
Layered Point Clouds: a Simple and Efficient
Multiresolution Structure for Distributing and
Rendering Gigantic Point-Sampled Models⋆

Enrico Gobbetti and Fabio Marton

CRS4 Visual Computing Group, POLARIS Edificio 1, 09010 Pula (CA), Italy

Abstract

We recently introduced an efficient multiresolution structure for distributing and render-
ing very large point sampled models on consumer graphics platforms [1]. The structure is
based on a hierarchy of precomputed object-space point clouds, that are combined coarse-
to-fine at rendering time to locally adapt sample densities according to the projected size
in the image. The progressive block based refinement nature of the rendering traversal ex-
ploits on-board caching and object based rendering APIs, hides out-of-core data access
latency through speculative prefetching, and lends itself well to incorporate backface, view
frustum, and occlusion culling, as well as compression and view-dependent progressive
transmission. The resulting system allows rendering of complex out-of-coremodels at high
frame rates (over 60M rendered points/second), supports network streaming, and is funda-
mentally simple to implement. We demonstrate the efficiency of the approach on a number
of very large models, stored on local disks or accessed through a consumer level broadband
network, including a massive 234M samples isosurface generated by a compressible turbu-
lence simulation and a 167M samples model of Michelangelo’s St. Matthew. Manyof the
details of our framework were presented in a previous study. We here provide a more thor-
ough exposition, but also significant new material, including the presentationof a higher
quality bottom-up construction method and additional qualitative and quantitativeresults.
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1 Introduction

Multiresolution hierarchies of point primitives have recently emerged as a viable al-
ternative to the more traditional mesh refinement methods for interactively inspect-
ing very large geometric models [2]. These methods are basedon the assumption
that for a wide class models, mainly arising from 3D photography, 3D scanning,
or numerical simulation, the sampling rate is so high that triangles are projected to
very small screen areas at rendering time. Thus, the advantage of scan-line coher-
ence are lost, and appropriately selected point samples aresufficient to accurately
reproduce the model. One of the major benefits of this approach is its simplicity,
stemming from the fact that there is no need to explicitly manage and maintain
mesh connectivity during both preprocessing and rendering.

Unfortunately, current dynamic multiresolution algorithms for large models are
very CPU intensive: nowadays, consumer graphics hardware isable to sustain a
rendering rate of tens of millions of point primitives per second, but current mul-
tiresolution solutions fall short of reaching such performance. This is because the
CPU is not able to generate/extract point samples from the out-of-core structure and
send them fast enough to the graphics hardware in the correctformat and through
a preferential data path.

We have recently proposed a new breed of solutions for interactive and accurate
visualization of very large surface models on consumer graphics platforms. The
underlying idea of the proposed methods is to depart from current point- or triangle-
based multiresolution models and adopt a cluster-based data structure, from which
view-dependent representations can be efficiently extracted by combining precom-
puted surface chunks. Since each chunk is composed of a few thousands graph-
ics elements, the multiresolution extraction cost is amortized over many graph-
ics primitives, and CPU/GPU communication can be optimized to fully exploit
the complex memory hierarchy of modern graphics platforms.We have demon-
strated the performance of the approach with specialized methods for regional- [3]
to planetary-scale [4] phototextured digital terrain models, as well as for general
triangle meshes [5]. In this article, we focus on a simple point-based solution for
high performance view dependent visualization of very large static point sampled
models on consumer graphics platforms. In this case, we reduce the per-primitive
structure overhead by moving the grain of the multiresolution model from a hierar-
chy of point samples to a hierarchy of precomputed object-space point clouds. At
rendering time, the clouds are combined coarse-to-fine witha stateless top-down
structure traversal to locally adapt sample densities according to the projected size
in the image. The progressive block based refinement nature of the rendering traver-
sal is well suited to hiding out-of-core data access latency, and lends itself well to
incorporate backface, view frustum, and occlusion culling, as well as compression
and view-dependent progressive transmission. The resulting system allows render-
ing of local and remote models of hundreds of millions of samples at high frame
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rates (over 60M splat/second), supports network streamingand is fundamentally
simple to implement.

Many of the details of this framework were presented in [1]. We here provide a
more thorough exposition, but also significant new material, including the presen-
tation of a higher quality bottom-up construction method and additional qualitative
and quantitative results. Finally, we have attempted to further clarify the steps in
our algorithms to facilitate their implementation and to make the transfer between
abstract concepts and actual code as straightforward as possible.

