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Abstract

We recently introduced an efficient multiresolution structure for distributimg) r@nder-
ing very large point sampled models on consumer graphics platforms [&]sfFacture is
based on a hierarchy of precomputed object-space point cloudsre¢hadrabined coarse-
to-fine at rendering time to locally adapt sample densities according to theigwjsize
in the image. The progressive block based refinement nature of therimegdraversal ex-
ploits on-board caching and object based rendering APIs, hidesf-@or® data access
latency through speculative prefetching, and lends itself well to incatpdrackface, view
frustum, and occlusion culling, as well as compression and view-depepdagressive
transmission. The resulting system allows rendering of complex out-ofatodels at high
frame rates (over 60M rendered points/second), supports netwegkrstrg, and is funda-
mentally simple to implement. We demonstrate the efficiency of the approach on @numb
of very large models, stored on local disks or accessed through aroensevel broadband
network, including a massive 234M samples isosurface generated loymessible turbu-
lence simulation and a 167M samples model of Michelangelo’s St. Matthew. bfaige
details of our framework were presented in a previous study. We hevelpra more thor-
ough exposition, but also significant new material, including the presentaftiarhigher
quality bottom-up construction method and additional qualitative and quantitauds.
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1 Introduction

Multiresolution hierarchies of point primitives have ratlg emerged as a viable al-
ternative to the more traditional mesh refinement methodsferactively inspect-
ing very large geometric models [2]. These methods are bais¢de assumption
that for a wide class models, mainly arising from 3D photpbsa 3D scanning,
or numerical simulation, the sampling rate is so high thahgles are projected to
very small screen areas at rendering time. Thus, the adyaofascan-line coher-
ence are lost, and appropriately selected point samplesuéfieient to accurately
reproduce the model. One of the major benefits of this appr@aits simplicity,
stemming from the fact that there is no need to explicitly agand maintain
mesh connectivity during both preprocessing and rendering

Unfortunately, current dynamic multiresolution algonits for large models are
very CPU intensive: nowadays, consumer graphics hardwaablésto sustain a
rendering rate of tens of millions of point primitives pecsed, but current mul-
tiresolution solutions fall short of reaching such perfarmoe. This is because the
CPU is not able to generate/extract point samples from thefabre structure and
send them fast enough to the graphics hardware in the cdoracat and through
a preferential data path.

We have recently proposed a new breed of solutions for ictiggaand accurate
visualization of very large surface models on consumer lgcapplatforms. The
underlying idea of the proposed methods is to depart fromeatipoint- or triangle-
based multiresolution models and adopt a cluster-basadsttatcture, from which
view-dependent representations can be efficiently exddday combining precom-
puted surface chunks. Since each chunk is composed of a tevgahds graph-
ics elements, the multiresolution extraction cost is aimedt over many graph-
ics primitives, and CPU/GPU communication can be optimizedutly exploit
the complex memory hierarchy of modern graphics platforviie. have demon-
strated the performance of the approach with specializetiads for regional- [3]
to planetary-scale [4] phototextured digital terrain megdas well as for general
triangle meshes [5]. In this article, we focus on a simplenpbased solution for
high performance view dependent visualization of verydastatic point sampled
models on consumer graphics platforms. In this case, weceethe per-primitive
structure overhead by moving the grain of the multiresolutnodel from a hierar-
chy of point samples to a hierarchy of precomputed objeatspoint clouds. At
rendering time, the clouds are combined coarse-to-fine avstateless top-down
structure traversal to locally adapt sample densitiesraaug to the projected size
in the image. The progressive block based refinement nattine cendering traver-
sal is well suited to hiding out-of-core data access lateaoy lends itself well to
incorporate backface, view frustum, and occlusion cullegywell as compression
and view-dependent progressive transmission. The regudtistem allows render-
ing of local and remote models of hundreds of millions of sE®@t high frame



rates (over 60M splat/second), supports network streamnyis fundamentally
simple to implement.

