
UC Davis
IDAV Publications

Title
Multimedia Integration into the blue-c API

Permalink
https://escholarship.org/uc/item/3fs3b4gg

Journal
Computers & Graphics, 29

Authors
Naef, Martin
Staadt, Oliver G.
Gross, Markus

Publication Date
2005

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3fs3b4gg
https://escholarship.org
http://www.cdlib.org/

ARTICLE IN PRESS
0097-8493/$ - se

doi:10.1016/j.ca

�Correspond
E-mail addr

staadt@cs.ucdav
Computers & Graphics 29 (2005) 3–15

www.elsevier.com/locate/cag
Multimedia integration into the blue-c API

Martin Naefa,�, Oliver Staadtb, Markus Grossa

aComputer Graphics Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland
bComputer Science Department, University of California, Davis, USA
Abstract

In this article, we present the blue-c application programming interface (API) and discuss some of its performance

characteristics. The blue-c API is a software toolkit for media-rich, collaborative, immersive virtual reality applications.

It provides easy to use interfaces to all blue-c technology, including immersive projection, live 3D video acquisition and

streaming, audio, tracking, and gesture recognition. We emphasize on our performance-optimized 3D video handling

and rendering pipeline, which is capable of rendering 3D video inlays consisting of up to 30,000 fragments updated at

10Hz in real time, enabling remote users to meet inside our virtual environment.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Virtual reality software system; 3D video; Multimedia; Collaborative virtual environments; Telepresence
1. Introduction

The blue-c system [1] developed at ETH Zurich

provides a novel virtual environment which combines

immersive projection with 3D acquisition of the user,

allowing remotely located users to meet in a virtual

world. blue-c enabling technology includes custom

hardware [2] and a new real-time video acquisition and

transmission approach [3].

This paper discusses the multimedia integration into

the blue-c application programming interface (API), a

software toolkit that provides easy access to all under-

lying blue-c technology for the application developer. As

opposed to other virtual reality (VR) toolkits that try to

separate the VR-specific modules from the graphics

rendering and scene graph, the blue-c API tries to

integrate much of its functionality into the scene. This

helps to keep development interfaces and programming

patterns consistent throughout the system without
e front matter r 2004 Elsevier Ltd. All rights reserve

g.2004.11.003

ing author.

esses: mnaef@acm.org (M. Naef),

is.edu (O. Staadt), grossm@inf.ethz.ch (M. Gross).
extensive code wrapping efforts. Besides providing

access to blue-c-specific technology such as real-time

3D video for telepresence, the blue-c API can also be

used as a general-purpose VR toolkit outside the blue-c

portals.

This paper focuses on 2D video and performance

aspects of our 3D video integration. It also briefly

introduces the software architecture. Those aspects

that are already covered in detail in [1,3,4]

will be omitted. After the system overview, the 2D

video system is analyzed. Motivated by the

rendering algorithms used for 3D video, we then

present a performance-optimized pipeline for turning

an incoming dynamic 3D video fragment stream

into a vertex array suited for high-performance render-

ing, discussing the various performance vs. quality

trade-offs.

The blue-c application programming environment

runs on SGI IRIXTM; Linux, and Microsoft

WindowsTM operating systems. The application code is

directly portable between the systems. The API itself has

some platform-dependent optimizations to use the

available hardware to its full potential.
d.

www.elsevier.com/locate/cag

ARTICLE IN PRESS
M. Naef et al. / Computers & Graphics 29 (2005) 3–154
The remainder of this paper is structured as follows:

Section 2 gives an overview of related work. Section 3

presents the system architecture of the blue-c API.

Multimedia services are presented in Section 4, the 3D

video service is in more detail in Section 5. We conclude

with applications in Section 6 and provide an outlook

into the future in Section 7.
2. Related work

Systems for VR are always combinations of many

different toolkits and software libraries. The blue-c API

is no exception in that respect. This section presents a

selection of previous work related to the blue-c API.

Numerous VR application development toolkits have

been implemented in the past. CAVElibTM development

was started with the initial CAVETM [5] system and is

available as a commercial product (www.vrco.com). It

supports device input through the trackd system. For

rendering, it relies on application-supplied OpenGL

code or the Performer scene graph system. Basic

networking code for clusters and collaboration is

provided, but there is no automatically shared scene

graph.

Juggler [6] provides a mature, object-oriented ap-

proach to VR. It is very actively supported. As opposed

to the blue-c API, but similar to CAVElibTM; Juggler
mostly leaves the choice of the rendering system to the

application developer and keeps only loose ties to the

scene graph. Juggler implements a kernel that keeps

several ‘‘manager’’ objects. This concept inspired the

blue-c API service structure.

Avango [7], formerly called Avocado, provides similar

functionality as the blue-c API. Avango exposes most

interfaces to its own scripting language. It is closely

coupled to OpenGL Performer, but it changes the scene

graph interface to an Inventor-style field system whereas

the blue-c API leaves the Performer interfaces un-

changed to better support legacy applications. Avango
Applicati

Core

Time Service

Graphics Rendering

Cluster Service

Distribution Service

3

2

3D

Scene Graph

Sy
nc

bcl

Fig. 1. blue-c API system overview: Services accessing the scene
relies on total network ordering and strict locking, which

imposes significantly higher requirements onto the

underlying network layer.

There is a plethora of toolkits available that provide

parts for VR systems, including tracking libraries [8,9],

scene graphs [10], networking tools [11], audio servers,

etc. Using them together to build a large VR system such

as the blue-c, however, requires to learn many different

interfaces and concepts, and finding ways to get them to

work together smoothly is not always trivial. For the

blue-c system, the aim was to provide a holistic,

consistent, and well integrated toolkit that provides

strong multimedia and basic collaboration support.

Unlike other toolkits that separate the scene graph

from the rest of the VR system for more flexibility, the

blue-c API integrates it into the core for more coherence,

allowing to integrate media handling directly into the

scene graph without compromising performance.
3. blue-c API system architecture

This section briefly introduces the system architecture

of the blue-c API, as presented in [12]. An overview of

all components and their main dependencies is given in

Fig. 1.

