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Abstract

We define a regularized size-shape distortion (quality) measure for curved
high-order elements on a Riemannian space. To this end, we measure the
deviation of a given element, straight-sided or curved, from the stretching,
alignment, and sizing determined by a target metric. The defined distor-
tion (quality) is suitable to check the validity and the quality of straight-
sided and curved elements on Riemannian spaces determined by constant
and point-wise varying metrics. The examples illustrate that the distortion
can be minimized to curve (deform) the elements of a given high-order (lin-
ear) mesh and try to match with curved (linear) elements the point-wise
stretching, alignment, and sizing of a discrete target metric tensor. In addi-
tion, the resulting meshes simultaneously match the curved features of the
target metric and boundary. Finally, to verify if the minimization of the
metric-aware size-shape distortion leads to meshes approximating the target
metric, we compute the Riemannian measures for the element edges, faces,
and cells. The results show that, when compared to anisotropic straight-sided
meshes, the Riemannian measures of the curved high-order mesh entities are
closer to unit. Furthermore, the optimized meshes illustrate the potential of
curved r-adaptation to improve the accuracy of a function representation.
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1. Introduction

Recently, there has been an increased interest to modify the coordinates
and topology of a high-order mesh to match curved anisotropic solution fea-
tures with high-order meshes. This interest has been awakened because these
modified curved high-order meshes promise to reduce the error of the approx-
imation to solution for the same number of degrees of freedom, especially
when the solution has curved anisotropic features. To this end, existing
interior mesh curving approaches exploit the non-constant Jacobian of high-
order meshes to match the target curved anisotropic features of the solution
using coordinate modifications [1, 2, 3, 4, 5] and local cavity modifications
[6, 7, 8, 9, 10].

To exploit existent high-order goal-oriented [11, 12] and interpolation-
oriented [13, 14] error estimators, curved high-order mesh optimization ap-
proaches [15, 7, 16, 9, 2, 17, 18, 19] consider an objective function that
accounts for the discrete metric, an inner product represented by a positive-
definite symmetric matrix, obtained from the error estimator. These ap-
proaches enforce either curved edges of length one (unitary) [7, 8] or curved el-
ements featuring the stretching and alignment (direction of the metric eigen-
vectors) of the target metric, the prescribed one, at a reference [2, 9] or a
physical [17, 18, 19] mesh. Alternatively, instead of a metric, it is possible to
match a pointwise target deformation matrix [1, 15]. Although this alterna-
tive approach has proven to successfully adapt to solution curved meshes, it
cannot be directly used to exploit discrete metrics obtained from error esti-
mators. Hence, none of the previous approaches enforce unitary Riemannian
measures for the mesh edges as well as for the face areas and the cell volumes.

Enforcing unitary Riemannian metrics for all mesh entities is critical when
the metric varies pointwise. Without this feature, the resulting mesh might
not reduce the error as expected. This issue is so because the differential
measure at each point of the curved high-order mesh might not match the
stretching, alignment, and sizing of the prescribed pointwise metric.

Accordingly, we aim to enforce unitary Riemannian measures for all the
mesh entities. To this end, the main contribution of this work is to define a
differentiable point-wise size-shape distortion measure that accounts for the
stretching, alignment, and sizing of the target metric. Moreover, to check if
the Riemannian measures are unitary, we detail how to compute metric-aware
measures of the mesh entities i.e., Riemannian lengths, areas, and volumes
accounting for the target metric. Finally, we verify whether minimizing the
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metric-aware size-shape distortion leads to meshes with Riemannian mea-
sures closer to unity for the element edges, faces, and cells.

To define the differentiable metric-aware size-shape distortion, the main
novelty is to propose a differentiable multiplicative combination of an exis-
tent metric-aware shape distortion [17] and a new differentiable metric-aware
size distortion. Regarding size-shape distortion measures, there are related
works for linear and curved-high-order meshes yet targeting a deformation
matrix. For linear meshes, to obtain a distortion measure that accounts for
shape and size, it is proposed to multiply a shape and a non-differentiable size
distortion [20]. The size distortion considers dilation volumes. For curved
high-order meshes targeting a deformation matrix, existing differentiable dis-
tortion measures account for stretching, alignment, and sizing [15, 1]. It is
also possible to use a weighted sum of a shape and a reciprocal of a size qual-
ity surrogate that depends on a parameter. The quality surrogate considers
a normalized difference of volume dilation and its reciprocal. The main dif-
ference between these approaches and our approach is that we use a target
metric to exploit existent error estimators. Another difference is that our
differentiable size distortion considers squares of the d roots of a normalized
summation of the volume dilation and its reciprocal.

For metric-based applications, when compared to previous works, our ap-
proach has three important advantages. First, considering a metric instead
of another object allows us to exploit existent high-order goal-oriented and
interpolation-oriented error estimators. This extends the range of applica-
bility of the metric-aware distortion measure. Second, our mesh distortion
enforces unitary metric-aware measures of the mesh entities i.e., Riemannian
lengths, areas, and volumes. This is important because to ensure that a
mesh approximates a target metric, at least all Riemannian measures must
be considered. Third, we enforce unitary measures not only in the elemen-
twise sense but also in the pointwise sense. This has greater impact for
pointwise varying metrics and meshes of high polynomial degree, where the
flexibility of the non-constant Jacobian allows elements to match sharp and
curved features imposed by the metric.

The rest of the paper is organized as follows. First, in Section 2, we intro-
duce the shape measures for high-order Euclidean elements. Next, in Section
3, we present the new size-shape measures for linear elements equipped with
constant metrics. Then, in Section 4, we extend the size-shape measures to
curved high-order elements equipped with point-wise varying metrics. Fol-
lowing, in Section 5, we present several examples to illustrate the capabilities
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Figure 1: Mappings between the master, the ideal, and the physical elements in the linear
case.

of the proposed measure. To finalize, in Section 6, we present the main con-
clusions and sum up the future work to develop.

2. Preliminaries: shape measures for high-order Euclidean ele-
ments

In this section, we present the Jacobian-based shape quality measures for
linear and high-order elements defined in the Euclidean space [20, 21, 22]. In
addition, we introduce the required notation for Riemannian elements that
is, elements equipped with a metric.

To define and compute a Jacobian-based measure for linear Euclidean
elements in Rd, three elements are required [20]: the master, the ideal, and
the physical, see Figure 1 for 2D simplices. The master (EM) is the ele-
ment from which the iso-parametric mapping is defined. The ideal element(
EI
)
represents the target configuration which, in the Euclidean case, is an

equilateral element
(
E△). Since in the Euclidean case EI = E△, we do not

require EI as an additional element in Figure 1. The physical (EP ) is the
element to be measured.

First, we obtain the mappings between the ideal and the physical elements
through the master element. By means of these mappings, we determine a
mapping between the ideal and physical elements by the composition

ϕE : E△ ϕ−1
△−−→ EM ϕP−→ EP .

The Jacobian of the affine mapping ϕE, denoted by DϕE, encodes the devi-
ation of the physical element with respect to the equilateral one.
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We define the shape distortion measure ηshape of the physical element as
[20]

ηshape(DϕE) =
1

d

S2

σ2/d
, (1)

where S and σ are the Frobenius norm and the determinant of DϕE, respec-
tively. This distortion measure quantifies the shape deviation between the
physical and ideal elements.

The matrix DϕE is computed for linear triangles as

DϕE = DϕP Dϕ−1
△ =

(
x1 − x0

2x2−x1−x0√
3

y1 − y0
2y2−y1−y0√

3

)
,

where

DϕP =

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)
, and Dϕ△ =

(
1 1

2

0
√
3
2

)
, (2)

being xi = (xi, yi) the coordinates of the physical element EP . These matri-
ces are written for the master elementEM with node coordinates {ξ0 = (0, 0) ,
ξ1 = (1, 0) , ξ2 = (0, 1)} , and the ideal element EI determined by the nodes{
y0 = (0, 0) , y1 = (1, 0) , y2 =

(
1/2,

√
3/2
)}

.
The distortion measure, Equation (1), quantifies the shape deviation be-

tween the physical and ideal shapes. The measure gets value 1 when the
physical element is a scaled equilateral element. It is important to note
that it is invariant under translations, rotations, and symmetries. Moreover,
it can be regularized by enforcing infinite values for non-positive Jacobians
[22, 23, 24], so it detects inverted elements. From the distortion measure, we
define the shape quality measure of an element as

qshape =
1

ηshape
, (3)

which takes values in the interval [0, 1], being 0 for degenerated elements and
1 for the ideal element and its symmetric analogs.

For high-order [23, 22, 24] and multi-linear [25] elements EP with non-
constant Jacobian, we reinterpret a distortion measure η as a point-wise
measure NϕE as advocated in [15, 26]. In particular, we define

NϕE(y) := η(DϕE(y)), ∀y ∈ E△.
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Furthermore, we define the elemental distortion [21, 22] as

ηEP :=

∫
E△ NϕE(y) dy∫

E△ 1 dy
, (4)

and its quality qEP follows from Equation (3).