Many of the details of this framework were presented in [1f Wére provide a
more thorough exposition, but also significant new mateinaluding the presen-
tation of a higher quality bottom-up construction method additional qualitative

and quantitative results. Finally, we have attempted tth&rrclarify the steps in

our algorithms to facilitate their implementation and tok@ahe transfer between
abstract concepts and actual code as straightforward a#fss

The rest of the paper is organized as follows. Section 2 wevielated works. The
details of the proposed data structure are presented imsetwhile section 4
describes algorithms for view-dependent refinement anderémg, and section 5
propose a out-of-core technique for constructing the magdtlution model. The
efficiency of the approach is demonstrated with the inspeaif a number of very
large models, including a massive 234M samples isosurfanergted by a com-
pressible turbulence simulation, that exhibits a huge @ d@pth complexity, and
a 167M samples model of Michelangelo’s St. Matthew (sedipn

2 Related Work

Point-based 3D graphics techniques for processing anceregdof dense mod-
els are an old idea [6,7], that has found many successfulcapiphs, including
point-based modeling, high quality and interactive remdgras well as coding and
transmission of point-based models.

Our focus is the development of systems for the distribuéiod high speed in-
teractive visual inspection of very large models on comnyogliaphics platforms.
QSplat [2] is the reference system in this particular ardée Jystem is based on a
hierarchy of bounding spheres maintained out-of-cord,ithsaversed at run-time
to generate points. This algorithm is CPU bound, becaushaltdmputations are
made per point, and CPU/GPU communication requires a diesxtaring inter-
face, thus the graphic board is never exploited at his maxirparformance. In
Streaming QSplat [8], the QSplat data structure is subdd/idto chunks, that are
however only used for streaming objects over networks. Enee&ring procedure
remains a hierarchical traversal executed on the CPU, wehattditional book-
keeping required to check the local availability of dataléf@h and Varshney [9]
have recently proposed to improve the geometry bandwidtirebeck by working
on a compressed point sample geometry model obtained bgigaircomponent
analysis. Even if they use a large cache of 40M points, the te@egenerate a
large number of small point clusters per frame from statdinformation leads to
a rendering speed which is roughly half the speed of QSplateXploit instead a
partitioning of the model into clouds to improve the effiggrof CPU/GPU com-



munication through a batched communication protocol arsdippport conservative
occlusion culling for high depth complexity models. Thisyides at least an order
of magnitude improvement in rendering rate on current coditp@raphics plat-
forms. The superior CPU/GPU communication efficiency of #pproach is con-
firmed by recent benchmarks by Sainz et al. [10], that regeotinpared a number
of state-of-the-art hardware accelerated point rendeaiggrithms, measuring a
maximum throughput of about 10M rendered points/s for sinatiore models of
up to 4M samples on a GeForce FX 5900, while we can renderfectre models
of over 200M samples at about 70M points/s using a GeForceGX8 graphics
board.

A number of authors have also proposed various ways to pestetidering per-
formance limits in particular situations. The randomizelduffer [11] uses a hi-
erarchical traversal of a structure where the leaf nodetagoarrays of random
point samples. They focus on large triangle meshes, whilevask directly on
dense point sampled models. Stamminger and Drettakis jirdrdically adjusts
the point sampling rate for rendering complex procedurahgetry at high frame
rates. They require a parameterization of the model, whéefagus on unstruc-
tured point samples. Dachsbacher et al. [13] recently ptedea hierarchical LOD
structure for points that is adaptively rendered by seqalgrocessing done on the
GPU. They report a peak performance of over 50M unfilteredtsgier second,
which is similar to ours, but they are limited in the size o tlendered model,
which must fit into the video card memory, while our work foessnstead on
very large local and remote models. Moreover, their tealig not fully output-
sensitive, since it does not support any visibility cullmgthe CPU before submit-
ting the entire conservative range of points for the GPU &muential processing.
As a result, zoomed views of fine details of a large model ateemely uneffi-
cient [10].

There is a large body of work that aims at improving the reimdeguality of
point-sampled models. For dense models, these includg spimeres [2], tangen-
tial disks [14,15], or high degree polynomials [16] instedidaw point primitives,
as well as improving filtering in image space [15] or objeap[17]. Such work
is orthogonal to ours, which focuses on finding simple waysrprove raw ren-
dering performance on very large models by amortizing costgroups of many
graphics primitives. Merging these two directions, pogsily exploiting GPU pro-
gramming as in [18], is a main avenue for future work.

3 Multiresolution model

We assume that the input model is represented by a ddtsg#mple points uni-
formly distributed over its surface, with an average spgtietween samples equal
tor. Each sample point is associated with a set of surface @attsbincluding po-



sition, normal, and possibly color information.

