
ar
X

iv
:2

20
4.

05
00

2v
3 

 [
m

at
h.

N
A

] 
 1

2 
O

ct
 2

02
2

Linear-time algorithm for computing the Bernstein-Bézier coefficients

of B-spline basis functions

Filip Chudy∗, Paweł Woźny

Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, 50-383 Wrocław, Poland

Abstract

A new differential-recurrence relation for the B-spline functions of the same degree is proved.
From this relation, a recursive method of computing the coefficients of B-spline functions of
degreem in the Bernstein-Bézier form is derived. Its complexity is proportional to the number
of coefficients in the case of coincident boundary knots. This means that, asymptotically, the
algorithm is optimal. In other cases, the complexity is increased by at most O(m3). When the
Bernstein-Bézier coefficients of B-spline basis functions are known, it is possible to compute
any B-spline function in linear time with respect to its degree by performing the geometric
algorithm proposed recently by the authors. This algorithm scales well when evaluating the
B-spline curve at multiple points, e.g., in order to render it, since one only needs to find
the coefficients for each knot span once. When evaluating many B-spline curves at multiple
points (as is the case when rendering tensor product B-spline surfaces), such approach has
lower computational complexity than using the de Boor-Cox algorithm. The numerical tests
show that the new method is efficient. The problem of finding the coefficients of the B-spline
functions in the power basis can be solved similarly.

Keywords: B-spline functions, Bernstein-Bézier form, recurrence relations, Bézier curves,
B-spline curves, B-spline surfaces, de Boor-Cox algorithm.

1. Introduction

The family of Bernstein (basis) polynomials was used by S. N. Bernstein in 1912 in his
constructive proof of the Weierstrass approximation theorem. For more details, see [13, §10.3].
Half a century later, they came into prominence when they became a basis for a particular
family of parametric curves — Bézier curves.
For a fixed n ∈ N and 0 ≤ i ≤ n, Bn

i is the ith Bernstein (basis) polynomial of degree n
given by the formula

Bn
i (t) :=

(
n

i

)

ti(1− t)n−i. (1.1)

Remark 1.1. In the sequel, the convention is applied that Bn
i ≡ 0 if i < 0 or i > n.

∗Corresponding author.
Email addresses: Filip.Chudy@cs.uni.wroc.pl (Filip Chudy), Pawel.Wozny@cs.uni.wroc.pl (Paweł

Woźny)

Preprint submitted to Elsevier October 13, 2022

http://arxiv.org/abs/2204.05002v3


The Bernstein polynomial Bn
i (0 ≤ i ≤ n) is non-negative and has exactly one maximum

value in the interval [0, 1] (except for the case n = 0). It is also important that all Bernstein
polynomials of the same degree give the partition of unity, i.e.,

∑n
i=0B

n
i (t) ≡ 1. These

properties make the Bernstein basis a very powerful tool in approximation theory, numerical
analysis or in CAGD.
For any t ∈ R, Bernstein polynomials satisfy the recurrence relations connecting the

polynomials of two consecutive degrees:

Bn
k (t) = tBn−1

k−1 (t) + (1− t)Bn−1
k (t), (1.2)

Bn
k (t) =

n− k + 1

n+ 1
Bn+1

k (t) +
k + 1

n+ 1
Bn+1

k+1 (t) (0 ≤ k ≤ n). (1.3)

It is also well-known that
(

Bn
k (t)

)
′

= n
(

Bn−1
k−1 (t)−Bn−1

k (t)
)

(0 ≤ k ≤ n). (1.4)

See [20, §5.1, Properties 2, 11, 13].
Using Eqs. (1.1), (1.3), and (1.4), one can easily obtain the following identities:

t
(

Bn
k (t)

)
′

= kBn
k (t)− (k + 1)Bn

k+1(t), (1.5)
(

Bn
k (t)

)
′

= (n− k + 1)Bn
k−1(t) + (2k − n)Bn

k (t)− (k + 1)Bn
k+1(t), (1.6)

where k = 0, 1, . . . , n.

Remark 1.2. Points in E
d, as well as parametric objects which return a point in E

d, are
denoted using the upper-case letters in the sans-serif font, e.g., S,P, . . . (as opposed to, e.g.,
Bernstein polynomials Bn

i , which return real values).

Polynomial Bézier curves are a particular family of parametric curves which is defined as
a convex combination of control points. The points are weighted using Bernstein polynomi-
als (1.1). A Bézier curve Pn : [0, 1]→ E

d of degree n with control points W0,W1, . . . ,Wn ∈ E
d

is defined by the formula

Pn(t) :=
n∑

k=0

Bn
k (t)Wk (0 ≤ t ≤ 1). (1.7)

Due to the properties of Bernstein polynomials, the curve Pn is in the convex hull of the
control points which means that Pn([0, 1]) ⊆ conv{W0,W1, . . . ,Wn}.
One can evaluate a point on a Bézier curve using the famous de Casteljau algorithm which

is based on the relation (1.2) and has O(dn2) complexity.
A new method for computing a point on a polynomial or rational Bézier curve in optimal

O(dn) time has been recently proposed by the authors in [29]. The new algorithm combines
the qualities of previously known methods for solving this problem, i.e., the linear complexity
of the Horner’s scheme and the geometric interpretation, the convex hull property, and oper-
ating only on convex combinations which are the advantages of the de Casteljau algorithm.
The new method can be used not only for polynomial and rational Bézier curves but also for
other rational parametric objects, e.g., Bézier surfaces. For more details, see [9, Chapter 2].

2



For more information about the history of Bézier curves and their properties, see, e.g.,
[3, 4, 5, 7, 9, 15, 16, 17], as well as [19, §1] and [20, §4].
Despite their elegance and some desirable properties, Bernstein polynomials have a sig-

nificant drawback. For any n, i ∈ N such that 0 ≤ i ≤ n, the value of a Bernstein polynomial
Bn

i (t) is non-zero for all t ∈ (0, 1). In practice, when operating on a Bézier curve (1.7), any
change in one control point’s position changes the curve over its whole length.
To address this issue, B-spline functions can be used. They are constructed in a way which

eliminates this drawback. When used as a basis for parametric curves (known as B-spline
curves), any change to the control point only has a local effect on a curve.
In order to introduce a B-spline function, the generalized divided differences will be used.

Definition 1.3 ([12, §4.2.1]). The generalized divided difference of a univariate function f at
the knots xi, xi+1, . . . , xk (which may be coincident), denoted by [xi, xi+1, . . . , xk]f , is defined
in the following recursive way:

[xi, xi+1, . . . , xi+ℓ]f :=







[xi+1, . . . , xi+ℓ]f − [xi, . . . , xi+ℓ−1]f

xi+ℓ − xi
(xi 6= xi+ℓ),

f (ℓ)(xi)

ℓ!
(xi = . . . = xi+ℓ).

In particular, [xi]f =
f (0)(xi)

0!
= f(xi).

Definition 1.4 ([25, §5.11]). The B-spline (basis) function Nmi of degree m ∈ N with knots
ti ≤ ti+1 ≤ . . . ≤ ti+m+1 is defined as

Nmi(u) := (ti+m+1 − ti)[ti, ti+1, . . . , ti+m+1](t− u)m+ ,

where the generalized divided difference acts on the variable t, and

(x− c)m+ :=

{
(x− c)m (x ≥ c),
0 (x < c)

is the truncated power function.

The B-spline function Nmi with knots ti ≤ ti+1 ≤ · · · ≤ tm+i+1 has support [ti, tm+i+1],
i.e., Nmi(u) can be non-zero only for u ∈ [ti, tm+i+1] (see, e.g., [24, Property 2.2]).
Let m,n ∈ N. The knots

t−m ≤ . . . ≤ t−1 ≤ t0
︸ ︷︷ ︸

boundary knots

≤ t1 ≤ . . . ≤ tn−1
︸ ︷︷ ︸

inner knots

≤ tn ≤ tn+1 ≤ . . . ≤ tn+m
︸ ︷︷ ︸

boundary knots

,

where t0 < tn, serve as a support for a B-spline basis of degree m over [t0, tn]. The B-spline
functions Nm,−m, Nm,−m+1, . . . , Nm,n−1 (cf. Definition 1.4) form a B-spline basis. Splines are
commonly used in a wide variety of applications, e.g., in computer-aided geometric design,
approximation theory and numerical analysis. See, e.g., [18, 19, 21, 24, 25].

Remark 1.5. In the sequel, a convention is adopted that for any quantity Q, if tk = tm+k+1

then
Q

tm+k+1 − tk
:= 0, as well as that Nmi ≡ 0 for i < −m or i ≥ n.

3



Computing the B-spline functions or their derivatives using Definition 1.4 is costly. In-
stead, one can use the recurrence and differential-recurrence relations.
The B-spline functions satisfy the following de Boor-Mansfield-Cox recursion formula (see,

e.g., [21, Eq. (7.8)], [14, §2], [11, Eq. (6.1)]):

Nmi(u) = (u− ti)
Nm−1,i(u)

tm+i − ti
+ (tm+i+1 − u)

Nm−1,i+1(u)

tm+i+1 − ti+1
(−m ≤ i < n) (1.8)

(cf. Remark 1.5). Additionally, for i = 0, 1, . . . , n− 1,

N0i(u) =

{
1 (u ∈ [ti, ti+1)),
0 otherwise.