The rest of the paper is organized as follows. Section 2 reviews related works. The
details of the proposed data structure are presented in section 3, while section 4
describes algorithms for view-dependent refinement and rendering, and section 5
propose a out-of-core technique for constructing the multiresolution model. The
efficiency of the approach is demonstrated with the inspection of a number of very
large models, including a massive 234M samples isosurface generated by a com-
pressible turbulence simulation, that exhibits a huge (>100) depth complexity, and
a 167M samples model of Michelangelo’s St. Matthew (section6).

2 Related Work

Point-based 3D graphics techniques for processing and rendering of dense mod-
els are an old idea [6,7], that has found many successful applications, including
point-based modeling, high quality and interactive rendering, as well as coding and
transmission of point-based models.

Our focus is the development of systems for the distributionand high speed in-
teractive visual inspection of very large models on commodity graphics platforms.
QSplat [2] is the reference system in this particular area. The system is based on a
hierarchy of bounding spheres maintained out-of-core, that is traversed at run-time
to generate points. This algorithm is CPU bound, because all the computations are
made per point, and CPU/GPU communication requires a direct rendering inter-
face, thus the graphic board is never exploited at his maximum performance. In
Streaming QSplat [8], the QSplat data structure is subdivided into chunks, that are
however only used for streaming objects over networks. The rendering procedure
remains a hierarchical traversal executed on the CPU, with the additional book-
keeping required to check the local availability of data. Kalaiah and Varshney [9]
have recently proposed to improve the geometry bandwidth bottleneck by working
on a compressed point sample geometry model obtained by principal component
analysis. Even if they use a large cache of 40M points, the need to regenerate a
large number of small point clusters per frame from statistical information leads to
a rendering speed which is roughly half the speed of QSplat. We exploit instead a
partitioning of the model into clouds to improve the efficiency of CPU/GPU com-
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munication through a batched communication protocol and tosupport conservative
occlusion culling for high depth complexity models. This provides at least an order
of magnitude improvement in rendering rate on current commodity graphics plat-
forms. The superior CPU/GPU communication efficiency of thisapproach is con-
firmed by recent benchmarks by Sainz et al. [10], that recently compared a number
of state-of-the-art hardware accelerated point renderingalgorithms, measuring a
maximum throughput of about 10M rendered points/s for smallin-core models of
up to 4M samples on a GeForce FX 5900, while we can render out-of-core models
of over 200M samples at about 70M points/s using a GeForce FX 5800U graphics
board.

A number of authors have also proposed various ways to push the rendering per-
formance limits in particular situations. The randomized z-buffer [11] uses a hi-
erarchical traversal of a structure where the leaf nodes contain arrays of random
point samples. They focus on large triangle meshes, while wework directly on
dense point sampled models. Stamminger and Drettakis [12] dynamically adjusts
the point sampling rate for rendering complex procedural geometry at high frame
rates. They require a parameterization of the model, while we focus on unstruc-
tured point samples. Dachsbacher et al. [13] recently presented a hierarchical LOD
structure for points that is adaptively rendered by sequential processing done on the
GPU. They report a peak performance of over 50M unfiltered points per second,
which is similar to ours, but they are limited in the size of the rendered model,
which must fit into the video card memory, while our work focuses instead on
very large local and remote models. Moreover, their technique is not fully output-
sensitive, since it does not support any visibility cullingon the CPU before submit-
ting the entire conservative range of points for the GPU for sequential processing.
As a result, zoomed views of fine details of a large model are extremely uneffi-
cient [10].

There is a large body of work that aims at improving the rendering quality of
point-sampled models. For dense models, these include using spheres [2], tangen-
tial disks [14,15], or high degree polynomials [16] insteadof raw point primitives,
as well as improving filtering in image space [15] or object space [17]. Such work
is orthogonal to ours, which focuses on finding simple ways toimprove raw ren-
dering performance on very large models by amortizing costson groups of many
graphics primitives. Merging these two directions, possibly by exploiting GPU pro-
gramming as in [18], is a main avenue for future work.

3 Multiresolution model

We assume that the input model is represented by a set ofN sample points uni-
formly distributed over its surface, with an average spacing between samples equal
to r. Each sample point is associated with a set of surface attributes, including po-
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sition, normal, and possibly color information.

