
Eurographics Symposium on Virtual Environments (2006)
Roger Hubbold and Ming Lin (Editors)

GraphTracker:
A Topology Projection Invariant Optical Tracker

F.A. Smit1,A. van Rhijn1,R. van Liere1,2

1Center for Mathematics and Computer Science, CWI, Amsterdam
2 Department of Mathematics and Computer Science, Eindhoven University of Technology

Abstract

In this paper, we describe a new optical tracking algorithm for pose estimation of interaction devices in virtual
and augmented reality. Given a 3D model of the interaction device and a number of camera images, the primary
difficulty in pose reconstruction is to find the correspondence between 2D image points and 3D model points. Most
previous methods solved this problem by the use of stereo correspondence. Once the correspondence problem has
been solved, the pose can be estimated by determining the transformation between the 3D point cloud and the
model.
Our approach is based on the projective invariant topology of graph structures. The topology of a graph structure
does not change under projection: in this way we solve the point correspondence problem by a subgraph matching
algorithm between the detected 2D image graph and the model graph.
There are four advantages to our method. First, the correspondence problem is solved entirely in 2D and therefore
no stereo correspondence is needed. Consequently, we can use any number of cameras, including a single camera.
Secondly, as opposed to stereo methods, we do not need to detect the same model point in two different cameras,
and therefore our method is much more robust against occlusion. Thirdly, the subgraph matching algorithm can
still detect a match even when parts of the graph are occluded, for example by the users hands. This also provides
more robustness against occlusion. Finally, the error made in the pose estimation is significantly reduced as the
amount of cameras is increased.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Scene Analysis.]: Image Processing and Com-
puter Vision.Tracking; I.3.6 [Computer Graphics.]: Methodology and Techniques.Interaction Techniques;

1. Introduction
Tracking in virtual and augmented reality is the process of
identification and pose estimation of an interaction device in
the virtual space. The pose of an interaction device is the 6
DOF orientation and translation of the device. Several track-
ing methods are in existence, including: mechanical, mag-
netic, gyroscopic and optical. We will focus on optical track-
ing as it provides a cheap, wireless interface, and is less sus-
ceptible to noise compared to the other methods.

A common approach to track an input device by an optical
tracker is marker based. The device is usually augmented by
specific marker patterns recognizable by the tracker. Opti-
cal trackers often make use of infra-red light combined with
retro-reflective markers to greatly simplify the required im-

age processing. The markers can then be detected by simple,
fast threshold and blob detection algorithms. The same ap-
proach is followed in this paper.

Once a device has been augmented by markers, the three
dimensional positions of these markers are measured and
stored in a database. We call this database representation of
the device the model. Optical trackers are now faced with
three problems. First, the detected 2D image points have to
be matched to their corresponding 3D model points. We call
this the point-correspondence problem. Second, the actual
3D positions of the image points have to be determined; re-
sulting in a 3D point cloud. This is refered to as the perspec-
tive n-point problem. Finally, a transformation from the de-

c© The Eurographics Association 2006.

F.A. Smit&A. van Rhijn&R. van Liere / GraphTracker

Figure 1: A 7x7x7cm cubical input device augmented by a
graph pattern of retro-reflective markers. Note that graph
edges are allowed to cross over between faces of the cube
and do not need to be straight lines.

tected 3D point cloud to the corresponding 3D model points
can be estimated using fitting techniques.

Many current optical tracking methods make use of stereo
correspondences. All candidate 3D positions of the image
points are calculated by the use of epipolar geometry in
stereo images. Next, the point correspondence problem is
solved by the use of an interpoint distance matching pro-
cess between all possible detected positions and the model.
A drawback to stereo correspondences is that every marker
must be visible in two camera images to be detected. Also,
since markers have no 2D identification, many false matches
may occur.

A common and inherent problem in optical tracking meth-
ods is that line of sight is required. There are many reasons
why a marker might be occluded, such as it being covered
by the users hands, insufficient lighting, or self-occlusion by
the device itself. Whenever a marker is occluded there is a
chance that the tracker can not find the correct correspon-
dence anymore. Trackers based on stereo correspondences
are particulary sensitive to occlusion, as they might detect
false matches, and require the same marker to be visible in
two cameras simultaneously.

