
Surface and Hypersurface Meshing Techniques for
Space-Time Finite Element Methods

Jude T. Anderson∗

Department of Mechanical Engineering, The Pennsylvania State University, University

Park, Pennsylvania 16802

David M. Williams

Department of Mechanical Engineering, The Pennsylvania State University, University

Park, Pennsylvania 16802

Andrew Corrigan

Laboratories for Computational Physics and Fluid Dynamics, Naval Research Laboratory,
Washington, DC 20375

Abstract

A general method is introduced for constructing two-dimensional (2D) surface
meshes embedded in three-dimensional (3D) space time, and 3D hypersurface
meshes embedded in four-dimensional (4D) space time. In particular, we begin
by dividing the space-time domain into time slabs. Each time slab is equipped
with an initial plane (hyperplane), in conjunction with an unstructured simpli-
cial surface (hypersurface) mesh that covers the initial plane. We then obtain the
vertices of the terminating plane (hyperplane) of the time slab from the vertices
of the initial plane using a space-time trajectory-tracking approach. Next, these
vertices are used to create an unstructured simplicial mesh on the terminating
plane (hyperplane). Thereafter, the initial and terminating boundary vertices
are stitched together to form simplicial meshes on the intermediate surfaces or
sides of the time slab. After describing this new mesh-generation method in
rigorous detail, we provide the results of multiple numerical experiments which
demonstrate its validity and flexibility.

Keywords: Surface meshing, Hypersurface meshing, Space time, Four
dimensional space, Finite element methods
2010 MSC: 65M50, 52B11, 31B99, 76M10

∗Corresponding author
Email address: jta29@psu.edu (Jude T. Anderson)

1Distribution Statement A: Approved for public release. Distribution is unlimited.

Preprint submitted to Computer-Aided Design January 31, 2023

ar
X

iv
:2

30
1.

12
07

9v
1

 [
m

at
h.

N
A

]
 2

8
Ja

n
20

23

1. Introduction

Since its inception, the finite element method has often been limited to
stationary three-dimensional (3D) geometries due to the available meshing ca-
pabilities. However, in the last two decades, research has been conducted with
the goal of accurately simulating fluid-structure interactions (FSI) for 3D mov-
ing bodies. Towards this end, one may extrude or extend a 3D object along
the temporal direction in order to capture its movement in a four-dimensional
(4D) space-time setting. As one may imagine, this process is not intuitive, as
the entirety of the domain is no longer directly visible and can only be observed
through projections or hyperplane cross sections. Furthermore, extending the
current technology to properly mesh these domains has proven to be a difficult
task. The existing meshing technologies include methods for generating struc-
tured and semi-unstructured 4D meshes; however, the literature does not appear
to contain a method for fully-unstructured mesh generation with boundary re-
covery in 4D. In what follows, we briefly review some of the relevant work on
space-time volume meshing and classical surface meshing; then we provide an
overview of our current efforts to extend this work to create fully-unstructured,
4D meshes.

Some of the earliest work related to space-time finite element methods in one
spatial dimension plus time (1D+t) can be found in the papers of Hughes and
Hulbert [1, 2]. Thereafter, Behr [3] developed a method for semi-unstructured
temporal extrusion that applies to both two-dimensional (2D) and 3D meshes.
Broadly speaking, Behr introduced a process for extruding the triangular ele-
ments of a 2D surface mesh along the temporal direction to create triangular
prisms that can each be discretized into tetrahedra conforming to the Delau-
nay criterion. The process is similar for 3D hypersurface meshes, where a 3D
hypersurface mesh of tetrahedra are extruded along the temporal direction to
form 4D tetrahedral prism elements, which are subsequently discretized into
pentatopes also conforming to the Delaunay criterion. This approach has been
successfully applied to a wide range of applications, as evidenced by the work
in [4, 5, 6, 7, 8].

The prism extrusion method of Behr was expanded upon by von Danwitz
et al. [9]. In particular, they extend the method to accommodate time-variant
topology through what they call a 4D-elastic mesh update method. Essentially,
this does not change the connectivity of the 4D mesh but merely deforms the
existing elements to conform to the varying surface topology. The most recent
work on this particular topic appears to be that of Karyofylli and Behr [10].

In addition, a number of researchers have extended the extrusion-based
method to accommodate rotational motions. For example, Wang and Pers-
son [11] employ a similar method to Behr in 2D+t in order to generate an
initial tetrahedral mesh; thereafter, they subdivide the mesh into a station-
ary region, a rotating region, and a buffer region that resides at the interface
between the two. During rotation, the connectivity between the rotational re-
gion and the stationary region is maintained via reconnections (edge flips or
face flips) in the buffer region. Wang and Persson’s approach is essentially a

2

space-time, sliding-mesh approach. It has been extended to 3D+t for very sim-
ple cases [12]. Its viability appears to hold only for applications in which the
boundary motion is purely rotational, and is known a priori. We note that a
very similar sliding-mesh approach has been recently developed by Horváth and
Rhebergen [13]. This work appears to extend, and in some ways improve upon
the previous work of Wang and Persson.

In contrast to the extrusion-based methods (above), Foteinos and Chriso-
choides [14] were able to generate unstructured 4D hypervolume meshes using a
typical Delaunay-based mesh generator up-scaled to accommodate four dimen-
sions. Although this work is significant, it does not present a clear mechanism
for recovering the boundary, i.e. recovering the surface mesh that resides on the
boundary. This issue of ‘boundary recovery’ is a common problem in Delaunay-
based meshing techniques. Many researchers, such as Si et al. [15] and Liu et
al. [16], detail various strategies for recovering a surface mesh in 3D, in conjunc-
tion with a Delaunay mesh generator. However, due to the lack of boundary
recovery strategies in 4D, extrusion-based methods similar to Behr’s remain
dominant.

As another alternative to the methods proposed above, traditional advancing
front techniques [17, 18, 19] were expanded upon to create a space-time mesh
generation method that is known as pitching tents [20, 21, 22]. Here, each vertex
in the spatial domain is projected along the temporal direction to generate a
new vertex. New elements (one dimension higher than the original mesh) are
created by tessellating the region formed by the neighboring faces of the original
vertex and the new vertex. Recently, this method has been applied to hyperbolic
systems [23, 24, 25] and the Maxwell equations [26]. These methods are usually
best-suited for wave-propagation problems.