(1.9)

The derivative of a B-spline function can be expressed as

N ′

mi(u) = m

(
Nm−1,i(u)

tm+i − ti
−

Nm−1,i+1(u)

tm+i+1 − ti+1

)

(−m ≤ i < n) (1.10)

(cf. [24, Eq. (2.7)] and Remark 1.5).

Theorem 1.6 ([24, Property 2.5]). All derivatives of Nmi exist in the interior of a knot span
(where it is a polynomial). At a knot Nmi is m− k times continuously differentiable, where k
is the multiplicity of the knot. Hence, increasing m increases continuity, and increasing knot
multiplicity decreases continuity.

The B-spline functions, like the family of Bernstein polynomials of an arbitrary degree,
have properties which make them a good choice for a parameterization of a family of curves.

Theorem 1.7 ([24, Properties 2.3, 2.4, 2.6]). Nmi(u) ≥ 0 for all m, i, u (non-negativity).
For an arbitrary knot span, [tj , tj+1),

∑j
i=j−mNmi(u) = 1 for all u ∈ [tj, tj+1) (partition of

unity). Except for the case m = 0, Nmi attains exactly one maximum value.

A B-spline curve of degree m over the non-empty interval [a, b] with knots

t−m ≤ . . . ≤ t0 = a ≤ t1 ≤ . . . ≤ b = tn ≤ . . . ≤ tn+m

and control points W−m,W−m+1, . . . ,Wn−1 ∈ E
d is defined as

S(t) :=

n−1∑

i=−m

Nmi(t)Wi (t ∈ [a, b]).

One can check that S([a, b]) ⊆ conv{W−m,W−m+1, . . . ,Wn−1}, as well as S([ti, ti+1]) ⊆
conv{Wi−m,Wi−m+1, . . . ,Wi} for 0 ≤ i ≤ n− 1 (see, e.g., [24, Property 3.5]).
The recurrence relation (1.8) and Eq. (1.9) can be used to evaluate a point on a B-spline

curve. This approach, applied to explicitly compute the values of B-spline functions, has been
proposed by de Boor in [14, p. 55–57]. The algorithm given in [14, p. 57–59] (see also, e.g, [19,
Eq. (8.3)]), which directly computes a point on a B-spline curve is known as the de Boor-Cox
algorithm and has O(dm2) computational complexity.
A popular choice for the boundary knots is to make them coincident with t0 and tn, i.e.,

t−m = t−m+1 = . . . = t−1 = t0 = a, b = tn = tn+1 = . . . = tn+m. (1.11)

4



In this case, S(a) =W−m and S(b) =Wn−1.
Bézier curves are a particular subtype of B-spline curves for n = 1, t−m = t−m+1 = . . . =

t0 = 0 and t1 = t2 = . . . = tm+1 = 1,

S(t) =

0∑

i=−m

Nmi(t)Wi =

m∑

i=0

Bm
i (t)Wi−m (t ∈ [0, 1]).

See, e.g., [24, Property 3.1].
The paper is organized as follows. Section 2 comprises the problem statement for find-

ing the adjusted Bernstein-Bézier coefficients of B-spline functions over each knot span. In
Section 3 we prove the new differential-recurrence relation between the B-spline functions of
the same degree. It will be the foundation for new recurrence relations which can be used to
formulate an algorithm which computes the required coefficients. In Section 4, the algorithm
for finding the adjusted Bernstein-Bézier coefficients of all B-spline functions over each knot
span in the case t−m = t0, tn = tn+m and all inner knots t1, t2, . . . , tn−1 having multiplic-
ity 1 is given. The computational complexity of the method is O(nm2). This means that,
asymptotically, the algorithm is optimal. Section 5 expands upon using the new algorithm
to compute multiple points on multiple B-spline curves (§5.1). The numerical tests which
are presented there show that the new method is efficient. In §5.2, the results of applying
the new algorithm to evaluating tensor product B-spline surfaces are given. The assumptions
about knot multiplicity which were made in Section 4 are then relaxed in Section 6 to cover
all cases (cf. Remark 2.4). Section 7 gives a simplified version of the recurrence relations for
the case of uniform knots.

2. The Problem: Bernstein-Bézier and power coefficients of B-spline functions

In this paper, the following problem is considered.
Let the adjusted Bernstein-Bézier basis form of the B-spline function Nmi over a single

non-empty knot span [tj, tj+1) ⊂ [t0, tn] (j = i, i+ 1, . . . , i+m) be

Nmi(u) =
m∑

k=0

b
(i,j)
k Bm

k

( u− tj
tj+1 − tj

)

(tj ≤ u < tj+1), (2.1)

with b
(i,j)
k ≡ b

(i,j)
k,m .

Problem 2.1. Find the adjusted Bernstein-Bézier basis coefficients b
(i,j)
k (0 ≤ k ≤ m)

(cf. (2.1)) of all functions Nmi over all non-trivial knot spans [tj, tj+1) ⊂ [t0, tn], i.e., for
j = 0, 1, . . . , n− 1 and i = j −m, j −m+ 1, . . . , j.

Notice that if the coefficents b
(i,j)
k are already known, it is possible to use the geometric

algorithm proposed in [29] to compute any B-spline function in linear time with respect to
its degree. By using the computed values of B-spline functions, one can efficiently evaluate a
point on a B-spline curve. Additionally, the knowledge of the coefficients of a B-spline function
can allow to perform more operations, such as differentiation or integration, analytically, e.g.,
when solving differential or integral equations using numerical methods.
The adjusted Bernstein-Bézier coefficients of B-spline functions satisfy some easy to prove

properties.

5



Theorem 2.2. For u ∈ [tj, tj+1) (j = 0, 1, . . . , n − 1), the coefficients b
(i,j)
k,m (k = 0, 1, . . . ,m)

of the adjusted Bernstein-Bézier representation of the B-spline function Nmi (cf. Eq. (2.1))
are non-negative.

Theorem 2.3. For u ∈ [tj , tj+1) (j = 0, 1, . . . , n − 1), the following relation holds:

j
∑

i=j−m

b
(i,j)
k,m = 1 (k = 0, 1, . . . ,m),

where b
(i,j)
k,m are the adjusted Bernstein-Bézier coefficients of Nmi (cf. (2.1)).

A task similar to Problem 2.1 for the adjusted power basis form of the B-spline functions
has been considered in [9].
Let the adjusted power basis form of the B-spline function Nmi over a single non-empty

knot span [tj , tj+1) ⊂ [t0, tn] (j = i, i+ 1, . . . , i+m) be

Nmi(u) =

m∑

k=0

a
(i,j)
k (u− tj)

k (tj ≤ u < tj+1), (2.2)

with a
(i,j)
k ≡ a

(i,j)
k,m .

Explicit expressions for the adjusted power basis coefficients ofNmi have been given in [23],
and the result can be adapted for the adjusted Bernstein-Bézier form. The serious drawback
of this approach, however, is high complexity, which greatly limits the use of this result in
computational practice.
Another algorithm for finding the adjusted power basis coefficients of a spline

s(t) :=

n−1∑

i=−m

ciNmi(t). (2.3)

over a knot span [tj, tj+1) in O(m2) time can be found in [18, §1.3.2]. By setting

ck :=

{
1 (k = i),
0 otherwise

(see (2.3)), one can find the coefficients of Nmi over [tj, tj+1) in O(m2) time. In total, to find
the adjusted power basis coefficients over [tj , tj+1) for all B-spline functions Nmi such that
j −m ≤ i ≤ j, one has to do O(m3) operations. Let us assume that there are ne non-empty
knot spans [tj , tj+1) such that j = 0, 1, . . . , n − 1. To find the coefficients of all B-spline
functions over all non-empty knot spans [tj , tj+1) for j = 0, 1, . . . , n − 1, one would need to
perform O(nem

3) operations.
With a similar approach, one can find the Bernstein-Bézier coefficients of Nmi over the

knot span [tj , tj+1). One can check that

b
(i,j)
k =

(m− k)!

m!
N

(k)
mi (tj)−

k−1∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)

b
(i,j)
ℓ (k = 0, 1, . . . ,m)

(cf. [19, Eq. (5.25)] and [22, Theorem 4.1]). Just as in the case of the adjusted power basis, the

Bernstein-Bézier coefficients b
(i,j)
k of Nmi over [tj , tj+1) can be found in O(m2) time. In total,

6



to find these coefficients for all B-spline functions over all non-empty knot spans [tj, tj+1) for
j = 0, 1, . . . , n− 1, it is required to perform O(nem

3) operations.
The approach given in [26] and [8] serves to convert a B-spline curve segment into a Bézier

curve. It can be adapted to give an algorithm with O(m3) complexity for finding the adjusted

Bernstein-Bézier coefficients b
(i,j)
k of a single basis function Nmi. Doing so for each B-spline

function in each non-empty knot span takes O(nem
4) operations.