More recently optical trackers have made use of projec-
tion invariants. Perspective projections do not preserve an-
gles or distances; however, a projection invariant is a feature
that does remain unchanged under perspective projection.
Examples of projective invariants are the cross-ratio, cer-
tain polynomials, and structural topology. Using this infor-
mation, the point correspondence problem can be solved en-
tirely in 2D using a single camera image. Invariant methods
have a clear advantage over stereo correspondences: there
is no need to calculate and match 3D point positions using

epipolar geometry so that markers need not be visible in two
cameras. This provides a robust way to handle marker occlu-
sion as the cameras can be positioned freely, ie. they do not
need to be positioned closely together to cover the same area
of the virtual space, nor do they need to see the same marker.

In this paper we present an optical tracking method based
on the projective invariant topology of graph structures. The
topology of a graph structure does not change under projec-
tion: in this way we solve the point correspondence problem
by a subgraph matching algorithm between the detected 2D
image graph and the model graph. A sample input device is
shown in Figure 1.

We have implemented and evaluated our tracking method
using the Personal Space Station (PSS), a near-field desktop
VR/AR environment [MvL02]. Users perform 3D spatial in-
teraction using tangible input devices. The setup consists of
two or four cameras equipped with infra-red filters and a ring
of infra-red LEDs to illuminate the scene.

The paper is organized as follows. In section 2 we dis-
cuss related work. In section 3 we give a detailed technical
description of our method. Section 4 shows experimental re-
sults, followed by a discussion of the pros and cons of the
method in section 5.

2. Related Work
There are several examples of stereo correspondence based
trackers as described in Section 1 [Dor99, RPF01, vRM05].
As our focus is on projective invariant trackers, we will not
dicuss these any further.

A cross-ratio projective invariant of four collinear, or
five coplanar points was used by van Liere et al. [vLM03].
They use the invariant property to establish pattern cor-
respondence in 2D, as opposed to direct point correspon-
dence. Once the pattern is identified, the individual points
are matched using a stereo based distance fit. The matching
is simplified significantly due to the previously established
pattern correspondence.

Van Rhijn [vRM04] used the angular cross-ratio of line
pencils as projective invariant. Once pattern correspondence
has been established, the rotational part of the device pose
can be determined directly by a line-to-plane fitting routine.
The translation still needs to be determined from the combi-
nation of two camera images, however the same points needs
not be visible simultaneously. The method can handle partial
occlusion of the line pencils without difficulty.

A topological approach is suggested by Costanza et al.
[CR03]. They make use of region adjacency trees to detect
individual markers. Detection is performed by a subgraph
matching algorithm, which can optionally be made error tol-
erant. However, no device pose estimation is performed in
the initial algorithm. An extension was described by Bencina
et al. [BKJ05] who determined a 2D translation of markers

c© The Eurographics Association 2006.

F.A. Smit&A. van Rhijn&R. van Liere / GraphTracker

Figure 2: The sequence of stages in the pipeline to go from
a camera image to a device pose.

on a flat transparent surface. However, their pose estimation
appears sensitive to occlusion. Our method is somewhat re-
lated, especially in the subgraph matching phase. However,
we use actual graphs and are able to determine a full 6 DOF
pose, in addition to being less sensitive to occlusion.

A widely used framework for augmented VR is ARToolkit
[KB99]. This system solves pattern correspondence by de-
tecting a square, planar bitmap pattern. Using image pro-
cessing and correlation techniques the coordinates of the
four corners of the square are determined, from which a 6
DOF pose can be estimated. Drawbacks are that ARToolkit
cannot handle occlusion, and only works with planar mark-
ers and four coplanar points. Fiala [Fia05] handled the oc-
clusion problem by using an error correcting code as bitmap
pattern in ARTag. However, the markers still need to be pla-
nar and the pose is estimated from four coplanar points. Our
method can handle any number of points in many configura-
tions, for example on a cylinder or a sphere.

3. Methods

In this section we give a detailed technical description of our
method. Our method is based on the detection and matching
of graphs to solve the correspondence problem. An overview
of the processing pipeline is given in Figure 2 and 3. The first
step in the pipeline is to perform some basic image process-
ing to acquire a skeleton of the blobs in the input image. This
skeleton is sufficient to reconstruct the topology of the graph.
We also keep track of the clockwise planar ordering of edges.
Next, some graph simplification is performed to eliminate
spurious edges, followed by the ordered subgraph isomor-
phism testing phase to determine correspondence. Once we
have determined a correspondence between the image points
and the model, a pose estimation is performed. The pose es-
timation algorithm first calculates the 3D positions of the
image points, followed by an absolute orientation algorithm
to fit the point cloud to the model and find a transformation
matrix. The four major stages are each described in a seper-
ate subsection below. We conclude this section with a brief

Figure 3: A schematic visualization of the various stages in
converting a camera image to a graph topology that can be
matched (also see Figure 2). From top-left to bottom-right
the images show a visualization of the state after: image
aquisition, thresholding, blob detection, skeletization, end-
point removal, graph detection, short edge removal, degree-
two removal, and graph matching.

mathematical analysis of the error made in pose estimation
using multiple cameras.

