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Abstract

We present an efficient compression scheme for animated sequences of triangular

meshes of the same connectivity. The proposed algorithm exploits the temporal

coherence of the geometry component by using a temporal wavelet filtering. The

quantization of the resulting wavelet coefficients is then optimized by a bit alloca-

tion process. This process dispatches the bit budget across the coefficient subbands

according to their influence on the quality of the reconstructed sequence for one

specific user-given bitrate. The proposed scheme is simple, fast, flexible, and scal-

able in frame rate and bitrate. Moreover, simulation results show that our approach

is competitive for any kind of animated models, whatever the characteristics (para-

metrically coherent or not, fine/coarse meshes...), contrary to the related works.
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Fig. 1. Several frames of the model Chicken.

1 Introduction

Today animated 3D objects are widely used in numerous domains (scientific

applications, computer games, animation...) to represent realistic visual data.

These animated 3D objects are most of the time represented by a sequence

of irregular meshes sharing the same connectivity at any frame. The motion

is obtained by modifying the positioning of the vertices, frame after frame

(see Fig. 1). For complex animated mesh sequences, this involves a very large

representation, and the compression is a relevant technique to ease storage or

transmission of these data.

Compared to the compression of static meshes [1], the problem of producing

compact representations for animated sequences has gone largely unaddressed.

The overall scheme of the compression methods in this domain [2–10] is the

following: an analysis step first transforms the original geometry to reduce

the signal information, and then a predictive coding scheme is applied on the

resulting details to exploit the temporal coherence between successive frames.

The natural approach for analyzing time-varying data is to exploit the tem-

poral coherence, like in video processing [11–13]. Two of the most relevant

approaches for animated sequences introduce for instance the principal com-

ponent analysis to exploit the temporal coherence of the geometry compo-

nent [4, 5]. Unfortunately this tool is efficient only for very specific sequences

(with few global motion and a number of frames far higher than the number

of vertices). Moreover, the time and memory complexity of this tool is high.
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Although wavelets are very popular and particularly efficient in video compres-

sion for instance [11–13], they are poorly studied in animation compression.

Moreover, the two only wavelet-based coders for animated mesh sequences in-

troduce (spatial) wavelets for static meshes, and consequently their efficiency

depends on the parametrical coherence of the mesh sequences [10,14].

Since we focus on sequences of irregular meshes sharing the same connectiv-

ity, one relevant solution to overcome the problem relating to the parametrical

coherence is to apply the wavelet filtering along the time axis. Moreover, the

fixed connectivity ensures the regularity of the geometry sampling along the

time axis, and involves that the wavelet filtering is always valid for any kind

of mesh sequences, parametrically coherent or not.

Therefore we describe in this paper a temporal wavelet-based coder for ani-

mated sequences of meshes of the same connectivity. One key contribution

is the use of a temporal wavelet transform during the analysis step to ex-

ploit the temporal coherence of such data. The second key contribution of

our compression scheme is the encoding of the resulting wavelet coefficients,

optimized by a temporal model-based bit allocation initially proposed for the

static semiregular meshes [15]. This coding scheme has the advantage to be

valid whatever the wavelet used. We will experimentally show that the pro-

posed coding scheme is simple, fast, flexible and competitive for any kind of

animated models whatever the characteristics (parametrically coherent or not,

fine/coarse meshes...), contrary to the state-of-the-art methods .

The rest of the paper is organized as follows. Section 2 presents the previous

works relative to the compression of animated mesh sequences. Section 3 intro-

duces the problem statement and the proposed approach. Section 4 describes

the overall scheme of our compression algorithm. Section 5 gives a detailed

description of the model-based bit allocation process. Section 6 deals with the

temporal wavelet filtering. Simulation results of our coder are given in section

7. Finally, we conclude and propose directions for future works in Section 8.
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2 Related Works

The first compression scheme for animated sequences of meshes, proposed by

Lengyel, exploits the affine transformations [2]. The author proposes to split

a mesh into several submeshes, and computes a rigid-body motion for each

submesh. In this way, only a set of affine transformations are needed to rep-

resent a submesh, instead of all the displacements of the submesh vertices.