Our multiresolution approach creates a hierarchy over the samples of the datasets,
simply by reordering and clustering them into point clouds of approximately con-
stant size arranged in a binary tree. In other words, the finalmultiresolution model
has exactly the same points of the input model, but grouped into chunks and orga-
nized in a level of detail representation. The root of the level of detail tree represents
the entire model with a single cloud ofM0 = M < N uniformly distributed samples.
The remaining points are equally subdivided among the two subtrees using a spatial
partition, with, again,M uniformly distributed points directly associated to the root
of each subtree, and the rest redistributed in the children.The leaves are terminal
clusters, which are further indivisible and whose size is smaller than the specified
limit M.

Variable resolution representations of the models are obtained by defining acut of
the hierarchy and merging all nodes above the cut. This way, each node acts as a
refinementof a small contiguous region of the parent. This is differentfrom most
other hierarchical schemes, where only the leaf nodes of thecut hierarchy are used.

The root node is the coarsest available model representation, with an average sam-

ple spacing ofr0 = r
√

N
M0

. Each nodej, then, locally refines its parent by adding

additionalM j samples to the representation, increasing the density in that region
to a valuer j . This value can be computed off-line from the partitioned point cloud
(see section 5). By storing at each nodej the value ofr j along with its point cloud,
we can thus rapidly obtain a variable accuracy representation by traversing top
down the hierarchy, while accumulating point clouds until the desired density is
reached (see figure 1). Since we are interested in view-dependent representations,
we also precompute the bounding sphere and bounding cone of normals of each
node. These are used for projecting the mean sample distanceto the screen, as well
as for view-frustum, backfacing, and occlusion culling (see section 4).

The benefits of this approach are that the workload required for a unit refine-
ment/coarsening step is amortized on a large number of pointprimitives, and that
the small point clusters can be optimized off-line for best performance in host-
to-graphics and network communication. By tuning the value of parameterM, we
can vary the granularity of the structure from a total multi-resolution model (e.g.,
QSplat forM = 1) to a single-resolution model for point rendering (M = N). The
choice of parameterM is dictated by performance considerations. In particular,if
M is too large, the model becomes less adaptive, and switchingfrom a resolution
level to the next leads to a high latency. On the other hand, ifM is too small, the
model is more adaptive but CPU costs become non negligible. Oncurrent graphics
platforms, we have empirically determined that the best performance trade-offs are
obtained for values ofM ranging from 512 to 8192.

[Fig. 1 about here.]
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4 The rendering pipe-line

Our adaptive rendering algorithm works on a standard PC, and data is assumed to
be either locally stored on a secondary storage unit directly visible to the rendering
engine or remotely stored on a network server (see figure 2).

Data layout and data access. The hierarchical data structure is split into an in-
dex tree and a point cloud repository. The index tree has a small footprint, since it
contains, for each node, just the data required for traversal (sample spacing, bound-
ing sphere, bounding cone of normals, and index of the two children), and refers to
the associated point cloud through a 32 bit index that uniquely identifies the cloud
in the repository. The repository is organized so that the data storage order reflects
traversal order, which is coarse to fine and by physical position in space. We thus
sort point clouds in the repository using as a primary key their tree level, and as
a secondary key the Morton index of their bounding sphere center [19]. For disk
storage and data transmission, each cloud is managed in compressed form. The
point cloud is spatially sorted, then each attribute is quantized, delta encoded, and
then entropy encoded with the LZO compressor1 . Access to the point cloud repos-
itory is made through a data access layer, that masks to the application whether
the repository is local or remote. This layer makes it possible to asynchronously
move in-core a point cloud by fetching it from the repository, to test whether a
point cloud is immediately available, and to retrieve its representation. We have
implemented two versions of this access layer: the first one provides direct disk
access through memory mapping functions and is used for local files as well as
remote NFS mounted files. The second one is based on the HTTP 1.1 protocol and,
similarly to Streaming QSplat [8], fetches data from a standard HTTP server using
range requests and permanent connections.

[Fig. 2 about here.]

