
Scalable Rendering of Massive Triangle Meshes on Light Field Displays ⋆

Fabio Bettio Enrico Gobbetti Fabio Marton Giovanni Pintore

CRS4, POLARIS Ed. 1, 09010 Pula (CA), Italy – www.crs4.it/vic/

Abstract

We report on a multiresolution rendering system driving light field displays based on a specially arranged array of projectors
and a holographic screen. The system gives multiple freely moving naked-eye viewers the illusion of seeing and manipulating 3D
objects with continuous viewer-independent parallax. Multi-resolution techniques which take into account the displayed light field
geometry are employed to dynamically adapt model resolution to display capabilities and timing constraints. The approach is
demonstrated on two different scales: a desktop PC driving a 7.4Mbeams TV-size display, and a cluster-parallel solution driving
a large (1.6x0.9 meters) 35Mbeams display which supports a room-size working space. In both cases, massive meshes of tens of
millions of triangles are manipulated at interactive rates.

Key words: 3D displays, Massive datasets, Out-of-core algorithms, Parallel graphics, Level of detail

1. Introduction

The accurate reproduction of 3D light fields requires gen-
erating a large number of light beams of appropriate ori-
gin, direction, and color. Recent advances in 3D display
design have demonstrated that interactive high resolution
light field display technology is practically achievable [1,2].
Even though considerations on human vision specifics can
drastically reduce the amount of data that has to be en-
coded in a reconstructed light field, rendering still remains
a complex and computationally intensive task, which has
limited until very recently the applicability of such dis-
plays to presentation of static images, prerecorded movies,
or small graphics models. In this article, we report on a
specialized out-of-core multiresolution real-time rendering
system able to render massive geometric models on light
field displays. The system gives multiple viewers the illu-
sion of seeing virtual objects floating at fixed physical lo-
cations situated in a human–scale working volume (see fig-
ure 1). Different viewers see the scene from their point of
view and enjoy continuous horizontal parallax without spe-
cialized viewing devices. The displays are based on a spe-
cially arranged array of projectors emitting light beames

⋆ Extended version of a paper presented at the Eurographics Sym-
posium on Parallel Graphics and Visualization (Manno, Switzerland,
May 2007)

Email addresses: fabio@crs4.it (Fabio Bettio),
gobbetti@crs4.it (Enrico Gobbetti), marton@crs4.it (Fabio

Marton), gianni@crs4.it (Giovanni Pintore).

onto a holographic screen, which then makes the neces-
sary optical transformation to compose these beams into
a continuous 3D view. The displays are driven by a mul-
tiresolution renderer able to correctly project geometries
onto the display and to dynamically adapt model resolu-
tion by taking into account the particular spatial accuracy
characteristics of the display. The method is a light field
display-aware version of our Adaptive TetraPuzzles tech-
nique [3]. The efficiency and scalability of this approach is
demonstrated by an application supporting interactive ma-
nipulation of massive colored highly tessellated models on
both a TV sized 7.4Mbeams display and a large (1.6x0.9 m)
35Mbeams display that is designed to be used in a room-
size working space. The small-scale system can be driven by
a single desktop PC, while the large-scale display is driven
by a cluster-parallel implementation of the adaptive mul-
tiresolution renderer. The large display is an evolution of
the 50Mbeams display used in our earlier work [4], and it
is based on LED projectors, thus improving color repro-
duction and reducing energy consumption at the cost of
slightly reduced luminance and 2D resolution. Many of the
details of this framework were presented in [4]. We provide
here a more thorough exposition, but also significant new
material, including the discussion of a single PC solution
and of the projection method.

Preprint submitted to Computers & Graphics



2. Related work

Developing a scalable light field display system which
targets interactive manipulation of massive models is a big
engineering effort, which requires the combination of state-
of-the-art results in a number of technological areas. In the
following, we briefly discuss the approaches most closely
related to ours.

Fig. 1. Interactive massive model rendering on light field displays.

Light field displays. A number of approaches have
been proposed to support naked-eye stereoscopic rendering.
For a review on the subject of display technology we refer
the reader to [5]. The displays used in this work [1,6,7] adopt
the distributed image generation approach of untracked
projector-based multi-view technology, but remove some of
the intrinsic optical limitations by offering a fully continu-
ous blend among views. Typical multi-view displays, often
based on an optical mask or a lenticular lens array, show
multiple 2D images in multiple zones in space. They sup-
port multiple simultaneous viewers, but at the cost of re-
stricting them to a limited viewing angle. Matusik et al. [8],
for instance, demonstrated a prototype based on this tech-
nology and assembled with sixteen 1024x768 projectors and
a lenticular screen. As in our case, the setup requires one
projector per view. However, their screen achieves vertical
diffusion not by diffusing light vertically from the screen as
we do, but by focusing light horizontally onto a diffuse sur-
face, yielding a different projection geometry. A 3D stereo
effect is obtained when the left eye and the right eye see
different but matching information. The small number of
views of multi-view systems based on masks or lenticu-
lars produces, however, cross-talks and discontinuities upon
viewer’s motion [9]. Instead, the solution employed here ex-
ploits the light shaping capabilities of a holographic screen,
and presents a continuous image to many viewers within a
large workspace, due to the many smoothly blended view-
dependent pixels that contribute to a single image. The
light field display recently presented by Jones et al. [2]
also uses an anisotropic diffuser, which, however, covers a
rapidly spinning mirror illuminated by a single high speed
video projector. This setup allows for 360◦ viewing, but is
suitable only for limited image sizes and model complexity.