Most of the existing research (above) focuses on the generation of space-time
volume meshes in 2D+t and hypervolume meshes in 3D+t. To our knowledge,
researchers have not rigorously explored techniques for generating space-time
surface meshes in 2D+t and hypersurface meshes in 3D+t. Part of the rea-
son for this omission is that boundary conformity is automatically enforced for
extrusion-based meshing approaches for problems where the boundary is sta-
tionary. Furthermore, boundary motion can (sometimes) be accommodated
via the aforementioned elasticity-based approach. Of course, this comes at the
cost of failing to accommodate arbitrary, large-scale boundary motions. More
importantly, most volume or hypervolume meshes generated via extrusion are
not fully unstructured in both space and time. Therefore, there is some incen-
tive to investigate general surface meshing techniques which can accommodate
fully-unstructured, constrained-Delaunay meshing strategies in 4D.

Naturally, there is already a wealth of literature which discusses surface
meshing techniques for traditional, stationary, 3D applications. The majority
of the work in this area relies on a method known as parametric mapping,
which involves constructing a surface mesh for a 3D application on a reference
2D domain according to a specified metric. Once the 2D domain is meshed, it
is mapped to the 3D domain. Interesting applications and discussions of this
method can be found in [27, 28, 29, 30, 31, 32, 33]. Variations and improvements

3

to this method include separating a surface into patches [34], using high-order
elements [35], and using Voronoi diagrams [36], among other notable works [37,
38, 39]. In addition, Lan and Lo [40] and Cass et al. [41] developed their
own alternatives to parametric mapping that remain in 3D space and employ
techniques such as curvature sizing functions to generate valid surface meshes.

The key issue with this existing surface meshing literature is that it is gen-
erally limited to 2D surface meshes which are embedded in 3D space. Fur-
thermore, the meshing techniques often depend on a detailed knowledge of the
underlying CAD, which is easily available for 3D problems, but may not be fully
characterized for 4D space-time problems.

In this work, we discuss a new approach to 4D meshing, specifically the gen-
eration of a hypersurface mesh embedded in 3D+t space time. A key component
of this method, is that vertices from the previous time slab change their posi-
tions in accordance with tracking space-time trajectories, (computed based on
the local hypersurface velocity). In principle, the method can successfully track
the movement of any 3D object in question. In addition, it allows us to create
hyperplanes that are stitched together by tetrahedra in order to form a com-
plete, conforming hypersurface mesh on each time slab. Once this hypersurface
mesh is generated, we can create a fully-unstructured hypervolume mesh that
conforms to the hypersurface mesh on the slab. Note that this latter step will be
reserved for subsequent work. In what follows, we discuss preliminary concepts
relating to surface meshing, then move on to 2D+t and 3D+t illustrations of
our technique. We then present the results of some numerical experiments and
conclude by suggesting future work.

2. Preliminaries

We begin by partitioning the space-time domain into slabs. This decompo-
sition process is performed by intersecting the domain with spatial hyperplanes
located at regular intervals, (see Figure 1). In 3D, each slab contains an “initial
plane” (at t = tn), a “terminating plane” (at t = tn+1), and an “intermediate
surface” which connects the initial plane to the terminating plane. We note that
the intermediate surface does not need to be planar. When taken together, the
initial plane, terminating plane, and intermediate surface form the boundaries
of the space-time slab. These boundaries are 2D surfaces embedded in a 3D
space time (2D+t). We note that the space-time slabs are generally not formed
all at once. Instead, they are formed sequentially on an “as-needed basis”,
starting with those at the earliest times, and then continuing on with those at
later times. This is a particularly important point, when we consider that the
geometry of the space-time domain may not be known a priori for certain FSI
applications, and a predictor-corrector approach may be necessary to form the
topology of the individual space-time slabs, as the simulation evolves.

Before proceeding further, it is important for us to distinguish between “con-
tinuous space-time surfaces” and “discrete space-time surfaces”. A continuous
space-time surface is the continuous, CAD definition of a surface, which can
only be generated if suitable knowledge of the boundary motion is available.

4

Figure 1: Entire space-time domain in 2D+t (left) and subdivision of this domain into space-
time slabs (right).

A discrete space-time surface is the discrete, surface mesh that is (frequently)
associated with an underlying continuous space-time surface. For the case of
2D+t, this surface mesh usually consists of triangles and their associated ver-
tices embedded in 3D space time. For the case of 3D+t, the surface is actually
a hypersurface which usually consists of tetrahedra and their associated ver-
tices embedded in 4D space time. In this work, we are primarily interested in
generating suitable surface meshes (i.e., discrete space-time surfaces). We can
summarize our objectives in the following problem statement for 2D+t:

“Given a surface mesh on the previous space-time slab, find new surface meshes
on the initial, intermediate, and terminating surfaces of the next space-time
slab, while limiting the amount of space-time CAD information required.”

We can obtain an equivalent statement for the case of 3D+t by replacing the
word “surface” with the word “hypersurface” in the statement above.

3. Surface and Hypersurface Meshing

For the 2D case, we begin by extracting the terminating plane of the previous
space-time slab, which is located at t = tn. We assume that this terminating
plane is covered with a discrete triangular surface mesh. Of course, if we consider
the first space-time slab in our entire space-time domain, the previous space-
time slab does not exist. In this case, we simply assume that there is a ghost slab
that spans the space from t = t−1 to t = t0 and provides us with a terminating
surface mesh located at t = t0. Once the terminating surface mesh is identified,
our objective is to create new surface meshes on the initial, intermediate, and
terminating surfaces of the next space-time slab from t = tn to t = tn+1. With
this in mind, we start by setting the surface mesh on the initial plane of our new
space-time slab to be identical to the terminating surface mesh of the previous
space-time slab. This ensures that the subsequently generated volume mesh

5

on the new space-time slab will maintain conformity with the volume mesh on
the previous space-time slab. Next, it is possible to generate the intermediate
surface mesh on the “sides” of the space-time slab, and thereafter, the surface
mesh on the terminating plane. In what follows, we will describe the remainder
of the surface meshing process in 2D. Thereafter, we discuss the extension to 3D.