Our multiresolution approach creates a hierarchy over dingpges of the datasets,
simply by reordering and clustering them into point clouflagproximately con-
stant size arranged in a binary tree. In other words, the rfimétiresolution model
has exactly the same points of the input model, but groupedcimunks and orga-
nized in a level of detail representation. The root of thele¥ detail tree represents
the entire model with a single cloud bfy = M < N uniformly distributed samples.
The remaining points are equally subdivided among the twtreas using a spatial
partition, with, againM uniformly distributed points directly associated to thetro
of each subtree, and the rest redistributed in the childrae.leaves are terminal
clusters, which are further indivisible and whose size ialfnthan the specified
limit M.

Variable resolution representations of the models aremduieby defining aut of
the hierarchy and merging all nodes above the cut. This wagh @ode acts as a
refinemenbf a small contiguous region of the parent. This is differfieom most
other hierarchical schemes, where only the leaf nodes afithieierarchy are used.

The root node is the coarsest available model represemtatith an average sam-
ple spacing ofg = r\/MEO. Each nodg, then, locally refines its parent by adding
additionalM;j samples to the representation, increasing the densityainrégion
to a valuer. This value can be computed off-line from the partitionechpoloud
(see section 5). By storing at each ngdée value ofrj along with its point cloud,
we can thus rapidly obtain a variable accuracy representdtty traversing top
down the hierarchy, while accumulating point clouds urité tesired density is
reached (see figure 1). Since we are interested in view-depémnepresentations,
we also precompute the bounding sphere and bounding conermfais of each
node. These are used for projecting the mean sample didtatieescreen, as well
as for view-frustum, backfacing, and occlusion cullinge(section 4).

The benefits of this approach are that the workload requioecafunit refine-
ment/coarsening step is amortized on a large number of paimitives, and that
the small point clusters can be optimized off-line for bestfgrmance in host-
to-graphics and network communication. By tuning the valupasameteM, we
can vary the granularity of the structure from a total mrdsolution model (e.g.,
QSplat forM = 1) to a single-resolution model for point renderid & N). The
choice of paramete¥l is dictated by performance considerations. In particuflar,
M is too large, the model becomes less adaptive, and switéfonga resolution
level to the next leads to a high latency. On the other hand, i too small, the
model is more adaptive but CPU costs become non negligibleu@eant graphics
platforms, we have empirically determined that the bedoperance trade-offs are
obtained for values d¥1 ranging from 512 to 8192.

[Fig. 1 about here.]



4 The rendering pipe-line

Our adaptive rendering algorithm works on a standard PC, atalid assumed to
be either locally stored on a secondary storage unit direclble to the rendering
engine or remotely stored on a network server (see figure 2).

Data layout and data access. The hierarchical data structure is split into an in-
dex tree and a point cloud repository. The index tree has d &vogorint, since it
contains, for each node, just the data required for tral/&gample spacing, bound-
ing sphere, bounding cone of normals, and index of the twidign), and refers to
the associated point cloud through a 32 bit index that utygdentifies the cloud
in the repository. The repository is organized so that tha derage order reflects
traversal order, which is coarse to fine and by physical posih space. We thus
sort point clouds in the repository using as a primary keyr ttnee level, and as
a secondary key the Morton index of their bounding spher¢ecgh9]. For disk
storage and data transmission, each cloud is managed inresseg form. The
point cloud is spatially sorted, then each attribute is ¢juad, delta encoded, and
then entropy encoded with the LZO compressohccess to the point cloud repos-
itory is made through a data access layer, that masks to fhleaipon whether
the repository is local or remote. This layer makes it pdesi asynchronously
move in-core a point cloud by fetching it from the repositdry test whether a
point cloud is immediately available, and to retrieve itpresentation. We have
implemented two versions of this access layer: the first aogiges direct disk
access through memory mapping functions and is used for fibes as well as
remote NFS mounted files. The second one is based on the HT{Pdtocol and,
similarly to Streaming QSplat [8], fetches data from a seaddHTTP server using
range requests and permanent connections.

[Fig. 2 about here.]

Progressive view-dependent refinement. The traversal algorithm, which extracts
a view dependent representation of the multiresolutionehivdm the current point
of view, is based on a stateless coarse-to-fine refinemeniraftaucture, that ex-
ploits the progressive nature and coarse granularity ohthkiresolution hierar-
chy to reduce CPU refinement costs and to improve repositehest and host-
to-graphics communication. In particular, asynchrona@mository requests hide
out-of-core data access latency, and communication walaRU is made exclu-
sively through a retained mode interface, which reducedraffec by managing a

1 LZO is a data compression library based on a Lempel Ziv variant which is
suitable for data decompression in real-time. The library source is availatie f
http://ww. ober hurmer. com opensource/l zo/



least-recently-used cache of point clouds maintainedaarébas OpenGLMertex
Buffer Object Pseudo-code for the method is listed in figure 3.