Progressive view-dependent refinement. The traversal algorithm, which extracts
a view dependent representation of the multiresolution model from the current point
of view, is based on a stateless coarse-to-fine refinement of our structure, that ex-
ploits the progressive nature and coarse granularity of themultiresolution hierar-
chy to reduce CPU refinement costs and to improve repository-to-host and host-
to-graphics communication. In particular, asynchronous repository requests hide
out-of-core data access latency, and communication with the GPU is made exclu-
sively through a retained mode interface, which reduces bustraffic by managing a

1 LZO is a data compression library based on a Lempel Ziv variant which is
suitable for data decompression in real-time. The library source is available from
http://www.oberhumer.com/opensource/lzo/

6



least-recently-used cache of point clouds maintained on-board as OpenGLVertex
Buffer Object. Pseudo-code for the method is listed in figure 3.

[Fig. 3 about here.]

The user selected pixel threshold is the value that drives the refinement of the ren-
dering algorithm: this value represents the required average sample distance be-
tween adjacent splats on the screen, and it is used as splat size. The refinement
algorithm performs a single pass recursive traversal of themultiresolution struc-
ture. For each node, we use its bounding sphere and normal cone to test whether
the node is totally outside the view frustum or totally backfacing. In this case, re-
cursion stops, discarding the entire branch of the tree, otherwise we can render
the node and, eventually, continue the refinement with its children. It is important
to emphasize that, differently from most other hierarchical refinement schemes,
all visited nodes are rendered during the refinement traversal. Since we are focus-
ing on high speed visualization, our current implementation simply uses OpenGL
hardware supported points for point cloud rendering. This fact limits our ability to
correctly treat texture and transparency. Using ellipsoidal splats computed on the
GPU, as in, e.g, [18], would resolve these problems.

At node rendering time, we project the node’s hierarchical average sample distance
to the screen to obtain its splat size. A consistent upper bound on the projected
size is obtained by measuring the apparent size of a sphere with diameter equal
to the object space average sample distance and centered at the bounding sphere
point closest to the viewpoint. If the projected splat size is less than the threshold,
we render the node’s point cloud with the prescribed splat size and stop recursion,
otherwise a refinement is needed. In that case, to avoid blocking the renderer be-
cause of data access latency, especially in the case of rendering data over wide-area
networks, we first check whether the node’s children data is immediately available,
i.e., if it is already in the GPU cache or considered in-core by the data access layer.
If so, we continue recursion, otherwise recursion stops andthe node is rendered
with an increased splat size, equal to its projected mean sample distance, to cover
holes left by children unavailability. Fetch requests are then pushed in a priority
queue. Similarly to Streaming QSplat [8], the request queueis traversed in order
of priority at the end of the frame, issuing only as many requests as those allowed
by the estimated network bandwidth, and forgetting the remaining ones. Since the
repository is sorted coarse to fine and by physical position in space, prioritizing
the queue by node’s index provides a simple compromise that is both I/O efficient
and promises to download the most relevant data as soon as possible while being
enough space coherent to minimize visual distraction.

Rendering on a budget. For interactive applications, it is often useful to have
direct control on rendering time, instead of the control on rendering quality pro-
vided by prescribing a screen error tolerance for the refinement method. In addition
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to adjusting error tolerance per frame in a feedback loop, wecan exploit the fact
that our hierarchy is shallow to implement a predictive technique. Given a desired
number of points per frame, we perform a binary search of the associated pixel
threshold, by repeatedly traversing the index tree with thesame refinement logic
used for rendering, while only counting the number of generated primitives.

Occlusion culling. A number of complex dense models, such as large isosurfaces
deriving from numerical simulation of turbulence (e.g., [20,21]) have an important
depth complexity. For these models, efficiently culling theinvisible portion of the
rendered model is of primary importance to avoid uploading,refining, and ren-
dering unnecessary data (see figure 4). Since our structure is coarse grained and
provides a spatial partition, we can adapt to a point rendering framework visibility
techniques developed for rendering scenes composed of manyobjects. Similarly
to the approach introduced by Toon et al. [22] for complex CAD environments,
our rendering algorithm exploits frame-to-frame coherence in occlusion culling, by
using the set of visible point clouds from the previous frameas the occluder set
for the current frame. At each frame, we render the object in three phases. In the
first phase, we perform the usual refinement algorithm, but accumulate the clouds
that would be rendered in a list of potentially visible objects, while only render-
ing the point clouds that were visible in the previous frame.In a second phase, we
traverse the entire list of accumulated point sets, generating a hardware occlusion
query for the object’s bounding sphere (approximated by an icosahedron), using
OpenGL ARB_occlusion_query extension to track the number of fragments that
pass the depth test. In a third and final pass, we traverse again the list of clouds and
query the associated occlusion query object for the number of passed fragments. If
this number is above a given threshold, we insert the cloud index in next frame’s
occluder list and, if the cloud was not among those rendered in the first pass, we
proceed render it. With this method, the only additional cost of occlusion culling
is the generation and test of occlusion queries. This cost can be further reduced by
only checking once every few frames if previous frame occluders are still visible.