3.1 The Two-Dimensional Case (2D+t)

In order to begin building the intermediate 2D surface mesh, we extract and
mark the edges which represent the discrete boundaries of the surface mesh on
the initial plane. Next, we compute the space-time trajectories of these vertices
using the local velocity of the space-time CAD surface (which should be known
or predicted a priori), in conjunction with the well-known ordinary differential
equation

v (t) =
dx (t)

dt
.

In order to solve this equation, the time interval dt = tn+1 − tn is subdivided
into M subintervals, where the time-step for each subinterval is simply dt/M .
On each subinterval, we solve the differential equation above using the latest
information about the surface velocity, in conjunction with a standard explicit
time-stepping method, such as the forward Euler time-stepping method. In this
way, the trajectories of the edge vertices are computed until their location at
the final time (tn+1) is determined. The final location of the vertices may be
impacted by time-integration errors, and therefore, we perform a simple pro-
jection procedure to ensure that the vertices lie exactly on the CAD surface at
the final time. Note: throughout this process, we assume that the connectivity
of the edge vertices does not change. After the vertex trajectories and final
locations have been computed, we have two sets of vertices: one on the initial
plane at t = tn, and one on the terminating plane at t = tn+1. The vertices
on the terminating plane are then connected to one another in order to form
edges. Thereafter, these edges are connected to the corresponding edges on the
initial plane in order to form quadrilateral elements on the intermediate sur-
face. These quadrilateral elements can be subdivided into triangular elements
by inserting a Steiner point at the centroid of each quadrilateral element and
connecting each Steiner point to the quadrilateral element’s vertices. By follow-
ing this procedure, we succeed in forming a linearly interpolated surface mesh of
triangles on the intermediate surface. Lastly, we collect the edges and vertices
on the terminating surface, and send them to a 2D constrained Delaunay mesh
generation program (such as Shewchuk’s Triangle program [42]) in order to gen-
erate a surface mesh for the terminating plane. We conclude by synchronizing
the connectivity of the initial surface mesh, the intermediate surface mesh, and
the terminating surface mesh. The resulting agglomeration of surface meshes
provides a hull of triangular elements on the space-time slab from t = tn to
t = tn+1.

The process for generating the surface mesh on a space-time slab is summa-
rized below:

6

1. Extract the surface mesh from the terminating plane of the previous space-
time slab.

2. Construct the surface mesh for the initial plane of the new space-time slab
using the surface mesh from step 1.

3. Extract the boundary edges and vertices of the surface mesh from step 2.
Compute the vertex trajectories from t = tn to t = tn+1. Project final
point locations to the CAD surface.

4. Connect vertices on the terminating plane to create edges.

5. Connect edges on the terminating plane to edges on the initial plane to
create quadrilaterals.

6. Subdivide the quadrilaterals into triangles to generate a triangular surface
mesh on the intermediate surface.

7. Use the edges on the terminating plane to generate a triangular surface
mesh on the terminating plane.

Thereafter, the surface meshes from steps 2, 6, and 7 are combined to generate
a surface mesh for the entire space-time slab. The overall process is shown in
Figure 2.

7

Figure 2: An illustration of the process for generating a surface mesh on a space-time slab in
2D+t. The numbered steps are explained in the text.

3.2 The Three-Dimensional Case (3D+t)

In order to build the 3D hypersurface mesh, we first extract the tetrahedral
hypersurface mesh on the terminating hyperplane of the previous space-time
slab. Following the approach used in the 2D case, we use this hypersurface
mesh in order to tessellate the initial hyperplane of the next space-time slab.
Thereafter, it remains for us to construct the intermediate hypersurface mesh,
and the terminating hypersurface mesh for the space-time slab. Towards this
end, we identify the outer boundaries of the initial hypersurface mesh. These
boundaries correspond to the set of triangles which lie on the boundaries of
the spatial domain at t = tn. Once these triangles have been identified, we
can extract their vertices, compute the corresponding space-time trajectories,
and project the final point locations to the CAD surface (see the 2D procedure
for details). Thereafter, we will have triangle vertices on the initial hyperplane
(at t = tn) and on the terminating hyperplane (at t = tn+1). The vertices on
the terminating hyperplane can be connected to form a triangulation, then the
triangles on the initial and terminating hyperplanes can be connected in order
to form triangular prisms. Note that these are 3D triangular prisms which are
embedded in 4D space time. Once the prisms have been formed, they can be
split into tetrahedral elements. We are aware of at least five different splitting
strategies (see Figure 3). However, an arbitrary splitting is not possible, as
it is important to preserve the conformity of adjacent triangular prism faces.
Therefore, we require that all splittings of the quadrilateral faces of the tri-
angular prisms are identical under reflections and rotations of the prism unto

8

itself. With this in mind, we prefer two particular splitting techniques. The
first technique involves splitting the quadrilateral faces of the triangular prisms
into triangles by inserting Steiner points at the centroids of the quadrilateral
faces and connecting these points to the quadrilateral’s vertices. Thereafter,
the triangular faces of the split prism can be connected to an additional Steiner
point located at the prism’s centroid. This results in a total of fourteen tetra-
hedral elements (see Figure 3, E). This splitting is natural because it is merely
a generalization of the splitting employed for the 2D case. However, this split-
ting is actually slightly suboptimal. An improved splitting strategy involves the
insertion of only three Steiner points (instead of four) and subdivides the trian-
gular prism into ten tetrahedral elements (see Figure 3, C). This strategy is our
foremost preference, as it produces a smaller number of elements relative to the
first approach, while maintaining an identical pattern of splitting on the quadri-
lateral faces of the prism. Nevertheless, we make use of the more traditional
splitting (the splitting into fourteen tetrahedra) in our subsequent numerical
experiments due to its greater simplicity of implementation. The more optimal
splitting (the splitting into ten tetrahedra) will be explored in future work.

For the sake of completeness, we introduce quantitative definitions for the
aforementioned triangular prism splitting strategies on a reference triangular
prism, denoted by R∗. We assume that R∗ has the following vertices

R∗ = [r1(0, 0, 0), r2(1, 0, 0), r3(0, 1, 0), r4(0, 0, 1), r5(1, 0, 1), r6(0, 1, 1)] .