[Fig. 3 about here.]

The user selected pixel threshold is the value that drivesdfinement of the ren-
dering algorithm: this value represents the required @eesample distance be-
tween adjacent splats on the screen, and it is used as satT$ie refinement
algorithm performs a single pass recursive traversal ohthéiresolution struc-
ture. For each node, we use its bounding sphere and normaltodest whether
the node is totally outside the view frustum or totally baahg. In this case, re-
cursion stops, discarding the entire branch of the treesratise we can render
the node and, eventually, continue the refinement with idsli@n. It is important
to emphasize that, differently from most other hierarchiedinement schemes,
all visited nodes are rendered during the refinement tralie®ence we are focus-
ing on high speed visualization, our current implementaionply uses OpenGL
hardware supported points for point cloud rendering. Téaes imits our ability to
correctly treat texture and transparency. Using ellipsloggplats computed on the
GPU, as in, e.g, [18], would resolve these problems.

At node rendering time, we project the node’s hierarchieatage sample distance
to the screen to obtain its splat size. A consistent uppendbaun the projected
size is obtained by measuring the apparent size of a sphénedi@imeter equal
to the object space average sample distance and centetteel lmdunding sphere
point closest to the viewpoint. If the projected splat sezéess than the threshold,
we render the node’s point cloud with the prescribed sptat and stop recursion,
otherwise a refinement is needed. In that case, to avoid ibigpc¢ke renderer be-
cause of data access latency, especially in the case ofrnegdiata over wide-area
networks, we first check whether the node’s children datamediately available,
i.e., ifitis already in the GPU cache or considered in-coréhie data access layer.
If so, we continue recursion, otherwise recursion stopsthachode is rendered
with an increased splat size, equal to its projected meamplsadistance, to cover
holes left by children unavailability. Fetch requests dwent pushed in a priority
qgueue. Similarly to Streaming QSplat [8], the request qusuraversed in order
of priority at the end of the frame, issuing only as many retias those allowed
by the estimated network bandwidth, and forgetting the reimg ones. Since the
repository is sorted coarse to fine and by physical positiogpace, prioritizing
the queue by node’s index provides a simple compromise shadth 1/0 efficient
and promises to download the most relevant data as soon siblposhile being
enough space coherent to minimize visual distraction.

Rendering on a budget. For interactive applications, it is often useful to have
direct control on rendering time, instead of the control endering quality pro-
vided by prescribing a screen error tolerance for the refev@mmethod. In addition



to adjusting error tolerance per frame in a feedback loopcareexploit the fact
that our hierarchy is shallow to implement a predictive tegbe. Given a desired
number of points per frame, we perform a binary search of #se@ated pixel
threshold, by repeatedly traversing the index tree withstn@e refinement logic
used for rendering, while only counting the number of getaer@rimitives.

Occlusion culling. A number of complex dense models, such as large isosurfaces
deriving from numerical simulation of turbulence (e.g0QJ21]) have an important
depth complexity. For these models, efficiently culling imasible portion of the
rendered model is of primary importance to avoid uploadnedining, and ren-
dering unnecessary data (see figure 4). Since our strudwearse grained and
provides a spatial partition, we can adapt to a point renddramework visibility
techniques developed for rendering scenes composed of olgegts. Similarly
to the approach introduced by Toon et al. [22] for complex CADi@nments,
our rendering algorithm exploits frame-to-frame coheesinccclusion culling, by
using the set of visible point clouds from the previous framsethe occluder set
for the current frame. At each frame, we render the objechied phases. In the
first phase, we perform the usual refinement algorithm, bedimclate the clouds
that would be rendered in a list of potentially visible oliggavhile only render-
ing the point clouds that were visible in the previous framea second phase, we
traverse the entire list of accumulated point sets, geingrathardware occlusion
guery for the object’s bounding sphere (approximated bycasahedron), using
OpenGL ARB_occlusion_query extension to track the numberagfrhents that
pass the depth test. In a third and final pass, we traverse tglist of clouds and
guery the associated occlusion query object for the numhesssed fragments. If
this number is above a given threshold, we insert the cloddxnn next frame’s
occluder list and, if the cloud was not among those renderetd first pass, we
proceed render it. With this method, the only additionalt @fsocclusion culling
is the generation and test of occlusion queries. This casbedurther reduced by
only checking once every few frames if previous frame ocetadhre still visible.