The Bernstein-Bézier coefficients in each knot span of a linear combination of B-spline
functions can also be found by using the knot insertion method (see [6, 10]) in the following
way. After inserting the knots so that each has multiplicity m + 1, the basis functions be-
come Bernstein polynomials and the coefficients can be easily read. If all inner knots have
multiplicity 1, the complexity of such procedure is O(nm2).
This does, however, return only the coefficients of one combination of B-spline basis func-

tions. In order to find the coefficients of all B-spline basis functions

Nm,−m, Nm,−m+1, . . . , Nm,n−1,

one needs to do this procedure for each basis function (i.e., with the coefficient 1 for the
selected basis function and 0 otherwise). This can be done in O(nm3) total time.
A generalization of B-splines which is currently gaining prominence are multi-degree B-

splines. In [1, 2, 27], methods of finding the coefficients of multi-degree B-splines are given,
which can be adapted for standard (uniform-degree) B-splines. In particular, the method
given in [2], which is based on reverse knot insertion, is shown to be numerically stable.
If there are sufficiently many computationally simple recurrence relations for the Bernstein-

Bézier coefficients of the B-spline functions over multiple knot spans, one can instead use them
to efficiently find each of the coefficients. Over the course of this paper, they will be derived
from a new differential-recurrence relation for the B-spline functions.

Remark 2.4. In the sequel, we assume that no inner knot t1, t2, . . . , tn−1 has multiplicity
greater than m. This guarantees the B-spline functions’ continuity in (t0, tn).

The assumption regarding the multiplicity of the inner knots is very common and intuitive,
as it guarantees the continuity of a B-spline curve. It was used, e.g., in [18, 23] and [28, §3].
Let us suppose that there are ne non-empty knot spans [tj , tj+1) such that 0 ≤ j ≤ n− 1.

One of the main goals of the paper is to give a recursive way of computing all O(nem
2)

coefficients b
(i,j)
k (cf. (2.1)) of the B-spline functions in O(nem

2) time, assuming that all
boundary knots are coincident.
The possible applications of this result can be as follows. Once the adjusted Bernstein-

Bézier coefficients b
(i,j)
k are known, each point on a B-spline curve S,

S(u) :=

n−1∑

i=−m

Nmi(u)Wi (t0 ≤ u ≤ tn; Wi ∈ E
d), (2.4)

can be computed in O(m2 + md) time using the geometric algorithm proposed recently by
the authors in [29]. If there are N such points on M curves (each with the same knots) — a
situation closely related to rendering a tensor product B-spline surface — the total complexity
isO(nem

2+Nm2+MNmd), compared toO(MNm2d) when using the de Boor-Cox algorithm.
Performed experiments confirm that the new method is faster than the de Boor-Cox algorithm

7



even for low M ≈ 2, 3. Using a similar approach, one can also compute the value of any Nmi

in O(m) time.
Additionally, if the Bernstein-Bézier coefficients of the B-spline basis functions are known,

one can use them to convert a B-spline curve over one non-empty knot span to a Bézier curve:

S(u) =

m∑

k=0

( j
∑

i=j−m

b
(i,j)
k Wi

)

Bm
k

( u− tj
tj+1 − tj

)

(tj ≤ u < tj+1).

3. New differential-recurrence relation for B-spline functions

Using the recurrence relation (1.8) which connects B-spline functions of consecutive de-
grees, one can find a recurrence relation which is satisfied by their coefficients in the chosen
basis. It is, however, not optimal as the recurrence scheme is analogous to the one used in
the de Boor-Cox algorithm.
A new differential-recurrence relation for the B-spline functions of the same degree m will

be derived. We show that by using this result, it is possible to find all the Bernstein-Bézier
coefficients faster (see Section 4).
Using equations (1.8) and (1.10), one can derive new differential-recurrence relations for

the B-spline functions of the same degree. For example, this result can be used to efficiently
compute the coefficients of the Nmi functions (which are polynomial in each of the knot spans)
in an adjusted Bernstein-Bézier or power basis.

Theorem 3.1. Let t−m = t−m+1 = . . . = t0 < t1 < . . . < tn−1 < tn = tn+1 = . . . = tn+m

(cf. (1.11)). The following relations hold:

mNm,−m(u) + (t1 − u)N ′

m,−m(u) = 0, (3.1)

Nmi(u) +
ti − u

m
N ′

mi(u) =
tm+i+1 − ti
tm+i+2 − ti+1

(

Nm,i+1(u) +
tm+i+2 − u

m
N ′

m,i+1(u)

)

(3.2)

(i = −m,−m+ 1, . . . , n− 2),

mNm,n−1(u) + (tn−1 − u)N ′

m,n−1(u) = 0. (3.3)

Proof. Equations (3.1) and (3.3) follow easily from equations (1.8) and (1.10), respectively.
The relation (3.2) follows directly from taking the expression for Nm+1,i from Eq. (1.8) and
differentiating it, then equating it with the expression for N ′

m+1,i given in Eq. (1.10).

Theorem 3.1 can be used to find a recurrence relation satisfied by the adjusted Bernstein-
Bézier coefficients of B-spline functions of the same degree, as will be shown in the next
section.

4. Recurrence relations for B-spline functions’ coefficients in adjusted Bernstein-

Bézier basis

Assume that that the knot sequence is clamped, i.e.,

t−m = t−m+1 = . . . = t0 < t1 < . . . < tn = tn+1 = . . . = tn+m

(cf. (1.11)).

8



For each knot span [tj , tj+1) (j = 0, 1, . . . , n− 1), one needs to find the coefficients of Nmi

(i = j −m, j −m+ 1, . . . , j) in the following adjusted Bernstein-Bézier basis form:

Nmi(u) =
m∑

k=0

b
(i,j)
k Bm

k (t) (tj ≤ u < tj+1),

where b
(i,j)
k ≡ b

(i,j)
k,m and

t ≡ t(j)(u) :=
u− tj

tj+1 − tj
(4.1)

(cf. Eq. (2.1) and Problem 2.1). Additionally, then, u = (tj+1 − tj)t+ tj.
Certainly, Nmi(u) ≡ 0 if u < ti or u > tm+i+1, which means that for a given knot

span [tj, tj+1), one only needs to find the coefficients of Nm,j−m, Nm,j−m+1, . . . , Nmj , as all
coefficients of other B-spline functions over this knot span are identical to zero. Thus, in each
of n knot spans, there are m+ 1 non-zero B-spline functions, each with m+ 1 coefficients.

Solving Problem 2.1 requires computing n(m + 1)2 coefficients b
(i,j)
k . In this section, it

will be shown how to do it in O(nm2) time — proportionally to the number of coefficients.
Theorem 3.1 serves as a foundation of the presented approach. More precisely, the theorem

will be used to construct recurrence relations for the coefficients b
(i,j)
k which allow solving

Problem 2.1 efficiently.
The results for particular cases will be presented in stages. In §4.1, explicit expressions

for the coefficients of Nmj and Nm,j−m over [tj, tj+1) (j = 0, 1, . . . , n− 1) will be found. This
will, in particular, cover the only non-trivial knot span for Nm,n−1. In §4.2, Eq. (3.2) will be
applied to find the coefficients of Nmi for j = n−1, n−2, . . . , 0 and i = j−1, j−2, . . . , j−m+1.

Remark 4.1. In the sequel, it will be assumed that u ∈ [tj, tj+1). Thus, t ∈ [0, 1) (cf. (4.1)).

4.1. Stage 1

For j = 0, 1, . . . , n− 1, one can use Eq. (1.8) for i = j, along with the fact that Nℓ,j+1 ≡ 0
over [tj, tj+1) (ℓ = m− 1,m− 2, . . . , 0), to find that

Nmj(u) =
(u− tj)

m

∏m
k=1(tj+k − tj)

N0j(u) =
(tj+1 − tj)

m−1

∏m
k=2(tj+k − tj)

Bm
m(t) (u ∈ [tj , tj+1)).

It means that 





b
(j,j)
k = 0 (k = 0, 1, . . . ,m− 1),

b
(j,j)
m =

(tj+1 − tj)
m−1

∏m
k=2(tj+k − tj)

,
(4.2)

where 0 ≤ j ≤ n− 1.
Using the same approach for Nm,j−m over [tj, tj+1) gives

Nm,j−m(u) =
(tj+1 − tj)

m−1

∏m
k=2(tj+1 − tj+1−k)

Bm
0 (t) (u ∈ [tj , tj+1)).

The coefficients b
(j−m,j)
k (k = 0, 1, . . . ,m) are thus given by the following formula:







b
(j−m,j)
0 =

(tj+1 − tj)
m−1

∏m
k=2(tj+1 − tj+1−k)

,

b
(j−m,j)
k = 0 (k = 1, 2, . . . ,m),

(4.3)

9



where 0 ≤ j ≤ n− 1. The adjusted Bernstein-Bézier coefficients of Nmj and Nm,j−m over the
knot span [tj , tj+1) (cf. Eq. (2.1)) have been found for j = 0, 1, . . . , n− 1.
In the sequel, the following observation will be of use.

Remark 4.2. Note that

Nm,n−1(tn) =
(tn − tn−1)

m−1

∏m−1
k=1 (tn+k − tn−1)

Bm
m(1) = 1,

since tn = tn+1 = . . . = tn+m. The B-spline functions have the partition of unity property
and are non-negative (cf. Theorem 1.7), it is thus clear that

Nmi(tn) = 0 (i = −m,−m+ 1, . . . , n− 2).

Similarly,

Nm,−m(t0) =
(t1 − t0)

m

∏m
k=1(t1 − t1−k)

Bm
0 (0) = 1,

since t−m = t−m+1 = . . . = t0. It follows that Nmi(t0) = 0 for i = −m+ 1,−m+ 2, . . . , 0.