Parallel rendering for multi-projector displays.

Driving our displays requires generating appropriate im-
ages for each projector, which is done for our large scale
setup using a cluster-based solution. Such an approach to
creating large multi-view displays has gained a lot of in-
terest, because these architectures are economical, scalable

in performance and resolution, and easy to upgrade [10–
12]. Chen et al. [10] classify cluster-based display setups
into two approaches: master-slave and client-server. In the
master-slave setup, the dataset is mirrored across all the
nodes and multiple instances of a program run in parallel on
each cluster node. Each process has identical behavior and
manages the entire dataset but renders only a certain por-
tion of it. Representative examples of this approach are VR
Juggler [13] and Net Juggler [14]. In the client-server setup,
instead, a server distributes appropriate data to a number
of rendering nodes and handles the synchronization among
them. The approach is more general, and data distribution
can follow sort-first, sort-last or hybrid strategies [15,16].
Data can be distributed in a transparent manner by inter-
cepting calls at the graphics API level [11] or at the display
manager level [17], as well as by implementing data distri-
bution features at the scene graph level, as in OpenSG [18],
Szyzygy [19], Blue-C [20], and Garuda [21]. Managing data
distribution at the scene description level requires more
application programmer effort, but offers more optimiza-
tion opportunities, since data transfers can be performed
at coarser scales, and high-level object structures can be
exploited by culling algorithms to reduce network require-
ments. Our approach follows an object-based server-push
philosophy, similar to the one employed in Garuda [21],
that exploits client and server object caches and multicast-
ing to reduce network load. However, our system is tailored
to render massive models on a light field display, in which
all rendering clients almost fully share the same view, and
must use specialized techniques to adapt and project ge-
ometry onto the display. Load balancing strategies for sort-
first [22,23] and sort-last [16,15,24,25] rendering algorithms
have been proposed in the past with the goal of maximally
exploiting hardware resources. They rely on primitive count
heuristics and efficient image compositing methods to re-
distribute the images computed by rendering nodes to the
appropriate display devices. Since all the projectors in our
display typically look at the same portion of the displayed
object, we take the straightforward approach of using a
single LOD/culling front-end and statically assigned per-
projector back-ends. Instead of focusing on per-view frus-
tum culling, which are effective in a tiled display configu-
ration, we focus on display-aware LOD selection and em-
ploy a multiresolution mesh structure instead of a general
scene graph. Various GPU-oriented multiresolution struc-
tures have been recently proposed which obtain maximum
performance by moving the granularity of the LOD repre-
sentation from triangles to triangle patches [3,26,27]. In this
work, we adapt one of these methods [3] to take into account
the 3D display characteristics when producing variable ac-
curacy approximations, and demonstrate its suitability for
a cluster-parallel environment. The multiview image gen-
eration approach has also been taken for other 3D displays
(see, e.g., [28]) but not applied to interactive massive model
rendering.

2



3. Light field display technology overview

The displays employed in this work are based on tech-
nology developed by Holografika 1 . In this section, we illus-
trate the main concepts behind them, which we exploited
to develop our scalable massive model renderer. We refer
the reader to [1] for more information.

A set of projectors is densely arranged behind a holo-
graphic screen. Each of them projects a specific image onto
it to contribute to building up a light field (see figure 2(a)).
Each projector emits light beams toward a subset of the
points of the holographic screen. At the same time, each
screen point is hit by more light beams coming from differ-
ent projectors. By positioning mirrors at the sides of the
display, it is possible to reflect back onto the screen the light
beams that would otherwise be lost, thus creating virtual
projectors that increase the display field of view. The holo-
graphic screen is the key element in this design, as it is the
optical element enabling selective directional transmission
of light beams. It is a holographically recorded, random-
ized surface relief structure able to provide controlled an-
gular light divergence. The light diffusion characteristic of
the screen is the critical parameter influencing the angular
resolution of the system, which is very precisely set in ac-
cordance with the system geometry. In the ideal case, each
point of the screen should be able to produce light beams
at an arbitrary angle within the hemisphere bounded by
the plane tangent to the surface at that point. As a first
limitation to the display complexity, one can require the
display to emit light beams only within a cone of angle
φ, therefore limiting the effective 3D viewing to a conical
Field of View of angle φ. For the displays presented here,
φ = 50◦. Since our eyes are displaced horizontally and we
move mainly in horizontal directions, the requirements on
the display can be relaxed further by removing vertical di-
rectional selection, thus removing vertical parallax while
maintaining the horizontal one. This obviously has a lim-
ited effect on motion parallax, a very important factor in
setting up depth cues, since our head movements are mainly
in the horizontal direction. In the horizontal parallax de-
sign, the projectors are arranged in a horizontal linear ar-
ray and the angular light distribution profile induced by
the screen is strongly anisotropic (see figure 2(b)). Hori-
zontally, the screen surface is sharply transmissive, in order
to maintain a sub-degree separation between views. Ver-
tically, the screen scatters widely, so the projected image
can be viewed from virtually any height. The angular light
distribution profile introduced by the holographic screen,
with a wide plateau and steep Gaussian slopes precisely
overlapped in a narrow region in the horizontal direction,
results in a homogeneous light distribution and continuous
3D view with no visible crosstalk within the field of depth
determined by the angular resolution. If one assumes that
each beam has a finite angular size Φ, with Φ = φ/n, n