Shamir and Pascucci proposed another approach based on the affine transfor-

mations, but combined to a multiresolution scheme [3]. Their technique first

computes the best affine transformations of the mesh at the first frame to

match the subsequent ones, and then encodes the temporal prediction errors.

Other schemes based on predictive coding have been proposed to exploit the

temporal and spatial correlations of mesh sequences [6, 7, 9]. The overall idea

of all these approaches is to predict the displacements of the vertices along

the sequence and then to encode the residual errors.

In parallel, Alexa and Müller [4] proposed a coding scheme based on the prin-

cipal component analysis (PCA) to represent the mesh sequences with only a

small number of basis functions. Karni and Gotsman improved this method

by further exploiting the temporal coherence and finally encode the PCA co-

efficients with a second-order linear predictive coding (LPC) [16].

In [8] Briceno et al. presented an original approach. The technique is to project

each frame onto a 2D image, and then encode the resulting sequence of ”2D

images” with some well-known video techniques.

Recently, a wavelet-based compression method has been presented by Guskov

and Khodakovsky in [10]. They proposed to exploit the parametric coherence

of some specific animated sequences of meshes, by applying a spatial multires-

olution analysis on the frames. Each frame is consequently transformed into

several sets of details, in other words the wavelet coefficients. In order to also

exploit the temporal coherence, the subbands of coefficients are then progres-

sively encoded by a predictive coding scheme based on a I-frames/P-frames

approach (similar to some video compression methods).

In parallel, J.H. Yang et al. also proposed a wavelet-based compression algo-

rithm, but for sequences of irregular meshes with changing connectivity [14].

They proposed to construct a semi-regular mesh structure at the first frame

and then match it to the other frames by using hierarchical motion estimation

technique. They finally use a zerotree coding scheme to compress the motion

compensation residuals between the successive frames.
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3 Problem statement and proposed approach

Although they are widespread in video processing [11–13], wavelets are not

fully exploited in animation compression. Actually, we observe that the works

using wavelets in animation compression [10, 14] propose an approach based

on spatial wavelets (for static meshes). Such a 3D+t approach is evident when

the input sequence is a rigid-body motion. In that case, the wavelet coefficients

are unchanged at any frame, and this strongly reduces the signal entropy of

the moving shape [10] . But the interesting animated mesh sequences are not

typically rigid, and consequently the coding performances strongly depend

on the stability of the wavelet transform. For instance, the coder of [10] is

unrelevant for the Chicken animation (Fig. 1), because of the lack of para-

metric coherence in the shape evolution [17]. As a result, the 3D+t approaches

of [10,14] are efficient only for parametrically coherent mesh sequences. More-

over, a spatial decomposition is attractive only for fine meshes, in other words

sequences with a high number of vertices (highlighted by the authors of [10]).

The objective of our work is to propose a wavelet coder for any kind of ani-

mated mesh sequences (parametrically coherent or not, fine or coarse meshes).

We prefer using a temporal wavelet transform instead of a spatial one, for

several reasons. First, the shared connectivity ensures that the geometry sam-

pling is regular (in time). This implies that the analysis step is always valid,

whatever the characteristics (manifold or not, sharp features, coarse meshes).

Moreover, using a temporal wavelet overcomes the problem of the parametric

coherence. In addition, using wavelets to exploit the temporal coherence en-

sures a compact representation of the transformed data, whatever the motion,

and the number of vertices of the given animation, contrary to the PCA-based

methods [4, 5].

Then, to encode the different subbands of temporal details, we choose to ex-

pand the model-based coder of [15] to the animated mesh sequences (initially

proposed for the semiregular meshes).
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Fig. 2. Overall coding scheme.

4 Overview of our approach

Here is the outline of our coding scheme (Fig. 2).