3.1. Core and process management

The blue-c core class is a small kernel that handles

system initialization and startup, instantiation and

discovery of services, runs the main application loop,

and takes care of a clean system shutdown. With the

exception of the scene synchronization system that only

spawns network transmission threads, most blue-c

services spawn individual calculation processes that

communicate through a shared arena that is managed

by the Performer scene graph system [13].

All process management and locking methods

are encapsulated by the API to provide platform
on

Logging

D Video Service

D Video Service

 Audio Service

Message Scheduler

Navigation

Picking

Tracking Services

P
lug-ins

M
essages

graph, and message scheduler with sources and plug-ins.

http://www.vrco.com

ARTICLE IN PRESS

Fig. 2. IN:SHOP application prototype with animated 2D

video background and 3D video inlay in the foreground.

M. Naef et al. / Computers & Graphics 29 (2005) 3–15 5
compatibility with Windows, which does not provide

fork() or uslock primitives. The lack of the fork()

paradigm on Windows imposed no difficulties during

porting since none of the services rely on process-local

data.

3.2. Services

All blue-c functionality is implemented as a set of

services. These include 2D and 3D video, audio, logging,

distributed scene synchronization, and simulation time.

Graphics rendering including multi-pipe setup is also

encapsulated as a service. Cluster support is implemen-

ted as a new cluster service that keeps tight bonds to the

distribution service used for remote collaboration. It

also synchronizes the time service inside the cluster.

3.3. Scene graph

The blue-c scene graph is based on OpenGL

Performer [13] and enhanced with serialization and state

update interfaces for collaboration as presented in [4].

The same synchronization system is also used for cluster

rendering. Additional custom nodes and attribute

objects are integrated for special multimedia function-

ality. They are described in the sections below.

3.4. Messaging

The message passing paradigm for event signalling is a

widely accepted pattern for user interface systems (e.g.

Win32, X11). It provides simple queueing of events and

allows one to easily cross process or even machine

borders. The blue-c API uses messages to signal all user

interface events, including movement of tracking sensors

and mouse, button or keyboard presses. Messages are

also generated to signal ownership changes of distrib-

uted objects in the scene graph.

3.5. Device I/O

The blue-c API supports 3D motion tracking devices

by providing device drivers as services. A base tracking

class provides the necessary state information interfaces,

reference frame transformations for the sensors, messa-

ging, and support for compound devices such as the

Fakespace WandTM: Derived classes implement the low-
level device access code for Ascension, Polhemus and

Intersense tracking systems.

3.6. Configuration system

The configuration system keeps a tree hierarchy,

which corresponds to the services and their sub-devices.

It is generated from human-readable text files. All
multimedia services read their settings from this tree and

create the required source objects during startup.
4. Multimedia performance

This section presents the blue-c multimedia features,

their integration into the scene graph, and analyzes the

performance.

4.1. 2D video service

The integration of 2D video streams greatly enhances

the visual appeal of virtual environments. It can be

significantly more efficient, both in terms of modeling

time and real-time rendering performance, to create

interesting visual effects using video instead of using

animated geometry. Typical applications for 2D video

include using a video backdrop to create an attractive

environment with a low polygon count. The IN:SHOP

application prototype [14] almost exclusively relies on

this technique for a visually appealing result. Fig. 2

shows the IN:SHOP prototype application with a video

background.

The video integration into the blue-c API consists of

two major parts, the video service and a texture proxy

inside the scene graph. The video service can be

considered the ‘‘back-end’’ of the system that manages

the list of video data sources. Video texture proxies are

regular Performer texture objects that are updated by

the video service whenever new image data are available.

4.1.1. Video source objects

The video service keeps a video source instance for

each individual video object inside the scene. A video

source is a generic object which provides the interface

for starting and stopping video streams, and uploading

the data into texture memory of the graphics hardware.

Video sources are identified with a name, which either

corresponds to a camera as defined in the video

configuration script or to the filename for file sources.

The base video source class also provides a simple

ARTICLE IN PRESS

Table 1

2D video decoding and texture uploading performance.

Measured with 256� 256 video on SGI Onyx 3200 with

400MHz MIPS R12000 processors

Task Time (ms)

Decoding MPEG-1 frame 70

Decoding AVI frame (Cinepak codec) 14

Texture update 0.04

M. Naef et al. / Computers & Graphics 29 (2005) 3–156
chroma-keying algorithm to generate an alpha channel

for transparent textures. Each video source object

spawns a thread or process for asynchronous decoding

and transmission of video data. The blue-c API

implements two types of video sources: a video file

source and live transmission.

Video files sources provide access to pre-recorded

video sequences. They are capable of reading and

decoding standard video files such as Windows AVI,

MPEG or Quicktime. For video file decoding, we use the

SGI digital media library on the Irix platform,

libavcodec and libavformat libraries that are part of

the ffmpeg (http://ffmpeg.sourceforge.net) distribution

on Linux, and DirectX 9 direct show graphs on

Windows.

Live video streaming is supported as an additional

video source class. The video source object connects to a

camera server using the blue-c communication layer or a

plain TCP connection. The camera server is implemen-

ted as part of the acquisition system, which is used for

3D user acquisition, or as a standalone application. In

the first case, the video image is transmitted as a

sequence of image operators, resulting in a compressed,

progressive transmission. Transparency information is

derived as a side effect since only pixels classified as

‘‘foreground’’ are actually transmitted. This live video

stream visualizes part of the 3D video fragment

processing pipeline [3] and serves mostly as a demo

showcase for the blue-c acquisition technology.

All video source types copy the acquired image into a

back buffer provided by the base source implementa-

tion. After the acquisition step, this buffer is swapped

with the active buffer, therefore enabling concurrent

acquisition/decoding and uploading into texture mem-

ory. The video service registers a callback method for

the draw process, which updates the texture object only

if the front buffer has updated content. This avoids

unnecessary texture uploads. The double buffering

scheme completely decouples the video streaming frame

rate from the graphics rendering system, allowing the

graphics system to render at full speed.