In addition, we introduce the following Steiner points at the centroid and on
the quadrilateral faces of R∗,

r7 =
1

4
(r2 + r3 + r5 + r6), r8 =

1

4
(r1 + r2 + r4 + r5),

r9 =
1

4
(r1 + r3 + r4 + r6), r10 =

1

6
(r1 + r2 + r3 + r4 + r5 + r6) .

Based on the description above, we can define the following ten tetrahedra as
part of subdivision strategy C

CR∗ =

{
S1(r1, r2, r3, r7), S2(r4, r5, r6, r7), S3(r1, r2, r7, r8),

S4(r2, r5, r7, r8), S5(r4, r5, r7, r8), S6(r1, r4, r7, r8),

S7(r1, r3, r7, r9), S8(r3, r6, r7, r9), S9(r4, r6, r7, r9), S10(r1, r4, r7, r9)

}
,

where C yields the subdivision strategy illustrated in Figure 3, C. In addition,

9

we can define the following fourteen tetrahedra as part of subdivision strategy E

ER∗ =

{
S1(r2, r3, r5, r10), S2(r2, r3, r6, r10), S3(r2, r5, r6, r10),

S4(r3, r5, r6, r10), S5(r1, r2, r4, r10), S6(r1, r2, r5, r10),

S7(r1, r4, r5, r10), S8(r2, r4, r5, r10), S9(r1, r3, r4, r10),

S10(r1, r3, r6, r10), S11(r1, r4, r6, r10), S12(r3, r4, r6, r10),

S13(r1, r2, r3, r10), S14(r4, r5, r6, r10)

}
,

where E yields the subdivision strategy illustrated in Figure 3, E.
Once the triangular prisms have been successfully subdivided into tetrahe-

dra, then we recover a valid tetrahedral hypersurface mesh for the intermediate
hypersurface. Thereafter, it remains for us to construct the hypersurface mesh
on the terminating hyperplane. Towards this end, we collect the triangular el-
ements and vertices associated with the terminating hyperplane (at t = tn+1),
then we send them off to a volume meshing program (such as Hang Si’s TetGen
program [43]). Once the terminating hypersurface mesh has been constructed,
we synchronize its connectivity with the connectivity of the initial and interme-
diate hypersurface meshes. The resulting agglomeration of hypersurface meshes
results in a hull of tetrahedral elements for the space-time slab from t = tn to
t = tn+1.

The process for generating the hypersurface mesh on a space-time slab is
summarized below:

1. Extract the hypersurface mesh from the terminating hyperplane of the
previous space-time slab.

2. Construct the hypersurface mesh for the initial hyperplane of the new
space-time slab using the hypersurface mesh from step 1.

3. Extract the boundary triangular faces, edges, and vertices of the hyper-
surface mesh from step 2. Compute the vertex trajectories from t = tn to
t = tn+1. Project final point locations to the CAD surface.

4. Connect vertices on the terminating hyperplane to create triangular faces.

5. Connect triangles on the terminating hyperplane to triangles on the initial
hyperplane to create triangular prisms.

6. Subdivide the triangular prisms into tetrahedra to generate a tetrahedral
hypersurface mesh on the intermediate hypersurface.

7. Use the triangular faces on the terminating hyperplane to generate a tetra-
hedral hypersurface mesh on the terminating hyperplane.

The hypersurface meshes from steps 2, 6, and 7 are combined to generate a
hypersurface mesh for the entire space-time slab. The overall process is shown
in Figure 4.

10

Figure 3: Illustrations of the five different strategies for subdividing a triangular prism into
tetrahedra elements. The strategies (A-E) subdivide the prism into 3, 6, 10, 12, and 14
tetrahedral elements, respectively.

11

12

Figure 4: An illustration of the process for generating a hypersurface mesh on a space-time
slab in 3D+t. The numbered steps are explained in the text.

13

4. Numerical Experiments

In this section, we present numerical experiments using the surface meshing
algorithm from the previous section. This algorithm was implemented as an
extension of the JENRE® Multiphysics Framework used in earlier work for
space-time finite element methods [44].

4.1 Stationary Circle

The spatial geometry for this test case consisted of a circle with constant
radius R = 1, located inside of a square with constant edge length L = 10.
The circle was positioned at the centroid of the square and was kept stationary
during the time interval t ∈ [0, 1] = [t0, tf]. The combination of the spatial
domain and the temporal interval formed a space-time geometry consisting of
a space-time cylinder inside a 3-cube. The geometry for this configuration is
illustrated in Figure 5. We note that this simple test case can be treated by

Figure 5: An illustration of a stationary 2-sphere inside of a 2-cube. Under these circum-
stances, the space-time geometry consists of a cylinder embedded inside of a 3-cube. Note:
this drawing is not to scale.

conventional mesh-extrusion methods. For example, a triangular surface mesh
located at time t0 = 0 can be extruded along the temporal direction to form
a tetrahedral volume mesh that fills the space between the space-time cylinder
and the surrounding cube. Furthermore, during this process, the boundary of
the tetrahedral volume mesh automatically functions (or serves) as a triangular
surface mesh which conforms to the space-time geometry. However, despite the
simplicity of this test case and its ability to be successfully treated with other
methods, it nonetheless serves as a useful ‘sanity-check’ in order to ensure that
our surface meshing algorithm is working as expected. With this justification in
mind, we proceeded by constructing a preliminary triangular surface mesh for
the spatial geometry at t0 = 0. Thereafter, we constructed a family of surface
meshes for the entire space-time domain using the techniques from the previous
section. For each of these surface meshes, the characteristic element size near

14

the circle, hcircle, and the characteristic element size near the square boundary,
hsquare, were specified on the initial surface mesh at t0 = 0. In addition, the
mesh spacing of the domain along the temporal direction, htime, was specified.
Next, a total of nine surface meshes for the space-time slab were generated,
each with a greater number of elements than the previous mesh in the sequence.
Note that the surface meshes that appeared later in the sequence were larger
than the earlier ones because they had progressively smaller values of hcircle,
hsquare, and htime. These spacing parameters were usually decreased by a factor
of between 1.25 and 2.0 between successive meshes. The essential properties of
the resulting surface meshes are summarized in Table 1.