4.2. Stage 2

To compute the coefficients of all functions Nmi over knot spans [tj, tj+1) such that j =
n − 1, n − 2, . . . , 0 and i = j − 1, j − 2, . . . , j −m + 1, Eq. (3.2) will be used. The following
identity will be useful when operating on Eq. (3.2):

(

Nmi(u)
)
′

=
dNmi(u)

du
=

m∑

k=0

b
(i,j)
k

dBm
k (t)

dt
·
dt

du
= (tj+1 − tj)

−1
m∑

k=0

b
(i,j)
k

(

Bm
k (t)

)
′

, (4.4)

with u ∈ [tj , tj+1) (cf. (4.1)).
Let

vi ≡ vmi :=
tm+i+1 − ti
tm+i+2 − ti+1

. (4.5)

Substituting the adjusted Bernstein-Bézier forms of Nmi and Nm,i+1 in the knot span
[tj , tj+1) and applying Eq. (4.4) into Eq. (3.2) gives

m∑

k=0

b
(i,j)
k Bm

k (t) +
( ti − tj
m(tj+1 − tj)

−
t

m

) m∑

k=0

b
(i,j)
k (Bm

k (t))′ =

= vi

(
m∑

k=0

b
(i+1,j)
k Bm

k (t) +
( tm+i+2 − tj
m(tj+1 − tj)

−
t

m

) m∑

k=0

b
(i+1,j)
k (Bm

k (t))′

)

.

After using identities (1.6) and (1.5) and doing some algebra, one gets

m∑

k=0

(

lkib
(i,j)
k−1 + dkib

(i,j)
k + ukib

(i,j)
k+1

)

Bm
k (t) =

= vi

m∑

k=0

(

lk,m+i+2b
(i+1,j)
k−1 + dk,m+i+2b

(i+1,j)
k + uk,m+i+2b

(i+1,j)
k+1

)

Bm
k (t),

10



where

lkr := k(tj+1 − tr), dkr := (m− k)(tj+1 − tr) + k(tr − tj), ukr := (m− k)(tr − tj).

Matching the coefficients of Bernstein polynomials on both sides gives a system of m + 1
equations of the form:







(tj+1 − ti)b
(i,j)
0 + (ti − tj)b

(i,j)
1 = vi

(

(tj+1 − tm+i+2)b
(i+1,j)
0 + (tm+i+2 − tj)b

(i+1,j)
1

)

,

lkib
(i,j)
k−1 + dkib

(i,j)
k + ukib

(i,j)
k+1 = vi

(

lk,m+i+2b
(i+1,j)
k−1 + dk,m+i+2b

(i+1,j)
k + uk,m+i+2b

(i+1,j)
k+1

)

(k = 1, 2, . . . ,m− 1),

(tj+1 − ti)b
(i,j)
m−1 + (ti − tj)b

(i,j)
m = vi

(

(tj+1 − tm+i+2)b
(i+1,j)
m−1 + (tm+i+2 − tj)b

(i+1,j)
m

)

.

(4.6)

Theorem 4.3. For j = 0, 1, . . . , n− 1 and i = j − 1, j − 2, . . . , j −m+ 1, assuming that the

coefficients b
(i+1,j)
k (0 ≤ k ≤ m) are known, the values b

(i,j)
0 , b

(i,j)
1 , . . . , b

(i,j)
m satisfy a first-order

non-homogeneous recurrence relation

(tj+1 − ti)b
(i,j)
k + (ti − tj)b

(i,j)
k+1 = A(m, i, j, k) (k = 0, 1, . . . ,m− 1), (4.7)

where
A(m, i, j, k) := vi

(

(tj+1 − tm+i+2)b
(i+1,j)
k + (tm+i+2 − tj)b

(i+1,j)
k+1

)

(cf. (4.5)).

Proof. Base case (k = 0 and k = m): the relation holds and is presented in the first and the
last equations of the system (4.6).
Induction step (k → k + 1): the (k + 2)th equation in the system (4.6) is

lk+1,ib
(i,j)
k + dk+1,ib

(i,j)
k+1 + uk+1,ib

(i,j)
k+2 =

= vi

(

lk+1,m+i+2b
(i+1,j)
k + dk+1,m+i+2b

(i+1,j)
k+1 + uk+1,m+i+2b

(i+1,j)
k+2

)

.

Subtracting sidewise the induction assumption scaled by
lk+1,i

(tj+1 − ti)
= k+1 gives, after some

algebra,

(tj+1 − ti)b
(i,j)
k+1 + (ti − tj)b

(i,j)
k+2 = vi

(

(tj+1 − tm+i+2)b
(i+1,j)
k+1 + (tm+i+2 − tj)b

(i+1,j)
k+2

)

,

which concludes the proof.

From Theorem 4.3, it follows that there are m independent equations in the system (4.6),
as one of them is redundant. One thus needs an initial value to find the values of all
b
(i,j)
0 , b

(i,j)
1 , . . . , b

(i,j)
m using the recurrence relation (4.7).

If j = n− 1, Remark 4.2 can be used to find that

Nmi(tn) = b(i,n−1)
m = 0 (i = n− 2, n − 3, . . . , n−m).

11



In this case, the recurrence relation given in Theorem 4.3 simplifies to

(tn − ti)b
(i,n−1)
k = (tn−1 − ti)b

(i,n−1)
k+1 + vi(tn − tn−1)b

(i+1,n−1)
k+1 .

It means that, for i = n− 2, n − 3, . . . , n−m, the following relation holds:






b
(i,n−1)
m = 0,

b
(i,n−1)
k =

tn−1 − ti
tn − ti

b
(i,n−1)
k+1 +

tn − tn−1

tn − ti+1
b
(i+1,n−1)
k+1 (k = m− 1,m− 2, . . . , 0).

(4.8)

For i = n − 2, n − 3, . . . , n −m, assuming that the coefficients b
(i+1,n−1)
k are known (k =

1, 2, . . . ,m), Eq. (4.8) has an explicit solution







b
(i,n−1)
m = 0,

b
(i,n−1)
k =

tn − tn−1

tn − ti+1

m−k−1∑

ℓ=0

(tn−1 − ti
tn − ti

)ℓ

b
(i+1,n−1)
k+1+ℓ (k = 0, 1, . . . ,m− 1).

(4.9)

To find the initial value, if j < n−1 and i = j−1, j−2, . . . , j−m+1, the right continuity
condition will be used, i.e.,

Nmi(t
−

j+1) = Nmi(t
+
j+1).

More precisely,

Nmi(t
−

j+1) =

m∑

k=0

b
(i,j)
k Bm

k (1) = b(i,j)m

and

Nmi(t
+
j+1) =

m∑

k=0

b
(i,j+1)
k Bm

k (0) = b
(i,j+1)
0 ,

which gives the relation

b(i,j)m = b
(i,j+1)
0 . (4.10)

This completes the recurrence scheme for j = n−2, n−3, . . . , 0 and i = j−1, j−2, . . . , j−
m+ 1:







b
(i,j)
m = b

(i,j+1)
0 ,

b
(i,j)
k =

tj − ti
tj+1 − ti

b
(i,j)
k+1 +

vi
tj+1 − ti

(

(tj+1 − tm+i+2)b
(i+1,j)
k + (tm+i+2 − tj)b

(i+1,j)
k+1

)

(k = m− 1,m− 2, . . . , 0).
(4.11)

From Eq. (4.11) follows an explicit formula for the coefficients b
(i,j)
k (0 ≤ k ≤ m), assuming

that the coefficients b
(i,j+1)
0 and b

(i+1,j)
k (k = 0, 1, . . . ,m) are known:

b
(i,j)
k =

( tj − ti
tj+1 − ti

)m−k

b
(i,j+1)
0 +

m−k−1∑

ℓ=0

( tj − ti
tj+1 − ti

)ℓ vi
tj+1 − ti

qk+ℓ, (4.12)

where
qℓ := (tj+1 − tm+i+2)b

(i+1,j)
ℓ + (tm+i+2 − tj)b

(i+1,j)
ℓ+1 ,

and 0 ≤ j ≤ n− 2, j −m+ 1 ≤ i ≤ j − 1.
The coefficients of Nmi have been found for j = 0, 1, . . . , n− 1 and i = j− 1, j− 2, . . . , j−

m+ 1.

12



4.3. Recurrence scheme and implementation

The results presented in §4.1 and §4.2 can be combined to prove the following theorem.

Theorem 4.4. Let us assume that

t−m = t−m+1 = . . . = t0 < t1 < . . . < tn−1 < tn = tn+1 = . . . = tn+m

(cf. (1.11)). The n(m+ 1)2 adjusted Bernstein-Bézier coefficients b
(i,j)
k of the B-spline func-

tions Nmi over each knot span [tj , tj+1) (cf. (2.1)), for j = 0, 1, . . . , n− 1, i = j −m, j −m+
1, . . . , j and k = 0, 1, . . . ,m, can be computed in the computational complexity O(nm2) in the
following way:

1. For j = 0, 1, . . . , n − 1 and k = 0, 1, . . . ,m, the coefficients b
(j,j)
k and b

(j−m,j)
k are given

explicitly in equations (4.2) and (4.3), respectively.