• Temporal wavelet transform (WT): a temporal wavelet filtering first

transforms the original geometry component to reduce the signal informa-

tion. The resulting one-level wavelet decomposition consists in a subband

of detail frames (temporal high-frequency) and a subband of approxima-

tion frames (temporal low-frequency), as shown in Fig. 7. Each vertex is

represented by a 3D detail (or wavelet coefficient) at any frame.

• Scalar quantization (SQ): the resulting subbands of frames are then

splitted in three 1D subbands according to the coordinates. These coordi-

nate subbands are then encoded using uniform scalar quantizers SQ. The

quantizers depend on the optimal quantization steps computed during the

bit allocation process.

• Bit allocation: the allocation process optimizes the rate-distortion trade-

off relative to the data quantization. The objective is to efficiently dispatch

the bit budget across the subbands according to their influence on the qual-

ity of the reconstructed mesh sequence for one specific bitrate. A detailed

description of this process is given in the next section.

• Entropy coding: the quantized details are then encoded with an entropy

coder, to further compress the data and finally produce the bitstream. A

simplified version of the context-based arithmetic coder of [18] is used.

• Connectivity coding: in parallel, the shared connectivity of the original

sequence must be encoded and transmitted if we want to reconstruct the

sequences after decompression. In this paper, we use the valence-based coder

of Touma and Gotsman [19].
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5 Bit allocation

5.1 Principle

The general purpose of a bit allocation process is to optimize the trade-off be-

tween the bitrate and the quality of the reconstructed data. In this paper, the

allocation process allows to minimize the quantization losses of the geometry

component for one user-given target bitrate.

Since the temporal wavelet transforms the original sequence in a multilevel

structure, the objective of the allocation process is to dispatch the bit budget

across the different subbands of the multilevel structure according to their

influence on the quality of the reconstructed sequences.

More precisely, our allocation process computes the set of optimal quantiz-

ers {q∗} minimizing the reconstructed mean square error DT for one specific

user-given target bitrate Rtarget. The solutions {q∗} are obtained by solving

the problem

(P)















minimize DT ({q})

with constraint RT ({q}) = Rtarget,

(1)

with RT the total bitrate.

5.2 Optimal solution

By using a lagrangian approach, the constrained allocation problem P can be

solved by minimizing the criterion

Jλ({q}) = DT ({q}) + λ(RT ({q}) − Rtarget) , (2)

with λ the lagrangian operator.

The optimal quantization steps {q∗} are obtained by solving the following

system:
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













∂Jλ({q})
∂q

= 0

∂Jλ({q})
∂λ

= 0

. (3)

As introduced in Section 4, the 3D subbands are splitted in three 1D (co-

ordinate) subbands, and then encoded separately with three different scalar

quantizers. So, the reconstructed mean square error can be defined by

DT ({q}) =
N

∑

i=0

wi

3
∑

j=1

Di,j (qi,j) , (4)

where {wi} are weights due to the wavelet non-orthogonality [20] (i is the

resolution level), Di,j the mean square error relative to the coordinate subband

i, j (j = 1 for the x-coordinates, j = 2 for the y-coordinates, and j = 3 for the

z-coordinates), and qi,j the associated quantization step. The weights {wi} are

defined by w0 = (wlf )
N and wi = whf (wlf )

N−i ∀ i 6= 0, where wlf and whf are

two weights depending on the wavelet used [20]. Tab. 1 gives for instance the

numerical values of these weights for different lifting schemes experimented

during this work.

Filter [2, 0] [2, 2] [4, 2] [6, 2]

wlf 0.75 0.75 0.8203125 0.85299682

whf 0.5 0.359375 0.3410644531 0.3359718323

Table 1

Weights corresponding to different lifting schemes.

In parallel, the total bitrate RT can be developed in

RT ({q}) =
N

∑

i=0

3
∑

j=1

ai,jRi,j(qi,j), (5)

with Ri,j the bitrate relative to the coordinate subband i, j, and {ai,j} the

coefficients relative to the subsampling step (ratio between the size of the

coordinate subband and the total number of samples). By merging (4) and (5)

in (2), the system (3) becomes a system of (3N + 4) equations with (3N + 4)

unknowns (the set {qi,j} and λ):
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∂Di,j(qi,j)

∂qi,j

∂Ri,j(qi,j)

∂qi,j

= −λ
ai,j

wi

(6a)

N
∑

i=0

∑

j∈Ji

ai,jRi,j(qi,j) = Rtarget. (6b)

The solutions of (6a) may be obtained by inverting the equations. But this

stage is a complex operation, and we overcome this problem by using an

iterative algorithm depending on λ [15].