1 www.holografika.com

being the number of beams hitting a given screen pixel,
we ensure a continuous coverage of the emission angle thus
approximating continuous parallax. This, however, intro-
duces a finite resolution effect – which is independent from
the screen pixel resolution – in the reconstructed 3D scene.
In fact, the size s of the smallest voxel than can be repro-
duced will depend (see figure 2(c)) on the distance z of its
center from the screen and from the beam angular size Φ

s(z) = s0 + 2‖z‖ tan(
Φ

2
) (1)

where s0 is the pixel size on the screen surface. In other
words, the achievable spatial resolution decreases with the
distance from the screen. This is intuitive, because the illu-
sion of the existence of a particular spatial point is gener-
ated by pyramidal beams crossing at a specific 3D position.
This fact also practically limits the field-of-depth of the dis-
play, i.e., the maximum distance from the screen at which
objects are faithfully reconstructed. For instance, the accu-
racy of the large display varies from s0 = s(0) = 1.50mm
on screen to s(300mm) = 5.69mm, while for the small dis-
play the accuracy varies from s(0) = 1.25mm on screen to
s(300mm) = 5.38mm. As we will see, the particular light
field geometry has important implications for the design of
the rendering system.

(a) Schematic diagram (b) Holographic
optical transfor-
mation

(c) Voxel
size

Fig. 2. Light field display principles

4. Parallel and sequential adaptive rendering

Reconstructing the light field of a rendered scene
amounts to precomputing the projection parameters as-
sociated to each of the projectors and to using them for
generating rendered views. Given the high pixel count
of the display, and the high triangle count of the target
models, appropriate techniques must be employed in order
to meet timing constraints in interactive applications. In
particular, it is of primary importance to parallelize image
generation as well as to dynamically adapt rendering com-
plexity by employing a multiresolution technique which
takes into account the characteristics of the display.

Even though the general approach has similarities with
current parallel view-dependent level-of-detail approaches,
there are some extremely important differences. First of all,
each frame is composed of many very similar views, and it
is therefore appropriate to amortize level-of-detail selection
costs over all views instead of repeating a view-dependent

3



render call for each of the projector images. It is also impor-
tant, for image continuity reasons, that all views agree on
the same level-of-detail representation. This leads to an ap-
proach in which a common front-end system chooses a sin-
gle per-frame level-of-detail. Moreover view-frustum culling
can also be performed globally by generating a single set
of visible nodes shared by all projectors, since all of them
look at an almost identical portion of the displayed object.
Moreover, geometry cannot be projected onto the display
simply following a standard pinhole projection approach,
because of the transformation made by the holographic
screen on the rays that traverse it. Modeling this trans-
formation requires a multiple-center-of-projection perspec-
tive, which cannot be achieved using the standard linear
graphics pipeline and requires the use of appropriate ver-
tex shaders. In addition, the multiresolution renderer can-
not exploit the position of a particular viewer to select a
level of detail, since an unlimited number of viewers must
be free to move in a very large workspace in front of the
display. In our approach, adaptive rendering exploits the fi-
nite spatial resolution of the display to perform adaptation.
Finally, nonlinear geometric and color correction must be
performed to undo distortions due to lenses and approxi-
mate mechanical calibration, as well as to correct the dif-
ferent color, contrast, and intensity response of the projec-
tors. This leads to an approach in which the usual rendering
pipe-line is fine-tuned by a nonlinear warping and photo-
metric correction pass, as in standard multi-projector dis-
play systems [29]. The various components of our system
are described in the following subsections.

4.1. Renderer design

Even though, in principle, it is possible to use, for maxi-
mum performance, one PC per projector, benefit/cost anal-
ysis leads to a configuration in which multiple projectors
are controlled by a single PC. On current architectures, for
instance, a dual twin-view solution is very well supported
by most desktop mainboards. For this reason, controlling
4 outputs/machine does not require any special hardware
but just the connection of two dual-DVI graphics board on
the PCI Express bus (no need for SLI). This solution re-
duces the number of PCs by a factor of 4, and the graphics
performance to less than 4 because of the reduced synchro-
nization needs. The large scale display described here uses
such a configuration.

