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Abstract
Spherical harmonic (SPHARM) description is a powerful Fourier shape modeling method for
processing arbitrarily shaped but simply connected 3D objects. As a highly promising method,
SPHARM has been widely used in several domains including medical imaging. However, its primary
use has been focused on modeling small or moderately-sized surfaces that are relatively smooth, due
to challenges related to its applicability, robustness and scalability. This paper presents an enhanced
SPHARM framework that addresses these issues and show that the use of SPHARM can expand into
broader areas. In particular, we present a simple and efficient Fourier expansion method on the sphere
that enables large scale modeling, and propose a new SPHARM registration method that aims to
preserve the important homological properties between 3D models. Although SPHARM is a global
descriptor, our experimental results show that the proposed SPHARM framework can accurately
describe complicated graphics models and highly convoluted 3D surfaces and the proposed
registration method allows for effective alignment and registration of these 3D models for further
processing or analysis. These methods greatly enable the potential of applying SPHARM to broader
areas such as computer graphics, medical imaging, CAD/CAM, bioinformatics, and other related
geometric modeling and processing fields.
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1. Introduction
Spherical harmonics were first used as a type of parametric surface representation for radial
or stellar surfaces r(θ, ϕ) by Ballard et al. [1,2]. An extended method, called SPHARM, was
proposed by Brechbühler et al. [3] to model more general shapes, where three functions of θ
and ϕ were used to represent a surface. These spherical harmonic methods have recently
received a lot attention, and have been studied and applied to applications in various fields
including computer vision [1,3], graphics [4,5,6,7,8], medical image analysis [9,10,11,12],
bioinformatics [13,14,15], and biology [16,17,18].
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SPHARM is a highly promising Fourier method for modeling arbitrarily shaped but simply
connected 3D objects, where protrusions and intrusions can be effectively handled. Thanks to
its underlying spherical parameterization, SPHARM is suitable for many surface manipulation
and analysis applications, including texture mapping, morphing, remeshing, compression,
statistical modeling, and surface-based morphometry, because of the following reasons: (1)
processing is much easier on the spherical domain than on an irregular mesh; (2) the spherical
domain is continuous, allowing for more flexible processing on it than on a regular mesh; and
(3) processing can be done not only in the spatial domain but also in the frequency domain.

A typical SPHARM processing pipeline includes three key steps: (1) spherical
parameterization [3,6,7,8,19], (2) SPHARM expansion [3,20], and (3) SPHARM registration
[3,21]. Spherical parameterization has been extensively studied and we will briefly review a
few existing methods that are appropriate for different SPHARM modeling conditions in
Section 2. However, the existing methods still have limitations in the SPHARM expansion and
registration steps that prevent SPHARM from being applied to its full potential for large scale
and flexible 3D modeling and analysis.

In this paper, we introduce a new SPHARM framework to overcome these limitations. In
particular, we emphasize that a recently proposed, simple and efficient Fourier expansion
method on the sphere is an essential component of our framework for modeling large scale 3D
surfaces. In addition, we propose a new SPHARM registration method that aims to keep the
important homological relationships between 3D models. Although SPHARM is a global
descriptor, our experimental results show that the proposed SPHARM framework can
accurately describe complicated graphics models and highly convoluted surfaces and the
proposed registration method allows for effective alignment of these 3D models for further
processing or analysis.

The rest of the paper is organized as follows. Section 2 briefly describes the SPHARM
framework. Section 3 describes our SPHARM expansion method that can deal with large scale
3D models. Section 4 proposes a new SPHARM registration method that aims to align surface
landmarks as well as minimize area and length distortions. Section 5 demonstrates our
experimental results. Section 6 concludes the paper.

2. SPHARM description
The SPHARM method was proposed by Brechbüuhler et al. [3] to model arbitrarily shaped
but simply connected 3D objects. It is essentially a Fourier transform technique that defines a
3D surface using three spherical functions and transforms them into three sets of Fourier
coefficients in the frequency domain. Three steps are often involved in a typical SPHARM
processing pipeline: (1) spherical parameterization, (2) SPHARM expansion, and (3)
SPHARM registration.

