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Barcelona Supercomputing Center, 08034 Barcelona, Spain

Abstract

We detail how to use Newton’s method for distortion-based curved r-adaption
to a discrete high-order metric field while matching a target geometry. Specif-
ically, we combine two terms: a distortion measuring the deviation from the
target metric; and a penalty term measuring the deviation from the target
boundary. For this combination, we consider four ingredients. First, to repre-
sent the metric field, we detail a log-Euclidean high-order metric interpolation
on a curved (straight-edged) mesh. Second, for this metric interpolation, we
detail the first and second derivatives in physical coordinates. Third, to rep-
resent the domain boundaries, we propose an implicit representation for 2D
and 3D NURBS models. Fourth, for this implicit representation, we obtain
the first and second derivatives. The derivatives of the metric interpolation
and the implicit representation allow minimizing the objective function with
Newton’s method. For this second-order minimization, the resulting meshes
simultaneously match the curved features of the target metric and bound-
ary. Matching the metric and the geometry using second-order optimization
is an unprecedented capability in curved (straight-edged) r-adaption. This
capability will be critical in global and cavity-based curved (straight-edged)
high-order mesh adaption.
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1. Introduction

The capability to relocate mesh nodes without changing the mesh topol-
ogy, referred to as r-adaptivity, is a key ingredient in many adaptive PDE-
based applications [1, 2, 3]. In these applications, to improve the solution
accuracy, an error indicator or estimator determines the target stretching and
alignment of the mesh. Then, to match these target features, an r-adaption
procedure modifies the whole mesh (global) [4, 5] or a previously re-meshed
cavity (local) [6, 7, 8].

In either case, r-adaptivity contributes to increasing the solution accuracy
for a fixed number of degrees of freedom supported on a straight-edged mesh
[3, 4, 6, 9, 10]. However, straight-edged meshes might not be an efficient
support in many applications. Especially in applications where additional
straight-edged mesh elements are artificially required to match highly curved
solution features [11].

To efficiently match curved solution features, many practitioners have
recently started to exploit curved high-order meshes. These meshes can be
stretched and aligned in a pointwise varying fashion through anisotropic pro-
cedures [12], geodesic approaches for curved edges [13, 14], shock-tracking
methods [15, 16, 17], and deformation analogies [18, 19]. Alternatively, the
curved r-adaption can be driven, as for straight-edged elements [4, 5], by
distortion measures. These measures are defined point-wise and are aware of
either a target deformation matrix [20] or a target metric [21].

In adaptivity applications, the target deformations and metrics are not
known a priori. These target fields are reconstructed a posteriori from the
solution on the last mesh. Specifically, this mesh supports the resulting
discrete representation of the target field. This discrete representation is key
to interpolate the required field values in the adaptive procedure. However,
to also preserve the geometric accuracy, the mesh adaption procedures have
to be devised to simultaneously match the target curved boundaries. Hence,
to enable high-order adaptivity, we need the capability to interpolate target
fields on a high-order mesh while matching a target boundary.

Considering the previous issues, we aim to use Newton’s optimization
for distortion-based curved r-adaption to a discrete high-order metric field
and a geometry model. This work extends our previous work [22]. In this
extension, we also detail how to compatibly combine an optimization based
r-adaption with a valid-to-valid mesh curving approach. To this end, our
contribution is to propose an implicit model representation that measures
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the deviations of the mesh to the target geometry.
For the optimization based r-adaption, we need three existent ingredients.

First, to minimize the distortion, we use the specific-purpose solver in [23, 24].
Second, we represent the metric field as a log-Euclidean high-order metric
interpolation [25] on a curved high-order mesh. Third, we locate physical
points in the curved background mesh similar to the approach in [26]. We
also need to extend to discrete metric fields a distortion-based curved r-
adaption framework [21].

To match the curved boundaries, we also need three existing ingredients.
First, a non-interpolative approach to match the target curved geometry
[27, 28]. Second, an implicit CAD geometry representation method for 2D
NURBS curves and a 3D NURBS surfaces [29] or for embedded NURBS
entities [30] such as 3D curves. Third, a series of conjuction and trimming
operations to assemble the implicit representations of the individual entities
[29, 31].

To compatibly combine the optimization based r-adaption with the mesh
curving, the main novelty is twofold. First, for the non-interpolative mesh
curving approach, we propose a model implicitization [29, 30, 31]. Second, we
also provide the first and second-order derivatives of the implicit representa-
tion of the model. As in [22], we also provide the first and second derivatives
in physical coordinates for the log-Euclidean high-order metric interpolation.
The model implicitation derivatives and the metric interpolation derivatives
are critical to use Newton’s method for distortion minimization while target-
ing a curved geometry. This minimization leads to unprecedented second-
order optimization results for curved r-adaption for a discrete high-order
metric representation on a curved (straight-edged) mesh while targeting a
curved (straight-edged) geometry.

This paper focuses on enabling Newton’s method for r-adaption, but it is
focused neither on r-adaption nor h-adaption cycles. Specifically, we detail
how to optimize the high-order mesh coordinates to match a target metric
and a curved boundary. Then, to verify the methodology and the correspond-
ing derivatives, we optimize initial isotropic and anisotropic straight-edged
meshes. These results do not consider any adaptivity cycles because we want
to demonstrate if Newton’s method can be used.

The rest of the paper is organized as follows. In Section 2, we overview
the related work. In Section 3, we introduce the preliminaries on metric-
aware measures for high-order elements. In Section 4, we detail the high-
order metric interpolation and its derivatives. In Section 5, we propose an
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implicit representation for NURBS models, and we obtain the first and second
derivatives of this representation. Moreover, we detail the objective function
that accounts for the metric and geometry deviations. In Section 6, we
show Newton’s method results for different geometries, meshes, and metrics.
Finally, we present the concluding remarks.

2. Related work

Next, we overview the work related to matching a target discrete field and
a target geometry model. Regarding matching discrete fields, we overview
works on target deformations, target metrics, and discrete field represen-
tations. For matching geometry models, the related work is about non-
interpolative mesh curving, surface fitting methods, and implicit geometry
representations.

To match a deformation matrix, distortion optimization for curved r-
adaption to a discrete target field is detailed in [20]. The method is really
well-suited for simulation-driven r-adaption [26, 32]. It evaluates the distor-
tion in a physical point by interpolating the target matrix on a discrete field.
Although the derivatives of the target matrices are not zero, the method
assumes they are zero. Moreover, the second derivatives are also assumed
to be zero. Since non-null derivatives are assumed to be zero although the
approach implements Newton’s method, the curved r-adaption minimization
corresponds to a quasi-Newton method.

To match a metric, distortion-based curved r-adaption to an analytic field
can be performed with Newton’s minimization [21, 23, 24]. The formulation
for an analytic metric is derived in [21], while a specific-purpose globaliza-
tion and a pre-conditioned Netwon-CG method are proposed in [23, 24] to
minimize the mesh distortion. Since the method deals with an analytic met-
ric, it does not specify the derivatives for a metric represented by a discrete
high-order field.

Regarding a discrete field representation, a convenient approach is to use
a log-Euclidean [33] high-order metric interpolation [25]. This metric interpo-
lation drives a cavity-based adaption approach, where the remeshed cavities
are improved by locally smoothing the curved quadratic edges. To smooth
these edges, the method optimizes the mid-node position. The optimiza-
tion only uses the first derivatives of the log-Euclidean metric interpolation
in terms of the curved edge coordinates. Accordingly, the method does not
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provide the first and second derivatives of the discrete metric field in physical
coordinates.

High-order mesh curving methods that approximate the target geometry
in a non-interpolative manner are presented in [27, 28]. Specifically, a new
methodology to optimize a curved high-order mesh in terms of both element
quality and a distance-based geometric approximation is developed. For this,
a penalty method is proposed to solve the constrained minimization problem.

Previous surface fitting methods based in field interpolation are presented
in [34]. They are specially designed for dynamically changing geometry ac-
cording to a solution. For this, a background mesh is required to interpolate
the solution. Moreover, the resolution of the background mesh determines
the precision of the dynamic geometry. Hence, for CAD models, the back-
ground mesh resolution controls the geometry accuracy.

In contrast to previous methods, implicit CAD geometry representation
methods provide a field for geometric approximation without using a back-
ground mesh [29, 30, 31]. Specifically, one first computes the implicit rep-
resentation of each NURBS entity. This is the case of a 2D NURBS curve
and 3D NURBS surface [29] or a generally embedded NURBS entity [30].
Then, one applies convex-hull conjunction and normalization, convex-hull
trimming, and NURBS conjunction to assemble the representations of the
individual entities [29, 31]. Even if they are not a full representation of the
model they provide a useful tool for representing the model in a entity-wise
fashion.

3. Preliminaries: metric-aware measures for high-order elements

In this section, we review the definition of the Jacobian-based quality
measure for high-order elements equipped with a metric, presented in [21].
To define and compute a Jacobian-based measure for simplices [5], three
elements are required: the master, the ideal, and the physical, see Figure 1 for
the linear triangle case. The master (EM) is the element from which the iso-
parametric mapping is defined. The equilateral element

(
E4
)

represents the
target configuration in the isotropic case. The physical (EP ) is the element
to be measured.