[Fig. 4 about here.]

5 Construction

[Fig. 5 about here.]

The multiresolution point-cloud structure has to be constructed off-line starting
from a generic point cloud model. In [1], we presented a simple I/O efficient re-
cursive clustering method that generates point clouds on-the fly using a Russian
roulette approach at each partitioning step. With this top-down method, the coars-
est levels of the structure are created by randomly picking few samples out of very
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large clouds with a considerable spatial extent. There is thus an inherent lack of
control on sample distances, and the resulting irregular spacing may lead to poor
results when the model is rendered at very coarse levels of detail.

In this paper, we present a bottom-up construction method, that retains the original
simplicity of implementation, while producing higher quality results (see figure 5).
The method is implemented with a single out-of-core component: a standard C++
array (compatible withstd::vector), that encapsulates a resizable file accessed
through system memory mapping functions. The procedure consists of two phases.

Top-down: partitioning. The partitioning procedure takes as input an external
memory array of uniformly distributed point samples, together with its bounding
box, and recursively generates a tree structure by binary space partitioning. At each
bisection, a point cloudPj is split if its point countNj is larger than a threshold

quantityM(tot)
j . In case of splitting, the bounding box is bisected at the midpoint

of its longest axis, the point cloud is subdivided among the two sub-boxes, and the
partitioning procedure continues with the two sub-clouds.When recursion stops,
the point cloud is stored in a point cloud repository maintained in an external mem-
ory array. The end result of this recursive scheme is a binarytree of nodes, that de-
scribes the subdivision structure, where each leaf of the tree corresponds to a cluster
of sizeNj ≤ M(tot)

j . The quantityM(tot)
j , that drives the partitioning procedure, is

computed at each node, following directly the definition of our layered point cloud
structure. It represents the total number of points that therefinement procedure will
generate in the region of nodej. Since in our structure, differently from most other
hierarchical schemes, each nodej locally refines its parent by adding additional
M samples to the representation, the total number of samplesM(tot)

j extracted in
the region associated to nodej is not constant, but is rather recursively defined as
M(tot)

j =
Nj

Nparent( j)−M M(tot)
parent( j) +M, whereNk is the total number of samples in the

subtree rooted atk, and for the rootM(tot)
0 = M.

Bottom-up: subsampling and structure construction. The second and final
phase completes the structure with a hierarchy of surface representations by re-
cursively associating to each node a fixed point count representation of the portion
of the surface contained in it, along with all the information required for evaluat-
ing view dependent errors. This is efficiently done by traversing coarse-to-fine the
structure generated by the first phase in the order in which nodes are stored on out-
put (i.e., by reverse tree level and then by Morton code). At each node, we retrieve
the associated point cloud from the repository, extract therequiredM samples from
it by uniform subsampling, and push the remaining ones up in the hierarchy, by
storing them in the parent node’s bucket. We then compute theindex node data (hi-
erarchical sample spacing, bounding sphere, and bounding cone of normals), and
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convert the point cloud to the final compressed representation. Subsampling, aux-
iliary value computation and compression are performed locally, by simply scan-
ning the points extracted in the node’s associated region and employing in-core
methods. In our current implementation, subsampling is performed by hierarchical
clustering [23], bounding spheres and cone of normals are computed by finding the
minimum enclosing ball of points using a fast combinatorialmethod from com-
putational geometry [24], while hierarchical sample spacing r j is estimated using
the standard k-nearest neighbor approximation [23]. Thesetechniques are applica-
ble because all points associated to a node’s region, i.e., the node’s points and the
points inherited from its ancestors, are available at node construction time. By con-
trast, using our previous construction method [1],r j had to be approximated from
area ratios exploiting a uniform sampling assumption, leading to inaccuracies in
areas containing irregularly spaced samples.

6 Results

[Fig. 6 about here.]

[Table 1 about here.]