Step 1: Spherical parameterization creates a continuous and uniform mapping from the object
surface to the surface of a unit sphere, and its result is a bijective mapping between each point
v on a surface and a pair of spherical coordinates θ and ϕ:

In Fig. 1, Panel (a) shows a hippocampal surface extracted from a magnetic resonance imaging
(MRI) scan and Panel (f) shows its spherical parameterization. This parameterization is an area
preserving mapping computed using Brechbüuhler’s method [3].
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Step 2: SPHARM expansion expands the object surface into a complete set of spherical
harmonic basis functions Yl

m, where Yl
m denotes the spherical harmonic of degree l and order

m and it is essentially a Fourier basis function defined on the sphere. The expansion takes the
form:

(1)

where . The Fourier coefficients cl
m up to a user-desired degree can be

estimated by solving a linear system. The object surface can be reconstructed using these
coefficients, and using more coefficients leads to a more detailed reconstruction. A sample
reconstruction case is shown in Fig. 1: The original model is shown in (a) and its SPHARM
reconstructions using coefficients up to degrees 1, 5, 10 and 15 are shown in (b-e), respectively.
Different spherical sampling schemes can be used to reconstruct the object. Reconstructions
shown in (b) and (c) are created using a regular mesh grid on the sphere (g), and reconstructions
shown in (d) and (e) are created using a level 3 icosahedral subdivision (h).

Step 3: SPHARM registration creates a shape descriptor (i.e., excluding translation, rotation,
and/or scaling) from a normalized set of SPHARM coefficients, which are comparable across
objects. The first two steps are necessary for modeling an individual shape, while the third step
is optional and mainly required for pair-wise or group analysis of 3D models such as morphing
or surface-based morphometry.

Although SPHARM has been successfully applied to a few medical imaging problems,
numerous fundamental challenges remain before its potential can be fully utilized in general
cases. In this paper, we address two major challenges: one for SPHARM expansion and the
other for SPHARM registration. Section 3 and Section 4 discuss these two steps in more details,
respectively. For completeness, here we briefly review the existing methods for spherical
parameterization.

In spherical parameterization, the traditional method [3] aims to create an equal area mapping
as well as minimize angle distortions by solving a constrained optimization problem. This is
very effective in analyzing small and moderately-sized structures extracted from volumetric
images (e.g., MRI, CT). However, its scalability is limited and, in addition, it is applicable only
to voxel surfaces. CALD [7] is a newer method that extends the traditional method and can be
applied to general triangular meshes. Conformal mapping has also been used for spherical
parameterization in some SPHARM studies [6]. It has solid mathematical foundation but tends
to introduce large area distortion that may not be ideal for establishing surface correspondence
between models in statistical shape analysis. Two recent studies [8,19] use progressive meshes
and stretch metrics to minimize vector length distortion and their parameterization results look
very promising for handling large scale graphics models. Shown in Fig. 2 is a sample result of
[19]. Since spherical parameterization has been extensively studied, people can often find a
method that fits their needs.

3. Large scale SPHARM expansion
Given a 3D model v(θ, ϕ) and a user-specified maximum degree Lmax, the task of SPHARM
expansion is to extract coefficients cl

m in Eq. (1) for l ≤ Lmax and |m | ≤ l. There are two types
of approaches for computing cl

m: one uses numerical integration [14,20]; the other formulates
a linear system and solves it using least square fitting (LSF) [3].
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The naive numerical integration method is inefficient and so not applicable to large models.
Healy et al. [20] proposed a fast algorithm to accelerate the integration procedure using a
divide-and-conquer strategy; and several studies [4,6,8] employed this method. However, to
use Healy’s method, a preprocessing step is required to remesh the model using a regular
spherical mesh grid (e.g., Fig. 1(g)). This step is inconvenient and also it tends to introduce
additional remeshing errors.

In contrast, the LSF method [3] is very easy to implement and works directly on original object
meshes even if they are irregular. The LSF method seems to be a more popular method in
SPHARM studies, especially in brain imaging. The bottleneck of this method is its limited
scalability, because most methods for solving large linear systems [22,23] are either designed
for sparse or symmetric matrices or not easy to implement. This might be the reason that
SPHARM has been mostly used for modeling small or moderately sized 3D surfaces.