3.1. Image Processing
Due to the use of retro-reflective markers and infra-red light-
ing, the preliminary image processing stage is straightfor-
ward. It is divided into four stages: thresholding, blob de-
tection, skeletization, and end-point removal. All stages use
simple algorithms as described by Gonzales and Woods
[GW01].

First the input image is processed by an adaptive thresh-
olding algorithm. Next, blobs are detected and merged start-
ing at the points found by thresholding. The detected blobs
are processed by a morphology based skeletization algo-
rithm. The resulting skeleton suffers from small parasitic
edges, which are removed in the final phase. The final re-
sult is a strictly 4-connected, single pixel width skeleton of
the input blobs. This is the basic input to the graph topology
detector.

3.2. Graph Detection
The graph detector makes some basic assumptions about the
structure of graphs: any pixel that does not have exactly two
neighbours in the skeleton is a vertex, and an edge exists
between any vertices with a path between them consisting
of pixels with exactly two neighbours. The implications are

c© The Eurographics Association 2006.

F.A. Smit&A. van Rhijn&R. van Liere / GraphTracker

Figure 4: (left) A detected blob in light grey with its skeleton
shown in black. The top-right junction of 5 edges is split over
3 vertices. Our goal is to combine these vertices into a sin-
gle vertex while maintaining edge ordering. (right) Merging
vertices v1, v2, v3 results in the vertex with incident edge
ordering as given in the dashed inset. The numbers indi-
cate the order of each incident edge ei. The order of merg-
ing does not matter, for example merge(merge(v1, v2), v3))
equals merge(merge(v2, v3), v1))

twofold. First, edges do not have to be straight lines; as long
as two vertices are connected in some way there is an edge
between them. This means the same graph can be on arbi-
trary convex surface shapes. Secondly, vertices of degree two
cannot exists unless there is a self-loop at the vertex (ie. a de-
gree one vertex with an extra self-loop becomes a degree two
vertex).

Next, we discuss the algorithm used to detect the graph
topology from a given skeleton image. Suppose we have a
set of vertices V = {vi}, and a map M(x,y) → vi that maps
image coordinates to this set whenever a vertex exists at that
coordinate. The vertex set initially only contains the (arbi-
trary) starting point. As long as the set is not empty, we take
a vertex from it an process this vertex as described in the
next paragraph.

Once a starting vertex has been chosen, we start at an
arbitrary neighbour of that vertex and perform a recursive
walk to adjacent pixels. From now on we only consider the
three neighbours of a pixel different from the neighbour we
reached this pixel from. First we consult the map M to see if
this pixel is an existing vertex, and if so, insert an edge. Also,
the pixel is set to zero in the image to indicate it has been
searched. Next, we examine the neighbours of this pixel.
Whenever there is exactly one neighbour, we can simply
‘walk’ to this neighbour and continue the recursion. When
there are multiple neighbours, the pixel is added to the ver-
tex set V and an edge is inserted. When there are zero neigh-
bours an edge is inserted, but the vertex is not added to the
vertex set. After inserting an edge we choose a new starting
vertex from the set V and repeat the procedure. The process
terminates once the set V is exhausted, at which time the
entire topology has been constructed.

For reasons explained in Section 3.3, we impose an order-
ing on the incident edges of a vertex. We keep track of the
pixel direction (N,E,S,W) a vertex is left from, and the direc-
tion a vertex is reached from in the recursive walk over pixels
(also see Figure 4). Every edge now has an ordering attribute
on both ends. We use the starting points of edges for the or-
dering instead of the end points, as end points might affect
the ordering when occluded. Also note that this ordering of
incident edges is projectively invariant up to cyclic permuta-
tions.