The proposed method has been used to develop a C++ applicationwhich makes
use of OpenGL on a Linux platform. Several tests have been performed on prepro-
cessing and rendering of a number of very large models (see figure 6 and table 1).
Point sampled models were generated from triangulated onesby extracting vertex
data. The largest model is a full resolution isosurface of the mixing interface from
the Gordon Bell Prize winning simulation of a Richtmyer-Meshkov instability in
a shock tube experiment [21], that consists of over 234M sample points extracted
from a 2048x2048x1920 8bit grid. This model is convoluted and has a huge depth
complexity (>100) from all viewpoints. The other test casesare high resolution
scans of the St. Matthew and David statues from The Digital Michelangelo reposi-
tory.

In addition to discussing raw experimental performance data for preprocessing,
rendering, and streaming situations, we compare our results with those gathered
from QSplat [2] and the Adaptive TetraPuzzles [5] implementations on the same
machines. QSplat is the reference system for rendering point-based models, while
Adaptive TetraPuzzles is a state-of-the-art technique forout-of-core construction
and accurate view-dependent visualization of very large triangle meshes. The method
uses a regular conformal hierarchy of tetrahedra to spatially partition the model.
Each tetrahedral cell contains a precomputed simplified version of the original
model, represented using cache coherent indexed strips forfast rendering. Appro-
priate boundary constraints are introduced in the simplification to ensure that all
conforming selective subdivisions of the tetrahedron hierarchy lead to correctly
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matching surface patches. For each frame at runtime, the hierarchy is traversed
coarse-to-fine to select diamonds of the appropriate resolution given the view pa-
rameters. Our Layered Point Clouds and Adaptive TetraPuzzles implementations
share the same rendering and data access backends.

Preprocessing. Table 2 shows numerical results for the out-of-core preprocessing
for the Layered Point Clouds and Adaptive TetraPuzzles techniques, relative to all
test cases. The preprocessing has been evaluated on a PC running Linux 2.4, with
two Athlon 2200+ CPUs, 1GB DDR memory, a 70GB ATA 133 hard disk.All
the multiresolution models have been constructed withM set to 2K samples/node
for Layered Point Clouds and 2K triangles/node for Adaptive TetraPuzzles, using
16 bit/normal quantization and a position quantization ensuring a quantization error
inferior to half of the input sampling distance (i.e. practically lossless quantization).

Overall processing times for Layered Point Clouds range from18K samples/s to
30K samples/s depending on the processor load, and is dominated by disk access
times and LZO compression. Preprocessing speed is similar to that of QSplat (about
30K samples/s). Compression rates exceed those of QSplat (around 50bits/sample)
and other similar systems based on a point hierarchy, but do not match those of
state-of-the-art compression systems, since our current implementation has favored
ease of coding through the exploitation of general purpose compression libraries.
They could be improved by exploiting the locality of each patch, quantizing at-
tributes relative to each cluster’s contents.

On the other hand, the Adaptive TetraPuzzles technique is much slower (about 2K
triangles/s on a single CPU) and produces files that are about 3times larger. This
is mainly because Adaptive TetraPuzzles has to manage additional connectivity
data and because the generated structure stores the full original model at the leaves
and intermediate representations at inner nodes, while Layered Point Clouds just
redistributes input model points in a level of detail representation.

[Table 2 about here.]

View-dependent refinement. We evaluated the performance of our view-dependent
refinement technique on a number of inspection sequences over the test case mod-
els. The results were collected on a Linux PC with a Intel Xeon2.4 GHz, 2GB
RAM, two Seagate ST373453LW 70 GB ULTRA SCSI 320 hard drives, AGP8x
and NVIDIA GeForce FX 5800 Ultra graphics. During the entirewalkthrough, the
resident set size of the application for the largest test case never exceeded 242MB,
i.e. less than 27% of the out-of-core data size, demonstrating the effectiveness of
out-of-core data management. The qualitative performanceof our view-dependent
refinement is illustrated in an accompanying video that shows recorded live se-
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quences2 . As demonstrated in the videos on the 3D scanning models, that do not
employ occlusion culling, we can sustain an average rendering rate of around 40M
rendered points per second, with peaks exceeding 68M. By comparison, on the
same machine, the peak performance of QSplat, was measured at roughly 3.6M
rendered points per second when using the GL_POINTS rendering primitive. As in
[10], this figure corresponds to the number of selected points divided by the frame-
to-frame time. For the inspection of the 234M samples isosurface, which has a
huge depth complexity, we have enabled occlusion culling. On average, 50% of the
patches are detected as occluded, strongly diminishing data access and rendering
times. The average rendering rate drops in this case to around 30M rendered points
per second, which is still about an order of magnitude fasterthan that of QSplat.
For the same view, and with the same screen space tolerance, we have measured
that our method renders up to 10% more points than QSplat whenocclusion culling
is not enabled. This is because grouping points into clouds for all operations forces
us to be more conservative in the projection. The increase innumber of points is
however compensated by a much larger increase in rendering speed. This is particu-
larly useful for large scale display situations, where standard point-based solutions
have problems to meet real-time constraints because of the large number of pixels
to be covered. Figure 7 shows the St. Matthew dataset examined on a large scale
stereoscopic display assembled from off-the-shelf components, i.e., two 1024x768
DLP projectors connected to two outputs of the graphics card, polarizing filters
with matching glasses, and a backprojection screen that preserves polarization. In
this setting, a single PC is able to render two 1024x768 images per frame at 20 Hz
with an adaptive rendering budget set to 1.5M samples per eye. Under the same
conditions, QSplat’s visible frame rate drops down to aboutone frame per second,
which is not sufficient for interactive applications.