3. Size and size-shape measures for linear elements and constant
metric

Herein, we present the measures for linear elements equipped with con-
stant metrics. First, in Section 3.1, we define a quality measure that quan-
tifies the size deviation of Euclidean elements. Second, in Section 3.2, we
extend the quality measure to linear simplices equipped with a constant
metric. Finally, in Section 3.3, we illustrate the behavior of the proposed
measure.

3.1. Differentiable size and size-shape distortion for linear Euclidean ele-
ments

The shape distortion measure of Section 2 quantifies the shape deviation
between the physical and ideal elements. However, it does not take into
account the size deviation between the physical and ideal elements. For this
reason, we define an additional distortion measure that takes into account
sizing. In particular, we define the size distortion measure ηsize of the physical
element as

ηsize(DϕE) =

(
1

2

(
σ +

1

σ

))2/d

, (5)

where σ := det (DϕE). This distortion measure quantifies the size devia-
tion between the physical and ideal elements. We expect the size distortion
measure to behave as

µ(σ) = max(σ, σ−1)2/d.

Note that, the base max(σ, σ−1) is the standard size measure of [20].
However, we cannot use the function µ in a continuous optimization pro-

cedure since it is not differentiable. To overcome this drawback, we propose
to replace µ(σ) by the size distortion measure, see Equation (5), a continu-
ous and differentiable function that holds the same minimum and the same
asymptotic behavior.
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(a) (b)

Figure 2: Plots of the original and modified: (a) size distortion measure and (b) size
quality measure.

Figure 2 shows the size distortion and the size quality measures using
the original, µ(σ), and the modified function, ηsize, in terms of σ. It is
worth to notice that using the modification presented in Equation (5), the
size distortion measure ηsize is still a distortion measure that is, orientation-
invariant, positive, and transpose-invariant [20].

Finally, we define the distortion measure η of the physical element by

η(DϕE) = ηshape(DϕE) ηsize(DϕE). (6)

The distortion measure combines ηshape and ηsize, see [20] for more details.
Thus, it quantifies both the size and the shape of the element.

3.2. Size-shape distortion for linear elements and constant metric

To define a measure that quantifies the quality of a given element, we
need to define an ideal element that represents the desired configuration, as
detailed in Section 2. In the unitary-Euclidean case, where the metric M is
represented by the identity matrix Id, the ideal element EI corresponds to
the equilateral element E△, the one with unit length edges. For non-unitary
metrics, we describe how to obtain the ideal configuration. Then, we measure
the distortion of the physical element by comparing it with the ideal element.

We define the ideal element as the element with edges of unit length under
the desired metric. To compute this configuration, we first decompose M as
follows

M = FT F. (7)
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Figure 3: Mappings between the equilateral, the ideal, the physical, and the unitary
physical triangles.

Matrix F can be interpreted as a linear mapping between the space with met-
ric M and the space with unitary metric Id. Thus, we define the anisotropic
ideal EI as the preimage by F of the equilateral element, see Figure 3. In
particular, let ui, i = 0, 1, 2 be the nodes of the equilateral element E△.
Then, we define the nodes yi, i = 0, 1, 2 of the ideal element EI as

yi = F−1 ui, i = 0, 1, 2.

A direct consequence of the above definition is that the ideal triangle has
unit edge lengths in the metric sense. Once the ideal triangle is defined, we
measure the deviation between the ideal and physical elements. Similarly to
the approaches for a unitary metric, see Section 2, in this section we define
the distortion between the ideal EI and physical EP elements in terms of the
mapping between those elements, ϕE.

A priori, we do not know how to compare elements considering the target
metric. Nevertheless, we know how to compare elements in the unitary sense,
see Section 2, and thus, we map both elements EI and EP to the same
Euclidean space using F, see Figure 3. Then, we compare the image elements
E△ and EP△ using the distortion measure presented in Equation (6).

Let EP△ be the image of the physical triangle EP by F. By construction,
the image by F of the ideal triangle is the equilateral triangle. We measure
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Figure 4: Mappings between the master, the equilateral, the ideal, the physical, and the
unitary physical triangles.

the distortion between the ideal EI and physical EP elements in terms of the
distortion of the mapping between the E△ and EP△ .

Finally, we define the distortion between the physical triangle EP and the
ideal triangle EI with respect to the desired metric as the distortion of the
matrix DϕU :

ηM(DϕE) := η(DϕU). (8)

The distortion presented in Equation (8) is well defined. This is because
the measure does not depend on the symmetries of EP△ . We show first
the case for rotations. The rotation of angle θ of EP△ is the triangle ẼP△

composed by the nodes ỹi = R(θ) yi, i = 0, 1, 2. Then

Dϕ̃U = R(θ) DϕU ,

where ϕ̃U is the mapping between the equilateral triangle E△ and ẼP△ .
Consequently, we have

Dϕ̃T
U Dϕ̃U = DϕT

U R(θ)T R(θ) DϕU = DϕT
U DϕU . (9)

From Equations (9), (8), and (6) we conclude that the corresponding dis-
tortions are equal. The case for reflections follows analogously since any
symmetry Σ satisfies that ΣT Σ = Id.

Next, we show how to compute the distortion presented in Equation (8)
without decomposing it using matrix F. First, in Figure 4, we include the
master element in the diagram of mappings of Figure 3. Let ϕ△ be the
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mapping between the master and the equilateral triangle. This mapping is
equivalent to the composition of the mappings ϕI and F, but it can be directly
computed from the coordinates of the master and equilateral triangles, as
previously done for the isotropic case in Section 2. Taking into account
the computation of Dϕ△ in terms of the node coordinates in Equation (2),
the distortion measure ηM(DϕE) can be rewritten without decomposing M.
Note that, a priori, the right-hand side in Equation (8) depends on F since

DϕU = DϕP△ Dϕ−1
△ = F DϕP Dϕ−1

△ . (10)

Manipulating Equation (8), one realizes that there is no explicit dependence
on F:

DϕT
U DϕU =(Dϕ△)

−T DϕT
P FT F DϕP (Dϕ△)

−1

=(Dϕ△)
−T DϕT

P M DϕP (Dϕ△)
−1 .

Thus, we obtain an expression for the distortion that does not require to
decompose the metric M. In particular, we define the a Riemannian analog
for the Frobenius norm SM and determinant σM as follows

SM :=

√
tr
((

DϕP Dϕ−1
△
)T

M DϕP Dϕ−1
△

)
, and (11)

σM :=

√
det
((

DϕP Dϕ−1
△
)T

M DϕP Dϕ−1
△

)
. (12)

Finally, analogously to the Euclidean size-shape distortion measure of Equa-
tion (6), we define the Riemannian size-shape distortion as

ηM(DϕE) = ηM,shape(DϕE) ηM,size(DϕE), (13)

where the corresponding shape, ηM,shape, and size, ηM,size, distortion measures
are given by

ηM,shape(DϕE) =
1

d

S2
M

σ
2/d
M

, and ηM,size(DϕE) =

(
1

2

(
σM +

1

σM

))2/d

.

3.3. Behavior of the quality measures: shape, size, and size-shape

In this section, we illustrate the behavior of the shape quality measure
corresponding to the distortion measure, presented in Equation (8), for linear
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anisotropic triangles equipped with a constant metric. We first show the level
curves of the quality measure of a triangle when we fix two nodes and we
let the third node to move in R2, in Section 3.3.1. Second, in Section 3.3.2,
we analyze the behavior of the measure with respect to the alignment of the
element with the metric.

3.3.1. Level sets for one moving vertex

To show the behavior of the level curves of the shape, size, and size-shape
quality measures we consider two cases, the Euclidean or isotropic case when
M = Id and the anisotropic case when M has two different eigenvalues.

For each quality measure and each metric, we illustrate the behavior of
the quality measure by plotting the level sets in terms of a free node of the
triangle. We consider the anisotropic metric given by

M =

(
1 0
0 1

h2

)
, h = 1/3. (14)

This metric is aligned with the canonical axes and features a stretching ratio
of 1 against 3. Specifically, it is devised to ensure that vectors (1, 0) and
(0, h) have unit length under the metric. The ideal element EI is expected
to be an element of height h and base 1. In each test, we consider a free node,
keeping the rest of nodes fixed at their original location, and we compute the
quality of the element in terms of the location of this node. The free node
considered is the vertex node x2.

In Figure 5, we show the contour plots of the quality for each test when
the free node is allowed to move in a region of R2. The locus of the points
where the element has positive Jacobian, the feasible region, is independent
of the metric and corresponds to the half-plane y > 0.

As expected, for each metric the optimal node location is different. Fur-
thermore, we can observe that the level sets and the height of the ideal
triangle corresponding to the metric of Equation (14) are more stretched
than in the isotropic case. Similarly, the level sets of the quality measure
become more stretched as the anisotropy of the metric increases.

Similarly, for each quality measure, the optimal node location is also
different. First, for the shape quality, the level curves are circular in the
Euclidean case and elliptic in the metric case. Second, for the size quality,
we observe that the level sets are straight horizontal lines. This is because the
size quality depends only on the height of the triangle since the base is fixed.
In the metric case, the spacing between the straight lines are more stretched
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(a) (b) (c)

(d) (e) (f)

Figure 5: Level sets for the quality measures with different metrics: (a,d) shape, (b,e)
size, and (c,f) size-shape; (a,b,c) isotropic and (d,e,f) anisotropic metrics.

than in the Euclidean case. Third, for the size-shape quality, the level curves
are more stretched in the metric case than in the Euclidean case. Moreover,
we observe that the level curves of the size-shape quality are more stretched
than the ones of the shape quality. This indicates that the size-shape quality
is more restrictive, in terms of variation, than the shape one.