2. For j = n − 1, i = n − 2, n − 3, . . . , n − m and k = m,m − 1, . . . , 0, the coefficients

b
(i,n−1)
k (k = 0, 1, . . . ,m) are computed by the recurrence relation (4.8) (for their explicit
forms, see (4.9)).

3. For j = n− 2, n− 3, . . . , 0, i = j − 1, j − 2, . . . , j −m+ 1 and k = m,m− 1, . . . , 0, the

coefficients b
(i,j)
k are computed by the recurrence relation (4.11) (for their explicit forms,

see (4.12)).

Example 4.5. Let us set m := 3, n := 5. Let the knots be

t−3 t−2 t−1 t0 t1 t2 t3 t4 t5 t6 t7 t8
0 0 0 0 3 5 6 9 10 10 10 10

.

Figure 4.1 illustrates the approach to computing all necessary adjusted Bernstein-Bézier co-
efficients of B-spline functions, given in Theorem 4.4. Arrows denote recursive dependence.
Diagonally striped squares are computed using Eq. (4.2). Horizontally striped squares are
computed using Eq. (4.3). White squares are computed using either the recurrence (4.8) (for
u ∈ [t4, t5)) or (4.11) (for u < t4).

4.3.1. Implementation

Algorithm 4.1 implements the approach proposed in Theorem 4.4. This algorithm returns
a sparse array B ≡ B[0..n − 1,−m..n− 1, 0..m], where

B[j, i, k] = b
(i,j)
k (0 ≤ j < n, −m ≤ i < n, 0 ≤ k ≤ m)

(cf. (2.1)).
For each of the n knot spans, one has to compute the coefficients of m + 1 functions

(n(m + 1)2 coefficients in total). Computing all coefficients of one B-spline function in a
given knot span requires O(m) operations. In total, then, the complexity of Algorithm 4.1 is
O(nm2) — giving the optimal O(1) time per coefficient.

13



N3,−3(u)

N3,−2(u)

N3,−1(u)

N3,0(u)

N3,1(u)

N3,2(u)

N3,3(u)

N3,4(u)

0 0 0 0 3 5 6 9 10 10 10 10

t−3 t−2 t−1 t1 t2 t3 t4 t6 t7 t8t0 t5

N3,2(10) = 0

N3,3(10) = 0

Figure 4.1: An illustration of Example 4.5.

5. Applications

5.1. Fast computation of multiple points on multiple B-spline curves

Let u ∈ [tj , tj+1) and t :=
u− tj

tj+1 − tj
. By solving Problem 2.1, the Bernstein-Bézier

coefficients of the B-spline functions are found. A point on a B-spline curve (2.4) can thus be
expressed as

S(u) =

j
∑

i=j−m

( m∑

k=0

b
(i,j)
k Bm

k (t)
)

Wi.

The inner sums

pi(u) :=

m∑

k=0

b
(i,j)
k Bm

k (t) ≡ Nmi(u) (i = j −m, j −m+ 1, . . . , j) (5.1)

can be treated as polynomial Bézier curves with control points b
(i,j)
k ∈ E

1 and thus can be
computed using the geometric algorithm given in [29] in total time O(m2) — more precisely,

O(m) per each of m+1 sums. It also means that — when all the coefficients b
(i,j)
k are already

known — any B-spline function may be computed in linear time with respect to its degree.

Example 5.1. A comparison of the new method of evaluating B-spline functions and us-
ing recurrence relation (1.8) has been done. The results have been obtained on a computer
with Intel Core i5-6300U CPU at 2.40GHz processor and 4GB RAM, using GNU C Compiler
11.2.0 (single precision).
For each n ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}, and m = 3, 4, . . . , 15, a sequence of knots

has been generated 100 times. The knot span lengths tj+1 − tj ∈ [1/50, 1] (j = 0, 1, . . . , n −

14



Algorithm 4.1 Computing the coefficients of the adjusted Bernstein-Bézier form of the B-
spline functions

1: procedure BSplineBBF(n,m, [t−m, t−m+1, . . . , tn+m])
2: B ← SparseArray[0..n-1, -m..n-1, 0..m](fill=0)
3: for j ← 0, n− 1 do

4: B[j, j,m]←
(tj+1 − tj)

m−1

∏m
k=2(tj+k − tj)

5: B[j, j −m, 0]←
(tj+1 − tj)

m−1

∏m
k=2(tj+1 − tj+1−k)

6: end for

7: for i← n− 2, n −m do
8: for k ← m− 1, 0 do

9: B[n− 1, i, k]←
tn−1 − ti
tn − ti

·B[n− 1, i, k + 1] +
tn − tn−1

tn − ti+1
· B[n− 1, i + 1, k + 1]

10: end for

11: end for

12: for j ← n− 2, 0 do
13: for i← j − 1, j −m+ 1 do

14: v ←
tm+i+1 − ti
tm+i+2 − ti+1

15: B[j, i,m]← B[j + 1, i, 0]
16: for k = m− 1, 0 do

17: B[j, i, k] ←
tj − ti
tj+1 − ti

· B[j, i, k + 1] +
v

tj+1 − ti
·
(

(tj+1 − tm+i+2) · B[j, i +

1, k] + (tm+i+2 − tj) ·B[j, i + 1, k + 1]
)

18: end for

19: end for

20: end for

21: return B
22: end procedure

1; t0 = 0) have been generated using the rand() C function. The boundary knots are coinci-
dent. Then, 50 ·n+1 points such that tjℓ := tj + ℓ/50× (tj+1− tj) for j = 0, 1, . . . , n− 1 and
ℓ = 0, 1, . . . , 49, with the remaining point being tn0 ≡ tn, are generated.
At each point tjℓ ∈ [tj , tj+1), all m+1 B-spline functions Nmi (i = j−m, j−m+1, . . . , j)

which do not vanish at tjℓ are evaluated using both algorithms. Due to the size of the table, the
resulting running times are available at https: // www. ii. uni.wroc. pl/ ~pwo/programs/BSpline-BF-Example-5-1.xlsx .
The new method consistently performs faster than evaluating B-spline functions using re-

currence relation (1.8). The new method reduced the running time for any dataset by 29–46%,
while the total running time was reduced by 45%. The source code in C which was used to per-
form the tests is available at https: // www.ii. uni. wroc. pl/~pwo/ programs/BSpline-BF.c .

Note that the sums pi (cf. (5.1)) do not depend on the control points. Afterwards, com-
puting a convex combination of m+ 1 points from E

d, i.e.,

S(u) =

j
∑

i=j−m

pi(u)Wi (u ∈ [tj, tj+1)),

15

https://www.ii.uni.wroc.pl/~pwo/programs/BSpline-BF-Example-5-1.xlsx
https://www.ii.uni.wroc.pl/~pwo/programs/BSpline-BF.c


requires O(md) arithmetic operations. Observe that these values may also be computed
using the geometric method proposed in [29, Algorithm 1.1]. In total, then, assuming that
the Bernstein-Bézier coefficients of the B-spline functions over each knot span [tj , tj+1) (j =
0, 1, . . . , n−1) are known, O(m(m+d)) arithmetic operations are required to compute a point
S(u) (u ∈ [tj , tj+1)) on a B-spline curve.
When it is required to compute the values of S for many parameters u0, u1, . . . , uN , one

would have to perform O(nm2) arithmetic operations to find the Bernstein-Bézier coefficients
of the B-spline functions over each knot span and then do O(m(m + d)) operations for each
of N + 1 points that are to be computed. In total, the computational complexity of this
approach is O(nm2 +Nm(m+ d)).
Due to the fact that the sums pi (cf. (5.1)) do not depend on the control points, they can

be used for computing a point on multiple B-spline curves, all of degree m, with the same
knots.

Problem 5.2. For M B-spline curves S0,S1, . . . ,SM−1 with the knots

t−m = t−m+1 = . . . = t0 < t1 < . . . < tn = tn+1 = . . . = tn+m.

and the control points of Sk being

Wk,−m,Wk,−m+1, . . . ,Wk,n−1 ∈ E
d (k = 0, 1, . . . ,M − 1),

compute the value of each of the B-spline curves Sk at points u0, u1, . . . , uN−1 such that
t0 ≤ uk ≤ tn for all k = 0, 1, . . . , N − 1. More precisely, for k = 0, 1, . . . ,M − 1 and
ℓ = 0, 1, . . . , N − 1, compute all the points Sk(uℓ).

One can efficiently solve Problem 5.2 in the following way. Using Algorithm 4.1 allows to
compute all the adjusted Bernstein-Bézier coefficients of B-spline functions (cf. Problem 2.1)
in O(nm2) time. Now, one needs to compute the values

pi(uℓ) (ℓ = 0, 1, . . . , N − 1, uℓ ∈ [tj, tj+1), i = j −m, j −m+ 1, . . . , j)

(cf. (5.1)), which takes O(Nm2) time. Using these values, computing

Sk(uℓ) =

j
∑

i=j−m

pi(uℓ)Wki (ℓ = 0, 1, . . . , N − 1, k = 0, 1, . . . ,M − 1, uℓ ∈ [tj, tj+1))

takes O(MNmd) time (see [29]). In total, then, the complexity of this approach is O(nm2 +
Nm2 + NMmd), compared to the complexity of using the de Boor-Cox algorithm to solve
Problem 5.2, i.e., O(NMm2d).
Using the recurrence relation (1.8) (see [14, p. 55–57]) to evaluate the B-spline basis func-

tions in O(Nm2) and then compute the linear combinations of control points in O(NMmd)
time gives a total complexity of O(Nm2 + NMmd). While this may appear similar to the
complexity of the new method, a closer examination of the number of floating-point opera-
tions shows that the new method has O(Nm) divisions, compared to O(Nm2) in the approach
based on the relation (1.8). In practice, this saves O(Nm2) divisions (see Table 5.2).
A comparison of running times is given in Example 5.3. The new algorithm is compared

to executing the de Boor-Cox algorithm and to an alternative way of computing the B-spline
functions based on the recurrence relation (1.8) (see [14, p. 55–57]) and then evaluating the
point in the same way as in the new method.