[Fig. 4 about here.]

5 Construction

[Fig. 5 about here.]

The multiresolution point-cloud structure has to be carmgd off-line starting
from a generic point cloud model. In [1], we presented a semiffD efficient re-
cursive clustering method that generates point cloudsherfly using a Russian
roulette approach at each partitioning step. With thisdops 1 method, the coars-
est levels of the structure are created by randomly pickemgdamples out of very



large clouds with a considerable spatial extent. Thereus #n inherent lack of
control on sample distances, and the resulting irregulacisg may lead to poor
results when the model is rendered at very coarse levelstai.de

In this paper, we present a bottom-up construction metinad retains the original
simplicity of implementation, while producing higher gitkesults (see figure 5).
The method is implemented with a single out-of-core comptireestandard C++
array (compatible witlst d: : vect or ), that encapsulates a resizable file accessed
through system memory mapping functions. The procedursistsof two phases.

Top-down: partitioning. The partitioning procedure takes as input an external
memory array of uniformly distributed point samples, tdgetwith its bounding
box, and recursively generates a tree structure by binagespartitioning. At each
bisection, a point cloudP; is split if its point countN;j is larger than a threshold

quantityMJ(tOt). In case of splitting, the bounding box is bisected at thepwiiak

of its longest axis, the point cloud is subdivided among te sub-boxes, and the
partitioning procedure continues with the two sub-clou#en recursion stops,
the point cloud is stored in a point cloud repository maimtaiin an external mem-
ory array. The end result of this recursive scheme is a bitnagyof nodes, that de-

scribes the subdivision structure, where each leaf of g#eedorresponds to a cluster

of sizeNj < M}tm). The quantityMJ(tOt), that drives the partitioning procedure, is
computed at each node, following directly the definition of ayered point cloud
structure. It represents the total number of points thatefirement procedure will
generate in the region of nogeSince in our structure, differently from most other

hierarchical schemes, each nopécally refines its parent by adding additional

M samples to the representation, the total number of sanhp?té’g extracted in
the region associated to noglés not constant, but is rather recursively defined as

(tot) _ N; (tot) . .
M = [ —— Mparem(j) + M, whereNy is the total number of samples in the

subtree rooted &, and for the rooM* = M.

Bottom-up: subsampling and structure construction. The second and final
phase completes the structure with a hierarchy of surfageesentations by re-
cursively associating to each node a fixed point count reptation of the portion
of the surface contained in it, along with all the informatieequired for evaluat-
ing view dependent errors. This is efficiently done by traireg coarse-to-fine the
structure generated by the first phase in the order in whidesare stored on out-
put (i.e., by reverse tree level and then by Morton code).ashenode, we retrieve
the associated point cloud from the repository, extracteéljeiredM samples from
it by uniform subsampling, and push the remaining ones upénhierarchy, by
storing them in the parent node’s bucket. We then computmtiex node data (hi-
erarchical sample spacing, bounding sphere, and boundimg @f normals), and



convert the point cloud to the final compressed representaubsampling, aux-
iliary value computation and compression are performedlipcby simply scan-

ning the points extracted in the node’s associated regigneamploying in-core

methods. In our current implementation, subsampling ifopered by hierarchical

clustering [23], bounding spheres and cone of normals argpated by finding the

minimum enclosing ball of points using a fast combinatonathod from com-

putational geometry [24], while hierarchical sample spgci; is estimated using
the standard k-nearest neighbor approximation [23]. Tted®iques are applica-
ble because all points associated to a node’s region,heendde’s points and the
points inherited from its ancestors, are available at nadsttuction time. By con-

trast, using our previous construction method []]had to be approximated from
area ratios exploiting a uniform sampling assumption, iflggdo inaccuracies in

areas containing irregularly spaced samples.

6 Results

[Fig. 6 about here.]
[Table 1 about here.]