We describe an iterative residual fitting (IRF) method that overcomes this limitation and
facilitates the opportunity of creating large scale SPHARM models. The basic idea behind the
IRF method is simple and follows the properties of spherical harmonic transform. First, these
harmonics form a coarse-to-fine hierarchy. If we just use a few low degree harmonics to expand
a spherical function f (θ, ϕ), we get a low-pass filtered reconstruction. If we use more degrees,
more details are included in the reconstruction. The IRF method takes advantage of this coarse-
to-fine hierarchy. It starts from a low degree reconstruction and then iteratively adds more
details into our model by involving higher degree harmonics. Second, spherical harmonics
form an orthonormal basis and geometric information is stored in different frequency channels.
Thus, if we first extract information from low frequency channels, the residual (i.e., f (θ, ϕ)–
its reconstruction) will exactly contain information in high frequency channels. To add in more
details to our model, we can simply use a few higher degree harmonics to fit the residual.

The IRF method breaks a large linear system into several small linear systems and thus
SPHARM modeling can be easily done at a large scale on standard workstations with average
configuration using a standard linear solver. We also believe that much larger SPHARM
models can be created if one combines the IRF method with an enhanced large-scale linear
solver. IRF was originally presented in [24,9], where this method was tested on a few models
with around 40, 000 vertices and it worked well. In this paper, we aim to demonstrate that the
IRF method can be used to accurately model larger scale graphics models and to enable a
broader range of surface processing applications. We also want to emphasize that IRF is an
essential component in the proposed enhanced SPHARM framework for modeling large scale
3D surfaces.

Note that a degree l SPHARM model involves (l + 1)2 × 3 complex coefficients. Our
experiments show that a degree 85 SPHARM model described by 22,188 complex coefficients
can reasonably capture surface details of an original model with 100,002 vertices and 200,000
faces that is described by 900,006 variables in total. Additional quantifiable information about
the reconstruction errors and the compression ratios is available in Table 1 of Section 5.1. For
more details about IRF (e.g., projection errors, optimal frequency band selection), please refer
to [9,24].

4. Landmark guided SPHARM registration
SPHARM registration is an important operation allowing for pairwise processing or group
analysis across different SPHARM models and is a critical step in many applications (e.g.,
surface-based morphometry in medical imaging [9,10,11,12,15], evolutionary morphology in
biology [16,17,18]). The traditional method [3] uses the first order ellipsoid for alignment, and
works only if this ellipsoid is a real ellipsoid and may not work well in many other cases.
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SHREC [21] is a newer SPHARM registration method that minimizes the mean square distance
between corresponding surface parts and works for general cases. Both methods are designed
for relatively smooth surfaces without landmarks. However, landmarks often contain important
prior knowledge about the objects. For example, they tend to have critical anatomical or
biological meanings in medical and biological applications and should not be ignored in the
registration procedure.

In this paper, we present a new SPHARM registration method that is guided by a set of pre-
existing landmarks. Since SPHARM is a parametric model, registration should be done in both
object and parameter spaces. In the object space, we first scale all the objects with landmarks
to have a normalized size, and then apply the iterative closest points (ICP) method [25] to align
landmarks together in a least square fashion. Now the key problem is how to align landmarks
in the parameter space.

Given two SPHARM models, a template and an individual, we can distort the parameterization
of the individual to match its landmarks with the corresponding landmarks on the
parameterization of the template. This can be done by applying spherical thin plate spline
(STPS) [26]. We observe that there are many different ways to apply STPS and the results are
very different from one another. Note that the correspondence between SPHARM models is
implied by the underlying parameterization: two points with the same parameter pair (θ, ϕ) on
two surfaces are defined to be a corresponding pair. Thus, in order to create an ideal
correspondence, our goal is to identify an underlying parameterization that is the least distorted.
To achieve this goal, we present a few strategies that aim to find the “best” parameterization
from these STPS results.

Zou et al. [27,28] did a similar study, where they directly applied STPS to spherical conformal
parameterizations but did not consider to reduce area and length distortions. In the field of the
SPHARM surface modeling, we feel that an equal area mapping is more attractive than other
mappings because we want to treat each area unit on object surface equally by assigning the
same amount of parameter space to it (i.e., similar to arc-length parameterization for comparing
2D contours). Our method is designed to achieve this goal. Asirvatham et al. [29] did another
similar study, where landmark constraints were used to guide the spherical parameterization
procedure in a progressive mesh framework. In our case, we don’t want to re-parameterize the
entire object, since the existing parameterization has already been optimized based on certain
criteria. Our goal is simply to distort as little as possible the existing parameterization in order
to match landmarks.