We have also compared the rendering performance and qualityof QSplat and LPC
with that of Adaptive TetraPuzzles. The tests indicate thatthe Adaptive TetraPuz-
zles is generally faster (70M-90M triangles/s). This is because mesh based solutions
are able to fully exploit the post-transform-and-lightingcache with cache-coherent
indexed triangle strips. This is not possible for point-based techniques, because
each rendered point is independent of the others. Rendering quality of Adaptive
TetraPuzzles is also generally slightly better, especially for close-up views, than
that of point-based solutions, because of the higher continuity. Point rendering qual-
ity could be improved by using oriented splats and blending,but this would reduce
rendering speed. It should be noted, however, that, even though the quality of point
based rendering does not match that of the triangle based one, it appears sufficient
for most interactive display applications (see figure 8).

[Fig. 7 about here.]

[Fig. 8 about here.]

2 The video is available from:http://www.crs4.it/vic/multimedia/
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Network streaming. Some network tests have been performed on all test mod-
els, on a local area network at 100Mbps and on a ADSL at 1.2M bps, using both
NFS mounts and HTTP 1.1 connections. As illustrated in the video, rendering rate
remains the same as that of the local file version, but updatesasynchronously arrive
with increased latency. The effect is illustrated in figure 9, which shows the pro-
gressive refinement of the largest dataset on a machine connected through ADSL
to a moderately loaded Linux box running a Apache web server.Even though the
HTTP 1.1 is far from being optimal for the task, the application remains usable
even for very large models on consumer-level network connections. The first im-
ages in the progressive refinement sequence also illustratethat a heavy subsampling
on coarser scales can lead to strong aliasing artifacts for very complex models, as
the average sampling distance is significantly below Nyquist frequency. Our static
sample randomization replaces missing data with random information which is sta-
ble over time, thus the visual effect of aliasing is less noticeable as it would be for
a regular sampling at similarly coarse resolutions. Nevertheless, for some models
the occurring aliasing could notably diminish visual quality. Improving this aspect
is an important avenue for future work.

[Fig. 9 about here.]

7 Conclusions

We have presented a simple point-based multiresolution structure for interactive
out-of-core visualization of very large point models on consumer graphics plat-
forms. The system is comparable in both implementation complexity and image
quality to (Streaming) QSplat. Despite its simplicity, it is able to handle models
of much higher depth complexity and is at least one order of magnitude faster in
terms of rendering speed. The current major limitation is inimage quality. Since
we are focusing on high speed visualization, we simply use OpenGL hardware
supported points for point cloud rendering, and do not use a per-sample splat orien-
tation and size, which limits our ability to correctly treattexture and transparency.
The integration with more advanced filtering techniques implemented on the GPU
would resolve these problems, hopefully without compromising too much render-
ing speed.

As demonstrated in our tests, state-of-the-art triangle based solutions, such as Adap-
tive TetraPuzzles, are currently slightly faster and produce higher quality images,
mainly because they can fully exploit current graphics board designs, which are
optimized for rendering meshes that share information at vertices. These solutions
are, however, much harder to implement and require higher preprocessing times.