To summarize the results in [21], we present the expression of the metric
distortion measure in terms of the equilateral element E4. First, we need
to compute a mapping from the master to the equilateral and physical ele-
ments, denoted as φ4 and φP , respectively. By means of these mappings,
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Figure 1: Mappings between the master, the ideal, and the physical elements in the linear
case.

we determine a mapping between the equilateral and physical elements by
the composition

φE : E4
φ−1
4−−→ EM φP−−→ EP .

As detailed in [21], we define the point-wise distortion measure for a high-
order element EP equipped with a point-wise metric M, at a point y ∈ E4
as

NφE(y) =
tr
(
DφE(y)T ·M (φE(y)) ·DφE(y)

)
d
(

det
(
DφE(y)T ·M (φE(y)) ·DφE(y)

))1/d
, (1)

where the Jacobian of the map φE is given by

DφE(y) := DφP (φ−1
4 (y)) ·Dφ−1

4 (y).

Herein, DφP and Dφ4 denote the Jacobian of the physical and equilat-
eral transformation, respectively. Specifically, the physical mapping can be
expressed in terms of the d-simplex shape functions Ni, that is

φP (ξ) =
n∑
i=1

Ni(ξ)xi,

where n =
(
d+p
p

)
is the number of nodes, ξ are the master coordinates, and

xi denotes the physical coordinates of the high-order nodes. In addition, the
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equilateral mapping can be expressed in terms of the linear shape functions
Ni, that is

φ4 (ξ) =
d+1∑
i=1

Ni(ξ)yi,

where yi are the coordinates of an equilateral d-simplex.
Note that N is a non-linear operator that transforms a mapping between

the equilateral and physical elements to a mapping from an point to a scalar.
In this work, for operators, we use the standard notation without parentheses.

Note that the distortion measure is independent of the computation of the
metric M (φE(y)), either using an analytical or a discretized representation.

We regularize the determinant in the denominator of Equation (1) in
order to detect inverted elements [35, 36, 37, 38]. In particular, we define

σ0 =
1

2
(σ + |σ|),

where
σ = det (DφE(y))

√
det (M (φE(y))).

Then, we define the point-wise regularized distortion measure of a physical
element EP at a point y ∈ E4 as

N0φE(y) :=
tr(DφE(y)T ·M (φE(y)) ·DφE(y))

dσ
2/d
0

, (2)

where we introduce the sub-script 0 to distinguish the regularized operator
from the non-regularized one. In addition, we define the corresponding point-
wise quality measure

QφE(y) =
1

N0φE(y)
. (3)

Finally, we define the regularized elemental distortion by

η(EP ,M) :=

∫
E4
N0φE(y) dy∫
E4

1 dy
,

and its corresponding quality

q(EP ,M) =
1

η(EP ,M)

. (4)
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We can improve the mesh configuration by means of relocating the nodes
of the mesh according to a given distortion measure [21, 23, 24, 39]. In [21] it
is proposed an optimization of the distortion (quality) of a meshM equipped
with a target metric M that describes the desired alignment and stretching
of the mesh elements. To optimize a given mesh M, first it is defined the
mesh distortion by

F (M) :=
∑

EP∈M

∫
E4

(N0φE(y))2 dy, (5)

which allows to pose the following global minimization problem

M∗ := argminMF (M) , (6)

to improve the mesh configuration according to F . In particular, herein, the
degrees of freedom of the minimization problem in Equation (6) correspond
to the spatial coordinates of the mesh nodes.

To evaluate the distortion minimization formulation presented in Equa-
tion (6), an input metric is required. The reviewed r-adaption procedure has
been applied for analytic metrics in [21]. In the following section, we detail
the interpolation process that is required to extend the presented framework
to dicrete metrics.

4. Log-Euclidean metric interpolation

In this section, we formulate a metric interpolation process that allows
both the distortion evaluation, Equation (2), and its optimization, Equation
(6). In Section 4.1 we detail the log-Euclidean metric interpolation for linear
and high-order elements first presented in [33] and [25, 40], respectively.
Then, in Section 4.2 we present, as a contribution of this work, the gradient
and the Hessian of the log-Euclidean interpolation. Their computation will
be used for the distortion minimization problem.

4.1. Metric Interpolation

In this section, we introduce the definition of the log-Euclidean metric
interpolation at the background mesh. First, we introduce the required no-
tation of the mappings and their parameters with the corresponding diagram.
Secondly, we detail the interpolation procedure.
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(a) (b) (c)

Figure 2: Point localization: (a) physical mesh, (b) background mesh, and (c) a point p
in the corresponding physical and background element (bold edges).

To evaluate the metric-aware distortion measure in Equation (2) featuring
discrete metrics, two meshes are required. On the one hand, the physical
mesh M, Figure 2(a), is the domain where the elements are deformed in
order to solve the problem presented in Equation (6). On the other hand,
the background mesh M̂, Figure 2(b), is a mesh that stores discrete metric
values as a nodal field.

To evaluate the point-wise metric-aware distortion measure, we need to
compute the interpolation of the point-wise metric values. For this, the
localization between both meshes is required [26, 41, 42]. In particular, a
physical point p ∈ M is located at the background mesh M̂ where the
metric is interpolated, see Figure 2(c). In what follows, we introduce the
elements and the mappings required for this localization procedure.

We integrate the distortion measure presented in Equation (2) over the
equilateral element via the master element EM . In particular, for the metric
evaluation, we map via φP , each integration point ξ ∈ EM to a point p
of the physical element EP , see Figure 3. To compute the metric at p we
need to locate p in the background mesh, where the values of the metric are
stored, see the intersection between EP and the background element EP̂ in
Figure 3. In addition, Figure 3 shows the procedure to obtain the coordinate
to interpolate the metric from the quadrature points. In particular, we map
a reference point ξ ∈ EM to a physical point p = φP (ξ) ∈ EP , which we

identify it with a point p̂ ∈ EP̂ of the background mesh and its preimage is
the background reference point ξ̂ = φP̂

−1 (p̂) ∈ EM̂ .
Given a physical point p, we find it convenient to denote by ψ any map-

ping from a background element containing p that provides the coordinates
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Figure 3: Mappings between the master and the physical elements (below) and their
background analogs (above).

in the background master element EM̂ . Using this notation, we understand
that any projection of a physical point p onto a point ξ̂ of the background
master element EM̂ corresponds to the evaluation of the non-linear function
ξ̂ = ψ(p).

To evaluate this non-linear function, we exploit that the expression of
ψ|EP , defined in the intersection of a physical element EP and a fixed back-

ground element EP̂ , is given by

ψ|EP : EP ∩ EP̂ → EM̂

p 7→ φ−1

P̂
(p) .

(7)

Specifically, we solve the non-linear inverse expression in the image term,
Equation (7), by applying Newton’s minimization to the squared distance.
That is, as in Section 2.3 of [41], we solve

ξ̂ = argmin lim
ζ̂

∣∣∣∣∣∣∣∣φP̂

(
ζ̂
)
− p

∣∣∣∣∣∣∣∣2.
The result is a numerical approximation of the point coordinates in the back-
ground master element. An alternative approach [26] is to seek the zeros of
the vector equation

φP̂

(
ξ̂
)
− p = 0.
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Once the background master coordinates associated to a given physical
point have been computed, it is necessary to interpolate the metric supported
by the background mesh at the corresponding master coordinate. To do so,
we use the log-Euclidean interpolation proposed in [33, 25]:

M
(
N̂
)

:= exp
(
L(N̂)

)
, L(N̂) :=

n̂∑
j=1

N̂j log M̂j, (8)

where for the j-th node of the master element EM̂ , M̂j, and N̂j are the

corresponding metric value and shape function, respectively. In addition, N̂
denotes all the shape functions, n̂ =

(
d+p̂
p̂

)
is the number of nodes, and where

p̂ is the interpolation degree which corresponds to the polynomial degree of
the master element EM̂ . Finally, M(N̂) is characterized by the eigenvalue-
based matrix exponential function

M
(
N̂
)

= U · expD ·UT, (9)

where D, U are given from the eigenvalue decomposition of the matrix
L(N̂) =: U · D · UT. Finally, for each physical point p the metric inter-

polation is given by M
(
N̂ (ψ (p))

)
.

4.2. Gradient and Hessian

This section provides the expressions for the gradient and Hessian of
the metric interpolation over a background mesh in terms of the physical
coordinates. For this, we detail first the case for the metric interpolation at a
single element and then for the background mesh. In particular, our approach
uses the gradient and Hessian of the eigenvalue decomposition presented in
[43].

To compute the derivatives of the metric M we first differentiate the
eigenvalue-based exponential matrix function presented in Equation (9) and
then we differentiate the L function presented in Equation (8). By denoting
xj the coordinates of p and ∂j := ∂

∂xj
, ∂jk := ∂j∂k = ∂

∂xj

∂
∂xk

the partial

derivatives in terms of the physical coordinates of p, we can compute the
spatial derivatives of the metric interpolation of Equation (8). In particular,
the first-order derivatives are given by

∂jM(N̂) = ∂j expL(N̂) = ∂j
(
U · expD ·UT

)
=

(∂jU) · expD ·UT + U · (∂j expD) ·UT + U · expD ·
(
∂jU

T
)
,
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and the second-order derivatives are given by

∂jkM(N̂) = ∂jk expL(N̂) = ∂jk
(
U · expD ·UT

)
=

(∂jkU) · expD ·UT + ∂kU · (∂j expD) ·UT + ∂kU · expD ·
(
∂jU

T
)

+

(∂jU) · ∂k expD ·UT + U · (∂jk expD) ·UT + U · ∂k expD ·
(
∂jU

T
)

+

(∂jU) · expD · ∂kUT + U · (∂j expD) · ∂kUT + U · expD ·
(
∂jkU

T
)
.

