
Point-Based Computer Graphics

Eurographics 2002 Tutorial T6

Organizers

Markus Gross
ETH Zürich

Hanspeter Pfister

MERL, Cambridge

Presenters

Marc Alexa
TU Darmstadt

Markus Gross
ETH Zürich

Mark Pauly
ETH Zürich

Hanspeter Pfister

MERL, Cambridge

Marc Stamminger
Bauhaus-Universität Weimar

Matthias Zwicker

ETH Zürich

 2

Contents

Tutorial Schedule ..2
Presenters Biographies..3
Presenters Contact Information ..4
References...5
Project Pages...6

Tutorial Schedule

8:30-8:45 Introduction (M. Gross)
8:45-9:45 Point Rendering (M. Zwicker)
9:45-10:00 Acquisition of Point-Sampled Geometry and Appearance I
 (H. Pfister)

10:00-10:30 Coffee Break

10:30-11:15 Acquisition of Point-Sampled Geometry and Appearance II
 (H. Pfister)
11:15-12:00 Dynamic Point Sampling (M. Stamminger)

12:00-14:00 Lunch

14:00-15:00 Point-Based Surface Representations (M. Alexa)
15:00-15:30 Spectral Processing of Point-Sampled Geometry (M. Gross)

15:30-16:00 Coffee Break

16:00-16:30 Efficient Simplification of Point-Sampled Geometry (M. Pauly)
16:30-17:15 Pointshop3D: An Interactive System for Point-Based Surface
 Editing (M. Pauly)
17:15-17:30 Discussion (all)

 3

Presenters Biographies

Dr. Markus Gross is a professor of computer science and the director of the
computer graphics laboratory of the Swiss Federal Institute of Technology (ETH)
in Zürich. He received a degree in electrical and computer engineering and a Ph.D.
on computer graphics and image analysis, both from the University of
Saarbrucken, Germany. From 1990 to 1994 Dr. Gross was with the Computer
Graphics Center in Darmstadt, where he established and directed the Visual
Computing Group. His research interests include physics-based modeling, point
based methods and multiresolution analysis. He has widely published and lectured
on computer graphics and scientific visualization and he authored the book "Visual
Computing", Springer, 1994. Dr. Gross has taught courses at major graphics
conferences including SIGGRAPH, IEEE Visualization, and Eurographics. He is
associate editor of the IEEE Computer Graphics and Applications and has served
as a member of international program committees of major graphics conferences.
Dr. Gross was a papers co-chair of the IEEE Visualization '99 and Eurographics
2000 conferences.

Dr. Hanspeter Pfister is Associate Director and Senior Research Scientist at
MERL - Mitsubishi Electric Research Laboratories - in Cambridge, MA. He is the
chief architect of VolumePro, Mitsubishi Electric's real-time volume rendering
hardware for PCs. His research interests include computer graphics, scientific
visualization, and computer architecture. His work spans a range of topics,
including point-based rendering and modeling, 3D scanning, and computer
graphics hardware. Hanspeter Pfister received his Ph.D. in Computer Science in
1996 from the State University of New York at Stony Brook. He received his M.S.
in Electrical Engineering from the Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland, in 1991. He is Associate Editor of the IEEE Transactions on
Visualization and Computer Graphics (TVCG), member of the Executive
Committee of the IEEE Technical Committee on Graphics and Visualization
(TCVG), and member of the ACM, ACM SIGGRAPH, IEEE, the IEEE Computer
Society, and the Eurographics Association.

Mark Pauly is currently a PhD student at the Computer Graphics Lab at ETH
Zurich, Switzerland. He is working on point-based surface representations for 3D
digital geometry processing, focusing on spectral methods for surface filtering and
resampling. Further research activities are directed towards multiresolution
modeling, geometry compression and texture synthesis of point-sampled objects.

Dr. Marc Stamminger received his PhD in computer graphics in 1999 from the
University of Erlangen, Germany, for his work about finite element methods for
global illumination computations. After that he worked at the Max-Planck-Institut
for Computer Science (MPII) in Saarbrücken, Germany, where he headed the
global illumination group. As a PostDoc in Sophia-Antipolis in France he worked
on the interactive rendering and modeling of natural environments. Since 2001 he
is an assistant professor at the Bauhaus-University in Weimar. His current research
interests are point-based methods for complex, dynamic scenes, and interactive
global illumination methods.

Matthias Zwicker is in his last year of the PhD program at the Computer Graphics
Lab at ETH Zurich, Switzerland. He has developed rendering algorithms and data

 4

structures for point-based surface representations, which he presented in the papers
sessions of SIGGRAPH 2000 and 2001. He has also extended this work towards
high quality volume rendering. Other research interests concern compression of
point-based data structures, acquisition of real world objects, and texturing of
point-sampled surfaces.

Dr. Marc Alexa leads the project group “3d Graphics Computing” within the
Interactive Graphics System Group, TU Darmstadt. He received his PhD and MS
degrees in Computer Science with honors from TU Darmstadt. His research
interests include shape modeling, transformation and animation as well as
conversational user interfaces and information visualization.

Presenters Contact Information

Dr. Markus Gross
Professor
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich
Switzerland
Phone: +41 1 632 7114
FAX: +41 1 632 1596
grossm@inf.ethz.ch
http://graphics.ethz.ch

Dr. Hanspeter Pfister
Associate Director
MERL - A Mitsubishi Electric Research Lab
201 Broadway
Cambridge, MA 02139
USA
Phone: (617) 621-7566
Fax: (617) 621-7550
pfister@merl.com
http://www.merl.com/people/pfister/

Matthias Zwicker
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich
Switzerland
Phone: +41 1 632 7437
FAX: +41 1 632 1596
zwicker@inf.ethz.ch
http://graphics.ethz.ch

Mark Pauly
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich

 5

Switzerland
Phone: +41 1 632 0906
FAX: +41 1 632 1596
pauly@inf.ethz.ch
http://graphics.ethz.ch

Dr. Marc Stamminger
Bauhaus-Universität Weimar
Bauhausstr. 11
99423 Weimar
Germany
Phone: +49 3643 583733
FAX: +49 3643 583709
Marc.Stamminger@medien.uni-weimar.de

Dr. Marc Alexa
Interactive Graphics Systems Group
Technische Universität Darmstadt
Fraunhoferstr. 5
64283 Darmstadt
Germany
Phone: +49 6151 155 674
FAX: +49 6151 155 669
alexa@gris.informatik.tu-darmstadt.de
http://www.igd.fhg.de/~alexa

References

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, C. Silva.
Point set surfaces. Proceedings of IEEE Visualization 2001, p. 21-28, San Diego,
CA, October 2001.

O. Deussen, C. Colditz, M. Stamminger, G. Drettakis, Interactive visualization of
complex plant ecosystems. Proceedings of IEEE Visualization 2002, to appear,
Boston, MA, October 2002.

W. Matusik, H. Pfister, P. Beardsley, A. Ngan, R. Ziegler, L. McMillan, Image-
based 3D photography using opacity hulls. Proceedings of SIGGRAPH 2002, to
appear, San Antonio, TX, July 2002.

W. Matusik, H. Pfister, A. Ngan, R. Ziegler, L. McMillan, Acquisition and
rendering of transparent and refractive objects. Thirteenth Eurographics Workshop
on Rendering, to appear, Pisa, Italy, June 2002.

M. Pauly, M. Gross, Spectral processing of point-sampled geometry. Proceedings
of SIGGRAPH 2001, p. 379-386, Los Angeles, CA, August 2001.

M. Pauly, M. Gross, Efficient Simplification of Point-Sampled Surfaces. IEEE
Proceedings of Visualization 2002, to appear, Boston, MA, October 2002.

 6

H. Pfister, M. Zwicker, J. van Baar, M. Gross, Surfels - surface
elements as rendering primitives. Proceedings of SIGGRAPH
2000, p. 335-342, New Orleans, LS, July 2000.

M. Stamminger, G. Drettakis, Interactive sampling and rendering for
complex and procedural geometry, Rendering Techniques 2001,
Proceedings of the Eurographics Workshop on Rendering 2001, June 2001.

L. Ren, H. Pfister, M. Zwicker, Object space EWA splatting: a hardware
accelerated approach to high quality point rendering. Proceedings of the
Eurographics 2002, to appear, Saarbrücken, Germany, September 2002.

M. Zwicker, H. Pfister, J. van Baar, M. Gross, EWA volume splatting.
Proceedings of IEEE Visualization 2001, p. 29-36, San Diego, CA, October 2001.

M. Zwicker, H. Pfister, J. van Baar, M. Gross, Surface splatting.
Proceedings of SIGGRAPH 2001, p. 371-378, Los Angeles, CA, August 2001.

M. Zwicker, H. Pfister, J. van Baar, M. Gross, EWA splatting. IEEE Transactions
on Visualization and Computer Graphics, to appear.

M. Zwicker, M. Pauly, O. Knoll, M. Gross, Pointshop 3D: an interactive system
for point-based surface editing. Proceedings of SIGGRAPH 2002, to appear, San
Antonio, TX, July 2002

Project Pages

• Rendering
http://graphics.ethz.ch/surfels

• Acquisition
http://www.merl.com/projects/3Dimages/

• Dynamic sampling
http://www-sop.inria.fr/reves/personnel/Marc.Stamminger/pbr.html

• Processing, sampling and filtering
http://graphics.ethz.ch/points

• Pointshop3D
http://www.pointshop3d.com

1

Point-Based Computer Graphics
Eurographics 2002 Tutorial T6

Marc Alexa, Markus Gross,
Mark Pauly, Hanspeter Pfister,

Marc Stamminger, Matthias Zwicker

2

Surf. Reps. for Graphics

Hierarchical splines

Wavelets

Subdivision schemes

Triangle meshes

Mesh processing
methods

Discrete (point based)
representations

Add connectivityAdd operators

Raise degree

3

Polynomials...