Even though small edges were removed from the skele-
ton in the image processing phase, it is still possible for the
detected graph to contain very short parasitic edges. These
edges have a harmful effect on our matching algorithm, and
thus they are removed in a subsequent step by merging their
end-points. However, care must be taken not to affect the or-
dering of incident edges by merging two connected vertices
(see Figure 4).

Finally, all vertices of degree two, except those containing
self-loops, are removed in a similar fashion as short edges.
These vertices can occur due to the chosen starting point, but
cannot exist in theory.

3.3. Graph Matching
After detecting one or more graphs in the image, we try to
match the detected graphs as subgraphs in the model graph
to solve the point correspondence problem. To this extent
we use an error tolerant subgraph matching algorithm. A
subgraph isomorphism is a mapping of the vertices from
one graph to the other that maintains the structure of the
graph. All subgraph isomorphisms must be detected to ver-
ify a unique match. The problem of finding all subgraph
ismorphisms is a notoriously complex one. The decision
problem is known to be NPC, and finding all possible sub-
graphs cannot be done subexponentially [Epp99]. We use a
slightly modified version of the VF algorithm by Cordella
et al. [CFSV96, CFSV04] to do this matching in worst-case
exponential time. However, test cases show that in practice
the algorithm is fast enough to be used in real time.

We simplified the matching further with the following ex-
tensions. First, as edges can be occluded, vertices of degree
one do not provide us with a reliable position. Therefore the
matcher ignores all vertices of degree one while matching.
They do, however, add to the degree of their adjacent vertex.
Secondly, in order to reduce the amount of isomorphisms we
impose an ordering on the incident edges of a vertex. For a
match to be valid this ordering has to be a cyclic permutation
in the model, possibly with gaps for missing edges. In this
way a star graph with one center point and five edges only
has five automorphisms, as opposed to 5! = 120.

Whenever more than one subgraph isomorphism is de-
tected, we scan for ‘fixed points’ that have the same mapping
in all the isomorphic mappings. In this way some points can

c© The Eurographics Association 2006.

F.A. Smit&A. van Rhijn&R. van Liere / GraphTracker

Figure 5: Schematic view of the perspective n-point problem
with two cameras. The goal is to reconstruct the pi given
the camera positions Ci, image points ui and corresponding
model points mi

be uniquely identified, even when multiple isomorphic map-
pings exist (see Figure 7). All fixed points, which will have
degree greater than one, and their uniquely corresponding
model points are provided as input to the pose reconstruc-
tion algorithm.

3.4. Pose Reconstruction
Once the correspondence between 2D image points and 3D
model points is known, the 6 DOF device pose can be recon-
structed. Our approach is very closely related to the method
suggested by Quan [QL99]. We solve a system of polyno-
mial equations by partial algebraic elimination and singu-
lar value decomposition, followed by Horn’s [Hor87] abso-
lute orientation determination algorithm using quaternions.
Quan’s method does not directly support multiple cameras,
but the extension is straightforward. We briefly review the
method now.

Given camera positions Ci, 3D image points ui on the fo-
cal plane, corresponding 3D model points mi, and the camera
calibration matrices, the task is to calculate the 3D positions
pi and the transformation matrix M that maps pi to mi (see
Figure 5). Since all pi reside in a different frame as the mi,
we can only use interpoint relations in the same frame. Each
point pi lies on the 3D line through its corresponding image
point ui and the camera location Ci. For each pair of such
lines we can write the line equation in parametric form and
solve for the parameters (ti, t j) where the distance between
those points equals di j = ||mi −m j||2:

||(Ci + ti(ui −Ci))− (C j + t j(u j −C j))||2 = di j (1)

Simplifying this equation and setting Di = ui −Ci and
Ci j = Ci −C j results in a polynomial in two unknowns, (ti,
t j), with the following coefficient matrix:





−di j +Ci j ·Ci j −2(D j ·Ci j) D j ·D j
2(Di ·Ci j) −2(Di ·D j) 0

Di ·Di 0 0



 (2)

Every pair of points defines an equation of this form.
However, solving such a system of non-linear equations al-
gebraically proves extremely difficult. A direct solution can
be obtained using Gröbner bases, however the number of
terms in this solution is extremely large and it is sensitive
to numerical errors.