3.3.2. Influence of element alignment

Next, we illustrate how the quality measure depends on the alignment
between the anisotropy axes and the element. We compute the quality mea-
sure of a sequence of physical elements generated rotating the ideal element.
We consider the metric presented in Equation (14).

Let R(θ) be the rotation at the origin of angle θ ∈ [0, 2π) which is given
by

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

We define the physical element as the ideal element rotated θ radians, with
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(a) (b) (c) (d) (e)

Figure 6: Influence of alignment in the shape quality measure. First row, physical elements
which are rotations of the ideal element in radians: (a) 0; (b) π/2; (c) π; (d) 3π/2; and (e)
2π. Second row, shape quality measure in terms of the rotation angle and corresponding
mark for rotated elements (a,b,c,d,e).

nodes xi = R(θ) yi, i = 0, 1, 2. For each θ we compute the quality of the
corresponding physical element.

In Figure 6, we plot the quality of each physical element with respect
to the angle of the rotation applied to the ideal element to generate it. We
represent the angle of rotation θ in the x-axis and the quality measure in the
y-axis. We mark the cases θ = 0, π/2, π, 3π/2, and 2π with a black dot
and we show the corresponding rotations of the ideal element in Figures 6(a),
6(b), 6(c), 6(d), and 6(e), respectively. We map a rotation of the unit circle
in the Euclidean space to the same ellipse in the metric space, see Figures
6(a)-6(e). We highlight that independently of the applied rotation, the ellipse
remains constant. An element with quality one must have the nodes on the
ideal ellipse.

In the isotropic case, rotations of the equilateral triangle have quality 1.
In the anisotropic case, when two axes correspond to different eigenvalues
of the metric, we observe that the quality oscillates having two maxima and
two minima in [0, 2π). The maxima are obtained in θ = 0 and θ = π and the
minima at θ = π

2
and θ = 3π

2
. When θ = 0 the rotation R(θ) is the identity

and EP = EI . When θ = π
2
then the axes are interchanged (up to sign) and

the quality at θ = π
2
attains a minimum. The minima are attained when

13



both axes are interchanged (up to sign) and the maxima are attained when
the axes coincide with the eigenvectors of the metric (up to sign).

4. Measures for curved high-order meshes with varying metric

Herein, we define the point-wise measures for curved high-order meshes
equipped with point-wise varying metrics. First, in Section 4.1, we present
the point-wise size-shape distortion measure for high-order elements equipped
with point-wise varying metrics. Then, in Section 4.2, we present the Riem-
manian measure of mesh entities.

4.1. Size-shape distortion for curved high-order elements on varying metric

In Section 3, we presented the distortion measure for linear elements
equipped with a constant metric. For high-order elements, the Jacobian of
the mapping is not constant. In this section, we describe the analogous
formulation for high-order elements and for linear elements equipped with a
non-constant metric field.

The point-wise distortion measure for an element EP equipped with a
metric M, at a point u ∈ E△ is defined as

NϕU(u) := η(DϕU(u)).

Following Equation (4), the distortion measure for an element EP equipped
with a metric M is defined as

η(EP ,M) =

∫
E△ NϕU(u) du∫

E△ 1 du
. (15)

Equation (15) can be written in terms of ξ on the master element. That is,
the Jacobian of the map ϕU can be written in terms of ξ as:

DϕU(ϕ△(ξ)) = F(ϕP (ξ)) DϕP (ξ) (Dϕ△(ξ))
−1 ,

where
M(ϕP (ξ)) = F(ϕP (ξ))

T F(ϕP (ξ)).

Then, Equation (15) reads

η(EP ,M) =

∫
EM NϕU(ϕ△(ξ)) | detDϕ△(ξ)| dξ∫

EM | detDϕ△(ξ)| dξ
.
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Similarly to Equation (13), the decomposition of the metric is not required:

DϕU(ϕ△(ξ))
T DϕU(ϕ△(ξ)) = A(ξ)T M(ϕP (ξ)) A(ξ),

where
A(ξ) := DϕP (ξ) (Dϕ△(ξ))

−1 .

Using the above equation we obtain the final expression on each point ξ of
the master element:

NϕU(ϕ△(ξ)) = ηM (A(ξ)) . (16)

Here, ηM is defined in Equation (13) where

SM (A(ξ)) :=
√
tr (A(ξ)T M(ϕP (ξ)) A(ξ)), and (17)

σM (A(ξ)) := detDϕP (ξ) detDϕ△(ξ)
−1
√
detM(ϕP (ξ)). (18)

Although in this work we only implement the size-shape distortion mea-
sure for simplicial elements, note that the proposed size-shape distortion
measure applies to all types of high-order elements. For a new type, accord-
ing to our diagram, we only need to determine the master and the regular
element in the Euclidean space.

In order to detect inverted elements [27, 28, 29, 23] we regularize the
determinant σM to

σ0,M =
1

2
(σM + |σM|).

Then, we define the point-wise regularized size-shape distortion measure of
a physical element EP as

N0ϕU(u) := η0(DϕU(u)) :=
1

d

S2
M

σ
2/d
0,M

(
1

2

(
σ0,M +

1

σ0,M

))2/d

,

and its corresponding quality as

Q0ϕU(u) =
1

N0ϕU(u)
. (19)

Finally, we regularize the elemental distortion of Equation (15) as

η0,(EP ,M) :=

∫
E△ N0ϕU(u) du∫

E△ 1 du
,
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and its corresponding quality as

q0,(EP ,M) =
1

η0,(EP ,M)

. (20)

We can improve the mesh configuration by means of relocating the nodes
of the mesh according to a given distortion measure [17, 30, 31, 32]. For
example, in [17] it is proposed the optimization of the distortion (quality)
of a mesh M equipped with a target metric M that describes the desired
alignment and stretching of the mesh elements. To optimize the given mesh
M, we define the mesh distortion by

F (M) :=
∑

EP∈M

∫
E△

(N0ϕU(y))
2 dy, (21)

which allows to pose the following global minimization problem

M∗ := argmin
M

F (M) , (22)

to improve the mesh configuration according to F . In particular, herein, the
degrees of freedom of the minimization problem in Equation (22) correspond
to the spatial coordinates of the mesh nodes.

4.2. Riemmanian measure of mesh entities

Next, we propose a method to compare how a mesh matches a target
metric. To this end, we present the point-wise and element-wise size measure
of the mesh entities according to a Riemannian metric.

We consider the Riemannian measure of the mesh entities relative to the
target metric M. On the one hand, we define the point-wise relative density
ρM of a physical element EP with respect to a reference element EM . Specif-
ically, for a k-dimensional physical element EP embedded in the Riemannian
space (Rn,M), the point-wise metric-aware density of EP respect to a k-
dimensional master elementEM is given by

√
det [DϕP (ξ)T M (ϕP (ξ)) DϕP (ξ)].

We also consider the point-wise metric-aware normalized density as the quo-
tient of the physical density by the ideal density

ρM(ξ) :=

√
det [DϕP (ξ)T M (ϕP (ξ)) DϕP (ξ)]

det [DϕI(ξ)T M (ϕP (ξ)) DϕI(ξ)]
, for ξ ∈ EM . (23)
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Accordingly, we say that an element EP is unitary if ρM ≡ 1 is satisfied for
the element density and for the density of all its sub-entities. Considering
the commutative diagram in Figure 4, we compute the metric-aware density
as

ρM(ξ) =

√
det [DϕP (ξ)T M (ϕP (ξ)) DϕP (ξ)]

det [Dϕ△(ξ)T Dϕ△(ξ)]
, for ξ ∈ EM , (24)

where the unit element E△ is a k-dimensional regular element with all the
edges of unit length. Note that, any sub-entity of a regular element E△

is also unitary because its density is one. On the other hand, we define
the element-wise metric-aware normalized measure of EP according to the
metric M as

VM

(
EP
)
:=

1

V (EM)

∫
EM

ρM(ξ) dξ, (25)

where V
(
EM
)
=
∫
EM 1 dξ.

While it is common to consider only the element-wise length of the ele-
ment edges, this does not illustrate if the element is unitary or not, specially
for non-constant metrics or curved elements. In contrast, an element is uni-
tary if the density of all its sub-entities is constant equal to one. For this
reason, we measure how a mesh is unitary according to the metric by measur-
ing all the mesh entities from Equation (25). That is, lengths of edges, areas
of faces, and volumes of cells. For example, only when the mesh matches the
metric, the lengths, areas, and volumes are unit and vice-versa. That is, they
match the length, area, and volume of the equilateral element, respectively.
In contrast, a higher stretching or non-unit volume of the intrinsic metric
indicates that the mesh does not match the stretching or the volume of the
metric, respectively. As a consequence, the lengths, areas, and volumes are
non-unit and vice-versa.