The proposed method has been used to develop a C++ appligdtich makes
use of OpenGL on a Linux platform. Several tests have bedonpeed on prepro-
cessing and rendering of a number of very large models (seeef@jand table 1).
Point sampled models were generated from triangulated lmnegtracting vertex
data. The largest model is a full resolution isosurface efrtfixing interface from
the Gordon Bell Prize winning simulation of a Richtmyer-MesWhknstability in
a shock tube experiment [21], that consists of over 234M $saippints extracted
from a 2048x2048x1920 8bit grid. This model is convoluted has a huge depth
complexity (>100) from all viewpoints. The other test cases high resolution
scans of the St. Matthew and David statues from The Digitahdiangelo reposi-
tory.

In addition to discussing raw experimental performance dat preprocessing,
rendering, and streaming situations, we compare our sesulh those gathered
from QSplat [2] and the Adaptive TetraPuzzles [5] implenatiohs on the same
machines. QSplat is the reference system for rendering-pased models, while
Adaptive TetraPuzzles is a state-of-the-art techniquenfrof-core construction
and accurate view-dependent visualization of very laigagle meshes. The method
uses a regular conformal hierarchy of tetrahedra to spapalrtition the model.
Each tetrahedral cell contains a precomputed simplifiegimerof the original
model, represented using cache coherent indexed stripadiorendering. Appro-
priate boundary constraints are introduced in the simplioey to ensure that all
conforming selective subdivisions of the tetrahedrondrery lead to correctly

10



matching surface patches. For each frame at runtime, tharblg is traversed
coarse-to-fine to select diamonds of the appropriate rgésnlgiven the view pa-
rameters. Our Layered Point Clouds and Adaptive TetraPsizaiplementations
share the same rendering and data access backends.

Preprocessing. Table 2 shows numerical results for the out-of-core pregssing
for the Layered Point Clouds and Adaptive TetraPuzzles iqakes, relative to all
test cases. The preprocessing has been evaluated on a R@ruimux 2.4, with
two Athlon 2200+ CPUs, 1GB DDR memory, a 70GB ATA 133 hard di&k.
the multiresolution models have been constructed Witket to 2K samples/node
for Layered Point Clouds and 2K triangles/node for AdaptieerdPuzzles, using
16 bit/normal quantization and a position quantizatiorueing a quantization error
inferior to half of the input sampling distance (i.e. praatly lossless quantization).

Overall processing times for Layered Point Clouds range fi&K samples/s to

30K samples/s depending on the processor load, and is dtedibg disk access
times and LZO compression. Preprocessing speed is simillaat of QSplat (about
30K samples/s). Compression rates exceed those of QSman(hb0bits/sample)
and other similar systems based on a point hierarchy, butotionatch those of

state-of-the-art compression systems, since our cumgiémentation has favored
ease of coding through the exploitation of general purpasepcession libraries.
They could be improved by exploiting the locality of eachgbatquantizing at-

tributes relative to each cluster’s contents.

On the other hand, the Adaptive TetraPuzzles technique chrslower (about 2K
triangles/s on a single CPU) and produces files that are abtmie3 larger. This
is mainly because Adaptive TetraPuzzles has to managei@uaditonnectivity
data and because the generated structure stores the @tiadnodel at the leaves
and intermediate representations at inner nodes, whilereayPoint Clouds just
redistributes input model points in a level of detail repraation.

[Table 2 about here.]

View-dependent refinement. We evaluated the performance of our view-dependent
refinement technique on a number of inspection sequenceshm/gest case mod-

els. The results were collected on a Linux PC with a Intel X8ehGHz, 2GB
RAM, two Seagate ST373453LW 70 GB ULTRA SCSI 320 hard drives, %P

and NVIDIA GeForce FX 5800 Ultra graphics. During the entir@kthrough, the
resident set size of the application for the largest test naser exceeded 242MB,