Our parallel rendering method uses a distributed im-
age generation system that can be implemented on a clus-
ter, with a front-end client PC selecting the level of de-
tail from the multiresolution structure and multicasting
graphics commands to back-end PCs. The characteristics
of multiresolution techniques based on coarse grained adap-
tation are exploited to efficiently distribute data to back-
end nodes as well as to efficiently pass them to the GPU
through preferential paths. With this overall design, the dis-
play driven by a single PC can be thought of as a particular

instance of the parallel version, where the back-end and the
front-end are collapsed into a single machine that sequen-
tially renders all projector images. In this case, a DVI con-
nection can be used to drive the display, which must, how-
ever, contain specific electronics to decode the DVI stream
and dispatch images to the appropriate projectors.

The overall architecture of the parallel rendering system
is depicted in figure 3, and its main components are dis-
cussed in the following sections.

4.2. Multiresolution structure overview

The TetraPuzzles structure uses a conformal hierarchy of
tetrahedra generated by recursive longest edge bisection to
spatially partition the model in a preprocessing step. Each
tetrahedral cell contains a precomputed simplified version
of the original model. The representation is constructed off-
line during a fine-to-coarse parallel out-of-core simplifica-
tion of the surface contained in diamonds (sets of tetrahe-
dral cells sharing their longest edge). Appropriate bound-
ary constraints are introduced in the simplification process
to ensure that all conforming selective subdivisions of the
tetrahedron hierarchy lead to correctly matching surface
patches (see [3] for more details). The main advantage of
the method is its ability to rapidly produce seamless vari-
able accuracy reconstructions by assembling precomputed
patches.

In a first construction phase, the original input triangle
soup is partitioned in a top-down fashion. The end result is
a DAG of diamonds, and a set of triangle buckets associated
with leaf tetrahedra that cover the mesh. After the parti-
tioning phase, the inner nodes are constructed in parallel
by fine-to-coarse diamond-by-diamond constrained simpli-
fication. In this work, a number of modifications were made
with respect to the original TetraPuzzles implementation.
First of all, instead of simply partitioning input triangles
according to centroid location, we clip them at diamond
boundaries and, also, subdivide input triangle edges that
are longer than 3/2 the input mesh average edge length.
This approach ensures an input model with small near uni-
form triangles, and simplifies boundary management dur-
ing the coarse-to-fine simplification step, since locked ver-
tices during diamond simplification are simply the end-
points of boundary edges lying on diamond faces. We thus
do not require the extraction of the original mesh boundary
and the maintenance of boundary flags, as in [3]. Moreover,
since rendering for the 3D display requires the adaptation
of vertices to very small (voxel-sized) triangles, control-
ling triangle shapes during simplification to reduce triangle
counts in nearly flat areas is no longer important. Thus,
instead of performing high-quality (quadric based) simpli-
fication as in [3], we construct diamonds with a simplifica-
tion method that produces (roughly) uniformly tessellated
meshes, and use edge length as a measure of tessellation ac-
curacy. This approach allows us to manage colored meshes
by simply using a color-per-vertex representation.

4



Fig. 3. Rendering architecture.

4.3. Rendering front-end: selection of levels of detail

As in [3], the nested subdivision hierarchy is encoded as
a forest of binary trees, and we employ a saturation tech-
nique [30] to extract conforming meshes without requir-
ing neighbor finding. Therefore, each tree is stored as a
memory mapped linear array, and each of its nodes, cor-
responding to a particular tetrahedron, contains just the
following information: a reference to the associated patch
data (vertex attributes and connectivity in stripified form)
in a patch repository; the tight bounding sphere for the
patch; the saturated model space average edge length and
bounding sphere of the neighborhood (maximum among di-
amond’s tight values and saturated values for children); the
index of child nodes in the linear arrays, which corresponds
to the two tetrahedra generated by bisection. With such
a structure, variable resolution rendering is implemented
by simple stateless top-down traversals of the binary trees
used to encode the tetrahedron hierarchy, which combine
view-frustum and contribution culling. The traversal is per-
formed once per 3D frame, and consequently generates as
a result the set of patches that needs to be rendered for all
the views. The standard view-dependent technique must
thus be adapted to become the required spatial accuracy-
dependent technique.

As we recurse the hierarchy, we test whether the current
node is invisible by checking the tight bounding sphere of
the associated patch against the spatial display working
volume, determined by screen dimension, viewing angle, as
well as achievable field of depth. If a node is found out of
the working volume, we simply stop recursion, culling away
the entire branch of the tree. If the node is potentially vis-
ible, we test whether its patch is an accurate enough rep-
resentation by measuring its saturated spatial tessellation
accuracy, which depends on its position within the volume.
If so, we can add the associated patch to the active patch
set for the frame, otherwise we continue the recursive re-
finement with the node’s children.

Saturated spatial tessellation accuracy is the quantity
that guides refinement, to achieve a target of (no more
than) one vertex per voxel. Since the method exploits error
saturation to encode dependencies, particular care must be

taken to ensure that view-dependent measures are mono-
tonically decreasing as we descend in the hierarchy and
produce the same value for all tetrahedra in the same dia-
mond. In our system, we obtain a consistent upper bound
on the view-dependent error by measuring the apparent
size of a sphere equal in diameter to the saturated aver-
age edge lengths of the patch and centered at the saturated
bounding sphere point closest to the display screen (see fig-
ure 4(a)). If this value is higher than the display voxel res-
olution at that same position, computed from equation 1,
the node needs refinement, otherwise we can safely stop re-
finement and consider the node for rendering.