In the rest of this section, we describe our landmark-guided SPHARM registration method.
We assume that objects are already aligned to one another in the object space and their
SPHARM descriptions are known (pre-calculated). We first briefly describe STPS, then define
the area and length distortions we try to minimize, and finally presents our methods.

4.1. Spherical thin plate spline
Spherical thin plate spline (STPS), defined in [26], is an extension of 2D thin plate spline to a
spherical domain and has been used to deform spherical parametric domains [27,28]. STPS on
a spherical domain S2 minimizes a bending energy J(u), subject to u(Pi) = zi, i = 1, 2, … , n,
where Pi ∈ S2 and zi is the fixed displacement at Pi. This bending energy is formulated as

(2)

where θ ∈ [0, π] is latitude, ϕ ∈ [0, 2π ] is longitude, and Δ is the Laplace-Beltrami operator.
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The solution on the sphere is given by

(3)

where c and d are determined by

n is the n × n matrix with i, jth entry K(Pi, Pj), = (1, …, 1)T, and = (z1, …, zn)T. K(X, Y) between
two arbitrary points X, Y ∈ S2 is defined as follows:

where a = cos(γ(X, Y)) and γ(X, Y) is the angle between X and Y. However, this is not in a
computable closed form expression. Therefore, thin plate pseudo-spline on the sphere R(X,
Y), defined in [26], is used in this study, which is formulated as

(4)

and

In our case, we have m = 2 giving

(5)

where W = (1 – a)/2. Therefore, the Eq. 3 becomes

(6)

and c and d are determined by
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where Rn is the n × n matrix with i, jth entry R(Pi, Pj), = (1, …, 1)T, and = (z1, …, zn)T.

Given n pairs of two corresponding points {Pi, Pi
new}, i = 1, … , n on the sphere, the

displacements (Δθi, Δϕi) at a set of points {Pi, i = 1, … , n} are calculated. With this
displacements, Eqs. 4, 5, and 6 are used to compute displacement (Δθk, Δϕk) of any point Pk
∈ S2 and the point Pk, located at p(θ, ϕ), is moved to a new point Pk

new at p(θ + Δθk, ϕ +
Δϕk). For convenience, we call this the STPS-based displacement scheme.

4.2. Mesh distortion measures
In this study, STPS is employed to match the landmark positions of an individual object in the
spherical parametric domain to the corresponding landmark positions of the template object
and subsequently transform the underlying parametric mesh of the individual object. This
algorithm distorts the parametric mesh of the individual object and can introduce additional
errors to some extent to the reconstructed shape of the individual object. Therefore, mesh
distortion cost functions are employed and these distortion costs are used as selection criteria
for finding best rotation angles in the proposed algorithm.

Distortion of the parametric mesh by STPS is measured by calculating the area distortion cost
(ADC) and the length distortion cost (LDC). The overall and worst costs for the whole
parametric mesh are measured to evaluate the performance of the proposed algorithms in
Section 4.3.

4.2.1. Area distortion measures—The concept of area distortion cost introduced by [7]
is employed as one of the performance measures in this study. Let M = {ti} be a triangle mesh
in the parametric space and let ψ be a continuous STPS-based displacement scheme, which
maps M to a distorted parametric mesh ψ(M) = {ψ(ti)}. A(·) is used to denote the area of a
triangle or a mesh. The area distortion cost (ADC) Ca with respect to ψ is defined as follows:

For each triangle ti ∈ M,

This measures the local ADC of a single triangle.

For each mesh vertex v in M,

where Mv is the set of triangle incident upon v. This measures the local ADC around a single
vertex.

For the whole parametric mesh M,
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(7)

This measures the overall ADC for the whole mesh. By taking

as the ADC contribution from each triangle, we treat contraction and expansion equally, and
so always have Ca(M, ψ) ≥ 1.