16



Example 5.3. Table 5.1 shows the comparison between the running times of the de Boor-Cox
algorithm, an algorithm which computes the values of B-spline function using the recurrence
relation (1.8) and then computes the points, and the new method described above and using
Algorithm 4.1.
The results have been obtained on a computer with Intel Core i5-6300U CPU at 2.40GHz

processor and 4GB RAM, using GNU C Compiler 11.2.0 (single precision).
The following numerical experiments have been conducted. For fixed n = 20 and d = 2, for

each M ∈ {1, 5, 10, 20, 50, 100} and m ∈ {3, 5, 7, 9, 11}, a sequence of knots and control points
has been generated 100 times. The control points Wki ∈ [−1, 1]d (i = −m,−m + 1, . . . , n −
1, k = 0, 1, . . . ,M−1) and the knot span lengths tj+1− tj ∈ [1/50, 1] (j = 0, 1, . . . , n−1; t0 =
0) have been generated using the rand() C function. The boundary knots are coincident. Each
algorithm is then tested using the same knots and control points. Each curve is evaluated at
1001 points which are tj + ℓ/50× (tj+1 − tj) for j = 0, 1, . . . , n− 1 and ℓ = 0, 1, . . . , 49, with
the remaining point being tn. Table 5.1 shows the total running time of all 100 × 1001 ×M
curve evaluations for each method.
On average, the method eval splines had 7.52, while new method had 7.24 common

digits with the result of the numerically stable de Boor-Cox algorithm in single precision (8
digits) computations.

Example 5.4. An experiment similar to Example 5.3, with a wider choice of parameters,
has been performed. The results have been obtained on the same computer, software, and
precision. More precisely, for each d ∈ {1, 2, 3}, n ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}, M ∈
{1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 50, 100} and m = 3, 4, . . . , 15, a sequence of knots and control
points has been generated 100 times. The control points Wki ∈ [−1, 1]d (i = −m,−m +
1, . . . , n−1, k = 0, 1, . . . ,M−1) and the knot span lengths tj+1−tj ∈ [1/50, 1] (j = 0, 1, . . . , n−
1; t0 = 0) have been generated using the rand() C function. The boundary knots are coinci-
dent. Each algorithm is then tested using the same knots and control points. Each curve is
evaluated at 50 · n+ 1 points which are tj + ℓ/50× (tj+1 − tj) for j = 0, 1, . . . , n− 1 and ℓ =
0, 1, . . . , 49, with the remaining point being tn. Due to the size of the table, the resulting run-
ning times are available at https:// www.ii. uni. wroc.pl/ ~pwo/ programs/BSpline-BF-Example-5-4.xlsx .
The results show that the new method is significantly faster than the de Boor-Cox algorithm

except for the case M = 1. While the acceleration with respect to the approach which utilizes
Eq. (1.8) is smaller, it is also consistent, getting lower running time in all the test cases.
Some statistics regarding the experiments are given in Table 5.3.

5.2. Evaluating a tensor product B-spline surface

Let n1, n2,m1,m2 ∈ N. Let

T := (t−m1
, t−m1+1, . . . , tn1+m1

), V := (v−m2
, v−m2+1, . . . , vn2+m2

)

be the knot sequences. For i = −m1,−m1 +1, . . . , n1 − 1 and ℓ = −m2,−m2 +1, . . . , n2 − 1,
let Nm1,i(u;T ) be a B-spline function of degreem1 with the knot sequence T , and Nm2,ℓ(w;V )
be a B-spline function of degree m2 with the knot sequence V . The tensor product B-spline
surface S with control points Wiℓ ∈ E

d is given by the following formula:

S(u,w) :=

n1−1∑

i=−m1

n2−1∑

ℓ=−m2

WiℓNm1,i(u;T )Nm2,ℓ(w;V ), (5.2)

17

https://www.ii.uni.wroc.pl/~pwo/programs/BSpline-BF-Example-5-4.xlsx


M m de Boor-Cox eval splines new method

1 3 0.017 0.027 0.019

1 5 0.033 0.046 0.030

1 7 0.056 0.073 0.046

1 9 0.090 0.110 0.067

1 11 0.129 0.151 0.089

5 3 0.076 0.045 0.038

5 5 0.161 0.077 0.061

5 7 0.281 0.116 0.086

5 9 0.445 0.161 0.115

5 11 0.643 0.212 0.147

10 3 0.151 0.078 0.065

10 5 0.323 0.116 0.097

10 7 0.562 0.167 0.135

10 9 0.890 0.224 0.174

10 11 1.285 0.287 0.218

20 3 0.302 0.142 0.115

20 5 0.645 0.194 0.171

20 7 1.126 0.276 0.231

20 9 1.775 0.350 0.293

20 11 2.568 0.438 0.358

50 3 0.754 0.333 0.267

50 5 1.612 0.428 0.391

50 7 2.810 0.579 0.517

50 9 4.450 0.729 0.648

50 11 6.423 0.889 0.781

100 3 1.510 0.655 0.524

100 5 3.225 0.822 0.760

100 7 5.622 1.099 1.001

100 9 8.900 1.369 1.247

100 11 12.840 1.652 1.494

Table 5.1: Running times comparison (in seconds) for Example 5.3. The source code in C which was used to
perform the tests is available at https://www.ii.uni.wroc.pl/~pwo/programs/BSpline-BF.c.

with (u,w) ∈ D ≡ [t0, tn1
]× [v0, vn2

].
Let (u,w) ∈ [tj1 , tj1+1) × [vj2 , vj2+1) for 0 ≤ j1 < n1 and 0 ≤ j2 < n2. Then, Eq. (5.2)

simplifies to

S(u,w) =

j1∑

i=j1−m1

j2−1
∑

ℓ=j2−m2

WiℓNm1,i(u;T )Nm2,ℓ(w;V ). (5.3)

18

https://www.ii.uni.wroc.pl/~pwo/programs/BSpline-BF.c


operation type new method

+ (m− 1)m(2n− 1) +N(m+ 2)m+NM(m+ 1)d

− 2(m− 1)(4n− 1) + n+N((m+ 1)m+ 3)

∗ 2(m− 1)m(2n− 1) + 2N(m+ 2)m+NM(m+ 1)d

/ 2(m− 1)(3n− 1) +N(m+ 2)

(·)m−1 n

Table 5.2: The number of floating-point operations performed by the new method.

Algorithm Total running time [s] Relative to new method

de Boor-Cox 13993.58 6.80

eval splines 2482.96 1.21

new method 2058.95 —

Algorithm New method win % Max time rel.
to new method

Min time rel.
to new method

de Boor-Cox 97.01% 11.686 0.664

eval splines 100.00% 1.877 1.056

Table 5.3: Statistics for Example 5.4. The source code in C which was used to perform the tests is available
at https://www.ii.uni.wroc.pl/~pwo/programs/BSpline-BF.c.

If one needs to evaluate the B-spline surface S at N1 ·N2 points

{(ui, wj) : 0 ≤ i < N1 ∧ 0 ≤ j < N2} ⊂ D,

a similar approach to the one shown for B-spline curves can be used, i.e.,

1. For all non-empty knot spans, find the Bernstein-Bézier coefficients of the B-spline basis
functions in both dimensions — O(n1m

2
1 + n2m

2
2) operations.

2. For each ui (0 ≤ i < N1), evaluate Nm1,ℓ(ui;T ) for such ℓ that the corresponding B-
spline basis functions do not vanish. For each wi (0 ≤ i < N2), evaluate Nm2,ℓ(wi;V )
for such ℓ that the corresponding B-spline basis functions do not vanish. The evaluation
can be done using the algorithm given in [29]. In total, this requires O(N1m

2
1 +N2m

2
2)

operations.

3. For each (u,w) ∈ {(ui, wj) : 0 ≤ i < N1 ∧ 0 ≤ j < N2}, evaluate S(u,w) —
O(N1N2m1m2d) operations.

In total, this procedure requires O((N1 + n1)m
2
1 + (N2 + n2)m

2
2 +N1N2m1m2d) operations.

Example 5.5. Table 5.4 shows the comparison between the running times of the evaluation
of points ona a tensor product B-spline surface using the de Boor-Cox algorithm and the new
method based of Algorithm 4.1.
The results have been obtained on a computer with Intel Core i5-6300U CPU at 2.40GHz

processor and 4GB RAM, using GNU C Compiler 11.2.0 (single precision).