5. Results

In this section, we apply the size-shape distortion minimization for curved
r-adaptation. For this, we start comparing the behavior of the distortion min-
imization for the size-shape and the shape measures [17]. Then, we illustrate
how the size-shape distortion minimization can be used for the improvement
of the interpolation error of an input function.
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First, in Section 5.1, we describe the implementation details. Second,
in Section 5.2, to illustrate the benefit and novelty of the size-shape mini-
mization, we compare the shape and size-shape distortion measures for an
analytic target metric. Finally, in Sections 5.3, 5.4, 5.5, and 5.6 we apply
the size-shape distortion minimization for high-order function interpolation,
approximation, or simulation.

We illustrate the advantages of the method from the quality statistics,
volumetric measure histograms, and interpolation, approximation, and nu-
merical errors. In particular, in Section 5.3, we consider a 2D case for de-
grees 1, 2, and 4, and a quadratic 3D example. Then, in Section 5.4, we
minimize the size-shape distortion for initial isotropic and initial adapted
straight-edged quartic meshes. Next, in Section 5.5, we minimize the size-
shape distortion for an initial adapted straight-edged cubic mesh according
to a curved boundary. Finally, in Section 5.6, we minimize the size-shape
distortion for a manufactured solution of a Poisson problem.

5.1. Implementation

In all the examples, the mesh boundary nodes move tangentially to the
boundary. If the domain boundary is a cartesian box, to slide the nodes
on the boundary, we fix one coordinate, and we set the others as degrees
of freedom. If the domain boundary is curved, to approximately move tan-
gentially to the boundary, we consider all coordinates as degrees of freedom.
Moreover, we minimize the geometric deviation between the mesh boundary
and the CAD model with an implicit representation, see [19] for details.

To evaluate the distortion measures and capture pronounced metric vari-
ations, we use up to (3p)d quadrature points within an element, where p is
the degree and d is the dimension. Nevertheless, for less pronounced metric
variations, it is possible to use around (2p)d quadrature points per element.

Because our goal is to optimize the mesh distortion, instead of including
mathematical proofs of mesh validity, we detail how we numerically enforce
the positiveness of the element Jacobians. Specifically, we use a numerical
valid-to-valid approach that uses four ingredients. First, because we want
numerically valid results, we enforce mesh validity on the integration points.
Second, to initialize the optimization, we start from a numerically valid mesh.
Third, to penalize inverted elements, we modify the point-wise distortion to
be infinity for non-positive Jacobians. Specifically, we regularize the element
Jacobians to be zero for non-positive Jacobians, so their reciprocals are in-
finite, see Section 4. Note that these reciprocals appear in the distortion
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expression, and thus, they determine the infinite distortion value. Fourth,
to enforce numerically valid mesh displacements, we equip Newton’s method
with a backtracking line-search. Specifically, if the mesh optimization up-
date is invalid in any integration point, the objective function is infinite. In
that case, the step is divided by two until it leads to a valid mesh update.
Finally, to check that the mesh is numerically valid after the optimization,
we evaluate the regularized distortion measure at a set of sample points.
In particular, we choose a set of uniformly distributed sample points, being
three times the mesh polynomial degree, 3p, per edge.

Because we are detailing an approach to combine shape and size dis-
tortion, we do not detail how to obtain the input metric M . Neverthe-
less, it is possible to exploit existent high-order goal-oriented [11, 12] and
interpolation-oriented [13, 14] error estimators that provide a metric as an
output. In practice, we interpolate these output metrics on a background
mesh with the method detailed in [18].

As a proof of concept, a mesh optimizer is developed in Julia 1.4.2
[33]. The Julia prototyping code is sequential, it corresponds to the im-
plementation of the method presented in this work and the one presented in
[17, 30, 31]. In all the examples, the optimization corresponds to finding a
minimum of a nonlinear unconstrained multi-variable function f , see Equa-
tions (21) and (22). In particular, the mesh optimizer uses an unconstrained
line-search globalization with an iterative preconditioned conjugate gradients
linear solver. The stopping condition is set to reach an absolute root mean

square residual, defined as
∥∇f(x)∥ℓ2√

n
for x ∈ Rn, smaller than 10−4 or a length-

step smaller than 10−4. Each optimization process has been performed in a
node featuring two Intel Xeon Platinum 8160 CPU with 24 cores, each at
2.10 GHz, and 96 GB of RAM memory.

Although we generate meshes adapted to a target metric with MMG
[34], our goal is not to compare the distortion minimization with the MMG
package. Actually, we acknowledge MMG because it generates an initial
straight-sided mesh that matches the stretching and alignment of the target
metric.

5.2. Shape versus size-shape distortion minimization: curved high-order mesh
and analytic metric

In what follows, to illustrate the potential for capturing not only the
stretching and alignment but also the sizing of the target metric, we com-
pare the shape and size-shape distortion measures presented in Section 4.
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Specifically, we do this for a curved high-order mesh and an analytic metric.
For this, we first define the target metric. Then, we illustrate the initial and
optimized meshes. Finally, we compare the distortion measures from the
distribution and statistics of Riemannian length and area, see Section 4.2 for
the details.

We consider the quadrilateral domain Ω = [−0.5, 0.5]2 equipped with
a metric matching a boundary layer. In particular, our target metric M
is characterized by a boundary layer metric with a diagonal matrix D, a
deformation map φ, and the characteristic length hm := 0.25 by the following
expression

M =
1

h2
m

∇φT D ∇φ. (26)

In what follows, we first detail the boundary layer metric D and then the
deformation map φ, see [17] for more details.

On the one hand, the boundary layer aligns with the x-axis. It deter-
mines a constant unit element size along the x-direction, and a non-constant
element size along the y-direction. This vertical element size grows linearly
with the distance to the x-axis, with a factor α = 2, and starts with the
minimal value hmin = 0.01. Thus, the stretching ratio blends from 1 : 100 to
1 : 1 between y = −0.5 and y = 0.5. Specifically, we define the metric as:

D :=

(
1 0
0 1/h(y)2

)
, (27)

where the function h is defined by

h(x) := hmin + α|x|.

On the other hand, the deformation map φ in Equation (26) aligns the
stretching of D according to a given curve. In this case, we define the map
φ by

φ(x, y) =

(
x,

10y − cos(2πx)√
100 + 4π2

)
.

Finally, the metric M of Equation (26) attains the highest level of anisotropy
close to the curve described by the points (x, y) ∈ Ω such that φ(x, y) =
(x, 0).

In Figure 7, we illustrate the initial and optimized quadratic meshes
equipped with the input metric of Equation (26). The meshes are colored ac-
cording to the point-wise size-shape quality measure of Equation (19). With
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(a) (b) (c)

Figure 7: Point-wise size-shape quality measure for (a) initial and quadratic meshes opti-
mized according to the (b) shape and (c) size-shape distortion measure, respectively.

(a) (b)

Figure 8: Logarithmic point-wise (first row) Riemannian length and (second row) area
densities for (blue) initial and optimized quadratic meshes according to the (orange) shape
and (green) size-shape distortion measures.

MMG, we generate an initial anisotropic straight-edged mesh M according
to the target metric of Equation (26). The obtained mesh is composed by
254 triangles and 553 nodes. From this initial mesh, we observe that the
straight-edged elements are stretched, aligned, and scaled approximating the
target metric. Then, we optimize the initial mesh M according to the shape
and size-shape distortion measures to obtain the corresponding optimized
meshes M∗

shape and M∗. Finally, we observe that the elements are curved
according to the point-wise metric stretching and alignment for the mesh
M∗

shape, and according to the point-wise metric stretching, alignment, and
sizing for the mesh M∗.

From this example, we qualitatively compare the shape and size-shape
distortion measures. For this, in Figure 8, we illustrate the logarithmic dis-
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Table 1: Size-shape quality and geometry statistics for the initial and optimized meshes
according to the shape and size-shape distortion measures.

Measure Mesh Minimum Maximum Mean Std dev.

Initial 0.0156 0.9694 0.4276 0.2687
Quality Shape 0.0950 0.9104 0.4927 0.2207

Size-shape 0.3136 0.9882 0.6337 0.1976

Initial 0.2241 3.8578 1.1369 0.5451
Length Shape 0.1964 3.1337 0.7926 0.5445

Size-shape 0.3471 2.3952 0.9131 0.3383

Initial 0.0724 1.8048 0.5593 0.2931
Area Shape 0.0417 2.6045 0.5594 0.5843

Size-shape 0.2148 1.1885 0.5593 0.2310

tributions of Riemannian length and area densities, see Equation (24). In
particular, the shape minimization distorts the distribution of length and
area. In contrast, when compared to the initial mesh and the shape mini-
mization, the size-shape optimization concentrates more the distribution of
length and area around unit values. From this, we conclude that the size-
shape minimization matches more faithfully the target metric than the shape
optimization.

We quantitatively compare the shape and size-shape distortion measures.
For this, in Table 1, we show the statistics of the elemental size-shape quality
(Equation (20)) and Riemannian length and area measures (Equation (25)).
They allow us to compare the geometric quantities between the initial and
optimized meshes, and between the shape and the size-shape quality mea-
sures. On the one hand, we observe that the shape minimization does not
improve the length and area measure statistics from the initial mesh. This
is because, the shape distortion does not take into account the local element
size. In contrast, when compared from the initial mesh and the shape mini-
mization, the size-shape optimization substantially improves the length and
area measure statistics. This can be explained from the coupling between
the size and shape distortion measures, which takes into account the local
element size and shape deviation, see Section 4. From this, we conclude that
the size-shape distortion minimization homogeneously matches more the ge-
ometric features of the input metric than the shape optimization.
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Figure 9: Values of the function u for γ = 10.