Note that, since the matrix D is diagonal, we have

∂j expD = exp (D) · ∂jD,
∂jk expD = exp (D) · (∂kD · ∂jD + ∂jkD) .

The presented first and second-order derivatives of the metric require
the first and second-order spatial derivatives of the eigenvalue decomposition
(eigenvalues and eigenvectors), respectively. Their computation is appended
in Section Appendix A.

In addition, the derivatives of the eigenvalues and eigenvectors depend
on the derivatives of the L function presented in Equation (8). In particular,
they are given by

∇L =
∑
j

(
log M̂j

)
∇N̂j, ∇2L =

∑
j

(
log M̂j

)
∇2N̂j,

where ∇ is the gradient with respect to physical coordinates. Therefore, to

differentiate the metric interpolation M
(
N̂ (ψ (p))

)
at a physical point p,

the derivatives of the map ψ presented in Equation (7) and of the shape
functions N̂ are required.

The derivatives of ψ|EP are given, at each patch EP ∩EP̂ , by the ones of
the inverse of the physical map φ−1

P̂
corresponding to the background mesh.

To obtain the derivatives of the shape functions N̂ in terms of the physical
coordinates p, we consider the chain rule for the composition N̂ ◦ ψ|EP and

the restriction of the map ψ|EP at each patch EP ∩ EP̂ . We finally obtain
the gradient

∇N̂ = ∇ξ̂N̂ · ∇φ
−1

P̂
, (10)

where ∇ξ̂ is the gradient with respect to ξ̂ coordinates, and the Hessian

∇2N̂j =
(
∇φ−1

P̂

)T

· ∇2
ξ̂
N̂j · ∇φ−1

P̂
+∇ξ̂N̂j · ∇2φ−1

P̂
, (11)
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where

∇φ−1

P̂
=

(
∇ξ̂φP̂

)−1

,

∇2φ−1

P̂
= ∇

((
∇ξ̂φP̂

)−1
)

= −∇φ−1

P̂
· ∇2

ξ̂
φP̂ · ∇φ−1

P̂
.

5. Implicit CAD representation: metric and geometry aware opti-
mization

Herein, we propose a high-order mesh curving method by an implicitiza-
tion that measures the geometric deviation. First, in Section 5.1, we present
a model implicitization for the mesh curving process. Then, in Section 5.2,
we detail the first and second-order derivatives for the implicit represen-
tation. Finally, in Section 5.3, we consider the penalty method to solve the
corresponding constrained second-order minimization process for the curving
problem.

5.1. Implicit CAD representation

In this section, we present an entity-wise CAD representation for curves in
2D, and for curves, and surfaces in 3D. For this, we consider the implicit rep-
resentation of embedded NURBS [30], and the Boolean algebraic operations
for implicit representations [29, 31]. Then, we assemble these representations
to obtain an implicit representation of a CAD model. Finally, we detail the
algorithm of the considered methodology.

We consider a CAD model Λ composed of a sequence of NURBS entities.
These NURBS entities can be decomposed into a sequence of Bézier patches
Γi, i = 1, ..., n. In particular, we describe a d-dimensional Bézier patch
Γ ⊂ RD embedded in a D-dimensional space in terms of a parameterization

ϕΓ : [0, 1]d → RD, ϕΓ (u) ∈ Γ, u ∈ [0, 1]d.

In addition, the implicit representation of Γ can be obtained as in [30]

γΓ : RD → R, γΓ (x) = 0 if and only if x ∈ Γ.

Our objective is to obtain a representation γΛ of the model Λ that is expressed
in terms of the representations γΓi

of the patches Γi. To combine these
implicit representations we use algebraic Boolean operations between real-
valued functions [31].
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Figure 4: Implicit representation of (first row) a 2D CAD geometry, and (second row) a
3D CAD geometry. CAD model, and implicit representation in linear, and logarithmic
scale in columns.

In Figure 4, we show a 2D and a 3D model. They are mapped via
the Bézier parameterizations ϕΓi

and their level-sets are represented via the
implicit function γΛ. The level-sets are illustrated in linear and logarithmic
scaling. As we observe, the functions are numerically zero at the model. In
addition, they smoothly increase far from the model region.

The implicit representation of a CAD model requires a knot preprocess-
ing of the NURBS entities. Specifically, two knot insertion procedures are
required [29]. The first knot insertion, is used to decompose the NURBS en-
tity into Bézier patches. The second one, is used to avoid auto-intersections
for curves of degree p ≥ 3. In this case, we perform an auto-intersection
detection process. Note that the auto-intersection points are given by the
equation ‖∇γΓ‖ = 0. Then, we detect the auto-intersections by minimizing
the quantity ‖∇γΓ‖2 via a one-dimensional search bisection over the para-
metric line.

To trim the implicit representation in its corresponding domain, we con-
sider the convex-hull of the Bézier patch control points. Specifically, for
degenerate cases we extrude the set of control points. To compute the extru-
sion directions we perform a null space computation via the singular value
decomposition. This defines a valid convex-hull. We apply this procedure
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to the degenerate cases given by 2D segments, 3D planes, 3D curves, and
3D cylinders. Furthermore, we also apply this procedure to approximately
degenerate cases such as almost flat curves and surfaces.

For each Bézier patch Γ, we consider its implicit representation γ de-
fined in the projective space P

(
RD
)
. In particular, the patch control points

determine a vector of matrices that is, M = (Mx,My,Mz,Mw) in 3D, corre-
sponding to the projective coordinates x, y, z, and w. Then, we define the
implicit representation at a point x ∈ P

(
RD
)

as in [30]

γ (x) := det
(
M (x) ·M (x)T

)
, M (x) := M x. (12)

For example, in 3D we set x = (x, y, z, 1) and hence, M x = Mxx + Myy +
Mzz + Mw. Finally, we normalize the functions γ (x) to ensure that they
match during the assembly procedure [29]. Specifically, we define the nor-
malized function γ̂ by

γ̂ :=
γ

‖∇γ‖
. (13)

The implicit function of a Bézier patch described in Equation (13) extends
over an infinite parametric space. For this reason, it is standard to trim the
patch via a convex hull operation to ensure that the function does not extend
beyond the patch limits [29, 31]. Specifically, we first compute CH (Γ), the
implicit representation of the convex hull of the Bézier patch Γ. Then, to
obtain an implicit representation of Γ trimmed by CH (Γ), we use a trimming
function, denoted by trim, proposed in [31]

γ
Γ

:= γ̂CH(Γ) trim γ̂Γ =

√√√√√γ̂2
Γ +


√
γ̂4

Γ + γ̂2
CH(Γ) − γ̂CH(Γ)

2

2

, (14)

where γΓ denotes the representation of the Bézier patch Γ, see Equation
(12). The trimming operation of Equation (14) is twice differentiable at all
points where γ̂Γ 6= 0. Here, the function γ

Γ
is an implicit representation

of the Bézier patch Γ in its parametric domain Dom Γ determined by the
NURBS convex-hull CH (Γ).

For a given model Λ = {Γ1,Γ2, ...,Γn}, its implicitization γΛ is obtained
via the r-conjunction ∧ of the implicitizations γ

Γi
of the Bézier patches Γi

[29]. In particular, for each Bézier patch Γi, we recursively update the model
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Algorithm 1 Implicitization

Input: Λ := {Γ1, Γ2, ..., Γn}
Output: γΛ

1: for i = 1, ..., n do
2: γ̂Γi

= normalized implicitization of Γi
3: γ̂CH(Γi)

= normalized implicitization of the convex hull of Γi, CH (Γi)
4: γ

Γi
= trimming of γ̂Γi

with γ̂CH(Γi)

5: if i = 1 then
6: γΛ ← γ

Γ1

7: else
8: γΛ ← γΛ ∧ γΓi

r-conjunction
9: end if

10: end for

representation as follows

γΛ ← γΛ ∧ γΓi
:= γΛ + γ

Γ
−
√
γΛ

2 + γ
Γ

2. (15)

To obtain the convex-hull representation of a Bézier patch Γ, CH (Γ), we
apply r-conjunction to the hyperplane functions of the convex hull entities.
Specifically, for each hyperplane entity H of the convex hull CH (Γ) we con-
sider its unit normal component n and its affine term b. Then, the implicit
representation of H is given by

γH (x) := n · x + b. (16)

In our case, the sign of the representation γH is chosen such that γH < 0 out-
side the convex region enclosed by CH (Γ) and γH ≥ 0 otherwise. Following,
we apply the r-conjunction operation for each hyperplane H to obtain the
convex-hull representation γCH(Γ), see Equation (15). Finally, we obtain its

normalized version γ̂CH(Γ) by applying Equation (13).
In Algorithm 1, we describe how to obtain the implicit representation

γΛ of a model Λ. In Line 2, we compute for each Bézier patch Γi of Λ its
implicit function γΓi

and we normalize it, see Equations (12) and (13). Then,
in Line 3, we consider the convex hull property of the Bézier control points for
trimming [29]. We first obtain an implicit representation of the convex hull
γCH(Γi)

by applying a pair-wise r-conjunction to the hyperplane functions,

see Equation (16). Then, we compute its normalized representation γ̂CH(Γi)
,
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see Equation (13). In Line 4, we trim the Bézier patch representation γ̂Γi
in

terms of γ̂CH(Γi)
, see Equation (14). The obtained representation is denoted

by γ
Γi

. Finally, in Lines 5-9, we obtain the implicit representation of the

model Λ by pair-wise r-conjunction of γ
Γi

, see Equation (15).