Rigorous mathematical concept
Robust evaluation of geometric entities
Shape control for smooth shapes
Advanced physically-based modeling

Require parameterization
Discontinuity modeling
Topological flexibility

Refine h rather than p !
4

Polynomials -> Triangles

• Piecewise linear approximations
• Irregular sampling of the surface
• Forget about parameterization

Triangle meshes

• Multiresolution modeling
• Compression
• Geometric signal processing

5

Triangles...

Simple and efficient representation
Hardware pipelines support ∆
Advanced geometric processing is being in sight
The widely accepted queen of graphics primitives

Sophisticated modeling is difficult
(Local) parameterizations still needed
Complex LOD management
Compression and streaming is highly non-trivial

Remove connectivity ! 6

Triangles -> Points

• From piecewise linear functions to
Delta distributions

• Forget about connectivity

Point clouds

• Points are natural representations within
3D acquisition systems

• Meshes provide an articifical enhancement
of the acquired point samples

2

7

History of Points in Graphics
• Particle systems [Reeves 1983]
• Points as a display primitive [Whitted, Levoy 1985]
• Oriented particles [Szeliski, Tonnesen 1992]
• Particles and implicit surfaces [Witkin, Heckbert 1994]
• Digital Michelangelo [Levoy et al. 2000]
• Image based visual hulls [Matusik 2000]
• Surfels [Pfister et al. 2000]
• QSplat [Rusinkiewicz, Levoy 2000]
• Point set surfaces [Alexa et al. 2001]
• Radial basis functions [Carr et al. 2001]
• Surface splatting [Zwicker et al. 2001]
• Randomized z-buffer [Wand et al. 2001]
• Sampling [Stamminger, Drettakis 2001]
• Opacity hulls [Matusik et al. 2002]
• Pointshop3D [Zwicker, Pauly, Knoll, Gross 2002]...?

8

The Purpose of our Course is …

I) …to introduce points as a versatile and
powerful graphics primitive

II) …to present state of the art concepts
for acquisition, representation,
processing and rendering of point
sampled geometry

III) …to stimulate YOU to help us to
further develop Point Based Graphics

9

Taxonomy

Point-Based Graphics

Rendering
(Zwicker)

Acquisition
(Pfister, Stamminger)

Processing &
Editing

(Gross, Pauly)
Representation

(Alexa)

10

Morning Schedule

Coffee Break10:00-10:30

Dynamic Point Sampling (M. Stamminger)11:15-12:00

Acquisition of Point-Sampled Geometry and
Appearance II (H. Pfister)

10:30-11:15

Acquisition of Point-Sampled Geometry and
Appearance I (H. Pfister)

9:45-10:00

Point Rendering (M. Zwicker)8:45-9:45

Introduction (M. Gross)8:30-8:45

11

Afternoon Schedule

Point-Based Surface Representations (M.
Alexa)

14:00-15:00

Efficient Simplification of Point-Sampled
Geometry (M. Pauly)

16:00-16:30

Discussion (all)17:15-17:30

Pointshop3D: An Interactive System for Point-
Based Surface Editing (M. Pauly)

16:30-17:15

Coffee Break15:30-16:00

Spectral Processing of Point-Sampled
Geometry (M. Gross)

15:00-15:30

1

Point-Based Computer Graphics Your Name 1

Point-Based Rendering

Matthias Zwicker
Computer Graphics Lab

ETH Zürich

Point-Based Computer Graphics Your Name 2

Point-Based Rendering

• Introduction and motivation
• Surface elements
• Rendering
• Antialiasing
• Hardware Acceleration
• Conclusions

Point-Based Computer Graphics Your Name 3

Motivation 1

Quake 2
1998

Nvidia GeForce4
2002

Point-Based Computer Graphics Your Name 4

Motivation 1

• Performance of 3D hardware has exploded
(e.g., GeForce4: 136 million vertices per
second)

• Projected triangles are very small (i.e.,
cover only a few pixels)

• Overhead for triangle setup increases
(initialization of texture filtering,
rasterization)

A simpler, more efficient rendering
primitive than triangles?

Point-Based Computer Graphics Your Name 5

Motivation 2

• Modern 3D scanning devices
(e.g., laser range scanners)
acquire huge point clouds

• Generating consistent triangle
meshes is time consuming and
difficult

A rendering primitive for
direct visualization of point
clouds, without the need to
generate triangle meshes? 4 million pts.

[Levoy et al. 2000]

Point-Based Computer Graphics Your Name 6

Points as Rendering
Primitives
• Point clouds instead of triangle meshes [Levoy and

Whitted 1985, Grossman and Dally 1998, Pfister et
al. 2000]

triangle mesh (with
textures)

point cloud

2

Point-Based Computer Graphics Your Name 7

Point-Based Surface
Representation

• Points are samples of the surface
• The point cloud describes:

• 3D geometry of the surface
• Surface reflectance properties (e.g.,

diffuse color, etc.)

• There is no additional information,
such as
• connectivity (i.e., explicit

neighborhood information between
points)

• texture maps, bump maps, etc.

Point-Based Computer Graphics Your Name 8

Surface Elements - Surfels

• Each point corresponds to a surface
element, or surfel, describing the surface in
a small neighborhood

• Basic surfels:

BasicSurfel {
position;
color;

}

position

color

x

y

z

Point-Based Computer Graphics Your Name 9

Surfels

• How to represent the surface between the
points?

• Surfels need to interpolate the surface
between the points

• A certain surface area is associated with
each surfel

holes between
the points

Point-Based Computer Graphics Your Name 10

ExtendedSurfel {
position;
color;
normal;
radius;
etc...

}

Surfels
• Surfels can be extended by storing additional

attributes
• This allows for higher quality rendering or

advanced shading effects

normal
position

color radius

surfel disc

Point-Based Computer Graphics Your Name 11

Surfels

• Surfels store essential information for
rendering

• Surfels are primarily designed as a
point rendering primitive

• They do not provide a mathematically
smooth surface definition (see [Alexa
2001], point set surfaces)

Point-Based Computer Graphics Your Name 12

Model Acquisition

• 3D scanning of physical objects
• See Pfister, acquisition
• Direct rendering of acquired point clouds
• No mesh reconstruction necessary

[Matusik et al. 2002]

3

Point-Based Computer Graphics Your Name 13

Model Acquisition

• Sampling synthetic objects
• Efficient rendering of complex models
• Dynamic sampling of procedural objects

and animated scenes (see Stamminger,
dynamic sampling)

[Zwicker et al. 2001] [Stamminger et al. 2001]

Point-Based Computer Graphics Your Name 14

Model Acquisition

• Processing and editing of point-sampled
geometry

point-based surface editing
[Zwicker et al. 2002]

(see Pauly, Pointshop3D)

spectral processing
[Pauly, Gross 2002]

(see Gross, spectral processing)

Point-Based Computer Graphics Your Name 15

Visibility
Image

Reconstruction
Filtering

and Shading
Forward
Warping

• Simple, pure forward mapping pipeline
• Surfels carry all information through the pipeline

(„surfel stream“)
• No texture look-ups
• Framebuffer stores RGB, alpha, and Z

Point
Cloud

Frame-
buffer

Point Rendering Pipeline

Point-Based Computer Graphics Your Name 16

Visibility Image
Reconstruction

Filtering
and Shading

Forward
Warping

• Perspective projection of each point in
the point cloud

• Analogous to projection of triangle
vertices
• homogeneous matrix-vector product
• perspective division

Point Rendering Pipeline

Point-Based Computer Graphics Your Name 17

• Per-point shading
• Conventional models for shading (Phong,

Torrance-Sparrow, reflections, etc.)
• High quality antialiasing is an advanced

topic discussed later in the course

Visibility Image
Reconstruction

Filtering
and Shading

Forward
Warping

Point Rendering Pipeline

Point-Based Computer Graphics Your Name 18

• Visibility and image reconstruction is
performed simultaneously
• Discard points that are occluded from the

current viewpoint
• Reconstruct continuous surfaces from

projected points

Visibility Image
Reconstruction

Filtering
and Shading

Forward
Warping

Point Rendering Pipeline

4

Point-Based Computer Graphics Your Name 19

Overview

Visibility Image
Reconstruction

Filtering
and Shading

Forward
Warping

1.2.

Point-Based Computer Graphics Your Name 20

Visibility and Image
Reconstruction

with visibility and
image reconstruction

without visibility and
image reconstruction

foreground point

occluded background point

surface discontinuity
(“hole”)

Point-Based Computer Graphics Your Name 21

• Goal: avoid holes
• Use surfel disc radius r to cover

surface completely

radius r

3D object space

surfel disc

normal

Image Reconstruction

Point-Based Computer Graphics Your Name 22

• Draw a colored quad centered at the projected
point

• The quad side length is h, where h = 2 * r * s
• The scaling factor s given by perspective

projection and viewport transformation
• Hardware implementation: OpenGL GL_POINTS

x

y

screen space

}h

colored quad

projected point

Quad Rendering
Primitive

Point-Based Computer Graphics Your Name 23

• Project surfel discs from object to screen space
• Projecting discs results in ellipses in screen space
• Ellipses adapt to the surface orientation

screen space object space

x

y y

z

x

normal

surfel disc

projected surfel disc

Projected Disc Rendering
Primitive

Point-Based Computer Graphics Your Name 24

Comparison

• Quad primitive
• Low image quality (primitives do not adapt to

surface orientation)
• Efficient rendering
• Supported by conventional 3D accelerator

hardware (OpenGL GL_POINTS)

• Projected disc primitive
• Higher image quality (primitives adapt to surface

orientation)
• Not directly supported by graphics hardware
• Higher computational cost

5

Point-Based Computer Graphics Your Name 25

Visibility: Z-Buffering

• No blending of rendering primitives

y

framebuffer

x

z2

z1

z

z1 > z2{
pixel

Point-Based Computer Graphics Your Name 26

Splatting

• A splat primitive consists of a colored point
primitive and an alpha mask

colored point
primitive c

alpha mask
w(x,y)