4.1.2. Texture proxy

Video textures are represented as regular Performer

texture objects inside the scene graph. They support all

texture parameters including blending, wrapping modes,

etc. It is possible to attach a video source to any texture

object, automatically replacing its content.

The blue-c API provides its own texture class as part

of the distributed scene graph, which is derived from the

standard Performer texture class and inherits all

functionality. Besides support for distribution, it has

been enhanced with a special file load method that

provides direct support for 2D video. Instead of

providing an image file name, a ‘‘video’’: prefix can be

added to the name to specify a video source. In this case,
the API first tries to locate an existing video source

object with the given name and connects it to the texture

if it is found. If no corresponding video source is found,

a new video file source is created.

If a video texture is used as part of the shared

partition of the scene, only the source name is

synchronized. 2D video data is not transmitted between

the different sites, it is the developer’s responsibility to

make sure the referenced video files are available at all

participating sites. The same applies for cluster nodes.

4.1.3. Performance

The performance of the 2D video system mostly

depends on the libraries used and the underlying

hardware. Since each video stream object uses its own

process for video decoding, the video system can be

accelerated significantly by using multiprocessor hard-

ware. On the SGI Onyx with eight processors, several

video streams can be decoded and uploaded to texture

memory simultaneously without a significant drop in the

rendering frame rate. Applications however should only

enable video sources that are actually visible to conserve

processing power.

Table 1 lists video performance measurements,

including video decoding time for 256� 256 pixel

high-quality MPEG-1 with 2.3Mbit/s, 256� 256 pixel

AVI with a Cinepak codec and a data rate of

approximately 1.7Mbit/s. The Cinepak decoding is

significantly faster than MPEG-1. A single processor

could be used to decode 71 Cinepak frames per second,

or almost three video files at 25 frames/s. The table also

includes the texture update time for each frame. The

short value does not reflect the true texture upload

bandwidth as the system caches the data before it is

actually sent to the pipeline. Using nine animated

textures in the IN:SHOP example application resulted

in no measurable drop in the framerate, the video

decoding process is clearly the bottleneck with these

small video files. All measurement were done on the

Onyx 3200.

4.2. 3D audio

The blue-c API provides a high-quality spatialized 3D

audio system that runs as a service, in addition to visual

http://ffmpeg.sourceforge.net

ARTICLE IN PRESS

3D Video Service Scene Graph

Particle Source Proxy Node

Networking Vertex-Array Setup Buffers

Fig. 3. 3D video service with video fragment sources and proxy

object inside the scene graph. The buffers are used to pass data

between the processes.

M. Naef et al. / Computers & Graphics 29 (2005) 3–15 7
output. It is controlled by active audio nodes from inside

the scene graph, which allows to add sound as attribute

to geometry objects. Each audio node controls a sound

source object in the audio renderer. Its position is

updated once per frame following the underlying

transformation nodes and the virtual to real world

coordinate system transformation that is provided by

the graphics rendering system. We refer to [15] for a

detailed description of the blue-c audio rendering

pipeline, including performance measurements. As

opposed to the original implementation, the current

version now uses the Portaudio libraries for all device

access, which enables trivial portability between the

different operating systems.
4.3. Animation

The blue-c API supports animation of 3D geometry

using the concept of animation nodes. These are

transformation nodes that update their transformation

matrix for every frame through a virtual method that

can be overridden by the application developer. As a

starting point, the blue-c API provides a set of default

animation nodes implementing rotation and key-frame

animation that provides linear interpolation for both

position and rotation.

A more complex animation node supports importing

animated figures created with Curious Labs’ Poser

(http://www.curiouslabs.com). A customized file loader

reconstructs the model hierarchy from exported geome-

try files and parses the respective BVH motion data.

This allows for a quick population of virtual worlds with

moving characters.
5. 3D video fragment rendering

The support for 3D video acquisition and streaming

of users is a key feature of the blue-c system. A 3D

representation of the user standing inside our portal is

acquired concurrently with the immersive stereo projec-

tion. Using a shape from silhouette method, the user is

reconstructed as a cloud of 3D video fragments, which is

a generalization of the pixel concept into three space.

These fragments are then encoded and transmitted

incrementally across the network to the other participat-

ing sites. For details on the 3D video acquisition,

processing and transmission pipeline we refer to [1,3].

The following discussion only refers to the receiver side,

including rendering. We will first introduce the different

options for rendering the 3D video objects, which

motivate the design of the data processing pipeline that

provides the necessary data structures for efficient

rendering.
5.1. 3D video service

The 3D video integration into the blue-c API is built

upon the 3D video service, which hosts fragment data

source objects. Proxy objects inside the scene graph refer

the data source objects and provide callback-hooks for

rendering in a multiprocessor-safe manner. Fig. 3

depicts the general architecture.
5.1.1. Service

The 3D video service hosts a list of fragment data

sources. The service instantiates the dynamic streaming

sources according to the information provided by the

setup system, or on demand for file-based sources. The

source objects can be accessed by name or ID, the

necessary enumeration methods are provided by the

service.

Typical applications do not directly access any of the

methods provided by the 3D video service. Instead, the

3D video proxy objects in the scene graph initiate all

necessary connections.
5.1.2. 3D video data source

The 3D video data source objects host virtually all

functionality for processing and rendering incoming

data. There are two different types of data source

classes, both derived from a common class CBCInParti-

cleSource that implements basic multiprocessing syn-

chronization, job management, and defines the callback

interface.

For static point objects, the CBCInParticleSource-

Static class retrieves a single frame from a Pointshop 3D

file [16]. It retains all settings including point size,

normal and color. The blue-c API supports any number

of static sources. They are typically created dynamically

by the user application by specifying the input filename

for a proxy object.

Dynamic video streams are provided by the CBCIn-

ParticleDynamic class. Dynamic particle sources are

pre-defined in the configuration scripts, including

settings such as rendering modes, as well as whether

they are streamed from a file or from a live source.