5.2. Gradient and Hessian

Next, we present the gradient and Hessian of the geometry implicitiza-
tion. In Section 5.1, we describe the geometry implicitization in terms of
the trimming and r-conjunction operations of the convex-hull and Bézier
patch normalized representations. Accordingly, we describe in this section
the derivatives of the trimming and r-conjunction operations. For complete-
ness, we detail in Appendix B the derivatives of the convex-hull and Bézier
patch normalized representations.

As detailed in Section 5.1, we perform an r-conjunction operation to
obtain the model representation. We compute the derivatives in a straight-
forward manner. Lets denote by ∇f ∗∇g the matrix with coefficients ∂jf∂kg
for j, k = 1, ..., d. Then, the derivatives of the r-conjunction, presented in
Equation (15), are given by

∇ f ∧ g = ∇f +∇g −∇
√
f 2 + g2, (17)

and
∇2 f ∧ g = ∇2f +∇2g −∇2

√
f 2 + g2, (18)

where

∇
√
f 2 + g2 =

f∇f + g∇g√
f 2 + g2

, (19)

and

∇2
√
f 2 + g2 =

∇f ∗ ∇f + f∇2f +∇g ∗ ∇g + g∇2g√
f 2 + g2

−

∇
√
f 2 + g2 ∗ ∇

√
f 2 + g2√

f 2 + g2
.

(20)

Following Equation (15), we consider that f := γΛ and g := γΓ.
Similarly to the r-conjunction, we compute the derivatives of the trim-

ming operation, presented in Equation (14). We simplify the computations
by noticing that

h̃ := f trim h =
√
f 2 + g2 for g :=

√
h4 + f 2 − f

2
,
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where, following Equation (14), we consider f := γ̂CH(Γ), h := γ̂Γ, and

h̃ := γΓ. Then, to obtain the derivatives of the trimming operation, we
differentiate the term

√
f 2 + g2, see Equations (19) and (20). In this case,

the derivatives of g can be computed as follows

∇g =
1

2

(
2h3∇h+ f∇f√

h4 + f 2
−∇f

)
, (21)

and

∇2g =
1

2

(
2h2 (h∇2h+ 3∇h ∗ ∇h) + f∇2f +∇f ∗ ∇f√

h4 + f 2
−

∇
√
h4 + f 2 ∗ ∇

√
h4 + f 2√

h4 + f 2
−∇2f

)
,

where the term ∇
√
h4 + f 2 can be computed from Equation (19) for the

functions f and h2.
As we observe, the derivatives of both the r-conjunction and the trim-

ming operation require the derivatives of the convex-hull and Bézier patch
normalized representations. For completeness, we detail these last derivatives
in Appendix B.

5.3. Minimizing metric and geometry deviations

In this section, we consider a modification of the methodology to gener-
ate curved high-order meshes featuring optimal mesh quality and geometric
accuracy presented in [27, 44]. This technique combines a distortion mea-
sure and a geometric L2-disparity measure into a single objective function.
While the element distortion term takes into account the mesh quality, the
L2-disparity term takes into account the geometric error introduced by the
mesh approximation to the target geometry. Herein, the target geometry is
an implicit representation.

Our input data is a CAD model, Λ, composed of several geometric entities
in such manner that

Λ =
n⋃
k=1

Λk,

where each geometric entity is composed of sub-entities. These sub-entities
are curves in 2D, and curves and surfaces in 3D. In 3D, we consider that the
curves are embedded directly in the containing space.
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In our representation, we consider that the curves are the image of a seg-
ment. Moreover, we consider that the surfaces are the image of a rectangular
region. For the 3D cases, we consider the implicitization of the curves and
surfaces. In this manner, we can allow the inner curve (surface) nodes to
target the implicitization of the corresponding curve (surface).

In what follows, we propose an entity-wise implicit representation of the
CAD model Λ. We use it to measure the geometric deviation between the
mesh and the model. In particular, for each geometric entity Λk we consider
the implicit representation, see Section 5. This geometric entity is approxi-
mated by a set of boundary mesh entities, denoted by ∂M (Λk). Instead of
measuring the geometric error, herein we account from the geometric devia-
tion through the average of the square of the level set value. This term is zero
when on top of the target CAD entity, and the square ensures deriviability
at the zero-level set. Specifically, this deviation measure is integrated over
the candidate boundary mesh entities as follows

G (∂M (Λk)) :=

∫
∂M(Λk)

γ2. (22)

Note that, the model representation γΛk
is not differentiable at the zero

level-set. By considering the squared function γΛk

2 we avoid the derivative
singularity.

Our objective is to determine an optimal physical mesh, M, in terms
of mesh quality and geometric deviation. First, the mesh quality deviation
term, distortion, is presented in Section 3. Second, we consider Equation
(22) to take into account the geometric deviation. Finally, we define the
functional for the mesh quality and the geometric deviation

H (M;λ) := F (M) + λG (∂M) , (23)

where

G (∂M) :=
n∑
k=1

G (∂M (Λk)) ,

and where λ corresponds to the penalty parameter. This parameter λ can
be chosen heuristically or with an automatic procedure [44].

To deal with corners and geometric edges, we distinguish between nodes
targeting points or curves of the geometry. For points, we associate the
corresponding node with the incident curves. Moreover, for this node, the
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Algorithm 2 Distortion minimization

Input: Λ, M, M̂, M̂, ε, λ
Output: M∗

1: X← coordinates(M)
2: ∂X← coordinates(∂M)

3: M := M
(
M̂, M̂,X

)
. Section 4.1

4: ∇M := ∇M
(
M̂, M̂,X

)
; ∇2M := ∇2M

(
M̂, M̂,X

)
. Section 4.2

5: γ := γ (Λ, ∂X) . Section 5.1
6: ∇γ := ∇γ (Λ, ∂X); ∇2γ := ∇2γ (Λ, ∂X) . Section 5.2
7: F := F (X,M); . Section 3, Equation (5)
8: ∇F := ∇F (X,M,∇M); ∇2F := ∇2F (X,M,∇M,∇2M)
9: G := G (∂X, γ); . Section 5, Equation (22)

10: ∇G := ∇G (∂X, γ,∇γ); ∇2G := ∇2G (∂X, γ,∇γ,∇2γ)
11: H ← F + λG . Section 5, Equation (23)
12: X∗ ← Non-linearSolver (H,∇H,∇2H,X, ε) . Section 3, Equation (6)
13: M∗ ← update coordinates of M with X∗

objective function accounts for the measure of the distance to all the incident
curves. Thus, the optimal node is close to the target point because it is close
to all the incident curves. For curves, we associate the corresponding nodes
with the curve and the incident surfaces. Moreover, for these nodes, the
objective function accounts for the measure of the distance to the curve and
the two incident surfaces. Thus, the optimal nodes are close to the target
curve and the two incident surfaces.

In Algorithm 2, we outline the structure of the distortion minimization.
The algorithm inputs are: a CAD model Λ, a physical mesh M, a back-
ground mesh M̂ equipped with a discrete metric M̂, a residual tolerance ε,
and a penalty parameter λ. The output is an optimized physical mesh M∗

with the same connectivity ofM and matching the metric M̂ and the curved
boundary Λ. To outline the algorithm, we assign variables, and we declare
the corresponding functions and their derivatives in terms of previously de-
fined functions and derivatives. We recall that, the implementation details
of the values and derivatives of the log-Euclidean interpolation M and the
implicitation γ are detailed in Section 4 and Section 5, respectively. Note
that the derivatives of F and G depend on the corresponding derivatives of
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M and γ, respectively.
Algorithm 2 proceeds as follows. First, we assign the volume and bound-

ary mesh coordinates to X and dX, respectively. From these coordinates,
we declare the Log-Euclidean interpolation of the discrete metric M̂ and its
derivatives, ∇M̂ and ∇2M̂, see Section 4. In addition, from the CAD model
Λ, we declare the implicitization γ and its derivatives, ∇γ and ∇2γ, in terms
of dX, see Section 5. Then, we declare the distortion functional F and the
boundary functional G. For these functionals, we also declare the depen-
dency of their derivatives in terms of the values and derivatives of the metric
M interpolation and the geometry implicitation γ. These declarations allow
assigning the objective function H according to the functionals, F and G,
and the penalty parameter λ, see Equation (23). Finally, we call a second-
order non-linear solver to minimize the objective function up to a residual
tolerance ε. This results in an adapted mesh M∗ with coordinates X∗ and
with the same connectivity as M.