(often a 2D
Gauss function)

splat primitive
c * w(x,y)

y

x

y

x

y

x

* =

Point-Based Computer Graphics Your Name 27

∑
∑=

i i

i ii

yxw

yxwc
yxc

),(

),(
),(

Splatting

• Normalization is necessary, because the weights do
not sum up to one with irregular point distributions

• The final color c(x,y) is computed by additive
alpha blending, i.e., by computing the weighted
sum

color of splat i alpha of splat i at position (x,y)

1),(≠∑i i yxw

Point-Based Computer Graphics Your Name 28

Splatting

varying brightness
because of irregular
point distribution

without normalization with normalization

no artifacts

Point-Based Computer Graphics Your Name 29

Splatting

• Extended z-buffering

z
z-buffer pixel surfel disc

surface 2surface 1

z-threshold
accumulate

splats

discard splats

Point-Based Computer Graphics Your Name 30

Extended Z-Buffering

DepthTest(x,y) {

if (abs(splat z – z(x,y)) < threshold) {

c(x,y) = c(x,y) + splat color

w(x,y) = w(x,y) + splat w(x,y)

} else if (splat z < z(x,y)) {

z(x,y) = splat z

c(x,y) = splat color

w(x,y) = splat w(x,y)

}

}

6

Point-Based Computer Graphics Your Name 31

Splatting Comparison

minif.

magnif. 128 x 192

elliptical
splats

128 x 192

circular splats
with min. radius

128 x 192

surface
splatting

Point-Based Computer Graphics Your Name 32

High Quality Splatting

• High quality splatting requires careful
analysis of aliasing issues
• Review of signal processing theory
• Application to point rendering
• Surface splatting [Zwicker et al. 2001]

Point-Based Computer Graphics Your Name 33

Aliasing in Computer
Graphics
• Aliasing = Sampling of continuous functions

below the Nyquist frequency
• To avoid aliasing, sampling rate must be twice as

high as the maximum frequency in the signal

• Aliasing effects:
• Loss of detail
• Moire patterns, jagged edges
• Disintegration of objects or patterns

• Aliasing in Computer Graphics
• Texture Mapping
• Scan conversion of geometry

Point-Based Computer Graphics Your Name 34

Aliasing in Computer
Graphics
• Aliasing: high frequencies in the input signal

appear as low frequencies in the
reconstructed signal

Point-Based Computer Graphics Your Name 35

Occurrence of Aliasing

Spatial Domain Frequency Domain Spatial Domain Frequency Domain

Point-Based Computer Graphics Your Name 36

Aliasing-Free Reconstruction

Spatial Domain Frequency Domain Spatial Domain Frequency Domain

7

Point-Based Computer Graphics Your Name 37

Antialiasing

• Prefiltering
• Band-limit the continuous signal before

sampling
• Eliminates all aliasing (with an ideal low-pass

filter)
• Closed form solution not available in general

• Supersampling
• Raise sampling rate
• Reduces, but does not eliminate all aliasing

artifacts (in practice, many signals have infinite
frequencies)

• Simple implementation (hardware)

Point-Based Computer Graphics Your Name 38

Resampling

1.

warp

2. 3.

4.

discrete input signal discrete output signal

resampling

Point-Based Computer Graphics Your Name 39

Resampling Filters

Object Space

reconstruction kernels

reconstructed input

position

color

irregular spacing

Point-Based Computer Graphics Your Name 40

Resampling Filters
Object Space

3. Filter

Screen Space2.
 W

ar
p

Screen Space

4.
 S

am
pl

e

Screen Space

Point-Based Computer Graphics Your Name 41

Resampling Filters
Object Space

3. Filter

Screen Space2.
 W

ar
p

Screen Space 4.
 S

am
pl

e

Screen Space

low-pass filter convolution

resampling filters

sum of resampling filters

warped reconstruction
kernel

Point-Based Computer Graphics Your Name 42

Resampling

• Resampling in the context of surface
rendering
• Discrete input function = surface texture

(discrete 2D function)
• Warping = projecting surfaces to the

image plane (2D to 2D projective
mapping)

8

Point-Based Computer Graphics Your Name 43

2D Reconstruction Kernels

• Warping a 2D reconstruction kernel is equivalent to
projecting a surfel disc with alpha mask

screen space object space

x

y y

z

x

normal

surfel disc with
alpha mask =
reconstruction
kernel

warped reconstruction kernel

Point-Based Computer Graphics Your Name 44

Resampling Filters
• A resampling filter is a convolution of a

warped reconstruction filter and a low-pass
filter

warped
reconstruction

kernel

low-pass filter
(determined by

pixel grid)

resampling filter
(“blurred reconstruction

kernel”)

screen space
pixel grid

“no information falls
inbetween the pixel
grid”convolution

Point-Based Computer Graphics Your Name 45

Mathematical Formulation

∑ ⊗= −
k kk yxhyxmrcyxc),()),((),(1

pixel color

reconstruction kernel

warping function low pass filter

reconstruction kernel color

Point-Based Computer Graphics Your Name 46

Gaussian Resampling Filters

• Gaussians are closed under linear
warping and convolution

• With Gaussian reconstruction kernels
and low-pass filters, the resampling
filter is a Gaussian, too

• Efficient rendering algorithms
(surface splatting [Zwicker et al.
2001])

Point-Based Computer Graphics Your Name 47

Mathematical Formulation

Gaussian
reconstruction kernel

Gaussian
low-pass filter

∑ ⊗= −
k kk yxhyxmrcyxc),()),((),(1

screen space screen space

Point-Based Computer Graphics Your Name 48

Mathematical Formulation

∑ ⊗= −
k kk yxhyxmrcyxc),()),((),(1

∑=
k kk yxGc),(

Gaussian resampling filter

9

Point-Based Computer Graphics Your Name 49

Algorithm

for each point P {

project P to screen space;

shade P;

determine resampling kernel G;

splat G;

}

for each pixel {

normalize;

}

Point-Based Computer Graphics Your Name 50

Properties of 2D Resampling
Filters

warped recon-
struction kernel

low-pass
filter

resampling
filter

minification

magnification

Point-Based Computer Graphics Your Name 51

Hardware Implementation

• Based on the object space formulation of
EWA filtering

• Implemented using textured triangles
• All calculations are performed in the

programmable hardware (extensive use of
vertex shaders)

• Presented at EG 2002 ([Ren et al. 2002])

Point-Based Computer Graphics Your Name 52

Surface Splatting
Performance
• Software implementation

• 500 000 splats/sec on 866 MHz PIII
• 1 000 000 splats/sec on 2 GHz P4

• Hardware implementation [Ren et al. 2002]
• Uses texture mapping and vertex shaders
• 3 000 000 splats/sec on GeForce4 Ti 4400

Point-Based Computer Graphics Your Name 53

Conclusions
• Points are an efficient rendering primitive for highly complex

surfaces
• Points allow the direct visualization of real world data

acquired with 3D scanning devices
• High performance, low quality point rendering is supported

by 3D hardware (tens of millions points per second)
• High quality point rendering with anisotropic texture filtering

is available
• 3 million points per second with hardware support
• 1 million points per second in software

• Antialiasing technique has been extended to volume
rendering

Point-Based Computer Graphics Your Name 54

Applications

• Direct visualization of point clouds
• Real-time 3D reconstruction and rendering

for virtual reality applications
• Hybrid point and polygon rendering systems
• Rendering animated scenes
• Interactive display of huge meshes
• On the fly sampling and rendering of

procedural objects

10

Point-Based Computer Graphics Your Name 55

Future Work

• Dedicated rendering hardware
• Efficient approximations of exact EWA

splatting
• Rendering architecture for on the fly

sampling and rendering

Point-Based Computer Graphics Your Name 56

References
• [Levoy and Whitted 1985] The use of points as a display primitive,

technical report, University of North Carolina at Chapel Hill, 1985
• [Heckbert 1986] Fundamentals of texture mapping and image warping,

Master‘s Thesis, 1986
• [Grossman and Dally 1998] Point sample rendering, Eurographics

workshop on rendering, 1998
• [Levoy et al. 2000] The digital Michelangelo project, SIGGRAPH 2000
• [Rusinkiewicz et al. 2000] Qsplat, SIGGRAPH 2000
• [Pfister et al. 2000] Surfels: Surface elements as rendering primitives,

SIGGRAPH 2000
• [Zwicker et al. 2001] Surface splatting, SIGGRAPH 2001
• [Zwicker et al. 2002] EWA Splatting, to appear, IEEE TVCG 2002
• [Ren et al. 2002] Object space EWA splatting: A hardware accelerated

approach to high quality point rendering, Eurographics 2002

Point-Based Computer Graphics Hanspeter Pfister, MERL 1

Acquisition of Point-Sampled
Geometry and Appearance

Hanspeter Pfister, MERL
pfister@merl.com

Wojciech Matusik, MIT
Addy Ngan, MIT

Paul Beardsley, MERL
Remo Ziegler, MERL

Leonard McMillan, MIT

Point-Based Computer Graphics Hanspeter Pfister, MERL 2

The Goal: To Capture Reality

• Fully-automated 3D model creation of real
objects.

• Faithful representation of appearance for
these objects.

Point-Based Computer Graphics Hanspeter Pfister, MERL 3

Image-Based 3D Photography

• An image-based 3D scanning system.
• Handles fuzzy, refractive, transparent objects.
• Robust, automatic
• Point-sampled geometry based on the visual hull.
• Objects can be rendered in novel environments.

Point-Based Computer Graphics Hanspeter Pfister, MERL 4

Previous Work

• Active and passive 3D scanners
• Work best for diffuse materials.
• Fuzzy, transparent, and refractive objects are difficult.