i.e. less than 27% of the out-of-core data size, demonsgrdtie effectiveness of
out-of-core data management. The qualitative performahoer view-dependent
refinement is illustrated in an accompanying video that shoeecorded live se-
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quences$ . As demonstrated in the videos on the 3D scanning modelsgthaot
employ occlusion culling, we can sustain an average rengeate of around 40M
rendered points per second, with peaks exceeding 68M. By aosanm, on the
same machine, the peak performance of QSplat, was measuredgaly 3.6M
rendered points per second when using the GL_POINTS rerglprimitive. As in
[10], this figure corresponds to the number of selected paiivided by the frame-
to-frame time. For the inspection of the 234M samples idasat which has a
huge depth complexity, we have enabled occlusion cullinga@rage, 50% of the
patches are detected as occluded, strongly diminishirey atatess and rendering
times. The average rendering rate drops in this case to &/2QM rendered points
per second, which is still about an order of magnitude fastan that of QSplat.
For the same view, and with the same screen space tolerardeawe measured
that our method renders up to 10% more points than QSplat atauasion culling
is not enabled. This is because grouping points into cloadalf operations forces
us to be more conservative in the projection. The increaseimber of points is
however compensated by a much larger increase in rendgréaglsThis is particu-
larly useful for large scale display situations, where géad point-based solutions
have problems to meet real-time constraints because oatge humber of pixels
to be covered. Figure 7 shows the St. Matthew dataset exdmime large scale
stereoscopic display assembled from off-the-shelf coraptm i.e., two 1024x768
DLP projectors connected to two outputs of the graphics,gaothrizing filters
with matching glasses, and a backprojection screen thaepres polarization. In
this setting, a single PC is able to render two 1024x768 image frame at 20 Hz
with an adaptive rendering budget set to 1.5M samples perldyger the same
conditions, QSplat’s visible frame rate drops down to alome frame per second,
which is not sufficient for interactive applications.

We have also compared the rendering performance and qoaf@pplat and LPC
with that of Adaptive TetraPuzzles. The tests indicate thatAdaptive TetraPuz-
zles is generally faster (70M-90M triangles/s). This isdese mesh based solutions
are able to fully exploit the post-transform-and-lighticeche with cache-coherent
indexed triangle strips. This is not possible for pointdzhsechniques, because
each rendered point is independent of the others. Rendeualifyqof Adaptive
TetraPuzzles is also generally slightly better, espgcialt close-up views, than
that of point-based solutions, because of the higher coityirPoint rendering qual-
ity could be improved by using oriented splats and blendoog this would reduce
rendering speed. It should be noted, however, that, evergththe quality of point
based rendering does not match that of the triangle basedt@ppears sufficient
for most interactive display applications (see figure 8).

[Fig. 7 about here.]

[Fig. 8 about here.]

2 The video is available fronht t p: / / waww. crs4. it/ vic/ mul ti nedi a/
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Network streaming. Some network tests have been performed on all test mod-
els, on a local area network at 100Mbps and on a ADSL at 1.2Musg both
NFS mounts and HTTP 1.1 connections. As illustrated in thewj rendering rate
remains the same as that of the local file version, but updatgshronously arrive
with increased latency. The effect is illustrated in figureMdich shows the pro-
gressive refinement of the largest dataset on a machine ciahianrough ADSL
to a moderately loaded Linux box running a Apache web seBxegn though the
HTTP 1.1 is far from being optimal for the task, the applioatremains usable
even for very large models on consumer-level network camores. The first im-
ages in the progressive refinement sequence also illugtetta heavy subsampling
on coarser scales can lead to strong aliasing artifactsefigr domplex models, as
the average sampling distance is significantly below Nydtegjuency. Our static
sample randomization replaces missing data with randoonrrdtion which is sta-
ble over time, thus the visual effect of aliasing is lesscesble as it would be for
a regular sampling at similarly coarse resolutions. Néwtess, for some models
the occurring aliasing could notably diminish visual gtyalimproving this aspect
is an important avenue for future work.

[Fig. 9 about here.]

7 Conclusions

We have presented a simple point-based multiresolutiarctsire for interactive
out-of-core visualization of very large point models on smmer graphics plat-
forms. The system is comparable in both implementation dexity and image
guality to (Streaming) QSplat. Despite its simplicity, stable to handle models
of much higher depth complexity and is at least one order ajmtade faster in
terms of rendering speed. The current major limitation igmage quality. Since
we are focusing on high speed visualization, we simply usenGi. hardware
supported points for point cloud rendering, and do not ussr-aample splat orien-
tation and size, which limits our ability to correctly tréakture and transparency.
The integration with more advanced filtering techniquesl@mented on the GPU
would resolve these problems, hopefully without compramgigoo much render-
ing speed.

As demonstrated in our tests, state-of-the-art triangtetbgolutions, such as Adap-
tive TetraPuzzles, are currently slightly faster and poadbigher quality images,

mainly because they can fully exploit current graphics badesigns, which are

optimized for rendering meshes that share information dices. These solutions

are, however, much harder to implement and require higlegrpcessing times.