Configuration of the streaming channel, namely the

source, is defined through the blue-c communication

http://www.curiouslabs.com

ARTICLE IN PRESS
M. Naef et al. / Computers & Graphics 29 (2005) 3–158
layer (bcl) [17] configuration and does not influence the

pipeline further down.

5.1.3. 3D video proxy node

The 3D video proxy node class represents a 3D video

object inside the scene graph. The proxy node basically

keeps a reference to the connected data source and calls

its methods during the Performer App, Cull and Draw

scene graph traversals.

As a regular Performer node, it can be placed

anywhere inside the scene graph and follows all under-

lying transformations. It provides information about the

bounding box for culling. The proxy node concepts

makes the addition of 3D video to blue-c applications as

easy as adding any other node into the scene.

5.2. Fragment rendering options

The blue-c real-time 3D video system represents its

objects using 3D video fragments that essentially form a

point sample cloud in 3D space. The rendering of these

point samples is based on work and by Pfister et al.,

Zwicker et al. and Rusinkiewicz and Levoy [18–20]. As

opposed to the previous work, the blue-c API rendering

implementation is optimized for dynamic data sets for

the SGI Onyx 3200 platform as used in the first blue-c

portal. This section presents an overview of the different

rendering modes and its requirements for the data

pipeline. The visual differences of the rendering methods

are shown in Fig. 4.

5.2.1. GL_POINT rendering

The simplest fragment rendering technique relies on

the OpenGL point primitive. Every fragment is rendered

with a single point, defined by a 3D vertex and color. In

the blue-c API implementation, all points are rendered

with the same size. The size in world space is defined in

the configuration script and translated into a screen

pixel size before rendering. Since the point size is only
Fig. 4. Comparison of fragment rendering options: (a) po
correct for a single location, objects that are close to the

viewer will exhibit strong artefacts (holes or excessively

large points). These artefacts could be reduced by

introducing variable point sizes. Variable point size

rendering requires a sorting step because the point size is

not a per-vertex attribute in standard OpenGL. In

practice, however, the relatively small resolution of our

objects make close-up viewing unsuitable, regardless of

rendering mode. The idea of implementing a more

efficient variable size GL_POINT renderer was, there-

fore, abandoned.

Most OpenGL hardware implementations render the

point primitive as a square. The SGI Infinite Reality 3

hardware also supports rendering of round, anti-aliased

points. The latter mode, however, is only efficient if

multi-sampling is supported by the visual, which is not

the case when using quad-buffered stereo visuals.

Using point sprites [21] for rendering splats enables

the low data transfer requirements of GL_POINT

rendering while providing very high-quality visual

results. Unfortunately, these primitives rely on exten-

sions not available on the Infinite Reality graphics

hardware and were, therefore, not included in the blue-c

API.
5.2.2. Circular splats

Unlike GL_POINTS, which always render a primitive

in screen space, rendering discs perpendicular to the

fragment normal in object space results in a much better

approximation of the underlying surface. These discs are

defined by a 3D position defining the center, a size in

object space, the fragment normal and a color.

OpenGL does not provide a ‘‘circle’’ primitive.

Approximating the geometry with a complex polygon

or triangle fan, however, would result in an excessive

number of vertices. Instead, the common solution is to

render a single quad primitive and use an alpha texture

as ‘‘stencil’’, reducing the number of required vertices to

four per splat at the expense of a slightly increased
ints; (b) single pass; and (c) two-pass circular splats.

ARTICLE IN PRESS
M. Naef et al. / Computers & Graphics 29 (2005) 3–15 9
fill-rate requirement. The texture is a 2D grayscale image

of a Gaussian function. Using an alpha compare

function (glAlphaFunc(GL_GREATER, etc.)) cuts off

the corners of the quad, resulting in more or less circular

splats depending on the reference value. Of course, a

simple black/white texture as stencil would work just as

well, the current implementation was mainly chosen for

compatibility reasons to the two-pass renderer. Com-

pared to the point renderer, rendering circular splats

increases the required transfer bandwidth by a factor of

six, as the texture coordinates (two floats) must be

transmitted in addition to color and position per vertex.

The current implementation allows to turn off the

texturing and therefore the stencil operation, effectively

rendering quadratic splats instead of discs. However,

this does not result in increased performance because

current hardware supports simple texturing at no

additional cost.

Rendering variable sized splats introduces no addi-

tional overhead since the size of the splats is defined by

the distance of the vertices in object-space. Unlike

GL_POINTS that require individual vertex or index

arrays to support different sizes, all circular splats can be

fed to the graphics pipeline in a single transfer

operation.

5.2.3. Two-pass splat rendering

Both previous rendering methods do not take any

anti-aliasing or smoothing measures. However, the

visual quality of our 3D video objects benefits from a

smooth blending of splats instead of rendering circles

with sharp edges. Instead of representing surface

samples with discs, the surface is defined as the sum of

Gaussian field functions with the center defined by the

fragment center. An approximation to this interpreta-

tion is accomplished with the two-pass splat rendering

method as depicted in Fig. 5. As opposed to the original

EWA splatting method [19], this implementation does

not provide a final alpha normalization step as this

operation cannot be implemented efficiently on the

graphics hardware available.

In theory, correct blending of the splats could be

achieved by rendering from back to front in a single
Fig. 5. Splat rendering: single pass and two-pass rendering

modes. Circular splats are rendered with a quad primitive and

an alpha texture as stencil. The same alpha texture is used for

blending. p denotes the fragment position, r the size of the splat.
pass. However, the required sorting is not practical

considering the large number of fragments. Therefore, a

first rendering pass is required to setup the z-buffer for

correct occlusion handling.

The first rendering pass is very similar to the single-

pass rendering method. The splats are rendered as discs,

generated by quads with a Gaussian texture as stencil.

Writing to the frame-buffer (color and alpha compo-

nents only), however, is disabled during that step.

Instead, only depth values are written, resulting in a z-

buffer which represents the final surface of the fragment

object, but leaves the color buffer intact.