• BRDF estimation, inverse rendering
• Image based modeling and rendering

• Reflectance fields [Debevec et al. 00]

• Light Stage system to capture reflectance fields
• Fixed viewpoint, no geometry

• Environment matting [Zongker et al. 99, Chuang et al. 00]

• Capture reflections and refractions
• Fixed viewpoint, no geometry

Point-Based Computer Graphics Hanspeter Pfister, MERL 5

Outline

• Overview
System

• Geometry
• Reflectance
• Rendering
• Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 6

The System

Light Array

Cameras

Rotating Platform
Multi-Color
Monitors

Point-Based Computer Graphics Hanspeter Pfister, MERL 7

Outline

• Overview
• System

Geometry
• Reflectance
• Rendering
• Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 8

Acquisition

• For each viewpoint (6 cameras x 72
positions)
• Alpha mattes

• Use multiple backgrounds [Smith and Blinn 96]

• Reflectance images
• Pictures of the object under different

lighting
(4 lights x 11 positions)

• Environment mattes
• Use similar techniques as [Chuang et al. 2000]

Point-Based Computer Graphics Hanspeter Pfister, MERL 9

Geometry – Opacity Hull

• Visual hull augmented with view-dependent
opacity.

Point-Based Computer Graphics Hanspeter Pfister, MERL 10

Approximate Geometry

• The approximate visual hull is augmented by
radiance data to render concavities,
reflections, and transparency.

Point-Based Computer Graphics Hanspeter Pfister, MERL 11

Geometry Example

Point-Based Computer Graphics Hanspeter Pfister, MERL 12

Surface Light Fields

• A surface light field is a function that
assigns a color to each ray originating on a
surface. [Wood et al., 2000]

Point-Based Computer Graphics Hanspeter Pfister, MERL 13

Shading Algorithm

• A view-dependent strategy.

Point-Based Computer Graphics Hanspeter Pfister, MERL 14

Color Blending

• Blend colors based on angle between virtual
camera and stored colors.

• Unstructured Lumigraph Rendering
[Buehler et al., SIGGRAPH 2001]

• View-Dependent Texture Mapping
[Debevec, EGRW 98]

Point-Based Computer Graphics Hanspeter Pfister, MERL 15

Point-Based Rendering

• Point-based rendering using LDC tree,
visibility splatting, and view-dependent
shading.

Point-Based Computer Graphics Hanspeter Pfister, MERL 16

Geometry – Opacity Hull

• Store the opacity of each observation at
each point on the visual hull [Matusik et al.
SIG2002].

Point-Based Computer Graphics Hanspeter Pfister, MERL 17

Geometry – Opacity Hull

• Assign view-dependent opacity to each ray
originating on a point of the visual hull.

Red = invisible
White = opaque
Black = transparent

φA

B C

A B C

(θ,φ)

θ
Point-Based Computer Graphics Hanspeter Pfister, MERL 18

Example

Photo

Visual Hull

Surface
Light Field

Opacity
Hull

Point-Based Computer Graphics Hanspeter Pfister, MERL 19

Results

• Point-based rendering using EWA splatting,
A-buffer blending, and edge antialiasing.

Point-Based Computer Graphics Hanspeter Pfister, MERL 20

Opacity Hull – Discussion

• View dependent opacity vs. geometry
trade-off.
• Similar to radiance vs. geometry trade-off.

• Sometimes acquiring the geometry is not
possible (e.g. resolution of the acquisition
device is not adequate).

• Sometimes representing true geometry
would be very inefficient (e.g. hair, trees).

• Opacity hull stores the “macro” effect.

Point-Based Computer Graphics Hanspeter Pfister, MERL 21

Point-Based Models

• No need to establish topology or
connectivity.

• No need for a consistent surface
parameterization for texture mapping.

• Represent organic models (feather, tree)
much more readily than polygon models.

• Easy to represent view-dependent opacity
and radiance per surface point.

Point-Based Computer Graphics Hanspeter Pfister, MERL 22

Outline

• Overview
• Previous Works
• Geometry

Reflectance
• Rendering
• Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 23

Light Transport Model

• Assume illumination originates from
infinity.

• The light arriving at a camera pixel can be
described as:

C(x,y) - the pixel value
E - the environment
W - the reflectance field

ωωω dEWyxC)()(),(∫
Ω

=

Point-Based Computer Graphics Hanspeter Pfister, MERL 24

Surface Reflectance Fields

• 6D function:ωi

ωr

P

),;,;,(),,(rriirrri vuWPW ΦΦ= θθωω

ωi

Point-Based Computer Graphics Hanspeter Pfister, MERL 25

Reflectance Functions

• For each viewpoint, 4D function:

(θi,φi
)

θi

φi

),;,()(iiixy yxWW Φ= θω

Point-Based Computer Graphics Hanspeter Pfister, MERL 26

Reflectance Field Acquisition

• We separate the hemisphere into high
resolution Ωh and low resolution Ωl [Matusik
et al., EGRW2002].

ωωωξξξ dLWdTWyxC iilh

lh

)()()()(),(∫∫
ΩΩ

+=

Ωh Ωl
T

L(ω
)

Point-Based Computer Graphics Hanspeter Pfister, MERL 27

Acquisition

• For each viewpoint (6 cameras x 72
positions)
• Alpha mattes

• Use multiple backgrounds [Smith and Blinn 96]

• Reflectance images
• Pictures of the object under different

lighting
(4 lights x 11 positions)

• Environment mattes
• Use similar techniques as [Chuang et al. 2000]

Low resolution

High resolution

Point-Based Computer Graphics Hanspeter Pfister, MERL 28

Low-Resolution Reflectance Field

• Wl sampled by taking pictures with each light
turned on at a time [Debevec et al 00].

ωωω dLW iil

l

)()(∫
Ω

∑
=

≈
n

i
ii LW

1

for n lights

ξξξ dTW
h

h)()(∫
Ω

=),(yxC ωωω dLW iil

l

)()(∫
Ω

+

Point-Based Computer Graphics Hanspeter Pfister, MERL 29

• Subdivide images into 8 x 8 pixel blocks.
• Keep blocks containing the object (avg.

compression 1:7)
• PCA compression (avg. compression 1:10)

Compression

PCA

a0 a1 a2 a3 a4 a5

Point-Based Computer Graphics Hanspeter Pfister, MERL 30

High-Resolution Reflectance Field

• Use techniques of environment matting
[Chuang et al., SIGGRAPH 00].

• Approximate Wh by a sum of up to two
Gaussians:
• Reflective G1.
• Refractive G2.

N G1

G2

ξξξ dTW
h

h)()(∫
Ω

=),(yxC ωωω dLW iil

l

)()(∫
Ω

+

2211)(GaGaWh +=ξ

Point-Based Computer Graphics Hanspeter Pfister, MERL 31

Surface Reflectance Fields

• Work without accurate geometry.
• Surface normals are not necessary.
• Capture more than reflectance:

• Inter-reflections
• Subsurface scattering
• Refraction
• Dispersion
• Non-uniform material variations

• Simplified version of the BSSRDF [Debevec et
al., 00].

Point-Based Computer Graphics Hanspeter Pfister, MERL 32

Outline

• Overview
• Previous Works
• Geometry
• Reflectance

Rendering
• Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 33

Rendering

• Input: Opacity hull, reflectance data, new
environment

• Create radiance images from environment
and low-resolution reflectance field.

• Reparameterize environment mattes.
• Interpolate data to new viewpoint.

Point-Based Computer Graphics Hanspeter Pfister, MERL 34

1st Step: Relighting Ωl

• Compute radiance image for each viewpoint.

The sum is the radiance image of this
viewpoint in this environment.

x
=

Downsample

New
Illumination

Point-Based Computer Graphics Hanspeter Pfister, MERL 35

2nd Step: Reproject Ωh

• Project environment mattes onto the new
environment.
• Environment mattes acquired was

parameterized on plane T (the plasma display).
• We need to project the Gaussians to the new

environment map, producing new Gaussians.

Ω h
T

Point-Based Computer Graphics Hanspeter Pfister, MERL 36

3rd Step: Interpolation

• From new viewpoint, for each surface point, find
four nearest acquired viewpoints.
• Store visibility vector per surface point.

• Interpolate using unstructured lumigraph
interpolation [Buehler et al., SIGGRAPH 01] or view-
dependent texture mapping [Debevec 96].
• Opacity.
• Contribution from low-res reflectance field (in the form of

radiance images).
• Contribution from high-res reflectance field.

Point-Based Computer Graphics Hanspeter Pfister, MERL 37

3rd Step: Interpolation

• For low-res reflectance field, we interpolate
the RGB color from the radiance images.

V1

V2

G1r

G1t

G2r

G2t

N ~

~

~

~

For high-resolution
reflectance field:

Interpolate direction of
reflection/refraction.
Interpolate other
parameters of the
Gaussians.
Convolve with the
environment.

Point-Based Computer Graphics Hanspeter Pfister, MERL 38

Outline

• Overview
• Previous Works
• Geometry
• Reflectance
• Rendering

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 39

Results

• Performance for 6x72 = 432 viewpoints
• 337,824 images taken in total !!

• Acquisition (47 hours)
• Alpha mattes – 1 hour
• Environment mattes – 18 hours
• Reflectance images – 28 hours

• Processing
• Opacity hull ~ 30 minutes
• PCA Compression ~ 20 hours (MATLAB, unoptimized)

• Rendering ~ 5 minutes per frame
• Size

• Opacity hull ~ 30 - 50 MB
• Environment mattes ~ 0.5 - 2 GB
• Reflectance images ~ Raw 370 GB / Compressed 2 - 4 GB

Point-Based Computer Graphics Hanspeter Pfister, MERL 40

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 41

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 42

Results

hΩHigh-resolution lΩLow-resolution Combined

Point-Based Computer Graphics Hanspeter Pfister, MERL 43

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 44

Results – Ωh

Point-Based Computer Graphics Hanspeter Pfister, MERL 45

Results – Ωl

Point-Based Computer Graphics Hanspeter Pfister, MERL 46

Results – Combined

Point-Based Computer Graphics Hanspeter Pfister, MERL 47

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 48

Results

Point-Based Computer Graphics Hanspeter Pfister, MERL 49

Conclusions

• A fully automatic system that is able to capture
and render any type of object.

• Opacity hulls combined with lightfields / surface
reflectance fields provide realistic 3D graphics
models.