5.3 Overall Algorithm

The optimal solutions of the system (6) for the given bitrate Rtarget are com-

puted thanks to the following overall algorithm:

(1) λ is given. For each set (i, j), compute qi,j that verifies (6a);

(2) while (6b) is not verified, calculate a new λ by dichotomy and return to

step (1);

(3) stop.

5.4 Distribution of the detail subbands

The computation of the quantization steps {qi,j} as solutions of (6a) can

be done according to different methods. Using a model-based algorithm is

a relevant solution, providing that the processed data have specific statistical

properties. Therefore we study the distribution of the coordinate subbands at

different decomposition levels.

Fig. 3 shows the probability density functions (pdf) of three typical coordinate

subbands of temporal details (Chicken animation). We observe that these pdf

can be modeled by a generalized gaussian distribution (GGD). Hence, we can

use the model-based algorithm presented in [15] to compute the solutions of

(6a). This leads to a fast and low complex algorithm. The interested reader

should refer to [15] for more details and explanations.
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(a) X-coordinates (level 1).
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(b) Y-coordinates (level 1).
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(c) Z-coordinates (level 1).

Fig. 3. Typical pdf of coordinate subbands of detail frames (Chicken animation).

The blue and red curves represent respectively the real distribution and the approx-

imated one modeled by a GGD.
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5.5 Encoding of the approximation frames

On the other hand, the typical pdf of coordinate subbands of approximation

frames cannot be modeled by a GGD (see Fig. 4(a),4(c), and 4(e)). To over-

come this problem, we propose to use a differential coding. The overall idea

of such a coding is to encode differences between samples instead of samples

themselves [15].

So, we deal with the geometric differences between the coordinates of the ap-

proximation frames (in function of the vertex indexing), i.e., for each frame

t:

[V (0, t), V (1, t) − V (0, t), V (2, t) − V (1, t), ..., V (nv, t) − V (nv − 1, t)]

.

Fig. 4(b), 4(d), and 4(f) show the typical pdf of three coordinate subbands

of approximation frames (Chicken animation), when using the proposed dif-

ferential coding. We observe that the distribution of the coefficients of the

approximation frames finally can be modeled by a GGD as well. Moreover,

this allows to exploit the spatial correlation between neighbor vertices, and

further reduce the data information needed to represent the LF sequence.

This differential coding may appear to be a crude solution. Nevertheless, it is

sufficient for our algorithm since the model-based algorithm presented in [15]

can be finally applied on the LF data. This is partly due to the valence-based

coder of Touma and Gotsman used to encode the connectivity. It provides a

non arbitrary indexing of the vertices sufficiently coherent [19]. Moreover, the

low complexity of this approach leads to very fast encoding and decoding of

the approximation frames. However, the improvement of this encoding is an

interesting direction for future works (see Section 8).

6 Temporal Wavelet Transform for Animated Mesh Sequences

6.1 Principle

Wavelets are powerful tools widely used in signal processing to provide a mul-

tiresolution representation of a given dD signal and enable decorrelation in
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(b) X-coordinate subband with differ-

ential approach.
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(c) Y-coordinate subband without

differential approach.
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(d) Y-coordinate subband with differ-

ential approach.
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(e) Z-coordinate subband without

differential approach.

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

samples

real distribution
theoretical modeling

(f) Z-coordinate subband with differ-

ential approach.

Fig. 4. Typical probability density function of coordinate subbands of approximation

frames, with and without differential coding (Chicken animation). The blue and

red curves represents respectively the real distribution and the approximated one

modeled by a GGD.
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space and frequency [21]. In case of time-varying signals (dD + t), a wavelet

filtering can be also applied along the temporal axis to exploit the temporal

coherence (see Fig. 5). This discrete temporal wavelet transform (TWT) leads

to an efficient energy concentration on the low-pass temporal subbands.