(a) Position-
dependent accu-
racy control

(b) Horizon-
tal projection
geometry

(c) Vertical pro-
jection geometry

Fig. 4. Projecting graphics onto the display.

At the end of the traversal, all nodes required for holo-
graphic rendering have been identified, and rendering can
proceed by generating the projector images. In the single
PC configuration, all views are rendered sequentially and
all the images are sent to the projectors through the DVI in-
terface. From a software point of view, the front-end can be
collapsed to just the refinement module, which extracts the
view dependent representation of the model to be rendered
and manages a RAM LRU of the selected patches, while
the back-end module takes care of rendering the model rep-
resentation for all the different views and manages a GPU
LRU of the current patches. In the cluster version, render-
ing is instead done in parallel by all back-end PCs. Since all
nodes share almost the same view, we use a pure sort-first
distribution approach in which all patches to be rendered
are broadcast to all rendering PCs without any sorting or
filtering at the source. In order to save bandwidth, the LRU
cache maintained in the front-end is exploited by sending
only patches not already in cache and referring to already
sent patches by patch id. Because of space-time coherence,
only few patches per frame need to be coarsened or refined

5



and therefore caching aggressively reduces bandwidth re-
quirement. In the parallel implementation, since all back-
end nodes receive the same list of patches to be rendered,
a multicast protocol can be effectively used to further re-
duce network load. In the current system, communication
between front-end and back-end nodes goes through a dual
gigabit switch supporting GIMP snooping. At the end of
the frame, the front-end synchronizes with the back-end
nodes through a barrier operation, performed before call-
ing the hardware swap-buffers on all rendering nodes. Op-
tionally, for control purposes, the front-end node can also
render a frame by using the selected patches and showing
them in a standard 2D window by taking the picture from
a central viewpoint.

It must be noted that the TetraPuzzles structure offers
additional front-end parallelization possibilities. In partic-
ular, since level of detail selection is implemented through
a stateless recursive visit of a forest of binary trees, concur-
rent traversal is straightforward to implement. However, in
our current implementation, we decided to keep the front-
end sequential, since the typical size of the traversed coarse
grained hierarchy is very small (typically one to few hun-
dreds tetrahedra/frame) and traversal time is negligible in
comparison to back-end nodes rendering times.

4.4. Rendering back-end: controlling the displays

The rendering back-end drives the 3D display by decod-
ing the stream received by the front-end. It can range from
a single graphics PC (for the purely sequential version), to
an array of PCs connected to the front-end through high-
speed networking components. Each of the back-end PCs
is connected to the display by DVI connections and runs
a server agent that controls an OpenGL framebuffer. The
server is responsible for generating the images associated
to a fixed subset of the display projectors from the origi-
nal stream (matrix transforms and patches). As explained
above, each back-end node typically controls more than one
projector (all of them for the sequential version), and must
thus render each of the patches in the working set several
times (see fig. 5(a)).

Each of the back-end PCs thus buffers all the commands
received from the front end before starting the rendering
operation. When all commands for a given frame have been
received, a rendering loop iterates on all associated projec-
tors. All identified patches are then traversed and rendered
from the projector’s point of view in a projector’s view-
port. In this step, multiple center of projection perspectives
implemented in vertex shaders are used to take into ac-
count the anisotropic diffusion behavior of the holographic
screen. Because of the horizontal parallax-only approach,
it is not possible to reconstruct a full light field. Providing
a good illusion of seeing floating objects requires the ap-
plication to take decisions on how to deal with the missing
vertical degree of freedom. In our approach, we consider a
solution which is exact for observers lying at a fixed height

and distance from the screen. For projecting geometry onto
the display, we thus introduce a virtual observer at a fixed
height and distance from the display, and project graph-
ics onto the display using a multiple-center-of-perspective
projection that has the projector position as the center of
projection for horizontal coordinates (see figure 4(b)) and
the virtual observer for the vertical ones (see figure 4(c)).
The solution is exact for all users at the same distance from
screen and height as the virtual observer and proves to be
a good approximation for other positions in the display
workspace.

For both the parallel and the sequential implementa-
tion, in order to take advantage of spatial and temporal
coherency among views also in back-end nodes, each back-
end node contains a memory manager, based on the same
LRU strategy used in the front-end, which explicitly man-
ages graphics board memory, using OpenGL Vertex Buffer

Objects to store patches. Each time we need to render a
patch, we reuse the cached version if present, otherwise we
render it and cache its representation in place of the oldest
one. Least-recently used patches are deleted when the cache
becomes full. By making sure that back-end caches are at
least as big as the front-end one, we ensure that front-end
and back-end caches remain properly synchronized (i.e.,
the front-end will never refer to a deleted object). More-
over, since all projectors share the same active object set,
cache misses for a given patch can happen at most once per
spatial frame. Therefore, rendering N projector views costs
less than N times the rendering of a single view. At end-
of-frame, as in all tiled projector displays (see, e.g., [31]),
non-linear photometric and geometric corrections are ap-
plied in a post-pass before synchronizing with the frame
barrier and swapping buffers.