• Point-based rendering offers easy surface
parameterization of acquired models.

• Separation of surface reflectance fields into high-
and low-resolution areas is practical.

• New rendering algorithm for environment matte
interpolation.

Point-Based Computer Graphics Hanspeter Pfister, MERL 50

Future Directions

• Use more than 2 Gaussians for the
environment mattes.

• Better compression.
• Real-time rendering.

Point-Based Computer Graphics Hanspeter Pfister, MERL 51

Acknowledgements

• Colleagues:
• MIT: Chris Buehler, Tom Buehler.
• MERL: Bill Yerazunis, Darren Leigh, Michael

Stern.

• Thanks to:
• David Tames, Jennifer Roderick Pfister.

• NSF grants CCR-9975859 and EIA-9802220.
• Papers available at:

• http://www.merl.com/people/pfister/

1

Point-Based Computer Graphics

dynamic point sampling

Marc Stamminger

Point-Based Computer Graphics Marc Stamminger 2

motivation

• tree created by AMAP
• 150,000 triangles
• 8 fps

Point-Based Computer Graphics Marc Stamminger 3

motivation

• level of detail
• 100 trees
• 270,000 points
• 20 fps

Point-Based Computer Graphics Marc Stamminger 4

point rendering pipeline

scene description
•vrml file
•mgf file
•…
•procedural model

point set
(3D-coordinates,

normal,
material)

screen

point generation point rendering

Point-Based Computer Graphics Marc Stamminger 5

point generation

• Surfels
(Pfister et al., SIG2000)
• (orthographic) views

• Q-Splat
(Rusinkiewicz et al.,SIG2000)
• filtered triangle mesh hierarchy

• Randomized z-Buffer
(Wand et al., SIG2001)
• random points

Point-Based Computer Graphics Marc Stamminger 6

point rendering

• in software
• filtering
• texturing
• hole filling

• in hardware
• as points
• as polygonal disks
• as splats

2

Point-Based Computer Graphics Marc Stamminger 7

our approach

• dynamic point generation for
• procedural objects
• terrains
• complex dynamic objects
• point rendering with OpenGL’s GL_POINT
• very fast (> 107 points per second)
• OpenGL does lighting

Point-Based Computer Graphics Marc Stamminger 8

results

• points are well suited for
• procedural

geometry

Point-Based Computer Graphics Marc Stamminger 9

results

• points are well suited for
• procedural

geometry
• terrains

Point-Based Computer Graphics Marc Stamminger 10

results

• points are well suited for
• procedural

geometry
• terrains
• complex

geometry

Point-Based Computer Graphics Marc Stamminger 11

results

• points are well suited for
• procedural

geometry
• terrains
• complex

geometry
• combinations

Point-Based Computer Graphics Marc Stamminger 12

results

• points are well suited for
• procedural

geometry
• terrains
• complex

geometry
• combinations
• eco systems

3

Point-Based Computer Graphics Marc Stamminger 13

complex polygonal geometry

• generate list of randomly distributed
samples

• for every frame: compute n, render
the first n

10,000 1,000100,000

Point-Based Computer Graphics Marc Stamminger 14

complex polygonal geometry

• easy speed / quality trade off
• frame rate control

10,000 1,000100,000

Point-Based Computer Graphics Marc Stamminger 15

sample densities

• adapt point densities to
image space (2D)

• or: adapt to
post-perspective space (3D)

Point-Based Computer Graphics Marc Stamminger 16

densities complex geometry

• world space -> post-perspective:
• area decreases by squared distance
• goal:

uniform post-perspective point density
• point number ~ area/d2

Point-Based Computer Graphics Marc Stamminger 17

modified complex geometry

• simple modifications on the fly

30 fps

Point-Based Computer Graphics Marc Stamminger 18

complex geometry

• video „complex geometry“
• download at
http://www-sop.inria.fr/reves/research

4

Point-Based Computer Graphics Marc Stamminger 19

displaced geometry

25,000 points 25,000 points

Point-Based Computer Graphics Marc Stamminger 20

displaced geometry

25,000 points 100,000 points

Point-Based Computer Graphics Marc Stamminger 21

adaptive sampling

Point-Based Computer Graphics Marc Stamminger 22

undersampling factor

< 1 > 1

undersampling in 2D image space, not post-perspective !

Point-Based Computer Graphics Marc Stamminger 23

undersampling factor

Point-Based Computer Graphics Marc Stamminger 24

adaptive point generation

adaptive sample pattern

5

Point-Based Computer Graphics Marc Stamminger 25

√5 sampling

(2/5,1/5)

initial samples,
all undersampled

newly inserted
samples

Point-Based Computer Graphics Marc Stamminger 26

√5 sampling

initial samples,
all undersampled

newly inserted
samples

Point-Based Computer Graphics Marc Stamminger 27

√5 sampling

undersampled
samples

newly inserted
samples

Point-Based Computer Graphics Marc Stamminger 28

√5 sampling

newly inserted
samples

Point-Based Computer Graphics Marc Stamminger 29

√5 sampling

undersampled
samples

newly inserted
samples

Point-Based Computer Graphics Marc Stamminger 30

√5 sampling

newly inserted
samples

6

Point-Based Computer Graphics Marc Stamminger 31

√5 sampling

• rotated, nested grids
• grid distance decreases by 1/sqrt(5)
• rotation angle ≈ 27o

• special attention to boundaries

Point-Based Computer Graphics Marc Stamminger 32

procedural modifiers

original geometry: square original geometry:
truncated cone

Point-Based Computer Graphics Marc Stamminger 33

video

• video „√5 sampling“
• download at
http://www-sop.inria.fr/reves/research

Point-Based Computer Graphics Marc Stamminger 34

terrains

Point-Based Computer Graphics Marc Stamminger 35

terrains

Point-Based Computer Graphics Marc Stamminger 36

terrain parameterization

• parameterize sector by (d,u)

d

u

terrain

screen

ud

7

Point-Based Computer Graphics Marc Stamminger 37

terrain parameterization

looking straight
ahead

looking up looking down









−−

=

minmaxmin

111

1
)(

dd
v

d

vd

Point-Based Computer Graphics Marc Stamminger 38

terrain algorithm

• √5 sampling scheme
• undersampling factor

• parameterization
distortions

• perspective
distortions

• displacement

Point-Based Computer Graphics Marc Stamminger 39

terrain occlusion culling

• elevation direction
in image space
along v

• simplifies occlusion
culling

elevation

Point-Based Computer Graphics Marc Stamminger 40

terrain occlusion culling

occlusion culling,

regular sampling

occlusion culling,

with adaptive sampling

Point-Based Computer Graphics Marc Stamminger 41

video

• video „terrain rendering“
• download at
http://www-sop.inria.fr/reves/research

Point-Based Computer Graphics Marc Stamminger 42

eco systems

• level of detail:
• polygonal model

• replace polygons by points and lines

• reduce number of points and lines

8

Point-Based Computer Graphics Marc Stamminger 43

eco systems

• example

points

lines

polygons

Point-Based Computer Graphics Marc Stamminger 44

eco systems

• modeller (xfrog) delivers:
• triangle set Tp

• random point set representing Tp

• triangle set Tl

• random line set L representing Tl
(|L| < Tl)

Point-Based Computer Graphics Marc Stamminger 45

eco systems

• level-of-detail 1

triangles

points lines

points lines

points lines

Point-Based Computer Graphics Marc Stamminger 46

eco systems

• level-of-detail 2
triangles

points lines

triangles
points lines

triangles
points lines

triangles
points lines

Point-Based Computer Graphics Marc Stamminger 47

eco systems

• criterion for point / line number
(per object)
• user parameter:

point size dp / line width dl

• approximate screen space area of object:
A‘ = A * 0.5 / d2

• #points ~ A‘ / dp
2

• #lines ~ A‘ / dp

Point-Based Computer Graphics Marc Stamminger 48

eco systems

• video „eco system rendering“
• download at
http://www-sop.inria.fr/reves/research

1

Point-Based Computer Graphics

Surfaces from Point Samples

Marc Alexa
TU Darmstadt

Point-Based Computer Graphics Marc Alexa 2

Motivation

• Many applications need definition of
surface based on point samples
• Reduction
• Up-sampling
• Interrogation (e.g. ray tracing)

• Desirable surface properties
• Manifold
• Smooth
• Local (efficient computation)

Point-Based Computer Graphics Marc Alexa 3

Overview

• Introduction & Basics
• Fitting Implicit Surfaces
• Projection-based Surfaces

Point-Based Computer Graphics Marc Alexa 4

Introduction & Basics

• Regular/Irregular
• Approximation/Interpolation
• Global/Local
• Standard techniques

• LS, RBF, MLS
• Problems

• Sharp edges, feature size/noise
• Functional/Manifold

Point-Based Computer Graphics Marc Alexa 5

• Regular
• Requires to store only values

• Irregular
• Requires to store locations pi

Regular/Irregular

px py

Point-Based Computer Graphics Marc Alexa 6

Approximation/Interpolation

• Noisy data -> Approximation

• Perfect data -> Interpolation

2

Point-Based Computer Graphics Marc Alexa 7

Global/Local

• Global approximation

• Local approximation

• Locality comes at the expense of
smoothness

Point-Based Computer Graphics Marc Alexa 8

Least Squares

• Fits a primitive to the data
• Minimizes squared distances between

the pi’s and primitive g

()()∑ −
i

ii
g xy

pgp 2min

2)(cxbxaxg ++=

Point-Based Computer Graphics Marc Alexa 9

Least Squares - Example

• Primitive is a polynomial

•

• Linear system of equations

() Txxxg c⋅= ,...,,1)(2

()()
()()∑

∑
−=

⇒−

i

T
iii

j
i

i

T
iii

xxyx

xxy

pppp

ppp

c

c

,...,,120

,...,,1min

2

22

Point-Based Computer Graphics Marc Alexa 10

Least Squares - Example

• Resulting system

()()



