As discussed in Sections 1 and 3, a TWT is a natural and relevant approach

for the geometry component of animated mesh sequences sharing the same

connectivity. The fixed connectivity implies a regular sampling in time and a

fixed number of vertices at any frame. Thus, a discrete TWT can be easily

applied on this kind of data.

An animated sequence of meshes sharing the same connectivity is defined

by a set of T meshes {f1, f2, ..., fT}, where fi represents the ith frame. fi is

defined by its geometry (i.e. the positioning of the vertices at the frame i),

and a list of triangles describing the connectivity of the vertices at any frame.

As the number of vertices is fixed at any frame, we propose in this paper to

apply a monodimensional TWT on the successive locations of each vertex (see

Fig.6) [22, 23]. The principle is the following. Let us define the evolution of

the vertex of index i along the time by

Vt(i) = {V (i, 0), V (i, 1), ..., V (i, T − 1)}, (7)

with V (i, t) the positioning of this vertex at the frame t. For a given vertex i,

such a temporal filtering provides 2 sets:

• the set of temporal details (or high frequency coefficients) h(1)(i) relative to

the set of odd samples {V (i, 2k + 1)} (the upper index (1) represents the

decomposition level) ;

• the set of low frequency coefficients l(1)(i) relative to the set of even samples

{V (i, 2k)}.

Applying this filtering in parallel on each vertex provides that the input se-

quence of T meshes is finally splitted in two subbands:

• the subband h(1) defined by T/2 detail frames;

• the subband l(1) defined by T/2 approximation frames.

One can obtain a multiresolution decomposition by subsequent filterings of the

approximation subband. This decomposition consists in N subbands of detail

frames {h(r)} (with r the resolution level), and the approximation subband

13



l(N). Fig. 7 shows the resulting 2-level decomposition of the Face animation.

Numerous wavelet families exist depending on their mathematical properties,

but also on their method of construction [24]. In this paper, we focus on the

lifting implementation [25], because it has several advantages over classical

constructions: it allows easier and faster implementation (low computational

cost), a fully in-place calculation, and the synthesis step can be directly de-

duced from the analysis step. Moreover, lifting-based implementation of any

transversal wavelet filter can be designed [26].

6.2 Lifting Implementation

If we consider a filter bank whose lifting implementation corresponds to a

single lifting step (see Fig. 8), then the temporal details and the low frequency

coefficients are obtained from the following equations

h(1)(i, k) = V (i, 2k + 1) − P ({V (i, 2k)}) , (8)

l(1)(i, k) = V (i, 2k) + U
(

h(1)(i)
)

, (9)

where P and U are respectively the predict and update operators. Fig. 9

shows for instance the principle of the lifting scheme [2, 0] with 2 levels of

decomposition. Note that the synthesis step is easily obtained reversing the

same lifting steps with opposite signs:

V (i, 2k) = l(1)(i, k) − U
(

h(1)(i)
)

, (10)

V (i, 2k + 1) = h(1)(i, k) + P ({V (i, 2k)}) . (11)
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Fig. 5. Temporal wavelet filtering, one level of decomposition.
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Fig. 6. Proposed temporal wavelet filtering for animated sequences of meshes sharing

the same connectivity. The previous and next positionings of one vertex are used to

compute the associated wavelet coefficient at the instant t.

Fig. 7. The 2-level decomposition of the Face animation.
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7 Experimental results

First we compare the efficiency of several classical lifting schemes often used

in video compression [13,27]: the schemes [2, 0], [2, 2], [4, 2] and [6, 2]. The cor-

responding coefficients of the predict and update operators are given in Tab.

2. Nevertheless, other wavelet families may be more relevant in animation

compression, for instance the spline wavelets particularly useful for represent-

ing multiresolution curves [28]. In this way, a deep algebraic and comparative

analysis of different wavelet families is one of the most interesting direction

for future works.