6. Results

In this section, we present a 2D and a 3D example to illustrate the appli-
cability of our distortion minimization framework for curved r-adaption to a
high-order metric interpolation while preserving the implicit representation
of the boundary. First, we generate a background mesh M̂ and we evaluate
the analytical metric M at the background mesh nodes. Second, we generate
an initial physical meshM and we measure its distortion (quality) by inter-
polating the metric. Then, by relocating the nodes, we minimize the mesh
distortion problem presented in Equation (6) using the framework presented
in this work. Moreover, in the last examples, we consider a boundary term
that takes into account the geometric deviation. We relocate the nodes to
minimize the distortion measure while preserving the curved features of the
boundary.

To summarize the results, we present a statistics table for the element
quality of Equation (4), and the figures for the initial and optimized meshes.
Specifically, we show the minimum quality, the maximum quality, the mean
quality, and the standard deviation of the initial and optimized meshes. We
highlight that in all cases, the optimized mesh increases the minimum ele-
ment quality and it does not include any inverted element. In addition, the
meshes resulting after the optimization are composed of elements aligned and
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stretched to match the target metric tensor. In all figures, the meshes are
colored according to the point-wise quality presented in Equation (3).

Because our goal is to optimize the mesh distortion using the detailed
derivatives, instead of including mathematical proofs of mesh validity, we
detail how we numerically enforce the positiveness of the element Jacobians.
Specifically, we use a numerical valid-to-valid approach that uses four ingre-
dients. First, because we want numerically valid results, we enforce mesh
validity on the integration points. Second, to initialize the optimization, we
start from a numerically valid mesh. Third, to penalize inverted elements,
we modify the point-wise distortion, Equation (3), to be infinity for non-
positive Jacobians. Specifically, we regularize the element Jacobians to be
zero for non-positive Jacobians, so their reciprocals are infinite. Note that
these reciprocals appear in the distortion expression, and thus, they deter-
mine the infinite distortion value. Fourth, to enforce numerically valid mesh
displacements, we equip Newton’s method with a backtracking line-search.
Specifically, if the mesh optimization update is invalid in any integration
point, the objective function, Equation (6), is infinite. In that case, the step
is divided by two until it leads to a valid mesh update.

As a proof of concept, a mesh optimizer has been developed in Julia 1.6.2
[45]. For this, we use the following external packages: Arpack v0.5.0, ILUZero
v0.1.0, and TensorOperations v3.1.0. In addition, we use the MATLAB PDE
Toolbox [46] to generate the initial isotropic linear unstructured 2D and 3D
meshes (the structured meshes are generated by subdivision), and the MMG
algorithm [47] to generate the initial anisotropic linear unstructured 2D and
3D meshes. To construct the geometric models, we use the FreeCAD software
[48]. Finally, we use the Quickhull (Qhull) algorithm [49] for the convex-hull
computations required in the geometric model’s implicitization, see Section
5.

The Julia prototyping code is sequential, it corresponds to the imple-
mentation of the method presented in this work and the one presented in
[21, 23, 24]. In all the examples, the optimization corresponds to finding a
minimum of a nonlinear unconstrained multi-variable function. In particu-
lar, the mesh optimizer uses an unconstrained line-search globalization with
an iterative preconditioned conjugate gradients linear solver. The stopping
condition is set to reach an absolute root mean square residual, defined as
‖∇f(x)‖`2√

n
for x ∈ Rn, smaller than 10−4 or a length-step smaller than 10−4.

Each optimization process has been performed in a node featuring two Intel
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Xeon Platinum 8160 CPU with 24 cores, each at 2.10 GHz, and 96 GB of
RAM memory.

Following, we first present the target domains to be meshed, and the
considered metrics on the domain, Section 6.1. In Section 6.2 we present the
optimization results for a quadrilateral and a hexahedral domain. In Section
6.3 we compare the proposed discrete based-interpolation procedure with the
analytical one from [21, 23, 24]. Finally, in Sections 6.4 and 6.5, we show the
application of the discrete metric approach to optimize an anisotropic mesh
adapted to a given metric generated by the MMG algorithm. In particular,
in Section 6.5, we illustrate that our mesh adaption method based in the
metric interpolation approach is compatible with curved boundaries.

6.1. Domains and metrics

We consider the quadrilateral domain Ω = [−0.5, 0.5]2 for the two-dimensional
examples and the hexahedral domain Ω = [−0.5, 0.5]3 for the three-dimensional
ones. Each domain is equipped with a metric matching a boundary layer. In
particular, our target metric M is characterized by a boundary layer met-
ric with a diagonal matrix D and a deformation map ϕ by the following
expression

M = ∇ϕT ·D · ∇ϕ. (24)

In what follows, we first detail the boundary layer metric D and then the
deformation map ϕ.

The boundary layer aligns with the x-axis (xy-plane) in the 2D case
(3D case). It determines a constant unit element size along the x-direction
(xy-directions), and a non-constant element size along the y-direction (z-
direction). This vertical element size grows linearly with the distance to the
x-axis (xy-plane), with a factor α = 2, and starts with the minimal value
hmin = 0.01 (hmin = 0.02). Thus, the stretching ratio blends from 1 : 100 to
1 : 1 (from 1 : 50 to 1 : 1) between y = −0.5 and y = 0.5 (between z = −0.5
and z = 0.5). We define the metric for the 2D case as:

D :=

(
1 0
0 1/h(y)2

)
(25)

where the function h is defined by

h(x) := hmin + α|x|.
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Similarly, the metric for the 3D case is

D :=

 1 0 0
0 1 0
0 0 1/h(z)2

 . (26)

The deformation map ϕ in Equation (24) aligns the stretching of D ac-
cording to a given curve in the 2D examples and at a given surface in the 3D
examples. In the 2D case, we define the map ϕ by

ϕ(x, y) =

(
x,

10y − cos(2πx)√
100 + 4π2

)
,

and, in the 3D case by

ϕ(x, y, z) =

(
x, y,

10z − cos(2πx) cos(2πy)√
100 + 8π2

)
.

Figure 5 shows the anisotropic quotient [50] of the metric presented in
Equations (25) and (26). Specifically, the anisotropic quotient of a metric
tensor M ∈ Rd×d is given by

quo = max
i=1,...,d

√
det (M)

λdi

where λi, i = 1, ..., d are the eigenvalues of M. The considered metric M
attains the highest level of anisotropy, close to the curve described by the
points (x, y) ∈ Ω such that ϕ(x, y) = (x, 0) in 2D, and close the surface
described by the points (x, y, z) ∈ Ω such that ϕ(x, y, z) = (x, y, 0) in 3D.

6.2. Distortion minimization: initial isotropic straight-edged meshes

In this example, we present the optimization results for initially isotropic
meshes on the domain equipped with the metrics presented in Section 6.1.
We describe first the initial meshesM together with the background meshes
M̂ where the metric is interpolated. Next, we present the optimized meshes
M∗ and to conclude, we present the results obtained from the optimization
process. Herein, both the background and physical meshes are meshes of the
same polynomial degree.

The initial meshes M are of polynomial degree 1, 2, and 4. The three
meshes feature approximately the same number of nodes and they have ap-
proximately the same resolution over the domain. In particular, in 2D the
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Figure 5: Anisotropic quotient values in logarithmic scale of the target metrics: (top) 2D
case; (bottom left) boundaries of the 3D case; and (bottom right) solid slice of the 3D
case.

three initial meshes are respectively composed of 312, 321, and 337 nodes
and 558, 144, and 38 triangles, see Figures 6(a), 6(b), and 6(c). In 3D, they
are respectively composed of 2 356, 2 362, and 2 373 nodes and 11 699, 1 464,
and 184 tetrahedra. Figures 7(a), 7(b), 7(c), and 8(a), 8(b), 8(c) show the
clipped 3D meshes and the mesh boundary, respectively. The meshes are col-
ored according to the point-wise stretching and alignment quality measure,
presented in Equation (3). Points in blue color have low quality and points
with red color have high quality. As we observe, the elements lying in the
region of highest stretching ratio have less quality than the elements lying in
the isotropic region.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Point-wise distortion for triangular meshes of polynomial degree 1, 2, and 4 in
columns. Initial straight-sided isotropic meshes, optimized meshes with discrete metric,
and optimized meshes with analytic metric in rows.

We equip each mesh with the metric presented in Equation (24). We ob-
tain the metric values from the log-Euclidean interpolation method presented
in Section 4. In particular, we interpolate the metrics from a background
mesh M̂. The background meshes are of polynomial degree 1, 2, and 4 ac-
cording to the polynomial degree of the initial meshes M. We impose the
three background meshes to feature almost the same number of nodes and to
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(a) (b) (c)

(d) (e) (f)

Figure 7: Clipped tetrahedral meshes of polynomial degree 1, 2, and 4 in columns. Initial
straight-sided isotropic meshes and optimized meshes from initial meshes in rows.

have almost the same resolution over the domain, hmin/2. In particular, the
resolution of the 2D background meshes is hmin/2 = 0.005. They are com-
posed of 65 170, 64 329, and 62 761 nodes and 129 318, 31 910, and 7 782 tri-
angles. The resolution of the 3D background meshes is hmin/2 = 0.01. They
are composed of 1 773 415, 1 798 531, and 1 837 851 nodes and 10 438 221,
1 319 008, and 168 441 tetrahedra.