5.3. Size-shape distortion minimization for high-order interpolation: 2D dif-
ferent degrees and 3D quadratic

Herein, we apply the size-shape distortion minimization for high-order
interpolation. In particular, we consider a 2D case for degrees 1, 2, and 4,
and a 3D quadratic example. For this, in Section 5.3.1, we determine our
discrete metric for practical problems. From this discrete metric, we mini-
mize the size-shape distortion in Section 5.3.2. To verify that the stretching,
alignment, and sizing match the discrete metric, we measure the Riemannian
lengths, areas, and volumes in Section 5.3.3. Then, to illustrate the poten-
tial of curved r-adaptation, we measure how the mesh represents the input
function. In particular, we measure the interpolation and approximation
L2-errors in Section 5.3.4.

5.3.1. Discrete high-order metric: high-order interpolation

Next, to later check our distortion measure in a more realistic case, we
compute a discrete metric from the input function as in [14]. Specifically, for
each polynomial interpolation degree, we obtain a discrete metric approxi-
mating the high-order derivatives of the function.

In the 2D case, we consider a square domain Ω = [−0.5, 0.5]2 and a
function u : Ω → R given by

u(x, y) := arctan (γ φ(x, y)) , φ(x, y) := 10y + cos(2πx). (28)
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In Figure 9, we show the values of u for γ = 10. We observe that, near the
curve φ(x, y) = 0 there is a sharp transition. Far away from such curve, the
function is almost constant.

In the 3D case, we consider a square domain Ω = [−0.5, 0.5]3 and a
function u : Ω → R given by

u(x, y, z) := arctan (γ φ(x, y, z)) , φ(x, y, z) := 10z + cos(2πx) cos(2πy).
(29)

Analogously to the 2D case, near the surface φ(x, y, z) = 0 there is a sharp
transition. Far away from such surface, the function is almost constant.

We aim to approximate the function u. For this, in practical problems, the
metric M̂ is determined by an interpolation-oriented error estimator of the
function u. We obtain the discrete metric M̂ from the high-order derivatives
of the function u [14]. In particular, for a mesh polynomial degree q, we
consider the (q + 1)th derivatives of u, ∇q+1u. Then, we obtain the discrete
metric M̂ in terms of ∇q+1u. To do this, we generate a background isotropic
mesh M̂ of polynomial degree q and we evaluate the high-order derivatives,
∇q+1u, at the background mesh nodes. Finally, we obtain the values of
an approximative discrete metric M̂ at the background mesh nodes and we
regularize this metric according to an Lp-norm and a fixed size h [13].

5.3.2. Size-shape distortion minimization: straight-sided anisotropic mesh
adapted to the discrete metric

Herein, to check our distortion measure in a preliminary adaptation case,
we minimize the size-shape distortion according to the discrete metric M̂
of Section 5.3.1. To do this, we apply the methodology presented in [19].
The method considers two meshes: a background mesh M̂ and a physical
mesh M. First, we generate a background mesh M̂ to interpolate the metric
values M in terms of the discrete metric M̂. Then, we generate and optimize
a physical mesh M according to the interpolated metric M. This results in
a triangular (tetrahedral) mesh M∗ with Riemannian lengths and areas (and
volumes) closer to the metric unit, see Section 5.3.3. As a consequence, the
interpolation and approximation errors are improved, see Section 5.3.4.

For this, we consider a background mesh M̂ and a physical mesh M
of the same polynomial degree q, and the same characteristic size h. We
first generate an isotropic background mesh M̂ and we equip it with the
discrete target metric M̂. From this mesh, we generate an initial anisotropic
physical mesh M with the MMG mesh generator [34]. In this situation,
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(a) (b) (c)

(d) (e) (f)

Figure 10: Point-wise size-shape quality measure for (rows) initial and optimized triangular
meshes of (columns) polynomial degree 1, 2, and 4.

using a high-order background mesh is not possible because MMG does not
allow high-order meshes as an input. Instead, we consider the linear metric
interpolation in a uniformly subdivided linear background mesh M̂′ from
the generated one M̂. We expect that both, the high-order M̂ and the
subdivided background M̂′ meshes, represent faithfully the metric, even if
their elemental node locations differ. Finally, we relocate the nodes of the
initial physical mesh M by minimizing the size-shape distortion measure,
see Section 4. In this case, to obtain the point-wise varying metric M, we
consider the high-order Log-Euclidean metric interpolation of the discrete
target metric M̂ at the high-order background mesh M̂, see [7, 35] for the
details.

In Figures 10 and 11, we illustrate the triangular and tetrahedral physical
meshes, respectively. That is, the initial, M, and optimized, M∗, meshes
equipped with the metric M. On the one hand, we consider the function u of
Equation (28) with γ = 100, in 2D, and γ = 10, in 3D. Then, we obtain the
metric M by interpolating the discrete metric M̂ at the background mesh
M̂. Note that, the metric scaling is imposed by regularizing the discrete
metric M̂ according to the L2(Ω)-norm, see Section 5.3.1. On the other
hand, the 2D physical meshes are of polynomial degree q = 1, 2, and 4, and
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Figure 11: Point-wise size-shape quality measure for (columns) initial and optimized of
(rows) full and clipped quadratic tetrahedral meshes.

of size h = 0.05. Each mesh is composed of 327, 491, and 523 nodes and of
611, 230, and 61 triangles, respectively. In the 3D case, the physical meshes
are of polynomial degree q = 2 and of size h = 0.1. They are composed
of 3754 nodes and 2425 tetrahedra, respectively. From the initial mesh M,
we observe that, at the sharp transition region, the elements are stretched,
aligned, and scaled according to the metric. However, the straight-edged
elements cannot align with the curved transition region. In contrast, for the
optimized meshes M∗, we observe that the elements are curved according to
the point-wise stretching, alignment, and sizing of the metric.

5.3.3. Verifying results: distributions for Riemannian measures of distortion
and mesh entities

Next, we illustrate how the size-shape distortion minimization enables an
optimized mesh that approximates more faithfully the target metric than the
initial one. For this, we measure the Riemannian length, area, and volume
distributions of the mesh entities, see Equation (24) and (25). The results
show that the size-shape distortion minimization enables an optimized mesh
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Table 2: Size-shape quality, geometry, and error statistics of the initial meshes and the
corresponding optimized triangular meshes.

Measure Mesh Minimum Maximum Mean Standard deviation
degree Initial Optimized Initial Optimized Initial Optimized Initial Optimized

1 0.1019 0.2574 0.9779 0.9737 0.6710 0.7330 0.1898 0.1391
Quality 2 0.0986 0.5229 0.9161 0.9812 0.6021 0.8538 0.1604 0.0883

4 0.0249 0.6881 0.7565 0.9275 0.3756 0.8307 0.1761 0.0523

1 0.3641 0.4293 5.1197 3.2040 1.2916 1.2520 0.5376 0.3503
Length 2 0.4711 0.5726 4.6246 2.3879 1.1160 1.0269 0.5172 0.2619

4 0.3109 0.3295 4.0158 1.7523 1.1334 0.9856 0.7727 0.2653

1 0.1998 0.3300 5.2956 3.5361 1.3135 1.3137 0.7967 0.6158
Area 2 0.2838 0.4376 5.1946 2.3034 0.8695 0.8696 0.6145 0.3219

4 0.0911 0.4923 2.9104 1.5600 0.8195 0.8196 0.6847 0.2312

Table 3: Size-shape quality, geometry, and error statistics of the initial and optimized
quadratic tetrahedral meshes.

Measure Minimum Maximum Mean Standard deviation
Initial Optimized Initial Optimized Initial Optimized Initial Optimized

Quality 0.0021 0.2117 0.8351 0.8545 0.3414 0.5315 0.1580 0.1082
Length 0.1760 0.2388 3.4170 3.4307 0.9340 0.8728 0.3686 0.2560
Area 0.0687 0.1673 3.6299 2.0579 0.5906 0.5557 0.3148 0.1797

Volume 0.0229 0.1168 2.3427 0.9282 0.3097 0.3097 0.2179 0.0941

featuring an improved approximation of the target metric, when compared
to the initial one.

In Tables 2 and 3, we show the corresponding triangular and tetrahedral
mesh statistics for the logarithmic distributions of elemental qualities (Equa-
tion (20)) and Riemannian measures. That is, lengths and areas in 2D and
lengths, areas, and volumes in 3D. They allow us to compare the geometric
quantities between the initial and optimized physical meshes in terms of the
target metric. We observe that the maximum, minimum, mean, and stan-
dard deviation become closer to unit values in almost all cases. That is, in
general, all statistics are improved. We also observe the mentioned behavior
in Tables 9, 7, and 11 corresponding to the following examples of Sections
5.4, 5.5, and 5.6.