We study three well-known animations with different characteristics (see Tab.

3): Face, Cow and Chicken. To evaluate the coding performances of our

coder, we use the metric error introduced by Karni and Gotsman in [5]. In the

rest of the paper, this metric is called KG error, and is expressed in percent.

This metric, corresponding to the relative discrete L2-norm both in time and

space, is given by

KG error = 100
||G − Ĝ||

||G − E(G)||
, (12)

where G is a matrix of dimension (3 × nv, T ) containing the geometry of

the original sequence, Ĝ the quantized version of the geometry, and E(G) an

average matrix in which the tth column is defined by

(

X̄t (1 ... 1) , Ȳt (1 ... 1) , Z̄t (1 ... 1)
)t

, (13)

with X̄t, Ȳt, and Z̄t the mean values of the coordinate sets of each frame t.

Fig. 10, 11 and 12 show the curves KG Error/bitrate of our coder for the

three sequences according to the different lifting schemes (with three levels of

decomposition). The bitrate is given in bits per vertex per frame. We observe

that the scheme [2, 0] provides the worst coding performances, whereas the

schemes [4, 2] or [6, 2] provides the best performances. This is due to the fact

that the schemes [4, 2] and [6, 2] take into account a larger neighborhood, and

consequently leads to a better prediction.

Nevertheless, the schemes [2, 2], [4, 2] and [6, 2] provide similar results at low
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Fig. 10. Curve KG Error/bitrate for the Chicken animation according to different

lifting schemes.
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Fig. 11. Curve KG Error/bitrate for the Face animation according to different

lifting schemes.

Fig. 12. Curve KG Error/bitrate for the Cow animation according to different

lifting schemes. 18



bitrates for the Face animation. The very small vertex displacements between

subsequent frames of this animation involves that the prediction step provides

similar results (same wavelet coefficients), whatever the complexity of the

operator P used.

As the filter [4, 2] requires less computing resources in processing time and

memory usage than the filter [6, 2] (25% fewer operations, see Tab. 4) for

similar results, we finally conclude that the filter [4, 2] is the most interesting

among the experimented filters.

We also study the influence of the number of decomposition levels. Fig 13,

14 and 15 show the curves KG Error/bitrate for the three same sequences in

function of the number of decomposition levels (when using the filter [4,2]).

For the Face, the best results are obtained with 7 decomposition levels. For

the two other animated sequences, the best results are obtained with 4 de-

composition levels. This difference is mainly due to the repetitive nature of

the Face, and the spatially restricted displacements of the vertices. These

characteristics imply a larger temporal coherence (compared to the sequences

Chicken and Cow).

To show the interest of our approach, we also compare the performances of

our coder with several state of the art coders:

• the coder for static meshes of Touma and Gotsman [19] denoted by TG ;

• the PCA-based coder for mesh sequences of Alexa and Müller [4] denoted

by PCA;

• the coder for mesh sequences of Karni and Gotsman [5] denoted by KG. It

combines the coder PCA to a linear prediction coding;

• the coder Dynapack of Ibarria and Rossignac [9];

• the spatial wavelet-based coder of Khodakovsky and Guskov [10], denoted

by AWC.
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All the results relative to these methods are extracted from [5] and [10], that

is why some results are missing. This is also why we only use the KG error

of [5] as quality criterion. Notice that the bit budget needed to encode the

connectivity of the animated sequences is included in the total bitrate.

First, Fig. 16(a) shows the curve KG Error/bitrate for the sequence Face.

We observe that the PCA-based methods (PCA and KG) provide the best

coding performances. This is not surprising given the characteristics of this

sequence. It turns out that the PCA-based methods are particularly perfor-

mant for long sequences of relatively coarse meshes [29]. On the other hand,

our method is significantly more efficient than the other methods, and espe-

cially the coder AWC. Given the coarseness of this animated sequence (small

number of vertices), the spatial multiresolution nature of this coder cannot be

fully exploited. As expected, the proposed temporal wavelet filtering does not

depend on such characteristics. It shows one of the advantages of a temporal

decomposition over a spatial decomposition.