To obtain an optimal configurationM∗, we minimize the mesh distortion
by relocating the mesh nodes while preserving their connectivity, as detailed
in Section 3. The coordinates of the inner nodes, and the coordinates tangent
to the boundary, are the design variables. Thus, the inner nodes are free
to move, the vertex nodes are fixed, while the rest of boundary nodes are
enforced to slide along the boundary facets of the domain Ω. In Figures 6(d),
6(e), 6(f) we illustrate the optimized 2D meshes. In the 3D case, Figure 7(d),
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(a) (b) (c)

(d) (e) (f)

Figure 8: Boundary of tetrahedral meshes of polynomial degree 1, 2, and 4 in columns.
Initial straight-sided isotropic meshes and optimized meshes from initial meshes in rows.

7(e), 7(f), and 8(d), 8(e), 8(f) show the clipped 3D meshes and the mesh
boundary, respectively. We align the axes according to the ones of Figure 5.
We observe that the elements lying in the anisotropic region are compressed
to attain the stretching and alignment prescribed by the metric.

Tables 1 and 2 show the quality statistics of both the initial and optimized
meshes for the 2D and 3D cases, respectively. In all the optimized meshes
the minimum is improved and the standard deviation of the element qualities
is reduced when compared with the initial configuration. In addition, when
comparing the curved meshes with the straight-edged ones, we observe that
the curved meshes are more flexible. That is, the curved meshes achieve
a higher improvement of the minimum quality and the standard deviation.
This is because the curved elements can approximate the curved stretching
of the metric in the point-wise sense and hence, more accurately.
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Table 1: Quality statistics for the initial and optimized meshes with interpolated 2D
metric.

Mesh Minimum Maximum Mean Std dev.
deg. Initial Final Initial Final Initial Final Initial Final

1 0.0299 0.1724 0.9957 0.9551 0.6100 0.4462 0.2769 0.1039
2 0.0554 0.2878 0.9921 0.6268 0.5918 0.4545 0.2835 0.0638
4 0.0803 0.3072 0.9835 0.5806 0.5339 0.4439 0.2922 0.0760

Table 2: Quality statistics for the initial and optimized meshes with interpolated 3D
metric.

Mesh Minimum Maximum Mean Std dev.
deg. Initial Final Initial Final Initial Final Initial Final

1 0.0175 0.1222 0.9905 0.9334 0.5550 0.4236 0.2660 0.1241
2 0.0320 0.2987 0.9695 0.7467 0.5194 0.4576 0.2735 0.0691
4 0.0409 0.3231 0.8931 0.6737 0.4490 0.4702 0.2711 0.0749

Table 3: Quality statistics for the initial and optimized meshes with analytic 2D metric.

Mesh Minimum Maximum Mean Std dev.
deg. Initial Final Initial Final Initial Final Initial Final

1 0.0279 0.1684 0.9957 0.9581 0.6100 0.4484 0.2770 0.1088
2 0.0563 0.3358 0.9921 0.6432 0.5919 0.4569 0.2835 0.0623
4 0.0799 0.3096 0.9835 0.6318 0.5339 0.4473 0.2923 0.0634

6.3. Validation: analytic versus discrete

To validate the proposed method, we compare 2D curved r-adaption re-
sults for the high-order metric interpolation with the results corresponding
to an analytic metric evaluation. Considering the initial meshes presented in
the previous section, we optimize the distortion measure by evaluating the
analytical metric expression, instead of interpolating it in the background
mesh. In Figure 6 we show the initial and optimized meshes. They are col-
ored according to the point-wise quality measure of Equation (3) using the
analytical metric expression.

To compare quantitatively both results, we compute the maximum dis-
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tance of the node coordinates of the optimized configurations. The maxi-
mum distances are around 2.2 · 10−2, 7.6 · 10−2, and 8.2 · 10−2 for the linear,
quadratic, and quartic cases, obtaining comparable nodal configurations, as
it can be observed when comparing Figures 6(d), 6(e), and 6(f) with Figures
6(g), 6(h), and 6(i), respectively. In Table 3, we present the quality statistics
of the initial and optimized meshes using the analytical metric evaluation. To
compare the quality improvement of both approaches, we compute the differ-
ence between the mean of the analyzed quality statistics, obtaining a value
below 10−2. Thus, the quality improvement driven by the optimization using
the proposed metric interpolation procedure is analogous to the one given by
the analytical metric, obtaining in all cases high-quality configurations with
a minimum quality over 0.1.

6.4. Distortion minimization: initial anisotropic straight-edged meshes

The results presented in Section 6.2 show the application of the metric in-
terpolation procedure to optimize isotropic meshes in a domain equipped with
a metric. However, in practice, anisotropic meshes are generated combining
topological mesh operations that modify the mesh connectivity and mesh
r-adaption procedures [6]. To illustrate a practical example, we consider
an initial anisotropic straight-sided mesh. Then, we apply the anisotropic
r-adaption method presented in this work.

Although we generate meshes adapted to a target metric with MMG
[47], our goal is not to compare the distortion minimization with the MMG
package. Actually, we acknowledge MMG because it generates an initial
straight-edged mesh that matches the stretching and alignment of the target
metric.

First, we consider the target metric presented in Equation (24) with
hmin = 0.01. Second, we generate a linear isotropic triangular background
mesh M̂ of input size hmin/2 = 0.005 with MATLAB. We normalize the tar-
get metric according to the size of the physical meshesM namely, 0.0625, 0.125, and 0.25
for the linear, quadratic, and quartic case, respectively. These sizes are cho-
sen in order to obtain a comparable mesh resolution according to the mesh
polynomial degree. Then, we couple each background mesh with the target
metric evaluated at the background mesh vertices. We apply the MMG al-
gorithm to obtain an initial straight-sided anisotropic physical mesh M of
polynomial degree 1, 2, and 4, see Figures 9(a), 9(b), and 9(c). In particular,
the physical meshes are composed by 1 161 nodes and 2 137 triangles, 1 333
nodes and 624 triangles and, 1 525 nodes and 180 triangles, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Point-wise distortion for triangular meshes of polynomial degree 1, 2, and 4
in columns. Initial straight-sided anisotropic meshes and optimized meshes from initial
meshes in rows.

Table 4: Quality statistics for the initial MMG and optimized meshes with interpolated
2D metric.

Mesh Minimum Maximum Mean Std dev.
deg. Initial Final Initial Final Initial Final Initial Final

1 0.0365 0.1794 0.9988 0.9989 0.7806 0.7961 0.2273 0.2040
2 0.0624 0.6300 0.9982 0.9913 0.6966 0.8692 0.2558 0.0788
4 0.0424 0.6063 0.9774 0.9965 0.5677 0.9137 0.2681 0.0886

The physical meshes M are then optimized using the metric interpola-
tion approach presented in this work. In Figures 9(d), 9(e), and 9(f), we
illustrate the optimized meshes M∗. We observe that the elements lying in
the anisotropic region are compressed to attain the stretching and alignment
prescribed by the metric.
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In Table 4, we show the quality statistics of both the initial and optimized
meshes. In all the optimized meshes the minimum is improved and the
standard deviation of the element qualities is reduced when compared with
the initial configuration. We conclude that, with the same metric data and
hence, the same inputs, the r-adaption mesh post-processing improves the
quality of the meshes generated with the MMG algorithm. In addition,
for the straight-edged case, we have presented a global method to improve
the stretching and alignment prescribed by the metric after applying an h-
adaption approach.

For a fixed metric, usually the better the initial straight-edged mesh is,
the better the optimized mesh is. For instance, for different degrees, the mean
quality statistics for the initial anisotropic meshes, Table 4, are better than
for the isotropic meshes, Table 1. The anisotropic meshes have this advantage
because their topology and geometry are adapted to match the corresponding
scaling of the target metric. This prior metric matching facilitates that the
curved optimization reaches a better final quality.

As in the examples presented in Section 6.2, when comparing the curved
meshes with the straight-edged ones, we observe that the curved meshes are
more flexible. That is, the curved meshes achieve a higher improvement
of the minimum quality and the standard deviation. This is because the
curved elements can approximate the curved stretching of the metric in the
point-wise sense and hence, more accurately.

6.5. Distortion minimization: curved boundaries

We following illustrate that our approach is compatible with curved bound-
aries. We consider a 2D example, in Section 6.5.1, and a 3D example, in Sec-
tion 6.5.2. To this end, we first construct the geometric model with FreeCAD
[48]. Next, we consider their implicit representation, see Section 5. Then, we
generate the background and initial physical meshes coupled with a discrete
metric, see Section 4. Finally, we apply our r-adaption method, presented
in Section 3, by taking into account both the discrete metric and the im-
plicit representation of the geometry. This enables an optimized physical
mesh that approximates the stretching and alignment of the metric while
preserving the curvature of the boundary.

To accommodate the curved boundaries we include, to the presented func-
tional, a boundary term that takes into account the mesh deviation to the
boundaries of the domain, see Section 5.3. Specifically, we set the penalty
parameter λ := 104 in all examples, see Equation (23). In addition, to
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(a) (b)

Figure 10: Parametric CAD and global implicit representation for the 2D model of a
square with a circular hole.

approximate the metric stretching, we optimize the mesh using the metric
interpolation approach presented in this work. Finally, when optimizing the
mesh functional all mesh nodes coordinates are free that is, each mesh node
moves in R2, in the 2D case, and in R3, in the 3D case.