Given its simplicity, we consider the current method of immediate practical interest
for most interactive display applications.
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(a) Full structure (b) Adaptive resolution

Fig. 1. Layered Point Cloud Structure. the multiresolution model has exactly the same
points of the input model, but grouped into constant size chunks and organized in a level
of detail representation. Variable resolution representations of the modelsare obtained by
defining a cut of the hierarchy and merging all nodes above the cut.
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Fig. 2. The rendering pipeline. The client traverses the index tree coarse-to-fine in a
view-dependent manner, requesting point clouds to the server. To maximize rendering per-
formance and minimize traffic, point clouds are cached on board using a LRU strategy.
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lpc_refine(eye, node, threshold) {
if visible(eye, node->sphere, node->normal_cone) {

projected_size = project(eye,
node->sphere,
node->sampling_distance)

if node is leaf {
update_gpu_cache(node->cloud)
set_point_size(projected_size)
render(node->cloud)

} else if any child is not present {
for each child in children(node) {
async_request(child)

}
update_gpu_cache(node->cloud)
set_point_size(projected_size)
render(node->cloud)

} else {
update_gpu_cache(node->cloud)
set_point_size(threshold)
render(node->cloud)
if projected_size > threshold {
for each child in children(node) {

lpc_refine(eye, node, child)
}

}
}

}
}

Fig. 3.View-dependent refinement and progressive download.The user selected pixel
threshold is the value that drives the refinement of the rendering algorithm.
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Fig. 4.Occlusion culling.Closeup view of an isosurface feature in the mixing interface of
two gases for a simulation of a Richtmyer-Meshkov instability in a shock tube [21] rendered
at 1 pixel tolerance on a 335x335 window. Without occlusion culling: 12976 patches, 24M
splats, 1.7 fps; with occlusion culling: 3490 patches, 6.3M splats, 5.5 fps.
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(a) Top-down construction result
(16K samples)

(b) Bottom-up construction result
(16K samples)

Fig. 5.Top-down vs. bottom up subsampling.The St. Matthew dataset (167M samples)
is subsampled using the same parameters with both techniques. The bottom-up approach
visibly produces a more uniform spacing between samples with respect to thetop-down
approach presented in [1]
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(a) David 2mm (4M samples) and 1mm (28M samples)

(b) St. Matthew 0.25mm (167M samples)

(c) Mixing interface isosurface (234M samples)

Fig. 6. Test models.The main images show the models as presented to the user during
interactive inspection sessions, while the inset images illustrate the subdivision structure.
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Fig. 7. Large scale stereoscopic display.The St. Matthew dataset presented on a large
scale stereoscopic display. A single PC is able to render two 1024x768 images per frame
at 20 Hz with an adaptive rendering budget of 1.5M samples per eye.
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(a) Layered Point Clouds (1345K
splats)

(b) Adaptive TetraPuzzles (1421K
triangles)

Fig. 8.Rendering quality. Renderer tolerances configured to generate approximately the
same number of primitives. Inset images show a detail with a 4x magnification. Even
though the quality of the point based version does not match that of the triangle based
one, it appears sufficient for most interactive display applications.
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(a) 1s (b) 10s (c) 20s (d) 30s

Fig. 9.Streaming. Progressive refinement of the mixing interface isosurface (234M sam-
ples) on a ADSL connection at 1.25M bps. The main images show the model as presented to
the user, while the inset images illustrate progressive refinement by hilightingareas where
refinement stops because of missing data.
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Extent
(mm)TrianglesSamplesModel

David 2mm 4,138,653 8,277,479 5,200

David 1mm 28,120,980 56,230,343 5,200

St. Matthew 167,324,853 372,767,445 2,700

PPM Isosurface 234,717,830 469,381,488 2,048

Table 1
Test models characteristics.
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TETRA-PUZZLESLPCQuantization

Output
Bit /

Sample

Total
time (s)

Output
Bit /

Sample

Total
time (s)

Normal
 (bits)

Positio
n (bits)Model

Disk usage (MB) Disk usage (MB)

in out in out

David 2mm 3x13 16 142 95 20 40 3,735 379 70 142

David 1mm 3x14 16 1,233 644 126 37 24,499 2,574 470 140

St. Matthew 3x15 16 8,820 3,830 777 39 92,255 17,063 3,034 152

PPM Isosurface 3x13 16 13,357 5,372 925 33 198,199 22,530 3,882 139

Table 2
Numerical results for out-of-core construction.Tests performed on a single PC.
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