Given its simplicity, we consider the current method of inalia¢e practical interest
for most interactive display applications.
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Fig. 1. Layered Point Cloud Structure. the multiresolution model has exactly the same
points of the input model, but grouped into constant size chunks andipeghin a level

of detail representation. Variable resolution representations of the madetsbtained by
defining a cut of the hierarchy and merging all nodes above the cut.
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Fig. 2. The rendering pipeline. The client traverses the index tree coarse-to-fine in a
view-dependent manner, requesting point clouds to the server. To maxiemdering per-
formance and minimize traffic, point clouds are cached on board usindJsst&tegy.
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| pc_refine(eye, node, threshold) {
i f visible(eye, node->sphere, node->nornal _cone) {
proj ected_size = project(eye,
node- >spher e,
node- >sanpl i ng_di st ance)
if node is leaf {
updat e_gpu_cache( node- >cl oud)
set _poi nt _si ze(projected_size)
r ender ( node- >cl oud)
} else if any child is not present {
for each child in children(node) {
async_request (chil d)
}
updat e_gpu_cache( node- >cl oud)
set _poi nt _si ze(projected_size)
render ( node- >cl oud)
} else {
updat e_gpu_cache( node- >cl oud)
set _poi nt _si ze(t hreshol d)
render ( node- >cl oud)
if projected_size > threshold {
for each child in children(node) {
| pc_refine(eye, node, child)

Fig. 3. View-dependent refinement and progressive downloadlhe user selected pixel
threshold is the value that drives the refinement of the rendering algorithm.
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Fig. 4.Occlusion culling. Closeup view of an isosurface feature in the mixing interface of
two gases for a simulation of a Richtmyer-Meshkov instability in a shock tuje¢atiered

at 1 pixel tolerance on a 335x335 window. Without occlusion culling: 62%8atches, 24M
splats, 1.7 fps; with occlusion culling: 3490 patches, 6.3M splats, 5.5 fps.
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Fig. 5. Top-down vs. bottom up subsampling.The St. Matthew dataset (167M samples)
is subsampled using the same parameters with both techniques. The bottopragchp
visibly produces a more uniform spacing between samples with respect topttown

approach presented in [1]
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les) and 1mm (28M sample

Matthew 0.25mm (167M samples)

(c) Mixing interface isosurface (234M samples)

Fig. 6. Test models.The main images show the models as presented to the user during

interactive inspection sessions, while the inset images illustrate the subdisisicture.
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Fig. 7. Large scale stereoscopic displayThe St. Matthew dataset presented on a large
scale stereoscopic display. A single PC is able to render two 1024x768smag&ame
at 20 Hz with an adaptive rendering budget of 1.5M samples per eye.
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b b

(a) Layered Point Clouds (1345K (b) Adaptive TetraPuzzles (1421K

splats) triangles)

Fig. 8. Rendering quality. Renderer tolerances configured to generate approximately the
same number of primitives. Inset images show a detail with a 4x magnificatian Ev
though the quality of the point based version does not match that of thel&ibaged
one, it appears sufficient for most interactive display applications.
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(@) 1s (b) 10s (c) 20s (d) 30s
Fig. 9. Streaming. Progressive refinement of the mixing interface isosurface (234M sam-
ples) on a ADSL connection at 1.25M bps. The main images show the modelsenprd to
the user, while the inset images illustrate progressive refinement by hiligiréag where
refinement stops because of missing data.
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Model Samples Triangles %ﬁ%’;t
David 2mm 4,138,653 8,277,479| 5,200
David Tmm 28,120,980 56,230,343| 5,200
St. Matthew 167,324,853|372,767,445| 2,700
PPM Isosurface| 234,717,830 469,381,488 | 2,048

Table 1
Test models characteristics.
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Quantization LPC

TETRA-PUZZLES

Model Positio | Normal| Total [Disk usage (MB Ogltr/ut Total | Disk usage (MB) Oglttp/ut

n (bits) | (bits) | time (s) i out | Sample time (s) in out | Sample
David 2mm 3x13 16 142 95 20 40 3,735 379 70 142
David 1Tmm 3x14 16 1,233 644 126 37| 24,499 2,574 470 140
St. Matthew 3x15 16| 8,820| 3,830 777 39| 92,255 17,063| 3,034 152
PPM lIsosurface 3x13 16| 13,357| 5,372 925 33[198,199| 22,530 3,882 139

Table 2

Numerical results for out-of-core construction. Tests performed on a single PC.

28