Mesh Elements Vertices
1 2,714 1,357
2 5,308 2,654
3 10,022 5,011
4 20,142 10,071
5 38,792 19,396
6 76,524 38,262
7 154,570 77,285
8 305,602 152,801
9 613,418 306,709

Table 1: The number of triangular elements and vertices for a sequence of surface meshes for
the stationary circle test case.

The validity of each surface mesh was assessed by comparing its approximate
surface area to the exact, analytically-determined surface area of the space-
time geometry. The approximate surface area for each mesh was calculated by
summing the areas of all triangles in each mesh. In particular, the area of each
individual triangle was calculated using Heron’s formula,

Aapprox =
∑
Tk

Ak,

where Tk is a generic triangle in a given surface mesh and

Ak =
√
sk(sk − ak)(sk − bk)(sk − ck), sk =

1

2
(ak + bk + ck) ,

where ak, bk, and ck are the edge lengths of the k-th triangle.
The exact surface area of the space-time geometry was calculated by the

following formula

Aexact = 2
(
L2 − πR2

)
+ (4L+ 2πR) (tf − t0) .

In a natural fashion, the error was calculated as follows

Aerror = |Aexact −Aapprox| .

15

Figure 6 shows a plot of the error in the surface area versus the number of
elements to the -1/2 power. Here, we can see that the error decays at a rate
of 2nd-order as the mesh resolution increases. This rate of convergence agrees
well with our expectations, as straight-sided triangular elements are expected
to generate 2nd-order convergence rates for most finite element applications.

Figure 6: Each point on the plot above represents the error between the area of a surface
mesh and the exact surface area for the stationary circle test case. The errors are plotted
against the characteristic mesh spacing for a sequence of increasingly refined surface meshes.
In addition, a dashed line associated with 2nd-order convergence is plotted for reference.

4.2 Expanding Circle

In this test case, the circle from the previous case was allowed to expand. In
particular, the radius of the circle was calculated based on the following function

R(t) = mt+R0, (4.1)

where R0 is the initial radius of the circle, and m is the radial expansion speed of
the circle. In this case, we elected to set R0 = 1 and m = 0.25, and we allowed
the circle to expand during the time interval [0, 1]. The final radius of the circle
was Rf = 1.25. The space-time geometry for this case is a conical frustum with
initial radius R0 and final radius Rf inside of a 3-cube with edge length L = 10.
In a natural fashion, the axis of revolution for the conical frustum is aligned with
the temporal axis. Figure 7 shows an illustration of this geometric configuration.
We created a family of nine surface meshes for the chosen space-time geometry,
using the meshing parameters and techniques described in Section 4.1. The
properties of the surface meshes for the expanding circle are summarized in
Table 2. We assessed the validity of the surface meshes by calculating the area
of each mesh, and comparing it with the following analytically-determined exact

16

Figure 7: An illustration of an expanding 2-sphere inside of a 2-cube. Under these circum-
stances, the space-time geometry consists of a conical frustum embedded inside of a 3-cube.
Note: this drawing is not to scale.

Mesh Elements Vertices
1 2,696 1,348
2 5,288 2,644
3 10,016 5,008
4 20,086 10,043
5 38,734 19,367
6 76,406 38,203
7 154,362 77,181
8 305,194 152,597
9 612,452 306,226

Table 2: The number of triangular elements and vertices for a sequence of surface meshes for
the expanding circle test case.

area for the space-time slab

Aexact = 2L2 − π(R2
f +R2

0) + 4L (tf − t0)

+ π(Rf +R0)
√

(Rf −R0)2 + (tf − t0)2.

Figure 8 shows a plot of the surface area error versus the approximate mesh
spacing. As expected, the error decreases at a rate of 2nd-order with increasing
mesh resolution.

4.3 Stationary Sphere

The geometry for this experiment consisted of a stationary 3-sphere with
radius R = 1 inside of a 3-cube with edge length L = 10. The sphere was located
at the centroid of the cube. In addition, the surface of the sphere was kept static

17

Figure 8: Each point on the plot above represents the error between the area of a surface
mesh and the exact surface area for the expanding circle test case. The errors are plotted
against the characteristic mesh spacing for a sequence of increasingly refined surface meshes.
In addition, a dashed line associated with 2nd-order convergence is plotted for reference.

without any changes in size. The associated space-time geometry consists of a
hypercylinder embedded inside of a tesseract (4-cube). This geometry is shown
in Figure 9. The region between the surface of the sphere and the walls of the

Figure 9: An illustration of a stationary 3-sphere inside of a 3-cube. Under these circum-
stances, the space-time geometry consists of a hypercylinder embedded inside of a tesseract.
Note: this drawing is not to scale.

cube was filled with an unstructured mesh of tetrahedral elements at time t0 = 0.

18

This mesh served as a hypersurface mesh for the initial hyperplane. With this
as a starting point, an entire family of hypersurface meshes was formed for the
space-time slab using the construction techniques described in Section 3. In
order to create a well-behaved family of meshes, we specified the mesh spacings
on the surface of the sphere, hsphere, on the surface of the cube walls, hcube,
and along the temporal direction, htime. The mesh properties are summarized
in Table 3.

Mesh Elements Vertices
1 144,431 30,813
2 368,587 78,637
3 958,500 204,440
4 2,630,598 561,013
5 7,127,597 1,519,319
6 19,165,615 4,087,387
7 56,118,477 11,961,783
8 149,470,428 31,879,852

Table 3: The number of tetrahedral elements and vertices for a sequence of hypersurface
meshes for the stationary sphere test case.

We compared the volume of each hypersurface mesh to the exact, analytically-
determined volume of the hypersurface for the space-time slab. The volume of
each hypersurface mesh was calculated by adding up the individual volumes of
all tetrahedral elements in each mesh as follows

Vapprox =
∑
Tk

Vk,

where

Vk =

√
det(Θ)

288
, Θ =


0 1 1 1 1
1 0 d2ab d2ac d2ae
1 d2ab 0 d2bc d2be
1 d2ac d2bc 0 d2ce
1 d2ae d2be d2ce 0

 ,
and where the “d” quantities above are the pairwise distances between the
vertices a, b, c, and e of the k-th tetrahedron, Tk.