The worst ADC is defined as follows

(8)

4.2.2. Length distortion measures—To measure length distortion introduced by STPS,
the stretch concept by Sander et al. [30] is adopted in this study. They considered the case of
mapping from a planar domain to 3D surface and at any point in the planar domain, two singular
values of the 3 ×2 Jacobian matrix were computed to represent the largest and smallest length
distortions when a vector in the 2D domain was mapped to the 3D surface. In our case, the
length distortion cost (LDC) Cs with respect to a given mesh mapping ψ from M to ψ(M), is
defined as follows:

Given a mesh mapping ψ from M to ψ(M),

(9)

(10)

where Γ(ti) and γ(ti) are the largest and smallest length distortions for a triangle ti and A(·) is
used to denote the area of a triangle or a mesh.

In the above definitions, Cs(M, ψ) measures the average length distortion cost (LDC) for the
whole mesh M and the worst LDC is defined by Cs

W (M, ψ). The largest and smallest length
distortions are directly computed from the length of three corresponding sides between ti and
ψ(ti). Again, contraction and expansion are equally treated in both definitions.

4.2.3. Calculation of minimum distortion cost—At each step of the proposed approach,
after STPS algorithm is applied, we calculate the average and worst ADCs as well as the average
and worst LDCs, defined by Eqs. 7, 8, 9, and 10, respectively. In current experiments, we try
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to minimize the worst ADC. If several STPS results have the same worst ADCs, then their
average ADCs, the worst LDCs, and the average LDCs are compared in order. This rule is used
to avoid the extreme contraction or expansion while maintaining the reasonable area distorting
and length distortion. We plan to explore other criteria using these measures in future studies.

Algorithm 1 Basis STPS method for SPHARM registration

1: Map landmarks of the template and an individual onto a common parametric mesh, e.g. an icosahedral subdivision

2: Distort the individual parametric mesh using STPS to move its landmarks to the location of the template’s landmarks

3: Calculate new SPHARM expansion of the individual using the STPS-distorted parameterization

4.3. Alignment of parametric mesh using STPS
4.3.1. Basic STPS algorithm—The basic method is to directly apply the STPS algorithm
to two sets of landmarks with known correspondence between the sets, defined in a parametric
mesh. Alg. 1 describes this approach to the landmark-guided alignment. Zou et al. [27,28] used
this approach in their studies. However, this naive approach can severely distort the parametric
mesh of an individual object and result in a distorted reconstruction without re-sampling the
parametric mesh, especially when one or more landmarks are located near the north or south
pole (see Fig. 3).

4.3.2. Hierarchical STPS algorithm
Algorithm 2 Hierarchical STPS method

1: i:=1; assume that an parameter net is given

2: repeat

3:  Create icosahedral samples at level i for α’s and β’s

4:  if i=1 then

5:   Rotate the parameter net using each (αβ0), apply STPS, and keep the top K candidates that minimize the distortion costs, defined
in Section 4.2.3

6:  else

7:   Keep only local icosahedral samples for α’s & β’s

8:   Rotate the parameter net of each top K candidate using each (αβ0), apply STPS, and select top K candidates

9:  i:=i+1

10: until The best distortion costs do not improve

11: Return the best result in top K list

To avoid large distortion introduced by STPS, we employ a sampling-based strategy that rotates
the individual’s landmarks on the sphere using Euler angles (αβγ) in order to find the best
oriented landmarks for applying STPS. The rotation space can be sampled nearly uniformly
using icosahedral subdivisions (see Fig. 1(h) for an icosahedral subdivision mesh at level 3).
This assigns rotation angles to α and β. We always set γ = 0, since the rotation along the z axis
does not affect the distortion level of an STPS result (See Fig. 4 for an example).

To reduce computation time, we employ a hierarchical sampling scheme proposed in [21] to
sample the rotation space instead of using all the icosahedral samples. We tested both the
hierarchical method and the simple icosahedral method and the former greatly outperformed
the latter (see Fig. 5). For each sampling point, the hierarchical approach moves it to the north
pole, and the entire parametric mesh is rotated accordingly. Then, STPS is applied to each
rotated parametric mesh and the best K rotation angles are selected for minimizing the distortion
costs, defined in Section 4.2. This process is repeated for a higher level of sampling mesh until
a certain criterion is satisfied. Alg. 2 shows more details of this approach.
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4.3.3. Landmark rotation on template—While running the hierarchical STPS approach,
we observed that template’s landmarks, if located near the poles, could also result in large
distortion of the individual’s parametric mesh. This observation suggests that both template’s
and individual’s landmarks should be adjusted to be as far away from the poles as possible to
avoid large STPS distortions. A simple approach is to rotate not only individual’s but also
template’s parametric mesh and test STPS on all possible pairs. This is obviously a very time
consuming procedure. To accelerate it, we develop the following method to adjust the
orientation of the landmarks.