6.5.1. 2D curved model: square with a circular hole

For the 2D model Λ1, we consider a square with a circular hole. Specif-
ically, the domain is denoted by Ω1 = K1\C1, where K1 = [−0.5, 0.5]2 is a
square, and where C1 is the circle with radius equal to 0.18 and centered at
the origin, see Figure 10(a). The domain Ω1 has two boundaries, the one of
the square K1 and the one of the circle C1. We illustrate in Figure 10(b) a
global implicit representation of the boundary Λ1 := ∂Ω1, using the method
presented in Section 5.1. Although the inner boundary is smooth, the outer
boundary contains sharp features such as corners.

We equip the domain Ω1 with the target metric presented in Equation
(24) with hmin = 0.01. Then, we generate with MATLAB two isotropic
triangular background meshes M̂ of polynomial degree 2 and 4. They have
an input resolution hmin/2 = 0.005 over Ω1 that is, of input size 0.01 and
0.02, respectively. We normalize the target metric according to size h = 0.25
in the quadratic case, and according to size h = 0.5 in the quartic case.
Then, we couple each background mesh with the target metric evaluated at
the background mesh vertices. From each background mesh M̂, we obtain
an initial straight-sided anisotropic physical meshM by applying the MMG
algorithm, see Figures 11(a), and 11(e). The quadratic and quartic physical
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Figure 11: Point-wise distortion for triangular meshes of polynomial degree 2 in first
and second (zoom) rows, and 4 in third and fourth (zoom) rows. Initial straight-sided
anisotropic mesh and optimized mesh in columns.34



Table 5: Quality statistics for the initial MMG and optimized mesh with interpolated 2D
metric at the square with a circular hole.

Mesh Minimum Maximum Mean Std dev.
deg. Initial Final Initial Final Initial Final Initial Final

2 0.0823 0.4140 0.9914 0.9943 0.5764 0.8224 0.2508 0.1281
4 0.0590 0.4045 0.9646 0.9850 0.4177 0.7321 0.2292 0.1461

meshes are respectively composed by 518 nodes and 220 triangles, and 944
nodes and 106 triangles. Note that, since the MMG algorithm requires a
linear background mesh, we subdivide the background meshes in order to
preserve their resolution. Specifically, our linear background meshes for the
MMG algorithm are obtained by subdividing the quadratic background mesh
once, and the quartic background mesh twice.

In Figures 11(b), and 11(f), we illustrate the optimized meshes M∗. We
observe that the elements lying in the anisotropic region are compressed to
attain the stretching and alignment prescribed by the metric. Note that the
boundary elements are curved to match both the metric and the curved do-
main boundaries. In Table 5, we show the quality statistics of both the initial
and optimized mesh. In the optimized mesh the minimum, the mean, and
the standard deviation of the element qualities are improved when compared
with the initial configuration.

From the results, we observe that, when compared with straight-sided
elements, curved elements approximate more faithfully the metric while pre-
serving the curved features of the boundary. In this case, the stretching
direction is almost aligned according to the tangent of the geometry. When
considering straight-edged elements, in Figures 11(c) and 11(g), accumulating
more degrees of freedom in the stretched regions may worsen the boundary
representation at non-stretched regions. In contrast, when considering curved
elements, in Figures 11(d) and 11(h), we observe that a single curved element
represents the boundary more faithfully than several straight-sided elements.
This flexibility of curved elements allows the degrees of freedom to slide and
accumulate, from non-stretched regions to the stretched regions, featuring
high-quality elements. For that reason, we observe how the elements are
stretched, aligned, and curved according to the stretching and alignment of
the metric. Hence, curved elements allow an improved representation of the
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metric while preserving the curved features of the boundary.
We use a non-optimized prototype to demonstrate that the detailed deriva-

tives enable Newton’s method. Nevertheless, to illustrate the computational
cost, we next report the wall-clock time and the most expensive parts when
matching a target metric and curved boundary. The report is an initial
reference for future improvements because the prototype is unoptimized.

For this two-dimensional example, the total wall-clock time is 2 194 sec-
onds for degree two and 17 911 seconds for degree four. The wall-clock time
is higher for the second case because of two main reasons: the number of
mesh points and the polynomial degree.

First, the mesh features more points for degree four (944 points) than for
degree two (518 points). Note that both cases are initialized with a straight-
edged mesh adapted to the corresponding scaling of the metric. This scaling
accounts for the difference of points between an element of degree two and an
element of degree four. Unfortunately, the resulting adapted straight-edged
mesh features 220 and 106 elements for degrees two and four, respectively.
Thus, the initial meshes do not feature a comparable number of points, a
difference that computationally benefits the example of degree two.

Second, the higher the order, the higher the computational cost is. For
higher orders, the Hessians of the objective function densify, and the initial
approximations worsen. Regarding density, note that the elemental contri-
butions to the Hessian have around six times more non-zero entries for degree
four than for degree two. In this example, computing each elemental con-
tribution to the Hessian needs 0.15 seconds for degree four and 0.03 seconds
for degree two. Regarding initial approximations, they are worse because
the initial straight-edged mesh is of degree one, and thus, the difference of
degrees is higher for degree four. In this example, the non-linear problem
needs 693 iterations for degree four and 229 iterations for degree two.

Finally, for both degrees, the most expensive part is to compute the el-
emental contributions to the gradient and the Hessian, a computation that
needs the derivatives of the metric interpolation and the geometry implici-
tation. For the metric interpolation, the percentage of the total wall-clock
time computing the derivatives is 45

6.5.2. 3D curved model: a cube trimmed by a cylinder

For the 3D model Λ2, we consider a cube trimmed by a cylinder. Specif-
ically, our domain is denoted by Ω2 = K2\C2 where K2 = [−0.5, 0]2 ×
[−0.25, 0.25] is a box, and where C2 is the cylinder with radius equal to
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(a) (b)

Figure 12: Parametric CAD and sliced global implicit representation for the 3D model of
a cube trimmed by a cylinder.

0.25, height equal to 1/2, and centered at the origin, see Figure 12(a). The
boundary of the domain Ω2 is composed of seven curves and seven surfaces.
Six surfaces correspond to the cube K2 and one correspond to the cylinder
C2. Six curves correspond to the boundary curves of each surface bound-
ary of the cube, and one curve correspond to the intersection of the surface
boundary of the cylinder C2 with the cube. We illustrate in Figure 12(b) a
global implicit representation of the boundary Λ2 := ∂Ω2, using the method
presented in Section 5.1. Although the inner boundary is smooth, the outer
boundary contains sharp features such as corners and sharp edges.

We equip the domain Ω2 with the target metric presented in Equation (24)
with hmin = 0.02. Then, we generate with MATLAB a quadratic isotropic
tetrahedral background mesh M̂ of input resolution hmin = 0.02 over Ω2

that is, of input size 0.04. We normalize the target metric according to size
h = 0.5. Then, we couple each background mesh with the target metric
evaluated at the background mesh vertices. From this background mesh M̂,
we obtain an initial quadratic straight-sided anisotropic physical mesh M
by applying the MMG algorithm, see Figures 13(a), 13(c), and 13(e). The
physical mesh is composed by 1 261 nodes and 695 tetrahedra. Note that,
since the MMG algorithm requires a linear background mesh, we subdivide
once our quadratic background mesh in order to preserve its resolution.

In Figures 13(b), 13(d), and 13(f), we illustrate the optimized meshes
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Figure 13: Point-wise distortion for quadratic tetrahedral meshes. Initial straight-sided
anisotropic mesh and optimized mesh in columns.
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Table 6: Quality statistics for the initial MMG and optimized mesh with interpolated 3D
metric at the cube trimmed by a cylinder.

Mesh Minimum Maximum Mean Standard deviation

Initial 0.0506 0.9489 0.3519 0.1874
Optimized 0.3315 0.9198 0.6661 0.1144

M∗. We observe that the elements lying in the anisotropic region are com-
pressed to attain the stretching and alignment prescribed by the metric.
Note that the boundary elements are curved to match both the metric and
the curved domain boundaries. In Table 6, we show the quality statistics of
both the initial and optimized mesh. In the optimized mesh the minimum,
the mean, and the standard deviation of the element qualities are improved
when compared with the initial configuration.

From the results, we observe that, when compared with straight-sided
elements, curved elements approximate more faithfully the metric while pre-
serving the curved features of the boundary. In this case, the stretching
direction and the curvature of the geometry are independent. Accordingly,
when considering straight-edged elements, in Figure 13(e), more stretched el-
ements may enable a lower resolution of the boundary. That is, the achieved
resolution of the boundary limits the achieved stretching, and vice-versa.
In contrast, when considering curved elements, in Figure 13(f), we observe
that more degrees of freedom can be accumulated at the stretched directions
while preserving the curved features of the boundary. As before, we conclude
that curved elements allow an improved representation of the metric while
preserving the curved features of the boundary.

7. Concluding remarks

In conclusion, we have obtained unprecedented second-order optimiza-
tion results in curved r-adaption to a metric and geometry targets. We have
represented the discrete metric in a curved background mesh as a high-order
log-Euclidean metric interpolation. For this metric interpolation, we have
detailed the first and second derivatives in terms of the physical coordinates.
Moreover, we have considered the geometry model as an implicit representa-
tion of the NURBS entities. For this implicit representation, we have detailed
the first and second derivatives.
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The derivatives of the metric interpolation and the implicit representation
have allowed minimizing the objective function with Newton’s method, an
objective function that accounts for the metric and geometry deviations.
The discrete metric results compare well with the analytic metric results.
In all the results, the method exploits the non-constant Jacobian of curved
high-order elements. This mechanism allows the technique to simultaneously
match curved features of the metric and the geometry.