We can simplify the coefficient matrix greatly by normal-
izing the direction vectors of the parametric lines (Di ·Di =
D j ·D j = 1) and translating all cameras to the same point
at the origin (Ci j = 0̄). Once these simplifications have been
made, the polynomial system reduces to the same form as
defined by Quan [QL99]:

Pi j = t2
i + t2

j −2(Di ·D j)−di j = 0 (3)

Because of the simplifying camera translations, the new
distance calculation becomes:

di j = ||(mi −Ci)− (m j −C j)||2 = ||mi −m j −Ci j||2 (4)

Given N input points, there are
(N

2
)

constraining equa-
tions. Using three equations Pi j,Pik,Pjk in ti, t j, tk we can
construct a 4th degree polynomial in t2

i by variable elimi-
nation. If we fix the first parameter to ti, we can construct
(N−1

2
)

such polynomials in t2
i . For N > 4 this system is an

over defined linear system in (1, t2
i ,(t2

i)2
,(t2

i)3
,(t2

i)4), which
can be solved in a least-squares fashion by using a singular
value decomposition on a

(N−1
2

)

× 5 matrix. In the case of
N = 4 a slight modification has to be made, as the linear sys-
tem is under determined in this case, but a unique solution
can still be found (see [QL99] for details). This means we
need to detect a minimum of four points over all the cameras
to reconstruct the 3D point cloud.

Note that after calculating ti we cannot simply substitute
its value in the original polynomial equations. As the ob-
tained solution is a least squares estimate, there might not
exist a solution to the polynomial equation using this vari-
able. Recall that the polynomial equation represents a con-
straint on the distance between two lines. By fixing a point
on one of these lines, there is no guarantee that there even ex-
ists a point on the other line for which the distance constraint
holds. One could minimize the difference in distance, how-
ever to be precise all points need to be taken into account.

c© The Eurographics Association 2006.

F.A. Smit&A. van Rhijn&R. van Liere / GraphTracker

Figure 6: Expected error perpendicular to the camera
plane.

Therefore, we simply solve all of the ti seperately using the
method described above.

At this point we have effectively solved the least squares
perspective n-point problem for multiple cameras in closed
form. The next step is to determine a transformation matrix
between the determined 3D point cloud and the 3D model.
To accomplish this we use the closed form absolute orien-
tation method from Horn [Hor87]. As this algorithm can be
left unmodified we will not describe it any further here.

3.5. Error Analysis
Next, we will describe a mathematical model of the errors
made in pose estimation under the presence of noise, using
multiple cameras. We can distinguish between three sources
of errors: inaccurate vertex positions in the camera images,
errors in the device description, and errors in the camera cal-
ibration. For our purposes we only consider the first source
of errors, and assume both the device as well as the camera
errors to be negligible.

As depth information cannot be obtained by using a sin-
gle projected point, we assume a camera with two detected
points as shown in Figure 6. If we assume the error in the
projected image points to follow a Gaussian distribution with
expectation εb, the resulting expected errors εXY in the XY-,
and εZ in the Z-direction are given by:

εXY =
d
f εb εZ =

d2εb
l f −dεb

(5)

where d is the distance from the points to the camera’s
center of projection, f the focal distance, and l the distance
between the points. Note that εZ is larger than εXY , and thus
the largest error is made in estimating depth information. Ex-
tending equation 5 to N points results in

εN
XY =

1√
N

εXY εN
Z =

1√
N

εZ (6)

Figure 7: When parts of the graph are occluded, some
fixed points can still be detected. An interesting example is
the bottom-right image; the detected subgraph matches the
model in two ways. The point connecting the two self-loops
can be uniquely identified by noting a fixed point. How-
ever, the points respresenting the loops themselves cannot
be uniquely identified as the two points can be interchanged
freely.

Equation 6 shows that the error decreases in all directions
when more points are visible to the camera. We can extend
these equations to the case of multiple cameras. To do this,
the expectations have to be transformed to a common refer-
ence frame. Writing Nc for the number of cameras, and εi
for the transformed expectation of errors in the i-th camera
gives

ε =
1

Nc

√

∑
i

εi (7)

for each of the three directions with respect to the refer-
ence frame. Equation 7 shows that the expected error is re-
duced by increasing the amount of cameras. Our initial claim
to use multiple cameras in our method to reduce the amount
of error in pose estimation is supported by this result.

4. Results
Our implementation uses a cubical input device augmented
by retro-reflective markers, as shown in Figure 1. Several
points can be uniquely identified in the pressence of occlu-
sion (Figure 7), allowing the device pose to be reconstructed.
Using multiple cameras increased the number of detected
points as expected.