In Figures 12, 13, and 14, we respectively show the point-wise distortion,
length, and area of the initial and optimized triangular meshes. Similarly, in
Figures 15(a), 15(b), and 15(c), we respectively show the point-wise Rieman-
nian length, area, and volume densities of the initial and optimized quadratic
tetrahedral meshes. Note that, the geometric quantities are typically com-
pared in terms of ratios that is, in a multiplicative form. Accordingly, we
use a logarithmic scale to illustrate the different scales of the correspond-
ing ratios. The logarithmic representation illustrates the behavior near the
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Figure 12: Logarithmic point-wise size-shape distortion histograms for (blue) initial and
(orange) optimized meshes of polynomial degree 1, 2, and 4, respectively.

minimum, maximum, and geometric mean of the distribution.
From the reasoning presented in Section 4.2, we observe that almost all

measure statistics are improved for the optimized meshes. On the one hand,
for the geometric measures, the tails are reduced in measure (horizontal axis)
and magnitude (vertical axis). This reduction is because the quality measure
is sensitive to points with volume far from the unit. Hence, these regions gain
priority during the optimization process. On the other hand, the distribution
peak is increased. This increase is so because the global optimization of the
squared quality measure tends to homogenize the points near a mean. Mean-
while, the measure and magnitude are almost preserved. We also observe the
mentioned behavior in the histograms of Figures 20 and 22 corresponding to
the following examples of Sections 5.5 and 5.6.

5.3.4. Interpolation and approximation error: curved high-order mesh match-
ing the metric

To measure how a mesh M supports the approximation of the function
u, we consider two error indicators [36]: the interpolation and the approxi-
mation errors. For briefness, we restrict to the L2(Ω)-norm error for a given
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Figure 13: Logarithmic Riemannian length density histograms for (blue) initial and (or-
ange) optimized meshes of polynomial degree 1, 2, and 4, respectively.

domain Ω. On the one hand, the interpolation error eI is defined by

eI = ∥u− ΠMu∥L2(Ω),

where ΠM is the continuous mesh interpolation operator. It projects a func-
tion u to an interpolative basis with the nodal distribution detailed in [37].
On the other hand, we consider the approximation error eA in the continuous
Galerkin finite element space VM defined by

eA = min
v∈VM

∥u− v∥L2(Ω).

Note that, since the interpolated function belongs to the finite element space,
that is ΠMu in VM, the approximation error is less or equal than the inter-
polation error, i.e., eA ≤ eI .

The presented example shows how our method can be used to improve
the error of a straight-edged mesh. In Tables 4 and 5, we respectively show
the global and maximum interpolation and approximation errors of the ini-
tial and optimized triangular and tetrahedral meshes of Section 5.3.2. We
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Figure 14: Logarithmic Riemannian area density histograms for (blue) initial and (orange)
optimized meshes of polynomial degree 1, 2, and 4, respectively.

Table 4: Global interpolation and approximation L2-error of the initial meshes and the
corresponding optimized meshes.

Dimension Mesh Nodes Interpolation error Approximation error
degree Initial Optimized Initial Optimized

2 1 327 0.0494 0.0382 0.0382 0.0302
2 2 491 0.0404 0.0235 0.0314 0.0199
2 4 523 0.0980 0.0336 0.0688 0.0251
3 2 3754 0.0253 0.0121 0.0179 0.0089

observe that all quantities are improved. Note that the global approximation
error is less than the global interpolation one. This is so because the best ap-
proximation approximates better the analytic function than the interpolated
one. We also observe this behavior in Tables 10, 8, and 12 corresponding to
the following examples of Sections 5.4, 5.5, and 5.6.

In addition, the presented example and those of Sections 5.4, 5.5, and 5.6,
show the capability of curved elements to capture sharp curved transition re-
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Figure 15: Logarithmic Riemannian length, area, and volume density histograms for (blue)
initial and (orange) optimized quadratic tetrahedral meshes.

Table 5: Maximum interpolation and approximation elemental L2-error of the initial
meshes and the corresponding optimized meshes.

Dimension Mesh Nodes Interpolation error Approximation error
degree Initial Optimized Initial Optimized

2 1 327 0.0151 0.0138 0.0382 0.0302
2 2 491 0.0200 0.0071 0.0314 0.0199
2 4 523 0.0524 0.0140 0.0688 0.0251
3 2 3754 0.0059 0.0018 0.0179 0.0089

gions with straight-edged (Sections 5.4 and 5.6) and curved boundaries (Sec-
tion 5.5). We observe that, even if the straight-edged elements approximate
the curved transition region, this is not sufficient. Only when we curve them,
we reduce the interpolation and approximation errors. Furthermore, when
considering a manufactured solution, also the numerical error is reduced, see
Section 5.6.
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Figure 16: Logarithmic distribution for the elemental interpolation and approximation
error histograms for (blue) initial and (orange) optimized quadratic tetrahedral meshes.

Note that, similarly to the quality and geometry measures, a greater
improvement is achieved for the high-order cases. In particular, we observe
that the quartic triangular mesh is the one featuring the worst interpolation
and approximation error. This is because the initial quartic mesh has low
quality elements. Accordingly, the approximation of the function for the
optimized mesh is limited by the initial mesh quality.

In Figure 16, we illustrate the distribution of the elemental interpolation
and approximation error for the initial and optimized quadratic tetrahedral
meshes. On the one hand, the tails are reduced in measure (horizontal axis)
and magnitude (vertical axis). This reduction shows that the maximum and
minimum elemental error become closer in the optimized mesh than in the ini-
tial one. This also illustrates a reduced standard deviation for the optimized
mesh. On the other hand, the distribution peak is increased. Moreover, this
distribution peak is slightly translated to the left. This illustrates that the
optimized mesh enables a more concentrated and reduced mean error than
the initial mesh. From these observations, we conclude that the optimized
mesh enables improved error statistics when compared to the initial one.

5.4. Size-shape distortion minimization for quartic interpolation: isotropic
and anisotropic initial straight-edged meshes

In the following example, to illustrate the potential adaptation advan-
tages of the proposed distortion for any type of initial mesh, we apply the
size-shape distortion minimization for quartic interpolation of a function to
isotropic and anisotropic initial straight-edged meshes. For this, we consider
the function u of Equation (28) with γ = 100. We generate a background
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Figure 17: Point-wise size-shape quality for (columns) initial isotropic and anisotropic
straight-edged meshes, and (rows) initial and optimized quartic meshes.

mesh M̂ and two initial physical meshes M of polynomial degree q = 4, and
size h = 0.1. Specifically, the isotropic and anisotropic physical meshes are
composed of 1923 and 1917 nodes and of 231 and 257 elements, respectively.
We show the physical meshes in Figure 17, where they are colored according
to the point-wise size-shape quality measure of Equation (19). On the one
hand, we generate an initial isotropic mesh, see Figure 17(a). In this case,
the initial physical mesh M and the background mesh M̂ coincide. We ob-
serve that almost all elements are of low size-shape quality. This is because
the element stretching, alignment, or sizing does not match with the metric.
As expected, the lowest quality elements lie in the sharp transition region.
On the other hand, we generate an initial anisotropic mesh according to the
discrete metric M̂ of the input function u, see Figure 17(b). We observe that
almost all elements are of medium quality. In addition, the straight-edged
elements approximate the curved transition region. Finally, the correspond-
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Table 6: Size-shape quality and geometry statistics of the initial isotropic and optimized
quartic meshes.

Measure Minimum Maximum Mean Standard deviation
Initial Optimized Initial Optimized Initial Optimized Initial Optimized

Quality 0.0189 0.1765 0.6413 0.9819 0.1613 0.7328 0.1149 0.2504
Length 0.1232 0.1462 9.1069 2.9094 0.9304 1.0989 1.5793 0.4197
Area 0.0219 0.3318 15.7890 1.8669 0.8658 0.8657 2.3650 0.3310

Table 7: Size-shape quality and geometry statistics of the initial anisotropic and optimized
quartic meshes.

Measure Minimum Maximum Mean Standard deviation
Initial Optimized Initial Optimized Initial Optimized Initial Optimized

Quality 0.1959 0.8063 0.9270 0.9955 0.6454 0.9288 0.1578 0.0384
Length 0.4171 0.5999 2.5246 1.6854 1.0921 1.0101 0.3823 0.1914
Area 0.2493 0.5571 2.7515 1.4499 0.8620 0.8620 0.4149 0.1775

Table 8: Interpolation and approximation L2 error of the initial isotropic and anisotropic
quartic meshes and the corresponding optimized meshes.

Initial Nodes Interpolation error Approximation error
Mesh Initial Optimized Initial Optimized

Isotropic 1923 0.1573 0.0029 0.1111 0.0022
Anisotropic 1917 0.0138 0.0031 0.0095 0.0024

ing optimized meshes M∗ are shown in Figures 17(c) and 17(d). We observe
that, in both cases, the elements are accumulated and match the metric
stretching, alignment, and sizing at the sharp transition region.

In Tables 6 and 7, we illustrate the size-shape quality, and Riemannian
length and area measure statistics. The statistics and histograms illustrate
an improved metric matching of the optimized meshes versus the initial ones,
see the reasoning in Section 5.3.3. As expected, we observe a greater improve-
ment for the case with initial isotropic mesh.