In the high-end parallel version, each DVI output con-
trols a single projector. Thus, generating an image for a
projector is just a matter of defining the correct viewport
on a full-screen window. The sequential desktop version,
instead, has to control many projectors with a single DVI
output (fig. 5(b) In this case, there is a need to distribute
projector images over multiple DVI frames, and to dispatch
these images to the correct projectors. This is done by
grouping projector images for a given frame into successive
batches, and using color codes in reserved scan lines of the
DVI streams to associate sub-images to specific projectors.

5. Implementation and Results

We have implemented a software system based on the de-
sign discussed in this paper, and tested on both the displays.
The display hardware and software components have been
produced by Holografika. The multiresolution renderer dis-
cussed here has been designed and implemented by the
authors. Both multiresolution rendering front-ends run on
Linux on an Athlon64 3300+ PC with a NVIDIA7800GT
graphics board and a local SATA disk for storing models.
The test models are two high resolution laser scan datasets:

6



(a) Parallel rendering architecture (b) Sequential rendering architecture

Fig. 5. Driving large and small scale displays.

a colored version of Michelangelo’s David 1mm model (56M
triangles) and a colored wooden statue model (6M trian-
gles) acquired by combining laser scan data with high res-
olution digital photographs.

Model preprocessing. The multiresolution hierarchies
were generated on a cluster of 15 PCs running Linux 2.4.
Each PC has two CPU Athlon 2200+ CPUs, 1GB DDR
memory, a 70GB ATA 133 hard disk, and an Ethernet 100
Mbps network connection. We constructed all multireso-
lution structures with a prescribed maximum leaf size of
4000 triangles/tetrahedron for the partitioning phase and
an average non-leaf size of 2000 triangles/tetrahedron for
the bottom-up construction phase. Processing time for
the wooden statue model is 142s (42K triangles/s), while
it is 2722 s (21K triangles/s) for the David model, which
has a larger I/O overhead. The speed-up with respect to
the original TetraPuzzles implementation [3] is consistent
(1.2x to 1.4x), even though this version handles color data
and is due to the simpler simplification strategy as well as
to the improved boundary management technique.

Sequential rendering on the small scale display. The
main goal of the single PC/small display solution is
to demonstrate that current desktop graphics compo-
nents provide enough computing power to drive a simple
Holodeck-style massive model manipulator. The small
scale display is able to visualize 7.4Mbeams originating
from 96 320x240 LCD fast displays. It has an horizon-
tal resolution of 0.8 degrees and covers a field of view
of 50 degrees, providing continuous horizontal parallax,
with a screen size of 400 by 500 mm. In order to comply
with the single DVI interface of the display, consisting in
a stream of 1280x1024 images, the images required for
a full update of a holographic frame are grouped into 8
successive batches. The top row of each rendered image
encodes the ids of the updated modules using a color code.
A dedicated board in the display decodes each DVI frame
and dispatches sub-images to the projectors depending on
the color code. Since the update frequency of the moni-
tor is 75 Hz, and after each image batch we perform a a
swap buffer operation synchronized with the v-sync signal,
the 3D renderer can not achieve frequencies higher than

75/8 = 9.375 fps, when connected to the display through
a single DVI. We have tested the small scale display with
a hand tracking system using a simple markerless vision
based gesture recognition mechanism that allows a user to
intuitively interact with an object which is placed in the
light field display working volume [32]. Our main target
was to give the user the ability to position and scale the
synthesized object in space with the same gestures that
he would make to position a real 3D object in a real envi-
ronment. We adopted a two-hand solution for positioning
objects rendered by the display because this approach
gives a more intuitive interface for scaling and rotating an
object than an equivalent interface based on a single 3D
cursor. Three types of two-hand gestures are recognized:
translation, rotation and scaling. A movement starts when
both hands are in the working area of the two cameras
and we detect that they are closed (as it would be done
to grab a real object), and stops when the hands release
the object or when they move out of the working area (see
figure 6). In order to guarantee interactive performance,
we decided to adopt two thresholds for the LOD selection:
one for static high quality images and one for dynamic sit-
uation, thus allowing user interaction. Our frame rates are
about 2 Hz when performing rendering at full accuracy (1
triangle/voxel) with a precision of 1.25mm on the screen,
while with a 4 times reduced precision during interaction
frame rates range from 5 to 9 Hz.