The analytically-determined, exact volume was computed as follows

Vexact = 2

(
L3 − 4

3
πR3

)
+
(
6L2 + 4πR2

)
(tf − t0).

The error in the hypersurface volume was then obtained as follows

Verror = |Vexact − Vapprox| .

19

Figure 10 shows the volumetric error for each hypersurface mesh plotted versus
the approximate mesh spacing. Here, the mesh spacing was estimated by raising
the total number of elements in each mesh to the -1/3 power. As expected, the
error appears to consistently decrease with a rate of approximately 2nd order.

Figure 10: Each point on the plot above represents the error between the volume of a hy-
persurface mesh and the exact volume for the stationary sphere test case. The errors are
plotted against the characteristic mesh spacing for a sequence of increasingly refined hyper-
surface meshes. In addition, a dashed line associated with 2nd-order convergence is plotted
for reference.

4.4 Expanding Sphere

For this experiment, we used the stationary sphere geometry from the pre-
vious section. However, in this case, the radius of the sphere was allowed to
increase in time in accordance with Eq. (4.1), during the time interval [0, 1].
Here, we let R0 = 1 and m = 0.25. During the time interval in question, the
sphere expanded to a final radius of Rf = 1.25. The associated space-time
geometry consisted of a hyper-conical frustum embedded inside of a tesseract.
This geometry is shown in Figure 11. For this geometry, we created a family of
hypersurface meshes using the procedure described in the previous section. The
mesh properties are summarized in Table 4. The total volume of each mesh was
compared with the exact volume of the slab’s hypersurface, which was computed
as follows

Vexact = 2L3 − 4

3
π
(
R3
f +R3

0

)
+ 6L2 (tf − t0)

+
4

3
π

(
R3
f −R3

0

Rf −R0

)√
(Rf −R0)2 + (tf − t0)2.

Figure 12 shows a plot of the volumetric error versus the approximate mesh
spacing. As expected, the error in the approximation deceases with increasing
mesh resolution, and the rate of decrease is approximately 2nd order.

20

Figure 11: An illustration of an expanding 3-sphere inside of a 3-cube. Under these circum-
stances, the space-time geometry consists of a hyper-conical frustum embedded inside of a
tesseract. Note: this drawing is not to scale.

Mesh Elements Vertices
1 144,345 30,801
2 368,477 78,620
3 958,364 204,417
4 2,630,263 560,955
5 7,126,629 1,519,159
6 19,163,704 4,087,112
7 56,114,273 11,961,083
8 149,461,495 31,878,349

Table 4: The number of tetrahedral elements and vertices for a sequence of hypersurface
meshes for the expanding sphere test case.

4.5 Rotating Ellipsoid

The geometry for this test case consisted of a single ellipsoid with semi-axes
of a = 1 in the x-direction, b = 3 in the y-direction, and c = 2 in the z-direction.
The ellipsoid was located at the center of a 3-cube with edge length L = 16.
In this 3-cube, the ellipsoid rotated around the z-axis with a constant speed of
ω = π

2 rads/s, during the time interval [0, 1]. The resulting space-time geometry
consisted of an ‘ellipsoidal hyper-helix’ contained inside of a tesseract. With this
geometric configuration in mind, we generated a family of hypersurface meshes
using the procedure described in the previous section. The hypersurface meshes
were parameterized by the following quantities: hellipsoid was used to specify the
mesh spacing near the ellipsoid surface, hcube was used to specify the spacing

21

Figure 12: Each point on the plot above represents the error between the volume of a hy-
persurface mesh and the exact volume for the expanding sphere test case. The errors are
plotted against the characteristic mesh spacing for a sequence of increasingly refined hyper-
surface meshes. In addition, a dashed line associated with 2nd-order convergence is plotted
for reference.

near the cube walls, and htime was used to specify the spacing along the temporal
direction. The properties of the resulting hypersurface meshes are summarized
in Table 5. In addition, Figure 13 shows some representative snapshots of the
coarsest (lowest-resolution) hypersurface mesh.

Mesh Elements Vertices
1 355,798 75,655
2 944,622 200,867
3 2,644,079 562,277
4 7,236,458 1,538,687
5 20,536,468 4,365,033
6 54,872,975 11,676,192
7 162,044,418 34,449,255

Table 5: The number of tetrahedral elements and vertices for a sequence of hypersurface
meshes for the rotating ellipsoid test case.

We compared the volume of the hypersurface mesh at the final time (tf = 1)
against the exact volume of the hypersurface. The exact volume at tf = 1 was
calculated as follows

Vexact(tf) = L3 − 4

3
πabc.

Figure 14 shows a plot of the volumetric error versus the mesh resolution.
Second-order convergence is obtained, as expected.

22

4.6 Rotating Tandem Ellipsoids

For this test case, the geometry consisted of a pair of ellipsoids with semi-axes
of a1 = 1, b1 = 3, c1 = 2 and a2 = 3, b2 = 1, c2 = 2, respectively. Both ellipsoids
were placed inside of a 3-cube with edge length L = 20, and bounds given by
[−7.5, 12.5] × [−10, 10] × [−10, 10]. The first ellipsoid was centered at (0, 0, 0)
and the second at (5, 0, 0). In addition, the first ellipsoid rotated with angular
velocity (0, 0, π/2) rads/s, and the second rotated with velocity (0, 0,−π/2)
rad/s. On the time interval [0, 1], the motion of the ellipsoids created a pair
of elliptical hyper-helixes that were contained inside of a tesseract. A family
of hypersurface meshes was generated for this test case using the procedure
described in the previous section. Table 6 summarizes the properties of these
meshes. Furthermore, Figure 15 shows several characteristic snapshots of the
coarsest hypersurface mesh.

Mesh Elements Vertices
1 603,432 128,055
2 1,627,918 345,616
3 4,523,078 959,759
4 12,082,322 2,566,188
5 35,245,617 7,478,525
6 94,464,074 20,066,876
7 278,561,736 59,127,488

Table 6: The number of tetrahedral elements and vertices for a sequence of hypersurface
meshes for the rotating tandem ellipsoids test case.