Now, we observe the coding performances of our approach on the Cow (Fig.

16(b)), and on the Chicken (Fig. 16(c)). We recall that these animations

are defined by short sequences of finer meshes and present much larger defor-

mations than the Face. First, we observe that for these two sequences our

method clearly outperforms the PCA-based methods 2 . It turns out that the

PCA-based methods are inefficient for sequences with fine meshes. This is due

to the size of the “payload” archive of eigenmodes that becomes too large in

case of short sequences [5]. Our simple temporal wavelet filtering do not pro-

vide such a side information during decompression. This shows the interest of

our approach over the PCA-based methods.

Second, we observe our coding scheme provides better coding performances

than AWC for the Face, but not for the Cow. We assume this is due to the

very small local deformations of the Cow, involving the parametric coher-

ence, frame after frame. Nevertheless, compared to AWC, our method gives

very competitive coding performances.

Concerning the sequence of the Chicken, we cannot compare our coder with

AWC (Fig. 16(c)), because the results are not given in the corresponding pa-

2 The results of KG for the Chicken is missing because the authors claim that

their method is not relevant for such a data. Consequently, the numerical values are

not given in their paper [5].
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Fig. 16. Curves KG Error/bitrate relative to different compression methods.
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per [10]. Anyway, the method AWC is inefficient for such a sequence because

of the lack of parametric coherence and the characterics of this animated se-

quence (non manifold and sharp features) [17].

From a compression point-of-view, we can conclude that our approach is com-

petitive for any kind of animated sequences, and particularly relevant when

the meshes are fine (more powerful than the PCA-based methods) and non

parametrically coherent (more powerful than the method AWC).

8 Conclusions and future works

In this paper we have introduced a simple and efficient wavelet-based coder

for any kind of animated sequences of irregular meshes sharing a same con-

nectivity. One key contribution of this work is to propose a temporal wavelet

filtering to process the geometry component of such data. Such a temporal

analysis has the advantage to overcome the problem of the parametric coher-

ence of a given animation assumed by previous wavelet coders in animation

compression. The second key contribution is a model-based bit allocation that

optimizes the quantization process. The resulting coder is simple, fast, and

flexible (any 1D wavelet can be used). Experimentally, we show that our ap-

proach is always valid and competitive, whatever the characteristics of the

animated mesh sequences (contrary to the state-of-the-art methods).

There are a lot of interesting directions for future works. The most important

is a deep algebraic and comparative analysis of the numerous 1D wavelet fam-

ilies (orthogonal, spline...). Our future works should also concern the encoding

of the approximation frames. Currently, the solution is crude but sufficient to

exploit the model-based algorithm of [15] during the allocation process. Never-

theless, some more relevant solutions may improve the coding performances of

our coder since the spatial coherence of the approximation frames are not fully

exploited (using the works of Sorkine [30, 31] for instance). Another interest-

ing work should be a specific implementation to obtain a bitstream structure

standing the temporal scalability, but also the random access across the time.

This should be evident since our approach already allows the temporal scala-

bility. Furthermore, this new implementation should not increase significantly

the bitstream size.
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Lifting Scheme Predict operator

[2, 0] [−1
2 − 1

2 ]

[2, 2] [−1
2 − 1

2 ]

[4, 2] [ 1
16 − 9

16 − 9
16

1
16 ]

[6, 2] [− 3
256

25
256 − 75

128 − 75
128

25
256 − 3

256 ]

Lifting Scheme Update operator

[2, 0] −

[x, 2] [14
1
4 ]

Table 2

Predict and update operators of different lifting schemes.

Sequence T nv

Chicken 399 2916

Face 10001 539

Cow 204 2904

Table 3

Characteristics of the animations.

Lifting Scheme [2, 0] [2, 2] [4, 2] [6, 2]

Complexity 6 ovf 12 ovf 18 ovf 24 ovf

Table 4

Computational cost in operations per vertex per frame (ovf) according to different

schemes.
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