Parallel rendering on the large scale display. The large
scale display is capable of visualizing 35Mbeams by com-
posing images generated by 72 SVGA LED commodity pro-
jectors. The display provides continuous horizontal paral-
lax within an approximately 50-degree horizontal field-of-
view. The parallel rendering back-end, which drives the 72
projectors, is currently running on an array of 18 Athlon64
3300+ Linux PCs equipped with two NVIDIA8600GTS
graphics boards running in twin-view mode (i.e., each back-
end node controls four projectors through four DVI out-
puts). It is obviously impossible to fully convey the impres-
sion provided by our system on paper. As a simple illus-
tration of our system’s current status and capabilities, we
analyze the behavior of an application that allows users
to interactively translate, rotate, and scale models in 3D

7



Fig. 6. Successive moments of interactive manipulation of the David 1mm dataset (56M triangles) using our 7.4Mbeams display coupled with
the vision based hand tracker and driven by a single PC.

space using a Logitech 3D mouse input device for direct
manipulation. We recorded the performance using a hand
held video camera freely moving in the display workspace.
Representative video frames are shown in figure 7. Note
the parallax effects and the good registration between dis-
played object space and physical space, which demonstrate
the multi-user capability of the display (see figure 8). The
perceived image is fully continuous. This is qualitatively
very different from other contemporary multiview display
technologies, which force users into approximately fixed po-
sitions, because of the abrupt view-image changes that ap-
pear at the crossing of discrete viewing zones [8]. The per-
formance of the application is obviously much higher than
for the small display test case bacause of the parallel so-
lution. In the large display case, we are thus able to dis-
play the models at maximum accuracy (1 triangle/voxel)
even during interaction. During typical interaction tasks,
the frame rate ranges from 14 to 42 Hz, depending on the
scale of the object and on the number of new patches cre-
ated, with an average throughput of 10Mtri/s. Only few
patches per frame need to be updated when the object is
rotated or translated. On the other hand scaling the model
typically requires updating most of its representation, since
the triangle-size/voxel ratio rapidly changes. This implies
the creation and transfer to the back-end GPUs of new
patches, which is the most critical work done by the ren-
derer. Both test models have about 2000 triangles per patch
and each VBO patch takes up about 30KB (1000 vertices
with 3 float per position, 3 short per normal and 4 bytes
per color, plus about 3500 indices stored as short). Zoom-
ing the David model from the minimum scale (60 patches)

to the maximum scale (314patches) requires the creation
of about 1000 new patches to go through all intermedi-
ate representations from the farthest to the nearest view.
We tested the back-end, which is able to create up to 1400
VBO patches per second. From the network point of view,
matching the graphics performance would require a band-
width of 336Mbps in multicast mode and 6Gbps in uni-
cast to transfer data from the front-end to the 18 back-end
nodes. Reaching such a performance is not strictly required
for the application. If we perform this zooming operation
in about 5 seconds, the renderer has to create 200 patches
per second, which means that we roughly need a band-
width of 50Mbps in multicast (and 900Mbps in unicast),
which is less than the maximum throughput of our network.
Nonetheless, during rapid zooming users can perceive a de-
crease in feedback smoothness, since patch creation is not
evenly distributed, and some frames can incur substantial
delays (up to 0.5s). In order to have a fully interactive ren-
dering we plan to move to a dual queue algorithm, such as
the one presented in BMT [27], where the cut extraction
process is interruptible and the renderer can adapt within
a time budget.

6. Conclusions and Future Work

The main take home message of this work is that light
field display technology is starting to be mature enough
to support complex applications, and that coarse-grained
view-dependent multiresolution rendering techniques de-
signed for single user view-dependent rendering can be ef-
fectively transformed into 3D display-aware spatially adap-

8



Fig. 7. Images were taken from different point of views during interactive manipulation of multi-million triangles colored datasets on the

35Mbeams display driven by a cluster of PCs.

Fig. 8. Object inspection closeups: during manipulation objects appear to be floating in the display workspace.

tive sort-first cluster parallel renderers. State-of-the-art 3D
display technology can thus be exploited to explore ex-
tremely complex and highly detailed datasets. The appli-
cations discussed here are clearly meant to work as an en-
abling technology demonstrator, as well as a testbed for
integrated 3D interaction, massive model rendering, and
display research.

Acknowledgments. This research is partially supported by the CY-

BERSAR project. The authors are grateful to the Holografika team for

the design and implementation of display hardware and low-level soft-

ware. Test models are courtesy of the Digital Michelangelo Project and

CNR ISTI VCG. We also acknowledge the key technical contributions of

Eric Bouvier and Marco Agus.

References

[1] T. Balogh, T. Forgacs, T. Agocs, O. Balet, E. Bouvier, F. Bettio,
E. Gobbetti, G. Zanetti, A scalable hardware and software
system for the holographic display of interactive graphics
applications, in: Proc. Eurographics Short Papers, 2005.

[2] A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec,
Rendering for an interactive 360 degrees light field display, ACM
TOG 26 (3) (2007) 40.

[3] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
R. Scopigno, Adaptive TetraPuzzles – efficient out-of-core
construction and visualization of gigantic polygonal models,

ACM TOG 23 (3) (2004) 796–803.

[4] F. Bettio, E. Gobbetti, F. Marton, G. Pintore, Multiresolution
visualization of massive models on a large spatial 3D display, in:
Proc. EGPGV, 2007.

[5] N. A. Dodgson, Autostereoscopic 3D display, Computer 38 (8)
(2005) 31–36.

[6] T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti,

G. Zanetti, A large scale interactive holographic display, in:
Proc. IEEE EDT, 2006.

[7] T. Balogh, T. Forgacs, O. Balet, E. Bouvier, F. Bettio,
E. Gobbetti, G. Zanetti, A scalable holographic display for
interactive graphics applications, in: Proc. IEEE EDT, 2005.