The implementation uses relatively unoptimized image
processing algorithms, and runs entirely on the CPU. Even
so, the entire reconstruction, from image processing to pose

c© The Eurographics Association 2006.

F.A. Smit&A. van Rhijn&R. van Liere / GraphTracker

Accuracy (in mm) Detected Points
Camera Average RMSE Mono Stereo

1 -26.4 15.4 4.94 -
2 -25.1 15.3 5.29 -
3 -12.7 10.8 5.75 -
4 -20.5 24.3 5.75 -

1/2 0.232 0.90 10.23 4.89
3/4 -0.0754 2.01 11.50 1.39

1/2/3/4 0.0324 0.57 21.73 4.01

Table 1: Measurement-to-plane summarized results for
1/2/4 cameras. The average distance to the XZ-plane and
the RMSE are given in the first column. The average number
of detected points per camera individually (mono) and equal
corresponding points (stereo) are given in the last column.

estimation with multiple cameras, takes between 10 and
20ms per frame. Of this time more than half is spent in
the unoptimized image processing phase. These results show
that our method is well suited to run in real-time with multi-
ple cameras.

4.1. Accuracy

Determining the absolute accuracy of a tracker over the en-
tire working volume is a tedious and very time-consuming
process. A grid of sufficient resolution covering the track-
ing volume has to be determined. Next, the device has to be
positioned accurately at each grid position, and the resulting
tracker measurement has to be determined.

We have used a different, simplified approach. We slide
the cube over a plane of constant height in the tracking vol-
ume and log the positional result. Thus, the measured cube
positions should all lie on the XZ-plane. Now we determine
the average distance to the XZ-plane, which gives an indica-
tion of the systematic error made. The standard deviation of
this set of distances (RMSE) gives a good indication of the
random error. Although this procedure does not provide us
with an absolute accuracy, we do get relative accuracy with
respect to the plane.

The results of the XZ-plane measurements for one, two
and four cameras are shown in Figure 8 and Table 1, first
column. For a different, random interaction session the aver-
age number of detected points per camera individually, and
the average number of detected stereo corresponding points
are listed in the last column of Table 1.

A number of observations can be made from these results:

• Both the systematic and the random error decrease as the
number of cameras increases. A pair of cameras is more
accurate than either of the single cameras, and four cam-
eras are yet slightly more accurate than either pair of cam-
eras.

• In the case of cameras 1 and 2, the XZ plane is almost par-
allel to the camera planes. In this case the error in position
is mostly determined by the depth estimation. Hence, the
error is dominated by εZ as given in Equation 5. For cam-
eras 3 and 4 the XZ plane is at a near 45 degree angle,
and thus the systematic error is decreased as can be seen
in Table 1. However, the random error is increased as the
cameras are positioned further away. The combination of
all cameras is even more accurate as the device is viewed
from more directions now.

• The total number of detected points increases as the num-
ber of cameras increases. Hence, a pose can be deter-
mined a larger percentage of the time with more cameras.
The theoretical accuracy is increased as well, since more
points are being used in the calculations. Stereo corre-
spondence can often not be found, while individual cam-
eras do see enough points combined for pose reconstruc-
tion.

5. Discussion

To allow for robustness against occlusion, it is important that
a detected, occluded subgraph can be matched to a unique
subgraph in the model. However, it is not yet clear what kind
of graph topology is best suited to accomplish this. We found
through direct experimentation that model graphs consist-
ing of several ordered non-isomorphic components are de-
sirable. Also, each of the components, and the entire model
itself, should not be ordered automorphic (except for the triv-
ial identity mapping).

A different approach would be to extend the graph match-
ing algorithm to detect missing vertices and edges due to
common cases of occlusion. However, developing a match-
ing algorithm that incorporate this kind of meta-knowledge
and still runs in real-time might be infeasible. We can also
impose the requirement that all model graphs must be planar
or locally planar, which allows the use of much faster graph
matching algorithms [Epp99]. This might, however, affect
the types of (convex) surfaces we can use for devices.

Another issue is the optimal placement of cameras. We
expect a camera setup with three cameras, one on each prin-
cipal axis, will be optimal with respect to the error made in
pose estimation (see Section 3.5), however this has still to be
verified formally. Also, by varying camera placements, oc-
clusion by the users hands might be avoided entirely as one
side of the input device might always be completely visible.

Future work will therefore consist primarily of finding
specific model graphs, which are provably robust against oc-
clusion. Also, developing a more robust graph matching al-
gorithm with knowledge of occlusion cases might be desir-
able.

c© The Eurographics Association 2006.