19

https://www.ii.uni.wroc.pl/~pwo/programs/BSpline-BF.c


The following numerical experiments have been conducted. For d = 3 and n1 ∈ {10, 30, 50},
n2 = n1, m1 ∈ {3, 5, 7, 9}, m2 ∈ {m1−2,m1}, sequences of knots T, V and control points have
been generated 10 times. The control points Wiℓ ∈ [−1, 1]3 (i = −m1,−m1+1, . . . , n1−1, ℓ =
−m2,−m2+1, . . . , n2−1) and the knot span lengths tj1+1− tj1 ∈ [1/50, 1] (j1 = 0, 1, . . . , n1−
1; t0 = 0), vj2+1− vj2 ∈ [1/50, 1] (j2 = 0, 1, . . . , n2− 1; v0 = 0) have been generated using the
rand() C function. The boundary knots are coincident. Each algorithm is then tested using
the same knots and control points. Each non-empty knot span in T and V has been sampled
50 times, with uniform distances between samples. Table 5.4 shows the total running time of
all 10 · (50n1 + 1) · (50n2 + 1) surface evaluations for each method.
Numerical tests show that the new method has, on average, between 7.19 (for n1 = n2 = 50)

and 7.27 (for n1 = n2 = 10) common digits with the result of the numerically stable de Boor-
Cox algorithm in single precision (8 digits) computations.
Table 5.5 shows some statistics for the experiment.

n1 = n2 m1 m2 de Boor-Cox new method

10 3 1 1.185 0.477

10 3 3 2.610 0.879

10 5 3 4.224 1.344

10 5 5 7.766 1.958

10 7 5 10.796 2.592

10 7 7 17.385 3.657

10 9 7 22.301 4.568

10 9 9 32.807 5.362

30 3 1 10.528 4.288

30 3 3 23.451 8.010

30 5 3 38.009 12.190

30 5 5 69.644 17.699

30 7 5 96.775 23.408

30 7 7 155.907 32.924

30 9 7 200.379 41.209

30 9 9 294.417 48.231

50 3 1 29.060 11.898

50 3 3 65.101 22.325

50 5 3 105.349 33.948

50 5 5 193.328 49.205

50 7 5 268.871 65.005

50 7 7 432.882 91.607

50 9 7 554.807 114.142

50 9 9 817.361 134.059

Table 5.4: Running times comparison (in seconds) for Example 5.5. The source code in C which was used to
perform the tests is available at https://www.ii.uni.wroc.pl/~pwo/programs/BSpline-BF-Surf.c.

20

https://www.ii.uni.wroc.pl/~pwo/programs/BSpline-BF-Surf.c


Algorithm Total running time [s] Ratio Max ratio Min ratio

de Boor-Cox 3454.94 4.73 6.12 2.44

new method 730.98 — — —

Table 5.5: Statistics for Example 5.5. The source code in C which was used to perform the tests is available
at https://www.ii.uni.wroc.pl/~pwo/programs/BSpline-BF-Surf.c.

Additionally, note that if the Bernstein-Bézier coefficients of the B-spline basis functions
Nm1,i(u;T ), Nm2,ℓ(w;V ) are known (in the intervals [tj1 , tj1+1) and [vj2 , vj2+1), respectiely),
i.e.,

Nm1,i(u;T ) =

m1∑

k=0

b
(i,j1)
k Bm1

k (t) (u ∈ [tj1 , tj1+1))

and

Nm2,ℓ(w;V ) =

m2∑

k=0

d
(ℓ,j2)
k Bm2

k (v) (w ∈ [vj2 , vj2+1)),

where

t :=
u− tj1

tj1+1 − tj1
, v :=

w − vj2
vj2+1 − vj2

,

one can convert the tensor product B-spline patch to a tensor product Bézier surface:

S(u,w) =

m1∑

k1=0

m2∑

k2=0

V
(j1,j2)
k1,k2

Bm1

k1
(t)Bm2

k2
(v). (5.4)

The points

V
(j1,j2)
k1,k2

:=

j1∑

i=j1−m1

j2−1
∑

ℓ=j2−m2

b
(i,j1)
k1

d
(ℓ,j2)
k2
Wiℓ

are the control points of a Bézier patch for the domain [tj1 , tj1+1) × [vj2 , vj2+1) (cf. Theo-
rem 2.3).

6. Generalizations

The approach presented in Section 4 can be generalized so that the inner knots may have
their multiplicity higher than 1 or the boundary knots are of multiplicity lower than m+ 1.

6.1. Inner knots of any multiplicity

When an inner knot has multiplicity over 1, some knot spans [tj , tj+1) (j = 0, 1, . . . , n−1)
are empty. It is only necessary to find the B-spline functions’ coefficients over the non-empty
knot spans. If there are ne such knot spans, one only needs to find ne(m+1)2 coefficients, and
the algorithm will have O(nem

2) complexity. To use the continuity condition, the following
definition will be useful.

21

https://www.ii.uni.wroc.pl/~pwo/programs/BSpline-BF-Surf.c


Definition 6.1. The left neighbor of a given knot tk is the knot tℓ if ℓ is the largest natural
number such that tℓ < tk, i.e., [tℓ, tℓ+1) is non-empty and tℓ+1 = tk.
The right neighbor of a given knot tk is the knot tr if r is the smallest natural number

such that tk < tr, i.e., [tr−1, tr) is non-empty and tk = tr−1.

Note that in the case considered in Section 4, the right neighbor of tj (j = 0, 1, . . . , n− 1)
is always tj+1.
From Remark 2.4, it follows that each B-spline function is continuous in (t0, tn). The only

modification then is in the continuity condition in Eq. (4.11). Let us consider a non-empty
knot span [tj , tj+1) (j = 0, 1, . . . , n− 2). Let tr be the right neighbor of tj+1, i.e., tr−1 = tj+1.
In this case, the continuity property at tj+1 is

m∑

k=0

b
(i,j)
k Bm

k

(tj+1 − tj
tj+1 − tj

)

=

m∑

k=0

b
(i,r−1)
k Bm

k

(tj+1 − tr−1

tr − tr−1

)

,

which simplifies to b
(i,j)
m = b

(i,r−1)
0 (cf. Eq. (4.10)). In such case, the recurrence relation (4.11)

takes the form






b
(i,j)
m = b

(i,r−1)
0 ,

b
(i,j)
k =

tj − ti
tj+1 − ti

b
(i,j)
k+1 +

vi
tj+1 − ti

(

(tj+1 − tm+i+2)b
(i+1,j)
k + (tm+i+2 − tj)b

(i+1,j)
k+1

)

(k = m− 1,m− 2, . . . , 0)

(cf. Eq. (4.5)), where tr is the right neighbor of tj+1, and j = n − 2, n − 3, . . . , 0, i =
j − 1, j − 2, . . . , j −m+ 1. It is thus enough to substitute line 15 of Algorithm 4.1 with

B[j, i,m]← B[r − 1, i, 0]

and to skip the iterations of loops over j in lines 3 and 12 if tj = tj+1. Example 6.2 presents
this approach.

Example 6.2. Let us set m := 3, n := 5. Let the knots be

t−3 t−2 t−1 t0 t1 t2 t3 t4 t5 t6 t7 t8
0 0 0 0 3 3 5 9 10 10 10 10

.

The knot t1 is of multiplicity 2. To compute the adjusted Bernstein-Bézier coefficients of the
B-spline functions over [t0, t1) a continuity condition with the knot span [t2, t3) is used, as
t1 = t2. Figure 6.1 illustrates this approach to computing all necessary coefficients, analogous
to Example 4.5.

6.2. Boundary knots of multiplicity lower than m+ 1

First, note that in Section 4, only the assumption that tn = tn+m is used, therefore if that
condition holds, Theorem 4.4 and Algorithm 4.1 still apply, regardless of the multiplicity of
boundary knots t−m, t−m+1, . . . , t0.
If the boundary knot tn has multiplicity lower than m + 1 (i.e., the knot sequence is

unclamped), the problem can be reduced so that it can be solved using Theorem 4.4. Its
drawback, however, is higher complexity.

22



N3,−3(u)

N3,−2(u)

N3,−1(u)

N3,0(u)

N3,1(u)

N3,2(u)

N3,3(u)

N3,4(u)

0 0 0 0 3 3 5 9 10 10 10 10

t−3 t−2 t−1 t1 t2 t3 t4 t6 t7 t8t0 t5

N3,2(10) = 0

N3,3(10) = 0

Figure 6.1: An illustration of Example 6.2.

The idea is to inflate the multiplicity of tn+m up to m+1. More precisely, let tn+m−ℓ−1 <
tn+m−ℓ = tn+m, i.e., tn+m−ℓ has multiplicity ℓ+1. Let them−ℓ new knots tn+m+1 = tn+m+2 =
. . . = tn+2m−ℓ be defined so that tn+m = tn+m+1. This allows to execute Algorithm 4.1 with
the new arguments n1 := n+m− ℓ, m1 := m and the inflated knot sequence

t−m ≤ . . . ≤ t−1 ≤ t0
︸ ︷︷ ︸

boundary knots

≤ t1 < . . . < tn+m−ℓ−1
︸ ︷︷ ︸

inner knots

< tn+m−ℓ = tn+m−ℓ+1 = . . . = tn+2m−ℓ
︸ ︷︷ ︸

boundary knots

.