Let P1, P2, …, Pn be all the landmarks on a sphere. Given any point P on the sphere, we define
the following objective function f(P):

Our goal is to find a P so that the above objective function is minimized and then we rotate the
parameter net so that P becomes the north pole. Let θi be the angle between P and Pi. The
shorter distance between Pi and one of the poles can be measured by |cos(θ)| = |P·Pi |. The
smaller |cos(θ)| is, the bigger the distance is. Thus, if we minimize the above objective function,
we can adjust the landmarks to the best orientation where the distance between a pole and its
nearest landmark is maximized.

Therefore, the proposed two methods in Alg. 1 and Alg. 2 are modified by rotating template’s
landmarks and individual’s landmarks away from the poles using the above approach before
these methods are applied to the parametric mesh. After the application of the proposed
methods, the distorted mesh is rotated back by using the inverse of a rotation matrix which is
applied to the template’s landmarks before the STPS application step. Thus, the individual
result matches the original template instead of a rotated template.

For convenience, we use BSTPS and R-BSTPS to denote Alg. 1 and its modified version,
respectively. Similarly, we use HSTPS and R-HSTPS to denote the Alg. 2 and its modification,
respectively. Shown in Fig. 6 is sample performance comparison of applying these four
methods to one case. In general, HSTPS and R-BSTPS outperform BSTPS, and R-HSTPS
performs the best in terms of the mesh distortion cost.

5. Experimental results
We demonstrate our methods using four highly convoluted cortical models and a few publicly
available large scale graphics models. The graphics models and their spherical
parameterizations [19] were downloaded from Hugues Hoppe’s website at Microsoft Research.
The cortical models and their initial spherical parameterizations were generated by applying
the FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/) on real MRI scans. The vertex
numbers of these models range from 35K to 140K, and accordingly the face numbers range
from 70K to 280K. The homologous landmarks between two models used for SPHARM
registration were manually defined.

In this section, we first show that SPHARM models can be used to accurately describe these
large-scale 3D models, which allows for many useful applications. Then, we show that the
proposed SPHARM registration method can effectively align two models while preserving
their homologous landmark relationships as well as minimizing parametric distortions. The
experiments were performed on normal laptop and desktop computers running Matlab 7.2.
With pre-computed spherical harmonic bases, it took 5 to 35 minutes to compute a SPHARM
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expansion for any of these models. The performance has a potential to be improved if we
implement these methods using a lower level language (e.g., C) than Matlab.

5.1. SPHARM representation of large-scale 3D models
As a Fourier method, a SPHARM representation is a global descriptor. Even if this is the case,
the proposed IRF method enables large scale SPHARM expansion that can reasonably capture
fine surface details for complicated 3D surfaces and accurately describe them. Following
typical literature in computer graphics [31,32], we define the maximum reconstruction error
Em and the average reconstruction error Ea as follows:

, where pk is the k-th vertex (out of N) on
the original model and rk is the corresponding vertex on a reconstructed surface. Similar to
[31], in our experiments, all the models are scaled to have a bounding box of [0, 1]3, which
makes the reconstruction error measure scaling invariant. Fig. 7 shows four original models
and their SPHARM reconstructions using coefficients up to degrees 10, 20 and 85, respectively.
The Ea measures are also shown for each case and also summarized in Table 1. We can see
that a degree 85 SPHARM reconstruction is a pretty accurate representation of the original
model visually and numerically. Shown in Table 2 is the comparison of reconstruction errors
on two similar models (with different number of vertices) between this work and Cheng et al.
[31]. Cheng et al. aimed to fit surfaces to unorganized point data, while our goal was to fit a
SPHARM model to a given surface. Despite different tasks, the description errors were
achieved at a similar level.