=







































⇔−=∑

MMOM

K

2
2

1

0

432

32

2

2

1

,...,,120

yx

yx

y

c

c

c

xxx

xxx

xx

pppp
i

T
iii

j
i xxyx

c

Point-Based Computer Graphics Marc Alexa 11

Moving Least Squares

• Compute a local LS approximation at t
• Weight data points based on distance

to t

()() ()
xxy i

i
ii ptpgp −−∑ θmin 2

2)(cxbxaxg ++=
t

Point-Based Computer Graphics Marc Alexa 12

Moving Least Squares

• The set

is a smooth curve, iff θ is smooth

() ()() ()
xxy i

i
ii

g
tt ptpgpgtgtf −−= ∑ θmin:),(2

3

Point-Based Computer Graphics Marc Alexa 13

Moving Least Squares

• Typical choices for θ:
•
•

• Note: is fixed
• For each t

• Standard weighted LS problem
• Linear iff corresponding LS is linear

()
xii pt −= θθ

() 22 /θ hded −=
() rdd −=θ

Point-Based Computer Graphics Marc Alexa 14

Radial Basis Functions

• Represent interpolant as
• Sum of radial functions r
• Centered at the data points pi

() ()∑ −=
i

ii xprwxf

Point-Based Computer Graphics Marc Alexa 15

Radial Basis Functions

• Solve

to compute weights wi

• Linear system of equations

()∑ −=
i

jiij xxy
pprwp

() () ()
() () ()
() () ()



















=







































−−
−−
−−

MMOM

L

y

y

y

xxxx

xxxx

xxxx

p

p

p

w

w

w

rpprppr

pprrppr

pprpprr

2

1

0

2

1

0

1202

2101

2010

0

0

0

Point-Based Computer Graphics Marc Alexa 16

Radial Basis Functions

• Solvability depends on radial function
• Several choices assure solvability

• (thin plate spline)

• (Gaussian)
• h is a data parameter
• h reflects the feature size or anticipated

spacing among points

() dddr log2=

() 22 / hdedr −=

Point-Based Computer Graphics Marc Alexa 17

Typical Problems

• Sharp corners/edges

• Noise vs. feature size

Point-Based Computer Graphics Marc Alexa 18

Functional/Manifold

• Standard techniques are applicable
if data represents a function

• Manifolds are more general

4

Point-Based Computer Graphics Marc Alexa 19

Implicits

• Each orientable n-manifold can be
embedded in n+1 – space

• Idea: Represent n-manifold as zero-
set of a scalar function in n+1 – space
• Inside:
• On the manifold:
• Outside:

() 0<xf

() 0=xf

() 0>xf

Point-Based Computer Graphics Marc Alexa 20

Implicits - Illustration

• Image courtesy Greg Turk

Point-Based Computer Graphics Marc Alexa 21

Implicits from point samples

• Function should be
zero in data points
•

• Use standard
approximation
techniques to find f

• Trivial solution:
• Additional constraints

are needed

() 0=ipf

0=f

0

Point-Based Computer Graphics Marc Alexa 22

Implicits from point samples

• Constraints define
inside and outside

• Simple approach
(Turk, O’Brien)
• Sprinkle additional

information manually
• Make additional

information soft
constraints

−

−
−

−

−

−

+

+

+

+

+

+

+

Point-Based Computer Graphics Marc Alexa 23

Implicits from point samples

• Use normal
information as
constraint

• Normals could be
computed from scan

• Or, normals have to be
estimated

+

+

+

+

+

+

++

+

+

+ +

() 1=+ ii npf

Point-Based Computer Graphics Marc Alexa 24

Estimating normals

• Two problems
• Normal direction and
• Orientation

(Implicits are signed!)
• Normal direction

by fitting a tangent
• LS fit to nearest neighbors
• Weighted LS fit
• MLS fit

n

q

5

Point-Based Computer Graphics Marc Alexa 25

Estimating normals

• General fitting problem

• Problem is non-linear
because n is constrained
to unit sphere

n
q

()∑ −
=

i
ii

n
pqnpq ,θ,min

2

1

Point-Based Computer Graphics Marc Alexa 26

Estimating normals

• The constrained minimization problem

is solved by the eigenvector corresponding
to the smallest eigenvalue of

∑ −
=

i
ii

n
npq θ,min

2

1

() () ()
() () ()
() () () 






















−−−

−−−

−−−

∑∑∑
∑∑∑
∑∑∑

i
iiz

i
iiz

i
iiz

i
iiy

i
iiy

i
iiy

i
iix

i
iix

i
iix

zyx

zyx

zyx

pqpqpq

pqpqpq

pqpqpq

θθθ

θθθ

θθθ

222

222

222

Point-Based Computer Graphics Marc Alexa 27

Estimating normals

• Consistent orientation
• Problem is NP-hard

• Greedy approach (Hoppe)
• Compute spanning tree

based on graph of
k-nearest neighbors

• Orient consistently along
spanning tree

Point-Based Computer Graphics Marc Alexa 28

Computing Implicits

• Given N points and normals
and constraints

• Let
• An RBF approximation

leads to 2N linear equations in 2N
unknowns (a matrix)

() () 1,0 =+= iii npfpf

iiNi npp +=+

() ()∑ −=
i

ii prwf xx

ii np ,

NN 22 ×

Point-Based Computer Graphics Marc Alexa 29

Computing Implicits

• Practical problems: N > 10000
• Matrix solution becomes difficult
• Two solutions

• Sparse matrices allow iterative solution
• Smaller number of RBFs

Point-Based Computer Graphics Marc Alexa 30

Computing Implicits

• Sparse matrices

• Needed:

• Compactly supported RBFs

() () ()
() () ()
() () ()





















−−
−−
−−

OM

L

0

0

0

120

2101

2010

rpprppr

pprrppr

pprpprr

0)(',0)(==→> crdrcd

cc

6

Point-Based Computer Graphics Marc Alexa 31

Computing Implicits

• Smaller number of RBFs
• Greedy approach (Carr et al.)

• Start with random small subset
• Add RBFs where approximation quality is

not sufficient

Point-Based Computer Graphics Marc Alexa 32

RBF Implicits - Results

• Images courtesy Greg Turk

Point-Based Computer Graphics Marc Alexa 33

RBF Implicits - Results

• Images courtesy Greg Turk

Point-Based Computer Graphics Marc Alexa 34

Implicits - Conclusions

• Scalar field is underconstrained
• Constraints only define where the field is

zero, not where it is non-zero

• Signed fields restrict surfaces to be
unbounded
• All implicit surfaces define solids

Point-Based Computer Graphics Marc Alexa 35

Projection

• Idea: Map space to surface
• Surface is defined as fixpoints of

mapping
r

r’

Point-Based Computer Graphics Marc Alexa 36

Surface definition

• Projection procedure (Levin)
• Local polyonmial approximation

• Inspired by differential geometry

• “Implicit” surface definition

• Infinitely smooth &
• Manifold surface

r
r’

7

Point-Based Computer Graphics Marc Alexa 37

Surface Definition

• Constructive definition
• Input point r
• Compute a local

reference plane
Hr=<q,n>

• Compute a local
polynomial over
the plane Gr

• Project point r’=Gr(0)
• Estimate normal

r
Gr

Hr

q

n

Point-Based Computer Graphics Marc Alexa 38

Local Reference Plane

•Find plane
•

•
• h is feature size/

point spacing

• Hr is independent
of r’s distance

• Manifold property

r

Hr

q

n

Weight function
based on distance to

q, not r
DnqHr += ,

()∑ −−
=

i
ii

nq
pqnpq θ,min

2

1,

() 22 /dθ hde=

Point-Based Computer Graphics Marc Alexa 39

Local Reference Plane

•Computing reference plane
• Non-linear optimization problem

•Minimize independent
variables:

• Over n for fixed distance

• Along n for fixed direction n

• q changes -> the weights change
• Only iterative solutions possible

r

Hr

q

n

r

H

r

q

n

qr −

Point-Based Computer Graphics Marc Alexa 40

Local Reference Plane

•Practical computation
• Minimize over n for fixed q

• Eigenvalue problem

• Translate q so that

• Effectively changes

• Minimize along n for
fixed direction n

• Exploit partial derivative

r

Hr

q

n

r

H

r

q

n
nqrqr −+=

qr −

Point-Based Computer Graphics Marc Alexa 41

Projecting the Point

• MLS polyonomial over Hr

•

• LS problem
• r’=Gr(0)

• Estimate normal

r

Gr

Hr

q

n

()() ()∑ −−−
Π∈

i
iHii

G
pqpGnpq

rd

θ,min
2

Point-Based Computer Graphics Marc Alexa 42

Spatial data structure

• Regular grid based on support of θ
• Each point influences only 8 cells

• Each cell is
an octree
• Distant octree cells

are approximated
by one point in
center of mass

r

8

Point-Based Computer Graphics Marc Alexa 43

Error bounds

• Paradigm:
• Given surface S

• Point set
sampled from S

() defines SR

{ }ipP =

Sri ∈

Point-Based Computer Graphics Marc Alexa 44

Error bounds

• Approximation error of SP to S
• MLS error approximating a function f with

a polynomial g:
•
• m = degree of polynomial

• SP is approximated by a polynomial in
each point

•

1+⋅≤− mhMgf
()()1+∈ mfOM

1+⋅≤− m
p hMSS

Point-Based Computer Graphics Marc Alexa 45

Error bounds

• Conclusions
• Remark: Curvature is a useful criterion

only for piecewise linear surfaces
• Generally: Higher order derivatives are

not accessible
• Quality of representation is mainly

dictated by h
• Number of points control h
• Increase/decrease number of points to

adjust the quality of representation

Point-Based Computer Graphics Marc Alexa 46

Conclusions

• Projection-based surface definition
• Surface is smooth and manifold
• Surface may be bounded
• Representation error mainly depends on

point density
• Adjustable feature size h allows to

smooth out noise

Point-Based Computer Graphics Marc Alexa 47

Some References
• Alexa, Behr, Cohen-Or, Fleishman, Levin, Silva. Point Set Surfaces. IEEE