The exact hypersurface volume at final time tf = 1 is given by

Vexact(tf) = L3 − 4

3
π (a1b1c1 + a2b2c2) .

Figure 16 shows a plot of the volumetric error versus the mesh resolution. We
obtain second-order convergence as expected.

5. Conclusion

We have described in detail a general method for developing surface meshes
in 2D+t space time and hypersurface meshes in 3D+t space time based on
temporal planes (hyperplanes) derived from vertex trajectory-tracking through
space time. These methods have been verified through numerical experiments
by extruding/extending 2D and 3D objects along the temporal direction and
comparing the approximate simplical surface areas or hypersurface volumes to
the expected analytical results. All numerical errors demonstrate 2nd-order con-
vergence as the element densities of the surface (hypersurface) meshes increase,
which demonstrates that our methods are working as expected.

23

In our future work, we will explore methods for Delaunay-based hypervolume
meshing in 3D+t space time. This work will include the development of methods
for recovering a hypersurface boundary mesh once an initial (unconstrained)
hypervolume mesh has been generated.

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

Funding

This research is sponsored by the Office of Naval Research, Code 351, through
the Jet Noise Reduction Program under Program Officer, Dr. Steven Martens.
Penn State University received funding under contract number N00173-22-2-
C008.

24

Figure 13: Snapshots of a rotating ellipsoid at t = 0, t = 0.5, and t = 1, (top to bottom).
On the left, a cross section of the coarsest hypersurface mesh is shown alongside the ellipsoid
CAD. On the right, a zoomed-in view of the surface mesh on the ellipsoid is shown.

25

Figure 14: Each point on the plot above represents the error between the volume of a hy-
persurface mesh and the exact volume for the rotating ellipsoid test case. The errors are
plotted against the characteristic mesh spacing for a sequence of increasingly refined hyper-
surface meshes. In addition, a dashed line associated with 2nd-order convergence is plotted
for reference.

26

Figure 15: Snapshots of rotating tandem ellipsoids at t = 0, t = 0.5, and t = 1, (top to
bottom). On the left, a cross section of the coarsest hypersurface mesh is shown, alongside
the ellipsoids’ CAD. On the right, a zoomed-in view of the surface meshes on the ellipsoids is
shown.

27

Figure 16: Each point on the plot above represents the error between the volume of a hyper-
surface mesh and the exact volume for the rotating tandem ellipsoid test case. The errors are
plotted against the characteristic mesh spacing for a sequence of increasingly refined hyper-
surface meshes. In addition, a dashed line associated with 2nd-order convergence is plotted
for reference.

28

References

[1] T. J. Hughes, G. M. Hulbert, Space-time finite element methods for elastodynamics: for-
mulations and error estimates, Computer Methods in Applied Mechanics and Engineering
66 (3) (1988) 339–363.

[2] G. M. Hulbert, T. J. Hughes, Space-time finite element methods for second-order hyper-
bolic equations, Computer Methods in Applied Mechanics and Engineering 84 (3) (1990)
327–348.

[3] M. Behr, Simplex space–time meshes in finite element simulations, International Journal
for Numerical Methods in Fluids 57 (9) (2008) 1421–1434.

[4] L. Pauli, M. Behr, On stabilized space-time FEM for anisotropic meshes: Incompressible
Navier–Stokes equations and applications to blood flow in medical devices, International
Journal for Numerical Methods in Fluids 85 (3) (2017) 189–209.

[5] M. von Danwitz, V. Karyofylli, N. Hosters, M. Behr, Simplex space-time meshes in
compressible flow simulations, International Journal for Numerical Methods in Fluids
91 (1) (2019) 29–48.

[6] V. Karyofylli, L. Wendling, M. Make, N. Hosters, M. Behr, Simplex space-time meshes
in thermally coupled two-phase flow simulations of mold filling, Computers & Fluids 192
(2019) 104261.

[7] M. Make, T. Spenke, N. Hosters, M. Behr, Spline-based space-time finite element ap-
proach for fluid-structure interaction problems with a focus on fully enclosed domains,
Computers & Mathematics with Applications 114 (2022) 210–224.

[8] M. von Danwitz, I. Voulis, N. Hosters, M. Behr, Time-Continuous and Time-
Discontinuous space-time finite elements for advection-diffusion problems, arXiv preprint
arXiv:2206.01423.

[9] M. von Danwitz, P. Antony, F. Key, N. Hosters, M. Behr, Four-dimensional elastically de-
formed simplex space-time meshes for domains with time-variant topology, International
Journal for Numerical Methods in Fluids 93 (12) (2021) 3490–3506.

[10] V. Karyofylli, M. Behr, Simplex space-time meshes in engineering applications with mov-
ing domains, arXiv preprint arXiv:2210.09831.

[11] L. Wang, P.-O. Persson, A high-order discontinuous Galerkin method with unstructured
space–time meshes for two-dimensional compressible flows on domains with large defor-
mations, Computers & Fluids 118 (2015) 53–68.

[12] L. Wang, Discontinuous Galerkin methods on moving domains with large deformations,
Ph.D. thesis, University of California, Berkeley (2015).

[13] T. L. Horváth, S. Rhebergen, A conforming sliding mesh technique for an embedded-
hybridized discontinuous Galerkin discretization for fluid-rigid body interaction, Inter-
national Journal for Numerical Methods in Fluids 94 (11) (2022) 1784–1809.

[14] P. Foteinos, N. Chrisochoides, 4D space–time Delaunay meshing for medical images,
Engineering with Computers 31 (3) (2015) 499–511.

[15] H. Si, K. Gärtner, 3D boundary recovery by constrained Delaunay tetrahedralization,
International Journal for Numerical Methods in Engineering 85 (11) (2011) 1341–1364.

[16] Y. Liu, S. Lo, Z.-Q. Guan, H.-W. Zhang, Boundary recovery for 3D Delaunay triangula-
tion, Finite Elements in Analysis and Design 84 (2014) 32–43.

29

[17] R. Löhner, P. Parikh, Generation of three-dimensional unstructured grids by the
advancing-front method, International Journal for Numerical Methods in Fluids 8 (10)
(1988) 1135–1149.