In a second rendering step, all splats are rendered

again. Now, the splat color values are blended with the

framebuffer content according to the alpha value

defined by the Gaussian texture. At the center of the

splat, the background color is replaced, whereas the

corners slowly fade out, resulting in a very smooth and

filtered appearance. Z-buffer writing is disabled during

the second pass. To make sure neighboring splats

without precisely the same depth still ‘‘merge’’, the

second rendering pass needs to introduce some tolerance

in the z-buffer test. This is accomplished with the

glPolygonOffset method that offsets the actual depth

value by a fixed amount. Pixels that would fail a regular

depth test by a small amount, and therefore most

probably belong to the ‘‘front’’ surface, can still pass

after applying the polygon offset, therefore contributing

to the overall blended color. Rendering without the

polygon offset would results in many semi-transparent

holes, and strong artefacts in places where splats

intersect.

Defining the polygon offset means deciding on a

compromise between correct occlusion culling and

hiding artefacts introduced by object reconstruction

inaccuracies. It is, therefore, a user-configurable option.

5.2.4. Compositing

All rendering options implemented in the blue-c API

make use of standard OpenGL rendering primitives

without the need for auxiliary buffers or special

rendering order. Since all point rendering primitives

use the same coordinate space and setup as the

traditional scene geometry, compositing 3D fragment

objects into the scene is implemented trivially using the

z-buffer in the current rendering context. Performer

optimizations such as visibility culling apply equally to

3D fragment objects as they only rely on a bounding

box, which is set per node.

5.3. Rendering performance

The performance of the different rendering methods

was measured on an SGI Infinite Reality 3 graphics

system and on an nVidia Quadro4 750 XGL graphics

board. Considering the small size of the individual

ARTICLE IN PRESS

Sparse Fragment Array
Network Handler Updates

End-of-Frame Processing
Copy

Vertex Array Setup

Draw Process

Intermediate Buffer

Intermediate Buffer

Vertex Array

Splat Setup

Draw
Vertex Array

Job

Job

Fig. 6. Vertex array setup pipeline. The network process

updates the fragment array and creates the intermediate copy

in a job object for further processing. The vertex array setup

process generates the vertex array data structure. Once the job

object is ready, it is passed to the draw process.

Table 2

Rendering time per fragment

Platform Point ðmsÞ Circular Circular

1 pass ðmsÞ 2 pass ðmsÞ

Infinite Reality 3 0.1 0.5 1.3

n Vidia Quadro 4 0.02 0.15 0.3

M. Naef et al. / Computers & Graphics 29 (2005) 3–1510
splats, it was found that rendering time was predomi-

nantly a function of the number of vertices sent down

the graphics pipeline. The maximum fill-rate has only a

minor impact during two-pass rendering on the SGI

hardware. Table 2 lists the measured rendering time in

microseconds per fragment for both platforms and all

three rendering methods. Both hardware platforms

achieve close to their theoretical peak performance: 10

million vertices per second on the IR3 and 50 million

vertices per second for the nVidia Quadro4. The

measured times do not include the setup of the vertex

array data structure. This performance property is

discussed in Section 5.5.

With the typical 3D video objects in the blue-c

environment, the rendering speed is sufficient to keep

frame rates in the order of 15–20Hz in stereo mode with

the highest quality renderer on the Onyx. As soon as the

scene complexity is increased, a faster renderer should be

selected to keep a smooth application flow. Since the

rendering is completely decoupled from the vertex array

processing pipeline that runs on a different processor,

performance can be evaluated separately. On the PC

platform, rendering the fragment objects imposes

virtually no performance loss. The setup of the vertex

arrays, however, becomes more significant due to the

small number of available CPUs and the less favorable

memory bandwidth to raw processing power ratio.

5.4. Data processing pipeline

The rendering hardware only achieves the peak

performance if the data are fed through a packed vertex

array structure. This array, however, is significantly

different from the actual data structures used for

receiving 3D video fragments. Each fragment data

source, therefore, implements a pre-processing pipeline

that transforms the incoming 3D fragment data

structure into a vertex array suitable for concurrent

rendering.

This section presents the pre-processing pipeline

including a performance analysis. Fig. 6 depicts an

overview of the pipeline stages and shows the main data

structures used. The performance properties were

measured on our SGI Onyx 3200 with 8 MIPS R12000

processors running at 400MHz and two IR3 graphics

pipes. Additional measurements were done on a
standard Dell PC with a Pentium 4 2.8GHz processor

and nVidia Quadro4 750 XGL graphics hardware.
5.4.1. Incoming data

3D video objects are transmitted using fragment

operators [3]. They are decoded and used to update a

sparse, linear data array incrementally. The position of

the entries in this array are defined by a hash function

based on the 3D position of the fragment. The incoming

data structure is fully provided and handled by the 3D

video streaming software modules [17]. The data

structure allows for very fast random access to update

individual particles. Sequential access, however, suffers

from the sparse structure, requiring more memory

bandwidth.

Especially on SGI Onyx hardware, the network

transmission and decoding process is currently the main

bottleneck limiting the number of active fragments. It

therefore runs on its own processor, and further

processing inside the same process is kept to a minimum.

The incoming data structure does not allow for

efficient, concurrent access. The processing of incoming

fragment operators and further handling of the array

are, therefore, kept as sequential block operations inside

the network transmission process. The transformation

from the incoming data structure into the vertex array

for rendering is triggered once per acquisition frame.

With the current acquisition system, this happens

roughly ten times per second. Typical representations

of remote users consist of approximately 25,000 frag-

ments, leading to a total of 250,000 fragments to be

processed per second, or a time budget of 4ms per
fragment. A more detailed analysis of object sizes and

update frequency is given in [22].

Each fragment is specified by a 3D position, color,

transparency (encodes lifetime), surface normal, and

some additional book-keeping flags. The normal is

ARTICLE IN PRESS

Empty List

M. Naef et al. / Computers & Graphics 29 (2005) 3–15 11
encoded as two bytes representing quantized spherical

coordinates.
Process List

Draw List

Network Process: Triggered by new frame.
- Get new job object.
- Copy fragments into intermediate array.
- Insert job object into process list.
- Trigger vertex array setup process.