It remains then to return the coefficients of Nmi over [tj, tj+1) for j = 0, 1, . . . , n − 1 and
i = j −m, j − m + 1, . . . , j. This approach requires the computation of O((n + m − ℓ)m2)
coefficients and is presented in Example 6.3.

Example 6.3. Let us set m := 3, n := 2. Let the knots be

t−3 t−2 t−1 t0 t1 t2 t3 t4 t5
−3 −2 −1 0 1 2 3 4 5

.

After adding the knots t6 = t7 = t8 such that t5 = t8 (thus increasing n by 3), the problem
takes the form

t−3 t−2 t−1 t0 t1 t2 t3 t4 t5 t6 t7 t8
−3 −2 −1 0 1 2 3 4 5 5 5 5

.

Figure 6.2 illustrates the application of Algorithm 4.1 (cf. Example 4.5) computing all the ad-
justed Bernstein-Bézier coefficients of the inflated problem. The coefficients which are relevant
to the solution of the primary problem are in the frame drawn in bold.

23



N3,−3(u)

N3,−2(u)

N3,−1(u)

N3,0(u)

N3,1(u)

N3,2(u)

N3,3(u)

N3,4(u)

−3 −2 −1 0 1 2 3 4 5 5 5 5

t−3 t−2 t−1 t1 t3 t4 t5 t6 t7 t8t0 t2

N3,2(5) = 0

N3,3(5) = 0

Figure 6.2: An illustration of Example 6.3.

7. Special case: uniform knots

In the case of uniform knots, i.e.,

ti := t0 + i · h (h > 0, i = −1,−m+ 1, . . . , n+ n),

one can check that
Nmi([tj , tj+1)) ≡ Nm,i+1([tj+1, tj+2)).

This means that, to solve Problem 2.1, it is enough to find the coefficients of B-spline basis
functions over one knot span.
Let us set j ∈ N such that 0 ≤ j ≤ n− 1. Equation (4.2) takes the form







b
(j,j)
k = 0 (k = 0, 1, . . . ,m− 1),

b
(j,j)
m =

1

m!
,

(7.1)

while Eq. (4.3) simplifies to






b
(j−m,j)
0 =

1

m!
,

b
(j−m,j)
k = 0 (k = 1, 2, . . . ,m).

(7.2)

In order to find the coefficients of the basis functions Nmi for i = j − m + 1, j − m +
2, . . . , j − 1, one can use Theorem 4.3, which gives m equations of the form

(j+1−i)b
(i,j)
k +(i−j)b

(i,j)
k+1 = (j−m−i−1)b

(i+1,j)
k +(m+i+2−j)b

(i+1,j)
k+1 (k = 0, 1, . . . ,m−1).

(7.3)

24



To complete the recurrence scheme, it is enough to use the continuity condition

Nm,i+1(t
−

j+1) = Nm,i+1(t
+
j+1),

which, due to the knot uniformity, can be formulated as

Nm,i+1(t
−

j+1) = Nmi(t
+
j ),

which, eventually, gives

b
(i+1,j)
0 = b(i,j)m .

The complete recurrence scheme is thus, for i = j − 1, j − 2, . . . , j −m+ 1,






b
(i,j)
m = b

(i+1,j)
0 ,

b
(i,j)
k =

j − i

j − i+ 1
b
(i,j)
k+1 +

j − i−m− 1

j − i+ 1
b
(i+1,j)
k +

m+ i+ 2− j

j − i+ 1
b
(i+1,j)
k+1

(k = m− 1,m− 2, . . . , 0).
(7.4)

Note that both the coefficients of B-spline basis functions given in Eqs. (7.1) and (7.2), as
well as the coefficients in the recurrence scheme (7.4) are rational. This means that all the
coefficients of the B-spline basis functions are thus rational and can be computed without
errors. This approach requires O(m2) operations, which is optimal.

8. Conclusion

We have discovered a new differential-recurrence relation satisfied by B-spline functions
of the same degree. The relation is a foundation of a new asymptotically optimal method of
finding the Bernstein-Bézier coefficents of all B-spline basis functions in the clamped case over
all knot spans. The algorithm can be generalized for different knot multiplicities, including
the unclamped case. The new method allows to accelerate the computations of B-spline basis
functions, which leads to faster evaluation of B-spline curves and surfaces. Numerical experi-
ments show that the algorithm is stable. Further research is required to find the application of
the new differential-recurrence relation in finding the Bernstein-Bézier coefficients of B-spline
basis functions over a single knot span.

References

[1] C. V. Beccari, G. Casciola, Matrix representations for multi-degree B-splines, Journal of
Computational and Applied Mathematics 381 (2021) 113007.

[2] C. V. Beccari, G. Casciola, Stable numerical evaluation of multi-degree B-splines, Journal
of Computational and Applied Mathematics 400 (2022) 113743.

[3] P. Bézier, Définition numérique des courbes et surfaces I (in French), Automatisme XI
(1966) 625–632.

[4] P. Bézier, Définition numérique des courbes et surfaces II (in French), Automatisme XII
(1967) 17–21.

[5] P. Bézier, Procédé de définition numérique des courbes et surfaces non mathématiques
(in French), Automatisme XIII (1968) 189–196.

25



[6] W. Boehm, Inserting new knots into B-spline curves, Computer-Aided Design 12 (4)
(1980) 199–201.

[7] W. Boehm, A. Müller, On de Casteljau’s algorithm, Computer Aided Geometric Design
16 (1999) 587–605.

[8] W. Böhm, Über die Konstruktion von B-Spline-Kurven (in German), Computing 18
(1977) 161–166.

[9] F. Chudy, New algorithms for Bernstein polynomials, their dual bases, and B-spline
functions, Ph.D. thesis, University of Wrocław, available on request (2022).

[10] E. Cohen, T. Lyche, R. Riesenfeld, Discrete B-splines and subdivision techniques in
computer-aided geometric design and computer graphics, Computer Graphics and Image
Processing 14 (2) (1980) 87–111.

[11] M. G. Cox, The numerical evaluation of B-splines, IMA Journal of Applied Mathematics
10 (2) (1972) 134–149.

[12] G. Dahlquist, Å. Björck, Numerical methods in scientific computing. Vol. I, SIAM, 2008.

[13] K. R. Davidson, A. P. Donsig, Real Analysis with Real Applications, Prentice Hall, Inc.,
Upper Saddle River, 2002.

[14] C. de Boor, On calculating with B-splines, Journal of Approximation Theory 6 (1) (1972)
50–62.

[15] P. de Casteljau, Courbes et surfaces à pôles (in French), Tech. rep., André Citroën
Automobile SA (1959).

[16] P. de Casteljau, Outillage méthodes calcul (in French), Tech. rep., André Citroën Auto-
mobile SA (1959).

[17] P. de Casteljau, De Casteljau’s autobiography: My time at Citroën, Computer Aided
Geometric Design 16 (1999) 583–586.

[18] P. Dierckx, Curve and Surface Fitting with Splines, Clarendon Press, 1993.

[19] G. Farin, Curves and surfaces for Computer-Aided Geometric Design. A practical guide,
5th ed., Academic Press, Boston, 2002.

[20] R. T. Farouki, The Bernstein polynomial basis: A centennial retrospective, Computer
Aided Geometric Design 29 (2012) 379–419.

[21] R. Goldman, Pyramid Algorithms: A Dynamic Programming Approach to Curves and
Surfaces for Geometric Modeling, Morgan Kaufmann, 2002.

[22] S. Lewanowicz, P. Woźny, Bézier representation of the constrained dual Bernstein poly-
nomials, Applied Mathematics and Computation 218 (2011) 4580–4586.

[23] L. Liu, G. Wang, Explicit matrix representation for NURBS curves and surfaces, Com-
puter Aided Geometric Design 19 (6) (2002) 409–419.

26



[24] L. A. Piegl, W. Tiller, The NURBS Book, Springer, 1996.

[25] H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-Spline Techniques, Springer, 2002.

[26] P. Sablonniére, Spline and Bézier polygons associated with a polynomial spline curve,
Computer-Aided Design 10 (1978) 257–261.

[27] D. Toshniwal, H. Speelers, H. H. Hiemstra, C. Manni, T. J. R. Hughes, Multi-degree
B-splines: Algorithmic computation and properties, Computer Aided Geometric Design
76 (2020) 101792.

[28] P. Woźny, Construction of dual B-spline functions, Journal of Computational and Applied
Mathematics 260 (2014) 301–311.

[29] P. Woźny, F. Chudy, Linear-time geometric algorithm for evaluating Bézier curves, Com-
puter Aided-Design 118 (2020) 102760.

27


	1 Introduction
	2 The Problem: Bernstein-Bézier and power coefficients of B-spline functions
	3 New differential-recurrence relation for B-spline functions
	4 Recurrence relations for B-spline functions' coefficients in adjusted Bernstein-Bézier basis
	4.1 Stage 1
	4.2 Stage 2
	4.3 Recurrence scheme and implementation
	4.3.1 Implementation


	5 Applications
	5.1 Fast computation of multiple points on multiple B-spline curves
	5.2 Evaluating a tensor product B-spline surface

	6 Generalizations
	6.1 Inner knots of any multiplicity
	6.2 Boundary knots of multiplicity lower than m+1

	7 Special case: uniform knots
	8 Conclusion