[8] W. Matusik, H. Pfister, 3D TV: a scalable system for real-
time acquisition, transmission, and autostereoscopic display of
dynamic scenes, ACM TOG 23 (3) (2004) 814–824.

[9] N. A. Dodgson, Analysis of the viewing zone of the cambridge
autostereoscopic display, Applied Optics: Optical Technology &

Biomedical Optics 35 (10) (1996) 1705–1710.

[10] H. Chen, D. W. Clark, Z. Liu, G. W. K. Li, Y. Chen, Software
environments for cluster-based display systems, in: Proc. IEEE
International Symposium on Cluster Computing and the Grid,
2001.

[11] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern,
P. D. Kirchner, J. T. Klosowski, Chromium: a streamprocessing

framework for interactive rendering on clusters, in: Proc.
SIGGRAPH, 2002, pp. 693–702.

[12] Viswall high resolution display wall,
http://www.visbox.com/wallMain.html.

[13] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker,
C. Cruz-Neira, VR Juggler: a virtual platform for virtual reality
application development, in: Proc. IEEE VR 2001, 2001, pp. 89–

96.

9



[14] J. Allard, V. Gouranton, L. Lecointre, E. Melin, B. Raffin,
Net Juggler: Running VR juggler with multiple displays on a
commodity component cluster, in: Proc. IEEE VR, 2002, pp.
273–274.

[15] R. Samanta, T. Funkhouser, K. Li, Parallel rendering with K-

way replication, in: Proc. IEEE PVG, 2001, pp. 75–84.
[16] R. Samanta, T. Funkhouser, K. Li, J. P. Singh, Hybrid sort-first

and sort-last parallel rendering with a cluster of PCs, in: Proc.
ACM/EG Graphics Hardware, 2000, pp. 97–108.

[17] Distributed multihead X project (DMX),
http://dmx.sourceforge.net.

[18] G. Voss, J. Behr, D. Reiners, M. Roth, A multithread safe

foundation for scene graphs and its extension to clusters, in:
Proc. PGV, 2002, pp. 33–37.

[19] B. Schaeffer, C. Goudeseune, Syzygy: Native PC cluster VR, in:
Proc. IEEE VR, 2003, pp. 15–22.

[20] M. Naef, E. Lamboray, O. Staadt, M. Gross, The Blue-C
distributed scene graph, in: Proc. EGVE, 2003, pp. 125–133.

[21] Nirnimesh, P. Harish, P. Narayanan, Garuda: A scalable,
geometry managed display wall using commodity PCs, IEEE
Transactions on Visualization and Computer Graphics 13 (5)
(2007) 864–877.

[22] C. Mueller, Hierarchical graphics databases in sort-first, in: Proc.

IEEE Symposium on Parallel Rendering, 1997, pp. 49–58.
[23] R. Samanta, J. Zheng, T. Funkhouser, K. Li, J. P. Singh,

Load balancing for multi-projector rendering systems, in: Proc.
ACM/EG Graphics Hardware, 1999, pp. 107–116.

[24] W. T. Correa, J. T. Klosowski, C. T. Silva, Out-of-core sort-
first parallel rendering for cluster-based tiled displays, in: Proc.
EGPGV, 2002, pp. 89–96.

[25] X. Cavin, C. Mion, Pipelined sort-last rendering: scalability,

performance, and beyond, in: Proc. EGPGV, 2006.
[26] S.-E. Yoon, B. Salomon, R. Gayle, D. Manocha, Quick-VDR:

Interactive view-dependent rendering of massive models, in:

Proc. IEEE Visualization, 2004, pp. 131–138.
[27] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,

R. Scopigno, Batched multi triangulation, in: Proc. IEEE
Visualization, 2005, pp. 207–214.

[28] W.-S. Chun, J. Napoli, O. Cossairt, R. Dorval, D. Hall,
T. Purtell, J. Schooler, Y. Banker, G. Favalora, Spatial 3-D
infrastructure: Display-independent software framework, high-

speed rendering electronics, and several new displays, in: Proc.
SPIE-IS&T Electronic Imaging, Vol. 5664, SPIE, 2005, pp. 302–
312.

[29] R. Yang, D. Gotz, J. Hensley, H. Towles, M. S. Brown, PixelFlex:

a reconfigurable multi-projector display system, in: Proc. IEEE
Visualization, 2001, pp. 167–174.

[30] M. Ohlberger, M. Rumpf, Adaptive projection operators in

multiresolution scientific visualization, IEEE Transactions on
Visualization and Computer Graphics 4 (4) (1998) 344–364.

[31] J. Binns, G. Gill, M. Hereld, D. Jones, I. Judson, T. Leggett,
A. Majumder, M. McCroy, M. Papka, R. Stevens, Applying
geometry and color correction to tiled display walls, in: IEEE
Visualization - Poster sessions, 2002.

[32] F. Bettio, A. Giachetti, E. Gobbetti, F. Marton, G. Pintore, A
practical vision based approach to unencumbered direct spatial

manipulation in virtual worlds, in: Eurographics Italian Chapter
Conference, 2007.

10