[18] P. L. George, É. Seveno, The advancing-front mesh generation method revisited, Inter-
national Journal for Numerical Methods in Engineering 37 (21) (1994) 3605–3619.

[19] D. S. Lo, Finite element mesh generation, CRC Press, 2014.

[20] A. Üngör, A. Sheffer, Pitching tents in space-time: Mesh generation for discontinuous
Galerkin method, International Journal of Foundations of Computer Science 13 (02)
(2002) 201–221.

[21] J. Erickson, D. Guoy, J. M. Sullivan, A. Üngör, Building spacetime meshes over arbitrary
spatial domains, Engineering with Computers 20 (4) (2005) 342–353.

[22] R. Abedi, S.-H. Chung, J. Erickson, Y. Fan, M. Garland, D. Guoy, R. Haber, J. M.
Sullivan, S. Thite, Y. Zhou, Spacetime meshing with adaptive refinement and coarsening,
in: Proceedings of the twentieth annual symposium on Computational geometry, 2004,
pp. 300–309.

[23] J. Gopalakrishnan, P. Monk, P. Sepúlveda, A tent pitching scheme motivated by
Friedrichs theory, Computers & Mathematics with Applications 70 (5) (2015) 1114–1135.

[24] J. Gopalakrishnan, J. Schöberl, C. Wintersteiger, Mapped tent pitching schemes for
hyperbolic systems, SIAM Journal on Scientific Computing 39 (6) (2017) B1043–B1063.

[25] D. Drake, J. Gopalakrishnan, J. Schöberl, C. Wintersteiger, Convergence analysis of some
tent-based schemes for linear hyperbolic systems, Mathematics of Computation 91 (334)
(2022) 699–733.

[26] J. Gopalakrishnan, M. Hochsteger, J. Schöberl, C. Wintersteiger, An explicit mapped
tent pitching scheme for Maxwell equations, in: Spectral and high order methods for
partial differential equations – ICOSAHOM 2018, 2020, pp. 359–369.

[27] H. Borouchaki, P. Laug, P.-L. George, Parametric surface meshing using a combined
advancing-front generalized Delaunay approach, International Journal for Numerical
Methods in Engineering 49 (1-2) (2000) 233–259.

[28] H. Borouchaki, P. J. Frey, P. L. George, Unstructured triangular-quadrilateral mesh
generation. application to surface meshing, in: Proc. of 5th Intl. Meshing Roundtable,
Citeseer, 1996, pp. 229–242.

[29] J. R. Tristano, S. J. Owen, S. A. Canann, Advancing front surface mesh generation in
parametric space using a Riemannian surface definition., in: IMR, 1998, pp. 429–445.

[30] Y. Zheng, R. W. Lewis, D. T. Gethin, Three-dimensional unstructured mesh generation:
Part 2. Surface meshes, Computer Methods in Applied Mechanics and Engineering 134 (3-
4) (1996) 269–284.

[31] C. Lee, R. Hobbs, Automatic adaptive finite element mesh generation over rational B-
spline surfaces, Computers & Structures 69 (5) (1998) 577–608.

[32] S. A. Canann, Y.-C. Liu, A. V. Mobley, Automatic 3D surface meshing to address today’s
industrial needs, Finite Elements in Analysis and Design 25 (1-2) (1997) 185–198.

[33] J.-C. Cuillière, An adaptive method for the automatic triangulation of 3D parametric
surfaces, Computer-Aided Design 30 (2) (1998) 139–149.

30

[34] C. Lee, Automatic metric 3D surface mesh generation using subdivision surface geomet-
rical model. Part 2: mesh generation algorithm and examples, International Journal for
Numerical Methods in Engineering 56 (11) (2003) 1615–1646.

[35] S. Sherwin, J. Peiró, Mesh generation in curvilinear domains using high-order elements,
International Journal for Numerical Methods in Engineering 53 (1) (2002) 207–223.

[36] B. Lévy, N. Bonneel, Variational anisotropic surface meshing with Voronoi parallel linear
enumeration, in: Proceedings of the 21st International Meshing Roundtable, Springer,
2013, pp. 349–366.

[37] H. Borouchaki, J. Villard, P. Laug, P. George, Surface mesh enhancement with geometric
singularities identification, Computer Methods in Applied Mechanics and Engineering
194 (48-49) (2005) 4885–4894.

[38] P. Frey, H. Borouchaki, Surface meshing using a geometric error estimate, International
Journal for Numerical Methods in Engineering 58 (2) (2003) 227–245.

[39] Z. Zhong, L. Shuai, M. Jin, X. Guo, Anisotropic surface meshing with conformal embed-
ding, Graphical Models 76 (5) (2014) 468–483.

[40] T. Lan, S. Lo, Finite element mesh generation over analytical curved surfaces, Computers
& Structures 59 (2) (1996) 301–309.

[41] R. J. Cass, S. E. Benzley, R. J. Meyers, T. D. Blacker, Generalized 3-D paving: an
automated quadrilateral surface mesh generation algorithm, International Journal for
Numerical Methods in Engineering 39 (9) (1996) 1475–1489.

[42] J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay trian-
gulator, in: Workshop on Applied Computational Geometry, Springer, 1996, pp. 203–222.

[43] S. Hang, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans.
Math. Softw 41 (2) (2015) 11.

[44] A. Corrigan, A. Kercher, D. Kessler, The moving discontinuous Galerkin method with
interface condition enforcement for unsteady three-dimensional flows, in: AIAA (Ed.),
2019 AIAA SciTech Forum, 2019, AIAA-2019-0642. doi:10.2514/6.2019-0642.

31

http://dx.doi.org/10.2514/6.2019-0642

	1 Introduction
	2 Preliminaries
	3 Surface and Hypersurface Meshing
	3.1 The Two-Dimensional Case (2D+t)
	3.2 The Three-Dimensional Case (3D+t)

	4 Numerical Experiments
	4.1 Stationary Circle
	4.2 Expanding Circle
	4.3 Stationary Sphere
	4.4 Expanding Sphere
	4.5 Rotating Ellipsoid
	4.6 Rotating Tandem Ellipsoids

	5 Conclusion