Visualization 2002, pp. 21-28, 2002
• Carr, Beatson, Cherrie, Mitchell, Fright, McCallum, Evans. Reconstruction

and Representation of 3D Objects with Radial Basis Functions. SIGGRAPH
2001 Proc., pp. 67-76, 2001

• Hoppe, DeRose, Duchamp, McDonald, Stuetzle. Surface Reconstruction from
unorganized points. SIGGRAPH 1992 Proc., pp. 71-78, 1992

• Levin. The approximation power of moving least-squares. Math. Comp.
67(224):1517-1531, 1998

• Levin. Mesh-independent surface interpolation. Curves & Surfaces 2000
• Savchenko, Pasko, Okunev, Kunii. Function representation of solids

reconstructed from scattered surface points and contours. Computer
Graphics Forum, 14(4):181–188, 1995

• Turk, O’Brien. Shape transformation using variational implicit surfaces.
SIGGRAPH 1999 Proc., pp. 335–342, 1999

• Turk, O’Brien. Variational implicit surfaces. Technical Report GITGVU 9915,
Georgia Institute of Technology, 1999

1

Point-Based Computer Graphics Markus Gross 1

Spectral Processing of Point-
Sampled Geometry

Point-Based Computer Graphics Markus Gross 2

Overview

• Introduction
• Fourier transform
• Spectral processing pipeline
• Applications

• Spectral filtering
• Adaptive subsampling

• Summary

Point-Based Computer Graphics Markus Gross 3

Introduction

• Idea: Extend the Fourier transform to
manifold geometry

Spectral representation of point-based objects

Powerful methods for digital geometry processing

Point-Based Computer Graphics Markus Gross 4

Introduction

• Applications:

• Spectral filtering:
• Noise removal
• Microstructure analysis
• Enhancement

• Adaptive resampling:
• Complexity reduction

• Continuous LOD

Point-Based Computer Graphics Markus Gross 5

Fourier Transform

• 1D example:

• Benefits:
• Sound concept of frequency
• Extensive theory
• Fast algorithms

∑
=

−
=

N

k

N

nk
j

kn exX
1

2π

input signal

spectral basis function

output signal

Point-Based Computer Graphics Markus Gross 6

Fourier Transform

• Requirements:
• Fourier transform defined on Euclidean domain

we need a global parameterization

• Basis functions are eigenfunctions of Laplacian
operator

requires regular sampling pattern so that basis
functions can be expressed in analytical form (fast
evaluation)

• Limitations:
• Basis functions are globally defined

Lack of local control

2

Point-Based Computer Graphics Markus Gross 7

Approach

• Split model into patches that:
• are parameterized over the unit-square

mapping must be continuous and should minimize
distortion

• are re-sampled onto a regular grid
adjust sampling rate to minimize information loss

• provide sufficient granularity for intended
application (local analysis)

process each patch individually and blend
processed patches

Point-Based Computer Graphics Markus Gross 8

Spectral Pipeline

Point-Based Computer Graphics Markus Gross 9

Patch Layout Creation

Clustering Optimization

Samples Clusters Patches

Point-Based Computer Graphics Markus Gross 10

Patch Layout Creation

• Iterative, local optimization method

• Merge patches according to quality metric:

RegBNCS Φ⋅Φ⋅Φ⋅Φ=Φ

curvature

patch Size

patch boundary

spring energy regularization

NCΦ

BΦ

RegΦ

SΦ

Point-Based Computer Graphics Markus Gross 11

Patch Layout Creation

• Parameterize patches by orthogonal projection
onto base plane

• Bound normal cone to control distortion of
mapping using smallest enclosing sphere

Point-Based Computer Graphics Markus Gross 12

Patch Resampling

• Patches are irregularly sampled:

3

Point-Based Computer Graphics Markus Gross 13

Patch Resampling

• Resample patch onto regular grid using hierarchical
push-pull filter (scattered data approximation)

Point-Based Computer Graphics Markus Gross 14

Spectral Analysis

• 2D discrete Fourier transform (DFT)
Direct manipulation of spectral coefficients

• Filtering as convolution:

Convolution: O(N2) multiplication: O(N)

• Inverse Fourier transform
Filtered patch surface

)()()(yFxFyxF ⋅=⊗

Point-Based Computer Graphics Markus Gross 15

Spectral Filters

ideal low-pass Gaussian low-pass original

transfer function: spectral domain

transfer function: spatial domain

• Smoothing filters

Point-Based Computer Graphics Markus Gross 16

Spectral Filters

• Microstructure analysis and enhancement

Point-Based Computer Graphics Markus Gross 17

Spectral Resampling

• Low-pass filtering
Band-limitation

• Regular Resampling
Optimal sampling rate
(sampling theorem)

Error control
(Parseval’s theorem)

Power Spectrum

Point-Based Computer Graphics Markus Gross 18

Reconstruction

• Filtering can lead to discontinuities at
patch boundaries

Create patch overlap, blend adjacent patches

region of overlap

Sampling rates

Point positions

Normals

4

Point-Based Computer Graphics Markus Gross 19

Reconstruction

• Blending the sampling rate

blended sampling
rate in region of
patch overlap

discretized
sampling rate
on regular grid

pre-computed
sampling patterns

Point-Based Computer Graphics Markus Gross 20

Timings

Clustering

Patch
Merging

SDA

Analysis

Reconstruction

Time
9%

38%

23%

4%

26%

Point-Based Computer Graphics Markus Gross 21

Applications

• Surface Restoration

Original Gaussian low-pass Wiener filter Patch layout

Point-Based Computer Graphics Markus Gross 22

Applications

• Interactive filtering

Point-Based Computer Graphics Markus Gross 23

Applications

• Adaptive Subsampling

4,128,614 pts. = 100% 287,163 pts. = 6.9%

Point-Based Computer Graphics Markus Gross 24

Summary

• Versatile spectral decomposition of point-
based models

• Effective filtering

• Adaptive resampling

• Efficient processing of large point-sampled
models

5

Point-Based Computer Graphics Markus Gross 25

Reference

• Pauly, Gross: Spectral Processing of Point-sampled
Geometry, SIGGRAPH 2001

1

Point-Based Computer Graphics Mark Pauly 1

Efficient Simplification of
Point-sampled Surfaces

Point-Based Computer Graphics Mark Pauly 2

Overview

• Introduction
• Local surface analysis
• Simplification methods
• Error measurement
• Comparison

Point-Based Computer Graphics Mark Pauly 3

Introduction
• Point-based models are often sampled very densely
• Many applications require coarser approximations,

e.g. for efficient

• Storage
• Transmission
• Processing
• Rendering

we need simplification methods for reducing the
complexity of point-based surfaces

Point-Based Computer Graphics Mark Pauly 4

Introduction

• We transfer different simplification methods from
triangle meshes to point clouds:

• Incremental clustering
• Hierarchical clustering
• Iterative simplification
• Particle simulation

• Depending on the intended use, each method has
its pros and cons (see comparison)

Point-Based Computer Graphics Mark Pauly 5

Local Surface Analysis

• Cloud of point samples describes underlying
(manifold) surface

• We need:
• mechanisms for locally approximating the

surface MLS approach

• fast estimation of tangent plane and curvature
principal component analysis of local

neighborhood

Point-Based Computer Graphics Mark Pauly 6

Neighborhood

• No explicit connectivity between samples (as with
triangle meshes)

• Replace geodesic proximity with spatial proximity
(requires sufficiently high sampling density!)

• Compute neighborhood according to Euclidean
distance

2

Point-Based Computer Graphics Mark Pauly 7

Neighborhood

• k-nearest neighbors

• can be quickly computed using spatial data-
structures (e.g. kd-tree, octree, bsp-tree)

• requires isotropic point distribution

Point-Based Computer Graphics Mark Pauly 8

Neighborhood

• Improvement: angle criterion (Linsen)

• project points onto tangent plane
• sort neighbors according to angle
• include more points if angle between

subsequent points is above some threshold

Point-Based Computer Graphics Mark Pauly 9

Neighborhood

• Local Delaunay triangulation (Floater)

• project points into tangent plane
• compute local Voronoi diagram

Point-Based Computer Graphics Mark Pauly 10

Covariance Analysis

• Covariance matrix of local neighborhood N:

• with centroid

Nij

i

i

T

i

i

nn

∈
















−

−
⋅

















−

−
= ,

11

pp

pp

pp

pp

C LL

∑
∈

=
Ni

iN
pp

1

Point-Based Computer Graphics Mark Pauly 11

Covariance Analysis

• Consider the eigenproblem:

• C is a 3x3, positive semi-definite matrix
All eigenvalues are real-valued
The eigenvector with smallest eigenvalue defines the
least-squares plane through the points in the
neighborhood, i.e. approximates the surface normal

}2,1,0{, ∈⋅=⋅ llll vvC λ

Point-Based Computer Graphics Mark Pauly 12

Covariance Analysis
• The total variation is given as:

• We define surface variation as:

• measures the fraction of variation along the surface
normal, i.e. quantifies how strong the surface deviates
from the tangent plane estimate for curvature

210
210

0 ,)(λλλ
λλλ

λσ ≤≤
++

=pn

210

2 λλλ ++=−∑
∈Ni

i pp

3

Point-Based Computer Graphics Mark Pauly 13

Covariance Analysis

• Comparison with curvature:

original mean curvature variation n=20 variation n=50

Point-Based Computer Graphics Mark Pauly 14

Surface Simplification

• Incremental clustering

• Hierarchical clustering

• Iterative simplification

• Particle simulation

Point-Based Computer Graphics Mark Pauly 15

Incremental Clustering

• Clustering by region-growing:

• Start with random seed point
• Successively add nearest points to cluster until cluster

reaches maximum size
• Choose new seed from remaining points

• Growth of clusters can also be bounded by surface
variation

Curvature adaptive clustering

Point-Based Computer Graphics Mark Pauly 16

Incremental Clustering
• Incremental growth leads to internal fragmentation

assign stray samples to closest cluster

• Note: this can increase maximum size and variation
bounds!