Vertex Array Setup: Triggered by net. proc.
- Remove job from process list.
- Generate vertex array.
- Insert job object into draw list.

Draw 3D Object: Invoked by node callback.
- Get most recent job from draw list.
- Move old entries from draw to empty list.
- Draw vertex array.

Fig. 7. Job processing in the vertex pipeline. Job objects are

stored in lists for processing. The setup process is triggered by

the previous stage in the pipeline using a semaphore.
5.4.2. Vertex array setup pipeline

For efficient rendering, the point samples should be

copied into a linear vertex array which packs position,

color and texture coordinates into a data structure that

can be read directly by the graphics hardware with a

single burst transfer. Due to the dynamic nature of the

input data, this array must be set up completely for each

incoming frame. The pipeline is depicted in Fig. 6.

Each circular splat (see Section 5.2) is defined by four

corner vertices. Each vertex contains the position (3

floats), color (4 bytes), and texture coordinates (2 floats),

resulting in a packet data structure of 24 bytes per

vertex, or 96 bytes per splat. The normal is not specified

as the current acquisition system does not provide data

that is precise enough for re-shading of the 3D video

object. To enable re-shading, the reconstructed normals

must be further processed (e.g., smoothed) to avoid

disturbing artefacts.

The relative positions of the corner vertices to the

fragment center are defined by u and v vectors that are

efficiently derived from the encoded fragment normal.

The necessary angular functions (sine and cosine) are

retrieved through a lookup table. Experiments showed

that the calculation cost of the corner vertex positions is

completely hidden by the memory write bandwidth on

both SGI and PC platforms.

If the vertex array is directly derived from the

incoming data structure, each splat takes approximately

1ms on the Onyx, and 0.5–0:8ms on the PC. This

includes the traversal time for the sparse array and

assumes a fixed splat size. Given a 3D object with 25,000

fragments updated at 10Hz, which is typical for the

blue-c system, this translates into roughly 25% proces-

sing time in the same process that also handles the

incoming fragment operators. Experiments showed that

increasing this processing time stalls the incoming

fragment stream on the SGI platform. As long as only

a single processor is dedicated to a fragment source

pipeline, the system is therefore limited in the complexity

of the object and to rendering using a fixed splat size.

To overcome these processing power limits, an

optional pipeline mode first creates a linearized copy

of the video fragment data structure instead of setting

up the vertex data structure inside the network stream-

ing process. The resulting array only takes 24 bytes per

fragment. This copy operation takes approximately

0:8ms per fragment on the Onyx, leaving about 80%
of the processing time to the network process, a different

thread is triggered to calculate the vertex array structure

from the intermediate copy. Since this thread runs on a

separate processor, a time budget of typically 4ms per
fragment is then available, leaving room for a simple
calculation of an individual size per splat as discussed in

Section.

Both the intermediate fragment array and the output

vertex array are kept in job objects. Job objects are kept

in a queue and passed to the worker thread for

processing and to the graphics process for rendering.

This job processing system, depicted in Fig. 7, enables

parallel operation with minimal locking interference.

Job queues and objects are locked only at the end of

each calculation process. The latest complete vertex

array is, therefore, always available for asynchronous

reading of the rendering system. After a rendered job

has been superseded by a more recent job object, the

object is inserted into an empty queue for reuse. This

avoids constant allocation and de-allocation of large

memory blocks.

Thanks to the high system memory bandwidth of the

Onyx architecture, using the additional processor fully

delivers the expected speedup. Using multiple buffers,

however, adds some latency to the overall processing

and transmission pipeline. In practice, the difference

between single-processed and parallel handling is not

perceivable by the user, even in local-feedback applica-

tions such as our 3D mirror.

5.4.3. Splat size calculation

The size of the rendered splats is an important factor

for the resulting visual quality of the rendered 3D

fragment object. Small splats do not fully cover the

surface they represent, leading to visible holes. Large

splats with excessive overlap on the other hand result in

a blurred appearance, small details are lost.

In the optimal case, neighboring splats have a slight

overlap and fully cover the surface after blending. Since

ARTICLE IN PRESS

Search Window

Current Fragment i

Intermediate Copy

+n/2-n/2

Fig. 9. Nearest-neighbor window search method. For each

fragment i; the distance between the fragment and each of the
previous n=2 and next n=2 is calculated. The smallest distance is
used as the splat radius if it is below a threshold.

M. Naef et al. / Computers & Graphics 29 (2005) 3–1512
3D fragment objects are not necessarily sampled on a

regular grid, the size of each individual splat is a

function of the distance to its nearest neighbors. The

data structures used in the blue-c 3D video pipeline,

however, currently do not allow for fast querying of the

nearest neighboring fragments. The blue-c API, there-

fore, provides several methods to generate approxima-

tions to an ideal splat size. Fig. 8 shows the resulting

visual difference between fixed and variable splat sizes.

Fixed overall splat size: The splat size is assumed

constant for all splats. This option works reasonably

well as long as the 3D object is sampled with a

reasonably regular pattern, which is the case within the

blue-c 3D system, and as long the number of fragments

stays constant. Fixed splat size is the only available

option for the GL_POINT rendering method, and the

fastest option for the circular splats rendering system.

The splat size is defined in the configuration script.

Dynamic splat size—image-space method: The original

3D video renderer on Linux [3] implements a nearest-

neighbor search in two directions using an image space

method. This method results in a very good fit of the

individual splats. Unfortunately, it is not practical for

objects with more than roughly 15,000 fragments on a

fast PC, and not usable at all on the SGI Onyx due to

the processing time requirements. It is still available in

the blue-c API for experimental reasons and included in

the comparison (Fig. 8) as a higher quality reference.