The presented example shows how our method can be used to improve the
error of a straight-edged mesh. In Table 8, we present the global interpolation
and approximation error of the initial and optimized meshes. We observe
that all quantities are improved for the optimized meshes. In particular,
they are improved by almost two orders of magnitude for the initial isotropic
mesh and by almost one order of magnitude for the initial anisotropic mesh.
This is because the initial anisotropic mesh approximates the metric better
than the initial isotropic one. Finally, the errors of the optimized meshes
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(a) (b)

(c) (d)

Figure 18: Point-wise error between the function u and its best L2(Ω) approximation
uM for (columns) initial isotropic and anisotropic straight-edged, and (rows) initial and
optimized quartic meshes.

corresponding to the initial isotropic mesh and the initial anisotropic one are
of the same order of magnitude. This phenomenon illustrates the potential
of curved r -adaptation.

In Figure 18, we show the point-wise L2 approximation error. For the
initial isotropic mesh, we observe that the error increases as we approximate
to the sharp transition region. This is because the isotropic elements cannot
represent the sharp transition of the function. Then, in the optimized mesh,
we observe that the error is localized at the sharp transition region in a
smaller magnitude compared to the initial mesh. This is because the elements
are stretched and aligned to match the sharp curved transition region. For
the initial anisotropic mesh, we observe that the error is localized at the sharp
transition region only. This is because the mesh has been previously adapted
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(a) (b) (c)

Figure 19: Background, initial straight-edged mesh (already adapted to the metric), and
optimized cubic meshes. Initial and optimized meshes are colored with the point-wise
size-shape quality measure.

to match, with straight-edged elements, the sharp transition region. In the
optimized mesh, we observe that this error fits the curved sharp transition
region in a slightly smaller magnitude. This shows the potential of reducing
function errors by approximating a metric-based error estimator with curved
elements.

5.5. Size-shape distortion minimization with curved boundary for cubic in-
terpolation: anisotropic initial straight-sided mesh

In the following example, to illustrate preliminary adaptation results of
the proposed distortion when the domain has curved boundaries, we apply
the size-shape distortion minimization with curved boundary for cubic inter-
polation to an anisotropic initial straight-edged mesh. For this, we consider
the function u of Equation (28) with γ = 100 over the square domain with
a circular hole Ω. Specifically, we denote the domain by Ω = K\C, where
K = [−0.5, 0.5]2 is a square, and where C is the circle with radius equal to
0.18 and centered at the origin. The domain Ω has two boundaries, the one
of the square K and the one of the circle C. Although the inner boundary
is smooth, the outer boundary contains sharp features such as corners.

In Figure 19, we show the background
(
M̂
)

and physical (M, M∗)

meshes, where the physical meshes are colored according to the point-wise
size-shape quality measure of Equation (19). The background mesh M̂ is of
polynomial degree q = 3, and size h ≈ 0.042, see Figure 19(a). In particu-
lar, it is composed of 87 vertices, 660 nodes, and 133 triangles. From this

36



Table 9: Size-shape quality and geometry statistics of the initial adapted straight-edged
and optimized cubic meshes.

Measure Minimum Maximum Mean Standard deviation
Initial Optimized Initial Optimized Initial Optimized Initial Optimized

Quality 0.0161 0.3549 0.9292 0.9864 0.4667 0.7804 0.2312 0.1554
Length 0.1022 0.3714 2.7706 2.1434 0.9635 0.9310 0.5344 0.2760
Area 0.0148 0.2235 3.0501 1.2100 0.6696 0.6428 0.5215 0.1758

background mesh M̂, we generate a physical cubic mesh M according to
the input discrete metric M̂ and preserving the background mesh boundary
∂M̂. Specifically, in order to obtain an output MMG mesh, we uniformly
subdivide the background mesh and we evaluate the fourth derivatives of u,
∇4u, at the subdivided background mesh vertices. In this case, the input
MMG linear mesh M̂′, which is different from the high-order background
mesh M̂, is composed of 660 vertices-nodes and 1197 triangles. Then, we
obtain the discrete metric M̂ from the derivatives ∇4u by applying the log-
simplex algorithm [14]. The output MMG mesh is an adapted straight-edged
physical mesh M composed of 951 nodes and 191 triangles, see Figure 19(b).
We observe that almost all elements are of medium quality. In addition, the
straight-edged elements approximate the curved transition region. Finally,
we show the corresponding optimized mesh M∗ in Figure 19(c). We ob-
serve that the elements are accumulated and match the metric stretching,
alignment, and sizing at the sharp transition region.

In Table 9, we illustrate the size-shape quality, and Riemannian length
and area measure statistics. In addition, Figure 20 shows the point-wise
Riemannian length and area density histograms for the initial and optimized
triangular cubic meshes. The statistics and histograms illustrate an improved
metric matching of the optimized mesh versus the initial one, see the reason-
ing in Section 5.3.3.

From the results, we observe that, when compared with straight-edged
elements, curved elements approximate more faithfully the metric while pre-
serving the curved features of the boundary. In this case, the stretching direc-
tion is almost aligned according to the tangent of the geometry. When con-
sidering straight-edged elements, in Figure 19(b), accumulating more degrees
of freedom in the stretched regions may worsen the boundary representation
at non-stretched regions. Moreover, this accumulation leads to triangles with
small area near the boundary, see the area density histogram in Figure 20(b).
In contrast, when considering curved elements, in Figure 19(c), we observe
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(a) (b)

Figure 20: Logarithmic Riemannian length and area density histograms for (blue) initial
and (orange) optimized cubic triangular meshes.

Table 10: Interpolation and approximation L2 error of the initial adapted straight-edged
and optimized cubic meshes.

Mesh Interpolation error Approximation error

Initial 0.0197 0.0144
Optimized 0.0058 0.0046

that a single curved element represents the boundary more faithfully than
several straight-edged elements. This flexibility of curved elements allows the
degrees of freedom to slide and accumulate, from non-stretched regions to the
stretched regions, featuring high-quality elements. In addition, those small
elements initially generated near the boundary are enlarged according to the
metric size and to the domain boundary, see the area density histogram in
Figure 20(b). For that reason, we observe how the elements are stretched,
aligned, sized, and curved according to the stretching, alignment, and sizing
of the metric. Hence, curved elements allow an improved representation of
the metric while preserving the curved features of the boundary.

The presented example shows how our method can be used to improve the
error of a straight-edged mesh according to a curved boundary ∂Ω. In Table
10, we present the global interpolation and approximation error of the initial
and optimized mesh. We observe that the errors are improved three times for
the optimized mesh. This is because the optimized mesh approximates better
the metric of the function than the initial one, reducing the interpolation and
approximation errors, see the reasoning of Section 5.3.4.

38



5.6. Size-shape distortion minimization for quadratic approximation of the
Poisson problem: anisotropic initial straight-sided mesh

In the following example we apply the size-shape distortion minimization
to the numerical approximation of a Poisson problem with an anisotropic
curved quadratic mesh. Our purpose is to illustrate the potential advan-
tages of the distortion minimization procedure to anisotropic curved mesh
adaptation. It is out of the scope of this example to compare the presented
procedure with existing adaptation strategies or error estimators.

We consider the Poisson problem with Neumann boundary conditions
corresponding to the function u with γ := 20, see Equation (28). Specifically,
we consider the problem{

−∆u = f in Ω
∂u
∂n

= g on ∂Ω
, with u ∈ V :=

{
v ∈ H1(Ω) :

∫
Ω

v = 0

}
. (30)

To enforce the coercivity of the operator −∆ in V , we impose the orthogo-
nality constraint against constant functions, that is,∫

Ω

v = 0 for v ∈ V.

Consequently, there exists a unique solution u for Equation (30). Finally,
given a numerical approximation uM, we consider the numerical error eM,
against the exact solution u, as eM := ∥u− uM∥L2(Ω).

For an input meshM, we detail the adaptation procedure. First, we solve
the Poisson problem of Equation (30). In particular, we compute a numerical
solution uM belonging to the finite element space VM, a continuous piece-
wise quadratic interpolative Galerkin approximation of V . Second, from this
solution uM, we compute an a posteriori error estimator. Specifically, we
estimate the third-order derivatives ∇3uM by embedding the function uM
into a piece-wise cubic polynomial space ṼM [38]. We denote the embedded
function in ṼM as ũM. Third, from the error estimator ∇3ũM, we obtain a
discrete metric M̂, see [14]. This provides the metric values at the element
nodes. To assemble the values at the mesh nodes, we average the values at
a single node from a log-Euclidean mean of adjacent elements. Finally, from
the input mesh M and the metric M̂, we obtain an output mesh M∗. In
our case, this can be an adapted straight-edged mesh or an optimized curved
mesh.

We apply the method presented above. First, we consider an initial
adapted straight-edged mesh M of size h = 0.075 and composed of 863
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(c) (d)

Figure 21: (Top) point-wise size-shape quality measure and (bottom) logarithmic absolute
error between analytic and numerical solutions of the Poisson problem for initial adapted
straight-edged and optimized quadratic meshes.

Table 11: Size-shape quality and geometry statistics of the initial adapted straight-edged
and optimized quadratic meshes.