To meet our goal, we have enabled Newton’s method for curved r-adaption.
Nevertheless, we have planned new directions and improvements for the near
future. First, to demonstrate the applications of our method and the ad-
vantages of adapted curved meshes, we have planned to r-adapt the curved
meshes to the steady state of inviscid flows. At this point, we cannot obtain
the required discrete metrics because we need to implement existing goal-
oriented error estimators for high-order methods [1, 51]. Second, we have
demonstrated a key ingredient for curved r-adaption. Nevertheless, combin-
ing curved r-adaption with curved h-adaption might be more efficient. To
illustrate this combination, we have used an external straight-edged adap-
tive mesher. However, to properly match the requirements of high-order
methods in h-adaption, it is mandatory to use local cavity operators for
curved meshes. Regarding these curved operators, we have planned to com-
bine existing approaches [14, 16, 25, 52] with our approaches. Specifically,
our distortion minimization for high-order metric and curved boundaries can
also optimize a local cavity. To this end, we will match the cavity interior
to the target high-order metric while the old cavity boundaries represent the
target geometry.

In perspective, this capability to match metric and geometry features
might be an attractive ingredient for curved high-order adaption. Specifi-
cally, in goal-oriented or indicator-based adaptive processes, one would have
a target high-order metric field in a current mesh approximating a target ge-
ometry. The combined approach would drive the curved r-adaption to glob-
ally (locally) relocate the current curved mesh (re-meshed cavity) according
to the curved features of the solution and the geometry (cavity) boundary.
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Appendix A. Derivatives of the eigenvalue decomposition

In this Appendix, we detail the first and second-order spatial derivatives of
the eigenvalue decomposition (eigenvalues and eigenvectors), first presented
in [43] and rewritten herein using our notation.

Let us consider, for ` = 1, ..., d, the eigenvalue equation for the eigenvector
u` with eigenvalue λ`

L`u` := (L− λ`I)u` = 0,

where L is a symmetric matrix and I is the identity matrix. Then, by taking
its first-order and second-order derivatives we respectively obtain

0 = ∂j (L`u`) = (∂jL`) · u` + L` · ∂ju`, (A.1)

0 = ∂jk (L`u`) = (∂jkL`) · u` + L` · ∂jku` + (A.2)

(∂jL`) · ∂ku` + (∂kL`) · ∂ju`.

For each ` one first computes the first-order derivative of the eigenvalue λ`
by left-multiplying by u` to Equation (A.1). Then, by solving the remaining
unknown term of Equation (A.1) one obtains the first-order derivatives of the
eigenvector u`. In particular, the first-order derivatives of the eigenvalues and
the eigenvectors are given by

∂jλ` = uT
` · ∂jL · u`, ∂ju` = −L+

` · ∂jL` · u`,

where the operation L+
` is the Moore-Penrose pseudo-inverse matrix for the

matrix L`. We use the Moore-Penrose pseudo-inverse matrix instead of the
inverse matrix because the matrix L` is singular. In addition, the redundant
equations are satisfied automatically.

The second-order derivatives are obtained by applying a similar proce-
dure. For each ` one first computes the second-order derivative of the eigen-
value λ` by left-multiplying by u` to Equation (A.2). Then, by solving the
remaining unknown term of Equation (A.2) one obtains the second-order

41



derivatives of the eigenvector u`. In particular, the second-order derivatives
of the eigenvalues are given by

∂jkλ` = uT
` · (∂kL` · ∂ju` + ∂jL` · ∂ku` + ∂jkL · u`) ,

∂jku` = −L+
` · (∂kL` · ∂ju` + ∂jL` · ∂ku` + ∂jkL` · u`)− (∂ju` · ∂ku`)u`,

where the last term of the second-order derivative of the eigenvector is ob-
tained by imposing the second-order derivative of the imposed normalization
condition uT

` · u` = 1

0 = ∂jk
(
uT
` · u`

)
= 2∂jku

T
` · u` + 2∂ju

T
` · ∂ku`.

Appendix B. Derivatives of the implicit representation

In this Appendix, we detail the first and second-order derivatives of the
normalized representation, the convex-hull representation, and the implicit
representation of a Bézier patch. They are used in the computation of the
gradient and Hessian for the implicit representation, see Section 5.2.

Herein, we consider the gradient and Hessian of the normalized represen-
tation γ̂, presented in Equation (13). As before, we denote by ∇f ∗ ∇g the
matrix with coefficients ∂jf∂kg for j, k = 1, ..., d. In addition, we consider
the symmetric term ∇f ⊗ ∇g := ∇f ∗ ∇g + ∇g ∗ ∇f given by the matrix
with coefficients ∂jf∂kg + ∂kf∂jg for j, k = 1, ..., d. Then, the derivatives of
the normalized representation are given by

∇γ̂ =
∇γ − γ̂∇‖∇γ‖

‖∇γ‖
, (B.1)

and

γ̂∇2γ̂ =
γ̂∇2γ − γ̂2∇2‖∇γ‖ − ∇γ̂ ⊗ γ̂∇‖∇γ‖

‖∇γ‖
, (B.2)

where

γ̂∇‖∇γ‖ =
γ̂∇2γ · ∇γ
‖∇γ‖

,

γ̂2∇2‖∇γ‖ =
γ̂2∇3γ · ∇γ + γ̂∇2γ · γ̂∇2γ − γ̂∇‖∇γ‖ ∗ γ̂∇‖∇γ‖

‖∇γ‖
.

We observe that they require the first, second, and third derivatives of γ.
In addition, we consider these terms when differentiating the trimming op-
eration, see Equations (21) and (22) for h = γ̂. In particular, the chain
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rule involves the terms ∇γ̂ and γ̂∇2γ̂, and the terms ∇γ, γ∇2γ, and γ2∇3γ.
As we can see, this observation is advantageous because a straight-forward
computation of the second and third derivatives, ∇2γ, and ∇3γ, involves a
singularity at the corresponding zero level-set of γ. For this reason, instead
of computing directly the derivatives we consider them multiplied by the
representation γ.

Next, we compute the derivatives of the convex-hull representation γ̂CH(Γ).
In particular, note that these derivatives are trivial since the representation
of each hyperplane entity is linear. Then, we differentiate the r-conjunction
between the hyperplane representations γCH(Γ), see Equations (17) and (18).
Finally, we differentiate the normalization of the convex-hull representation
γ̂CH(Γ), see Equations (B.1) and (B.2).

Now, we compute the derivatives for the determinant γ of Equation (12).
That is, ∇γ, γ∇2γ, and γ2∇3γ. First, compute the gradient of the determi-
nant by using the Jacobi’s formula

∇γ (x) = tr (adj (N (x)) · ∇N (x)) , (B.3)

where N (x) := M (x) ·M (x)T. We consider the adjugate matrix adj (N (x)),
instead of the inverse matrix, to avoid the singularity issues at the patch Γ. In
particular, the adjugate matrix of N (x) is defined by the transposed cofactor
matrix, and satisfying the relation adj (N (x)) = γ (x)N (x)−1 [29]. Secondly,
we compute the higher-order derivatives γ∇2γ, and γ2∇3γ by differentiating
the terms inside the trace function ∇γ, see Equation (B.3). In particular,
using the same notation as in Section 4.2, we compute the second derivatives
for each j and k as

γ (x) ∂jkγ (x) = tr (γ (x) ∂kadj (N (x)) · ∂jN (x) + γ (x) adj (N (x)) · ∂jkN (x)) .

In addition, the third derivatives are given by

γ (x)2 ∂jk`γ (x) = tr
(
γ (x)2 ∂k`adj (N (x)) · ∂jN (x) +(

γ (x)2 ∂kadj (N (x)) · ∂j`N (x) + γ (x)2 ∂`adj (N (x)) · ∂jkN (x)
)
,

for each j, k, and `. Note that, there is no third order term ∂jk`N (x) because
N (x) is a quadratic function on x, see Equation (12).

Finally, we provide the derivatives of the adjugate matrix adj (N (x)). In
particular, we present them in terms of the derivatives of the inverse matrix
multiplied by the determinant. Then, to rewrite the obtained expression in
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terms of the adjugate matrix, we multiply both expressions by the determi-
nant γ. Specifically, the gradient is given by

γ (x)∇adj (N (x)) = γ (x)∇
(
γ (x)N (x)−1) =

adj (N (x))∇γ (x)− N (x) · adj (N (x)) · N (x) .

We apply the same reasoning for the Hessian by computing

γ (x)2∇2adj (N (x)) = γ (x)2∇
(

1

γ (x)
γ (x)∇adj (N (x))

)
.

In particular, using the same notation as in Section 4.2, for each j and k we
have

γ2∂jkadj (N) = (γ∂jkγ) adj (N) + (∂jγ) γ∂kadj (N)− (∂kγ) γ∂jadj (N)−
γadj (N) · ∂jkN · adj (N)− γ∂kadj (N) · ∂jN · adj (N)− adj (N) · ∂jN · γ∂kadj (N) ,

where, for the sake of brevity, we omit the dependence on the x variable of
the functions γ and N.
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