Dynamic splat size—window search method: The

window method limits the nearest-neighbor search to

the last and next n fragments in the linear data array. n is

a variable number that is dynamically adjusted depend-

ing on the available CPU time. The window method

relies on the assumption that spatially close fragments

also appear close inside the linear data structure. This

property was verified experimentally. The clustering of

fragments is a consequence of the chosen hashing
Fig. 8. Fixed splat size vs. variable splat size. (a) and (d) use a fix spla

the image space method. Image (d) exhibits holes because the fixed

density.
function that is used to index the array, which is actually

a quantized encoding of the 3D position. (Fig. 9)

For each fragment while traversing the linear data

array, we therefore search for the nearest other fragment

inside the window. If the distance to the nearest other

fragment is below a threshold, we use the distance as the

splat radius. Otherwise, a default size is used instead. By

setting the maximum splat size, the method guarantees

that no disturbing artefacts are introduced when no

close neighbor is found. The array is extended with

dummy-entries at the beginning and end to avoid the

necessity for special treatment when the search window

extends beyond the array bounds. The method success-

fully reduces blurring artefacts; however it often fails at

filling large holes.

The current 3D video acquisition system often

changes the overall resolution of the 3D object in

response to network drop-outs or in the case of camera

switching. To deal with these situations, the default splat

size is adjusted according to the number of active

fragments, e.g. the configured default is valid at 10,000

fragments, and half the size at 40,000 fragments.

The efficiency of the window search method is greatly

increased by using the packed copy of the fragment data

structure. As opposed to traversing the sparse fragment

array, the linearized copy results in much better cache
t size, (b) and (e) use the window search method, (c) and (f) use

size method cannot adapt to a significant change in sampling

ARTICLE IN PRESS
M. Naef et al. / Computers & Graphics 29 (2005) 3–15 13
efficiency and therefore higher read throughput. On the

Onyx system, the typical neighbor search window can

usually be kept between 32 and up to 256 fragments,

depending on the total number of input fragments to be

processed. Larger sizes result in highly decreased cache

efficiency and therefore significantly worse performance.

The rendering pipeline detects the available processing

time by analyzing the number of outstanding buffers in

the processing queue. If a new buffer is added for

processing before the current is finished, the search

window size is reduced in half. Otherwise, the window

size is gradually increased until the processing time limit

is reached.

The window search method is also available in a non-

multiprocessed mode which looks at a window of 16

entries inside the network process. Instead of searching

inside the linearized buffer, it keeps a small circular

buffer on the stack where it stores the last entries. This

buffer is small enough to be kept in the first level cache

and therefore very efficient to read.

5.5. Pipeline performance overview

The following Table 3 compares the processing time

per fragment for the individual options. The table lists
Table 3

Fragment pipeline processing time. All results are given in

microsecond per fragment

Method Onyx ðmsÞ Athlon

PC ðmsÞ

Point (fixed size) 0.8 0.65

Quad splat (fixed size) 1.0 0.85

Quad splat (window: 16 entries, no 1.8 1.1

multiprocessing)

Quad splat (window: intermediate 0.8 0.65

copy step/size calculation at 5.5 2.9

window size 256)

Image space method (PC only) — 4.2

Fig. 10. (a) Visdome, and (b) Virtual M
the measurements on the Onyx 3200 as well as on a dual

CPU Athlon PC. The results measured on the PC

include some variations due to process scheduling

effects. The values given are average values, measured

with a pre-recorded video sequence of an object with

roughly 14,000 fragments.
6. Example applications

During the three years of the blue-c project, several

applications demonstrating various features of the blue-

c system have been developed. They present features

such as immersive stereo projection, the audio system,

2D video, 3D video streaming and recording, collabora-

tion, animation, and user interaction.

The Visdome and Virtual Museum applications as

depicted in Fig. 10 are both simple architectural walk-

through demonstrations. They feature only a very

limited amount of application-specific code to load a

model file, setup the navigation system, and provide

some customized lighting including optional shadows in

the case of the Virtual Museum. In that respect, they

represent the minimal blue-c application.

Exploring the multimedia capabilities of the blue-c

technology for real world applications, Infoticles (see

Fig. 11) and IN:SHOP (screenshot in Fig. 2) were

developed.

The Infoticles series of applications were developed by

Andrew Vande Moere [23]. They explore a new

metaphor for visualizing complex data sets by the

means of moving particles. The visualization technique

was applied to several different data sets: monetary flow

between the different departments at ETH, web-access

logs, and stock market data.

IN:SHOP presents a concept for implementing a

distributed shopping environment using tele-presence

and 3D video technology [14]. Two example applica-

tions have been built based on the same ideas, a fashion

shop and a car configurator. The concept of IN: SHOP

extends real shopping places with portals into a virtual
useum walkthrough applications.

ARTICLE IN PRESS

Fig. 11. Infoticles: information visualization application built upon the blue-c API.

M. Naef et al. / Computers & Graphics 29 (2005) 3–1514
world. It profits all multimedia features of the blue-c

API including 2D video, 3D video, and audio for

background music.
7. Conclusions and future work

This paper presents selected aspects of the blue-c

application programming interface, a toolkit for VR

development which combines collaboration, telepre-

sence, multimedia, high performance rendering, and

interaction tools, into a single, coherent package. Real-

time 3D video technology is integrated into a VR

environment to reach a new level in telepresence

applications.

Future work will concentrate on application develop-

ment, to validate and demonstrate the use of telepre-

sence in a real-world application context. The

possibilities and limits of 3D video in VR should be

analyzed. On the technical side, performance and visual

quality can be further improved by exploiting program-

mable graphics hardware that enables new algorithms

for 3D video rendering.
Acknowledgements

We would like to thank all members of the blue-c

team for many inspiring discussions. Special thanks to

those who contributed code and applications: Oliver

Kreylos, Edouard Lamboray, Silke Lang, Sascha

Scandella, Andrew Vande Moere, Tim Weyrich, and

Stephan Würmlin. Additional thanks go to CIPIC at

UC Davis for providing the environment for the Linux

port. This work has been funded by ETH Zurich as a

‘‘Polyprojekt’’ (Grant no. 0-23803-00).
References

[1] Gross M, Würmlin S, Naef M, Lamboray E, Spagno C,

Kunz A, Koller-Meier E, Svoboda T, Van Gool L, Lang S,
Strehlke K, Vande Moere A, Staadt O. blue-c: a spatially

immersive display and 3D video portal for telepresence. In:

SIGGRAPH 2003 conference proceedings, ACM SIG-

GRAPH annual conference series; 2003.