Measure Minimum Maximum Mean Standard deviation
Initial Optimized Initial Optimized Initial Optimized Initial Optimized

Quality 0.3409 0.5399 0.9274 0.9900 0.6727 0.9145 0.1266 0.0773
Length 0.3927 0.4047 2.2340 2.0123 1.0819 1.0248 0.3268 0.1885
Area 0.2548 0.5591 2.1157 1.5185 0.8594 0.8595 0.3303 0.1385

nodes and 414 elements. Second, we consider a linear background mesh M̂,
obtained from a midpoint subdivision of the physical mesh M. Third, we
compute the discrete metric M̂, corresponding to the a posteriori error esti-
mator of the Poisson problem. Finally, we optimize the straight-edged mesh
M, according to the discrete metric M̂, to obtain a curved mesh M∗.

We show the physical meshes in Figure 21, where they are colored ac-
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(a) (b)

Figure 22: Logarithmic Riemannian length and area density histograms for (blue) initial
and (orange) optimized quadratic triangular meshes.

Table 12: Interpolation, approximation, and numerical L2 errors of the initial adapted
straight-edged and optimized quadratic meshes.

Mesh Interpolation error Approximation error Numerical error

Initial 0.0049 0.0035 0.0204
Optimized 0.0023 0.0017 0.0126

cording to the point-wise size-shape quality measure of Equation (19). We
illustrate the initial anisotropic mesh in Figure 21(a). We observe that almost
all elements are of medium quality. For this reason, in Figure 21(c), we ob-
serve several oscillations of the numerical error at the curved transition. The
corresponding optimized mesh is shown in Figure 21(b). We observe that,
the elements are accumulated and match the metric stretching, alignment,
and sizing at the sharp transition region. Accordingly, in Figure 21(d), we
observe mitigated oscillations of the numerical error at the curved transition,
when compared with the initial straight-sided mesh. Finally, we illustrate the
metric matching improvement from the measure statistics in Table 11 and
from the density histograms of Figures 22(a) and 22(b), see the reasoning in
Section 5.3.3.

The presented example shows how our method can be used to improve
the error of a straight-edged mesh according to an input model. On the
one hand, in Table 12, we present the global interpolation, approximation,
and numerical error of the initial and optimized meshes. We observe that
the errors are improved almost two times for the optimized mesh. This is
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Figure 23: Logarithmic element-wise error histogram for (blue) initial and (orange) opti-
mized quadratic triangular meshes.

because the output mesh is optimized according to a metric accounting for
an error estimator, reducing the numerical error of the solution. For the
interpolation and approximation errors see the reasoning of Section 5.3.4.
On the other hand, to understand the distribution behavior, we illustrate
the element-wise error in Figure 23. We observe that the numerical error is
shifted to the left, indicating a reduction of almost one order of magnitude
for a considerable amount of elements. This shows the potential of curved
r-adaptation to improve the accuracy of a numerical simulation.

6. Concluding remarks

Next, we present the concluding remarks of this work. First, in Section
6.1, we outline the main discussions. Second, in Section 6.2, we present an
outline of the work that we have planned for the near future. Finally, in
Section 6.3, we present the main conclusions.

6.1. Discussion

Next, we include discussions corresponding to the comparison of our re-
sults with standard mesh curving, the challenges of the minimization, and
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the requisites to obtain satisfactory results.

Adaptive versus standard mesh curving. Our adaptive results on solution
accuracy are compatible with standard non-adaptive results. For meshes
adapted to a target, we have demonstrated the potential of curved elements
to improve solution accuracy. On the contrary, for meshes not adapted to
a target, it is known that curved elements might be detrimental to solu-
tion accuracy [39]. Although these results on solution accuracy might seem
contradictory, both results are compatible because they apply to different sit-
uations. In our approach, the mesh is adapted to a target, while on standard
mesh curving, the mesh is not adapted to a target.

Minimization challenges. Although the goal of this paper is to propose a new
size-shape distortion measure, to illustrate its applicability we need to imple-
ment the distortion minimization procedure. This implementation presents
several challenges we address in previous works. First, to reduce the com-
putational cost, we use a specific-purpose nonlinear optimization solver [31].
Second, to enhance convergence, we use a specific-purpose backtracking line-
search procedure [31]. Third, to deal with curved geometry and tangential
node motion, we use an implicit geometry modeling approach [19].

Requisites for satisfactory results. To obtain satisfactory results minimizing
the size-shape distortion, we need the following requisites. First, the initial
mesh must feature enough resolution and anisotropy to capture the sharp
features of the target metric. Furthermore, for metrics featuring sharp varia-
tions, we must use sufficient quadrature points. In both cases, it is important
to use an optimization solver that robustly converges to a local minimum be-
cause higher orders and sharp metric transitions stiff the optimization prob-
lem.

6.2. Future work

In the near future, to improve the applicability of our method, we have
planned to perform the following work regarding topology modifications,
curved surfaces, worst distortion, and large-scale optimization.

Topology modifications. To show improvements by optimizing our size-shape
distortion, we have used a fixed mesh connectivity. Nevertheless, we think it
would lead to further improvements if we would use topological mesh modi-
fications. To this end, we have planned to incorporate our approach within
a local cavity framework for mesh optimization.
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Curved surfaces. We have developed our size-shape distortion measure for
meshes equipped with a metric and with a number of dimensions equal to
the spatial dimensions. Nevertheless, our size-shape distortion measure might
be extended to deal with curved surfaces embedded in a three-dimensional
space. To this end, because for surfaces the Jacobian matrices of the element
mappings are rectangular, we have planned to substitute the determinants
of square matrices in Equation (17), by the square root of the determinant
of the transposed Jacobian times the Jacobian.

Worst distortion. To show improvements in the interpolation and approxi-
mation error, we have not needed to minimize the worst distortion. Neverthe-
less, in some cases, it might be interesting to optimize the worst distortion.
Hence, we have planned to numerically approximate the supreme norm with
an Lp-norm with a value of p significantly greater than two.

Large-scale optimization. In this work, we aim to propose a size-shape distor-
tion measure and illustrate its applicability, but we do not seek to show large-
scale applications. Nevertheless, for large-scale metric-aware applications, we
have planned to modify our previously developed large-scale approaches for
Euclidean curved mesh optimization [40].

6.3. Conclusions

The defined distortion measure is applied to curve straight-edged meshes
to improve the node configuration according to the desired metric. To per-
form the distortion minimization we use the framework for high-order opti-
mization presented in [30]. The numerical examples show optimized meshes
with an improved stretching, alignment, and sizing according to the metric.
This improvement leads in all cases to an increase of the minimum element
mesh quality and a reduction of the standard deviation between the different
element qualities.

To independently measure whether the optimized mesh matches the input
metric, we propose point-wise Riemannian densities and measures of the
mesh entities equipped with the metric. These are the Riemannian edge
length, surface area, and cell volume. The results show that the optimized
meshes improve the length, area, and volume distributions in the metric
sense. This illustrates that the distortion minimization enables meshes that
effectively match the input metric.

To illustrate the potential applications of the method, we also measure
the numerical error for an input function. These are the interpolation and
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approximation errors of the function matched by the mesh. The results show
that the optimized meshes reduce both the interpolation and approxima-
tion errors. Moreover, our particular example illustrates that the distortion
minimization reduces the numerical errors by one order of magnitude for an
initial adapted mesh and by two orders of magnitude for an initial isotropic
mesh. In addition, we apply the distortion minimization for domains with
curved boundaries. The results show that the mesh approximates the stretch-
ing, alignment, and sizing of the discrete metric while preserving the curved
features of the boundary model.

From the results, depending on the application, practitioners should choose
between shape and size-shape distortions. In those applications where it is
important to match not only the stretching and alignment but also the siz-
ing determined by the metric, we should favor using a size-shape distortion.
On the contrary, if only the stretching and alignment are relevant, we might
prefer using a shape measure.

For many results, we infer that for targets featuring curved features,
curved meshes adapt to the target better than straight-edged meshes. In
contrast, we should also infer that on those applications where the target
metric presents ruled features, adapted straight-edged meshes might be more
efficient than adapted curved meshes. Nevertheless, both for straight-edged
and curved meshes, the optimization of the proposed size-shape distortion
leads to meshes adapted better to the target metric.

Our long term goal is to consider the distortion minimization for func-
tions obtained from a numerical solution of a flow problem. Accordingly, we
have presented preliminary results regarding the solution of a Poisson prob-
lem. In addition, to enable a fully adapted mesh, we would like to couple
the distortion minimization procedure (r-adaptation) with topological mesh
modification methods (h-adaptation).
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terpolation for curved r-adaption by distortion minimization, in: Pro-
ceedings of the 2022 SIAM International Meshing Roundtable, Zenodo,
2022, pp. 1–12.

[19] G. Aparicio-Estrems, A. Gargallo-Peiró, X. Roca, Combining high-order
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[21] X. Roca, A. Gargallo-Peiró, J. Sarrate, Defining quality measures for
high-order planar triangles and curved mesh generation, in: Proc. 20th
Int. Meshing Roundtable, Springer International Publishing, 2012, pp.
365–383.
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[28] E. J. López, N. M. Nigro, M. A. Storti, Simultaneous untangling and
smoothing of moving grids, Int. J. Numer. Meth. Eng. 76 (7) (2008)
994–1019.
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