimize the Hessian for
triangulated surfaces. For tetrahedral meshes, the equiva-
lent of Equation 59 has four equations (one for each facet of
the tetrahedron) and six unknowns (one for each indepen-
dent component of the 3D Hessian matrix) and therefore
allows solutions that do not imply a vanishing Hessian.
This means that minimizing R1 as discretized in Equa-
tion 38/47/48 on tetrahedral meshes may not necessarily
minimize the curvature of ϕ as defined by Equation 7. We
conclude from a similar argument that minimizing R3 may
not necessarily minimize the curvature either.

3.3. Interpolation on tetrahedra: Laplacian vs Hessian

We argued in Section 3.2 that, in theory, minimizing R1

(or R3) is not sufficient to minimize the curvature of a
function on tetrahedral meshes. In practice, R1 tends
be as useful as R6 for most cases. The different regu-
larization operators do give different results, especially in
regions where data is sparse, but it is often difficult to
decide which one is better because of the non uniqueness
of the problem and the lack of a reference solution. An
example of this can be seen in Figure 7: the three regu-
larization operators give (slightly) different results but are
all consistent with input data. We have however observed
some cases where R1 seemed to have objectively under-
performed compared to R6. One such example is shown
in the highlighted region in Figure 8b: the region illus-
trates an instance where R6 has arguably done a better
job at minimizing the curvature of ϕ. A closer look shows
that this region is in a isolated fault block with insufficient
constraining data: all the constraining data in that fault
block lie on a vertical plane. The second instance is shown
in Figure ?? where we compare a fault-horizon contact
line from R1 (Figure ??b) with one from R6 (Figure ??d),
we note that the contact line from R1 is more sinuous;

the contact line from R3 (Figure ??d) is even more sinu-
ous. In general, we found R3 to be the least effective of
the three regularizations operators in terms of curvature
minimization.

3.4. A comment on fault modeling

Because, as mentioned in the introduction, our primary
focus is the numerical and mathematical analysis of the
regularization system 3, we have used the bare minimum of
information needed to build our data system 2. As a result,
some models may present a few geological inconsistencies.
This is the case, for example, in the model in Figure 6b
where some layers have different thickness’ across some
faults, or in models in Figure 7 where there is a reversal
of fault throw on some faults. These fault inconsistencies,
which are likely to occur across a fault that completely
separates a region into two independent fault-blocks, can
be resolved by estimating fault displacement profiles and
then integrating that information in the data system 2
to explicitly constrain fault throws. For more details on
this subject, the reader is referred to chapter 4 of [19] and
chapter 7 of [9]. Alternative approaches for constraining
fault throws are explored in [46, 47].

4. Conclusion

We have presented finite element discretizations for three
regularization operators that are suitable for implicit sub-
surface structural modeling, where boundary conditions
are rarely specified. The regularizations are based on the
Laplacian and the Hessian of the implicit function; the
applicability of the proposed discretizations to structural
modeling is illustrated on one highly faulted analogue struc-
tural model (Figure 1) and on two field data sets (Figures
5 and 7). We show that our discretization of the Lapla-
cian is equivalent to the regularization operator of [5] that
is routinely used for subsurface modeling. We argue (Sec-
tion 3.2) that the Laplacian may not be as adequate for
interpolation on tetrahedral meshes as it is for triangular
meshes; this claim is further supported by illustrative ex-
amples where the Hessian performs better than the Lapla-
cian, in terms of curvature minimization (Section 3.3).
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Figure 7: a) Input data (horizon point sets from two horizons and 9 fault surfaces, courtesy of an anonymous source). b) Grid that is
discontinuous across input faults. c) Comparison between R1 (red), R3 (blue) and R6 (black).

Figure 8: Comparison between R1 (red), R3 (blue) and R6 (black) for models from the data in Figure 5a.
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Appendix A. Linear independence of Equation 59

We now argue that if the triangle t has edges e0, e1, e2 and
corresponding normals n0,n1,n2, the matrix in Equation
60 has linearly independent rows if the normals n0,n1,n2

are linearly independent. Linear independence of the unit
normals n0,n1 implies

n0 · n1 = n0xn1x + n0yn1y ̸= ±1,

which implies the linear dependence of the first two rows

r0 = (n20x, n
2
0y,

√
2n0xn0y)

r1 = (n21x, n
2
1y,

√
2n1xn1y)

of the matrix in Equation 60 by

r0·r1
|r0||r1| = r0 · r1

= (n0 · n1)
2 ̸= ±1

,

where we have used

|ri| =
√
n4ix + n4iy + 2n2ixn

2
iy =

√
(ni · ni)2 = ni · ni = 1.
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Modélisation Mathématique et Analyse Numérique 7 (1973) 33–
75.

[44] O. Stein, A. Jacobson, M. Wardetzky, E. Grinspun, A smooth-
ness energy without boundary distortion for curved surfaces,
ACM 39 (2020).

[45] M. Meyer, M. Desbrun, P. Schröder, A. H. Barr, Discrete
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