[2] Spagno C, Kunz A. Construction of a three-sided

immersive telecollaboration system. In: Proceedings of

the IEEE virtual reality conference 2003 (VR 2003). IEEE:

IEEE Computer Society Press; 2003. p. 37–44.

[3] Wuermlin S, Lamboray E, Gross M. 3D video fragments:

dynamic point samples for real-time free-viewpoint video

special issue on Coding, Compression and Streaming

Techniques for 3D and Multimedia Data. Computers &

Graphics 2004;28:3–14.

[4] Naef M, Lamboray E, Staadt O, Gross M. The blue-c

distributed scene graph. In: Deisinger J, Kunz A, editors.

Proceedings of the IPT/EGVE workshop 2003 May 2003.

[5] Cruz-Neira C, Sandin DJ, DcFanti TA, Surround-screen

projection-based virtual reality: the design and implemen-

tation of the cave. Proceedings of SIGGRAPH 93; August

1993. p. 135–142.

[6] Bierbaum A, Just C, Hartling P, Meinert K, Baker A, Cruz-

Neira C. VR Juggler: a virtual platform for virtual reality

application development. In: Proceedings of the IEEE

virtual reality conference 2001 (VR 2001), Yokohama,

Japan, (IEEE): IEEE Computer Society Press; March 2001.

[7] Tramberend H, Avocado: a distributed virtual reality

framework. In: Proceedings of the IEEE virtual reality

conference 1999; 1999. p. 14–21.

[8] Reitmayr G, Schmalstieg D. An open software architecture

for virtual reality interaction. In: Proceedings of the ACM

symposium on virtual reality software and technology

(VRST) 2001. Banff, Alberta, Canada: ACM; 2001.

[9] Taylor II, RM, Hudson TC, Seeger A, Weber H, Juliano J,

Helser AT. Vrpn: a device-independent, network-trans-

parent vr peripheral system. In: Proceedings of the ACM

symposium on virtual reality software and technology.

New York: ACM Press; 2001. p. 55–61.

[10] Reiners D, Voss G, Behr J, OpenSG—basic concepts. 1.

OpenSG symposium; 2002.

[11] Park KS, Cho YJ, Krishnaprasad NK, Scharver C, Leuwis

MJ, Leigh J, Johnson AE. CAVERNsoft G2: a toolkit for

high performance tele-immservie collaboration. In: Pro-

ceedings of the ACM symposium on virtual reality

software and technology (VRST) 2000; 2000. p. 8–15.

[12] Naef M, Staadt O, Gross M. blue-c API: a multimedia and

3D video enhanced toolkit for collaborative vr and

ARTICLE IN PRESS
M. Naef et al. / Computers & Graphics 29 (2005) 3–15 15
telepresence. In: Proceedings of VRCAI 04. New York:

ACM Press; June 2004.

[13] Rohlf J, Helman J. IRIS Performer: a high performance

multiprocessing toolkit for real-time 3D graphics. In:

Proceedings of SIGGRAPH 94, ACM SIGGRAPH

annual conference series; 1994. p. 381–95.

[14] Lang S, Naef M, Gross M, Hovestadt L. IN:SHOP: using

telepresence and immersive VR for a new shopping

experience. In: Proceedings of the eighth international fall

workshop on vision, modelling and visualization 2003,

IEEE; November 2003.

[15] Naef M, Staadt O, Gross M. Spatialized audio rendering

for immersive virtual environments. In: Sun H, Peng Q,

editors. Proceedings of the ACM symposium on virtual

reality software and technology 2002. New York: ACM

Press; November 2002. p. 65–72.

[16] Zwicker M, Pauly M, Knoll O, Gross M. Pointshop 3D:

an interactive system for point-based surface editing. In:

Proceedings of the 29th annual conference on computer

graphics and interactive techniques. New York: ACM

Press; 2002. p. 322–29.

[17] Lamboray E. A communication infrastructure for highly-

immersive collaborative virtual environments. PhD thesis,

ETH Zurich, 2004, No. 15618.
[18] Pfister H, Zwicker M, VanBaar J, Gross M. Surfels:

surface elements as rendering primitives. In: SIGGRAPH

99 conference proceedings, ACM SIGGRAPH annual

conference series; 1999.

[19] Zwicker M, Pfister H, VanBaar J, Gross M, Surface

splatting. In: SIGGRAPH 2001 conference proceedings,

ACM SIGGRAPH annual conference series; 2001.

p. 371–78.

[20] Rusinkiewicz S, Levoy M, QSplat: a multiresolution point

rendering system for large meshes. In: SIGGRAPH 2000

conference proceedings, ACM Siggraph annual conference

series; 2000. p. 343–52.

[21] Botsch M, Wiratanaya A, Kobbelt L. Efficient high quality

rendering of point sampled geometry. In: Proceedings

of the 13th eurographics workshop on rendering; 2002. p.

53–64.

[22] Würmlin S. Dynamic point samples as primitives for free-

viewpoint video. PhD thesis, ETH Zurich; 2004, No.

15643.

[23] Vande Moere A, Infoticles: information modeling in

immersive environments. In: Proceedings of the sixth

international conference on information visualisation

(London, England); July 2002. p. 457–61.

	Multimedia integration into the blue-c API
	Introduction
	Related work
	blue-c API system architecture
	Core and process management
	Services
	Scene graph
	Messaging
	Device I/O
	Configuration system

	Multimedia performance
	2D video service
	Video source objects
	Texture proxy
	Performance

	3D audio
	Animation

	3D video fragment rendering
	3D video service
	Service
	3D video data source
	3D video proxy node

	Fragment rendering options
	GLPOINT rendering
	Circular splats
	Two-pass splat rendering
	Compositing

	Rendering performance
	Data processing pipeline
	Incoming data
	Vertex array setup pipeline
	Splat size calculation

	Pipeline performance overview

	Example applications
	Conclusions and future work
	Acknowledgements
	References