Point-Based Computer Graphics Mark Pauly 17

Incremental Clustering

• Replace each cluster by its centroid

original model with
color-coded clusters

(34,384 points)

simplified model
(1,000 points)

Point-Based Computer Graphics Mark Pauly 18

Hierarchical Clustering

• Top-down approach using binary space partition:

• Split the point cloud if:

• Size is larger than user-specified maximum or

• Surface variation is above maximum threshold

• Split plane defined by centroid and axis of greatest
variation (= eigenvector of covariance matrix with
largest associated eigenvector)

• Leaf nodes of the tree correspond to clusters

4

Point-Based Computer Graphics Mark Pauly 19

Hierarchical Clustering

• 2D example

Point-Based Computer Graphics Mark Pauly 20

Hierarchical Clustering

• Adaptive clustering

original model with
color-coded clusters

(34,384 points)

simplified model
(1,000 points)

Point-Based Computer Graphics Mark Pauly 21

Iterative Simplification
• Iteratively contracts point pairs

Each contraction reduces the number of points by one

• Contractions are arranged in priority queue
according to quadric error metric (Garland and
Heckbert)

• Quadric measures cost of contraction and
determines optimal position for contracted sample

• Equivalent to QSlim except for definition of
approximating planes

Point-Based Computer Graphics Mark Pauly 22

Iterative Simplification

• Quadric measures the squared distance to a set of
planes defined over edges of neighborhood
• plane spanned by vectors andppe −= i1 nee ×= 12

1e

ip

p2e

n

Point-Based Computer Graphics Mark Pauly 23

Iterative Simplification

original model
(187,664 points)

simplified model
(1,000 points)

remaining point pair
contraction candidates

Point-Based Computer Graphics Mark Pauly 24

Particle Simulation

• Resample surface by distributing particles on the
surface

• Particles move on surface according to inter-
particle repelling forces

• Particle relaxation terminates when equilibrium is
reached (requires damping)

• Can also be used for up-sampling!

5

Point-Based Computer Graphics Mark Pauly 25

Particle Simulation

• Initialization
• randomly spread particles

• Repulsion
• linear repulsion force

only need to consider neighborhood of radius r

• Projection
• keep particles on surface by projecting onto

tangent plane of closest point
• apply full MLS projection at end of simulation

)()()(iii rkF ppppp −⋅−−=

Point-Based Computer Graphics Mark Pauly 26

Particle Simulation

• Adaptive simulation
• Adjust repulsion radius according to surface variation

more samples in regions of high variation

original model
(75,781 points)

simplified model
(6,000 points)

Point-Based Computer Graphics Mark Pauly 27

Particle Simulation

• User-controlled simulation
• Adjust repulsion radius according to user input

Point-Based Computer Graphics Mark Pauly 28

Measuring Error

• Measure the distance between two point-sampled
surfaces using a sampling approach

• Maximum error:

Two-sided Hausdorff distance

• Mean error:

Area-weighted integral of point-to-surface distances

• is an up-sampled version of the point cloud that
describes the surface

),(max),(max SdSS Q ′=′∆ ∈ qq

∑
∈

′=′∆
Q

Sd
Q

SS
q

q),(
1

),(avg

S
Q

Point-Based Computer Graphics Mark Pauly 29

Measuring Error

• measures the distance of point to
surface using the MLS projection operator with
linear basis functions

),(Sd ′q q
S′

Point-Based Computer Graphics Mark Pauly 30

Comparison

• Error estimate for Michelangelo’s David simplified
from 2,000,000 points to 5,000 points

6

Point-Based Computer Graphics Mark Pauly 31

Comparison

• Execution time as a function of target model size
(input: dragon, 535,545 points)

Point-Based Computer Graphics Mark Pauly 32

Comparison

• Execution time as a function of input model size
(reduction to 1%)

Point-Based Computer Graphics Mark Pauly 33

Comparison

• Summary

-

o

+

+

Implementation

++oParticle
Simulation

o+-Iterative
Simplification

--+Hierarchical
Clustering

--+Incremental
Clustering

ControlSurface
Error

Efficiency

Point-Based Computer Graphics Mark Pauly 34

Point-based vs. Mesh
Simplification

point-based simplification saves an expensive
surface reconstruction on the dense point cloud!

point-based simplification with
subsequent mesh reconstruction

mesh reconstruction with subsequent
mesh simplification (QSlim)

Point-Based Computer Graphics Mark Pauly 35

References

• Pauly, Gross: Efficient Simplification of Point-
sampled Surfaces, IEEE Visualization 2002

• Shaffer, Garland: Efficient Adaptive Simplification
of Massive Meshes, IEEE Visualization 2001

• Garland, Heckbert: Surface Simplification using
Quadric Error Metrics, SIGGRAPH 1997

• Turk: Re-Tiling Polygonal Surfaces, SIGGRAPH 1992
• Alexa et al. Point Set Surfaces, IEEE Visualization

2001

1

Point-Based Computer Graphics Mark Pauly 1

An Interactive System for Point-based
Surface Editing

Point-Based Computer Graphics Mark Pauly 2

Overview

• Introduction
• Pointshop3D System Components

• Point Cloud Parameterization
• Resampling Scheme
• Editing Operators

• Summary

Point-Based Computer Graphics Mark Pauly 3

PointShop3D

• Interactive system for point-based surface
editing

• Generalizes 2D photo editing concepts and
functionality to 3D point-sampled surfaces

• Uses 3D surface pixels (surfels) as versatile
display and modeling primitive

Point-Based Computer Graphics Mark Pauly 4

Concept

Resampling Editing Operator

u

Parameterization

v

Point-Based Computer Graphics Mark Pauly 5

• Point cloud parameterization
• brings surface and brush into common reference frame

• Dynamic resampling
• creates one-to-one correspondence of surface and brush

samples

• Editing operator
• combines surface and brush samples

Key Components

Φ

))()),(((BSS ΨΦΨΩ=′

Ψ

Ω

brushoriginal surfacemodified surface

Point-Based Computer Graphics Mark Pauly 6

Parameterization

• Constrained minimum distortion
parameterization of point clouds

32

)(

)(

)(

)(]1,0[RP

z

y

x

X ⊂∈=















=⇒∈ x

u

u

u

uu

2

Point-Based Computer Graphics Mark Pauly 7

Parameterization

contraints = matching
of feature points

minimum distortion =
maximum smoothness

Point-Based Computer Graphics Mark Pauly 8

Parameterization

• Find mapping X that minimizes objective
function:

{∑ ∫
∈

+−=
Mj P

jj dXXC uuxp)())(()(2 γε
{

fitting constraints
distortion

surface pointsbrush points

Point-Based Computer Graphics Mark Pauly 9

Parameterization

• Measuring distortion

• Integrates squared curvature using local polar
re-parameterization

θθγ
θ

drX
r

2

2

2

),()(∫ 







∂
∂= uu

θ

u
r

















+=

)sin(

)cos(
),(

θ
θ

θ rXrX uu

Point-Based Computer Graphics Mark Pauly 10

Parameterization

• Discrete formulation:

• Approximation: mapping is piecewise linear

2

1

2

~
)()(

)()(
~ ∑ ∑∑

∈ = ∈











∂
∂−

∂
∂+−=

Mj

n

i Nj j

i

j

i
jj

i

UU
UC

v
x

v
x

p εu

Point-Based Computer Graphics Mark Pauly 11

Parameterization

• Directional derivatives as extension of divided
differences based on k-nearest neighbors

Point-Based Computer Graphics Mark Pauly 12

Parameterization

• Multigrid solver for efficient computation of
resulting sparse linear least squares problem

2
2

1
,)(

~
ubub AaUC

j
i

n

i
ijj −=







 −=∑ ∑
=

3

Point-Based Computer Graphics Mark Pauly 13

Reconstruction
• Parameterized scattered data approximation

• Fitting functions
• Compute local fitting functions using local

parameterizations
• Map to global parameterization using global parameter

coordinates of neighboring points

∑
∑Φ

=

i
i

i
ii

r

r
X

)(

)()(
)(

u

uu
u

fitting functions weight functions

normalization factor

Point-Based Computer Graphics Mark Pauly 14

Reconstruction

reconstruction with
linear fitting functions

weight functions in
parameter space

Point-Based Computer Graphics Mark Pauly 15

Reconstruction

• Reconstruction with linear fitting functions is
equivalent to surface splatting!

we can use the surface splatting renderer to reconstruct
our surface function (see chapter on rendering)

• This provides:

• Fast evaluation

• Anti-aliasing (Band-limit the weight functions before
sampling using Gaussian low-pass filter)

• Distortions of splats due to parameterization can be
computed efficiently using local affine mappings

Point-Based Computer Graphics Mark Pauly 16

Sampling

• Three sampling strategies:
• Resample the brush, i.e., sample at the original

surface points

• Resample the surface, i.e., sample at the brush
points

• Adaptive resampling, i.e., sample at surface or
brush points depending on the respective
sampling density

Point-Based Computer Graphics Mark Pauly 17

Editing Operators

• Painting
• Texture, material properties, transparency

Point-Based Computer Graphics Mark Pauly 18

Editing Operators

• Sculpting
• Carving, normal displacement

displacement mapstexture map
carved and texture mapped

point-sampled surface

4

Point-Based Computer Graphics Mark Pauly 19

Editing Operators

• Filtering
• Scalar attributes, geometry

Point-Based Computer Graphics Mark Pauly 20

Summary

• Pointshop3D provides sophisticated editing
operations on point-sampled surfaces

points are a versatile and powerful modeling
primitive

• Limitation: only works on “clean” models
• sufficiently high sampling density
• no outliers
• little noise

requires model cleaning (integrated or as pre-
process)

Point-Based Computer Graphics Mark Pauly 21

Reference

• Zwicker, Pauly, Knoll, Gross: Pointshop3D: An
interactive system for Point-based Surface Editing,
SIGGRAPH 2002

• check out:

www.pointshop3D.com