F.A. Smit&A. van Rhijn&R. van Liere / GraphTracker

'EQIVE��

'EQIVE��

'EQIVE��

'EQIVE��

'EQIVE����

'EQIVE����

'EQIVE��������

����

���

���

���

���

�

��

Figure 8: Tracking accuracy with respect to the XZ-plane. The vertical axis shows the distance to the XZ-plane in millimeters.
The horizontal axis represents a sequence of about 200 frames. When a camera could not detect a pose the values are ommited.

6. Conclusion
We have proposed a projective invariant optical tracker
based on graph topology. As the correspondence problem
is solved entirely in 2D, any number of cameras can be used
without restrictions. This, in combination with error toler-
ant subgraph matching, provided more robustness against
occlusion than classic methods. Even though theoretically
complex algorithms are used, the solution is fast enough to
estimate a pose from multiple cameras in real-time. Also, by
using multiple cameras the error made in pose estimation is
reduced significantly.

References
[BKJ05] BENCINA R., KALTENBRUNNER M., JORDÀ

S.: Improved topological fiducial tracking in the reactivi-
sion system. In Proceedings of the IEEE Procams 2005
(2005).

[CFSV96] CORDELLA L. P., FOGGIA P., SANSONE C.,
VENTO M.: An efficient algorithm for the inexact match-
ing of arg graphs using a contextual transformational
model. In ICPR ’96: Proceedings of the International
Conference on Pattern Recognition (ICPR ’96) Volume
III-Volume 7276 (1996), p. 180.

[CFSV04] CORDELLA L. P., FOGGIA P., SANSONE C.,
VENTO M.: A (sub)graph isomorphism algorithm for
matching large graphs. IEEE Trans. Pattern Anal. Mach.
Intell. 26, 10 (2004), 1367–1372.

[CR03] COSTANZA E., ROBINSON J.: A region adja-
cency tree approach to the detection and design of fidu-
cials. In VVG (2003), pp. 63–69.

[Dor99] DORFMÜLLER K.: Robust tracking for aug-
mented reality using retroreflective markers. Computers
and Graphics 23, 6 (1999), 795–800.

[Epp99] EPPSTEIN D.: Subgraph isomorphism in planar
graphs and related problems. J. Graph Algorithms & Ap-
plications 3, 3 (1999), 1–27.

[Fia05] FIALA M.: ARTag, a fiducial marker system using
digital techniques. In CVPR (2) (2005), pp. 590–596.

[GW01] GONZALEZ R. C., WOODS R. E.: Digital Image
Processing. Addison-Wesley, 2001.

[Hor87] HORN B.: Closed-form solution of absolute ori-
entation using unit quaternions. Journal of the Optical
Society of America, A 4, 4 (1987), 629–642.

[KB99] KATO H., BILLINGHURST M.: Marker tracking
and hmd calibration for a video-based augmented real-
ity conferencing system. In IWAR ’99: Proceedings of
the 2nd IEEE and ACM International Workshop on Aug-
mented Reality (1999), p. 85.

[MvL02] MULDER J., VAN LIERE R.: The Personal
Space Station: Bringing interaction within reach. In VRIC
2002 Conference Proceedings (2002), pp. 73–81.

[QL99] QUAN L., LAN Z.: Linear n-point camera pose
determination. IEEE Trans. Pattern Anal. Mach. Intell.
21, 8 (1999), 774–780.

[RPF01] RIBO M., PINZ A., FUHRMANN A.: A new
optical tracking system for virtual and augmented real-
ity applications. In Proceedings of the IEEE Instrumen-
tation and Measurement Technical Conference (2001),
pp. 1932–1936.

[vLM03] VAN LIERE R., MULDER J.: Optical tracking
using projective invariant marker pattern properties. In
Proceedings of the IEEE Virtual Reality Conference 2003
(2003), pp. 191–198.

[vRM04] VAN RHIJN A., MULDER J.: Optical track-
ing using line pencil fiducials. In Proceedings of the
Eurographics Symposium on Virtual Environments 2004
(2004), pp. 35–44.

[vRM05] VAN RHIJN A., MULDER J.: Optical tracking
and calibration of tangible interaction devices. In Pro-
ceedings of the Immersive Projection Technology and Vir-
tual Environments Workshop 2005 (2005).

c© The Eurographics Association 2006.