With the goal of fitting a parametric model to a discrete representation of a triangulated surface,
SPHARM inherently provides a mechanism for surface interpolation. While some surface
interpolation methods (e.g., [33]) can deal with surfaces of arbitrary topology, SPHARM is
only applicable to genus zero surfaces. Since SPHARM is a mathematical model defined on a
continuous spherical domain, it enables easier processing for many applications involving
arbitrarily-shaped but simply-connected 3D objects.

First, it is a more compact representation than a triangulated surface in many cases. For
example, the original gargoyle model has 100,002 vertices and 200,000 faces, and so it is
described by 900,006 variables in total. However, a degree 85 SPHARM model of gargoyle is
described only by 22,188 complex coefficients and can reasonably capture the overall shape
together with many surface details of the original model. This compactness property can be
used for geometric compression. Table 1 shows effects of SPHARM degrees on the description
error Ea and the compression ratio (CR). Even though the CR estimation is very conservative
(i.e., ignoring all the face information in the original model), decent CRs and Ea’s can still be
achieved for degree 85 reconstructions of the tested models.

Second, one can operate not only in the spatial domain but also in the frequency domain. Taking
a lower order SPHARM reconstruction can naturally achieve the goal of surface smoothing
and filtering. See Fig. 7 for a few samples. This property has been used in a couple of prior
studies [4,8] for surface smoothing and filtering. It can also be used for level of details
representation and transferring.

Third, the level of details applications can be done not only via the frequency domain but also
via the spatial domain. A SPHARM reconstruction is essentially a remeshed original model.
We can use different spherical sampling schemes with different sampling resolutions for
SPHARM reconstruction. Fig. 8 shows several reconstruction cases using regular spherical
mesh grids (Fig. 1(g)) and icosahedral subdivisions (Fig. 1(h)) at different sampling
resolutions. Although not tested in our experiments, the adaptive sampling mesh scheme
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described in [8] seems like a promising method that can derive more accurate reconstructions
with fewer vertices.

5.2. SPHARM registration
Table 3 presents the performance comparison among four proposed approaches to apply STPS
to five cases. In general, R-BSTPS and R-HSTPS outperform BSTPS and HSTPS respectively
in terms of the mesh distortion costs, and R-HSTPS exhibits the best performance. It is noticed
that, however, HSTPS shows the better performance than R-HSTPS in the first case. However,
even in this case, the distorted mesh using R-HSTPS does not introduce any noticeable
distortion to its reconstructed object. This observation suggests that the criteria for selecting
the best orientation of the landmarks on the sphere require further investigation for both the
template’s parameterization and the individual’s parameterization.

Fig. 9 and Fig. 10 show the R-HSTPS alignment results of two pairs of cortical models and
three pairs of graphics models respectively and their distortion costs can be found in Table 3.
Each two rows correspond to one alignment case, where the top row shows the objects and the
bottom row shows their spherical parameterization. We use bump maps to visualize the
correspondence between the object and its parameterization. Landmarks and a coarse mesh
grid are also shown on each surface. The first column shows template models. The second and
the third columns exhibit individual models before and after SPHARM registration
respectively. Comparing an original individual with the corresponding template, you will
notice that their landmarks are aligned only in the object space but not in the spherical parameter
space. However, comparing a registered individual with the corresponding template, you can
see that their landmarks are aligned not only in the object space but also in the parameter space.

This improvement of alignment can subsequently contribute to the feasibility of performing
pair-wise processing or group analysis of these 3D models. For example, such a SPHARM
registered result can help improve a morphing sequence between two 3D models. Results
shown in Fig. 11 exhibit several morphing sequences between a template and an original
individual (Rows 1, 3, and 5) or between a template and a registered individual (Rows 2, 4,
and 6). All the templates and the original and registered individuals are reconstructed using
their degree 85 SPHARM models. We can see that morphing the template to the registered
individual achieves a much better effect than to the original individual, since the intermediate
shape of morphing to the registered individual looks more natural than those of morphing to
the original individual. Besides morphing, there are many other SPHARM applications
requiring models being registered with landmark guidance, such as surface-based
morphometry in biomedical imaging [9,10,11,12,15] and morphological analysis in
evolutionary biology [16,17,18].

6. Conclusions
We have presented an enhanced spherical harmonic (SPHARM) surface modeling and
processing framework, and demonstrated that it could be used to accurately model large scale
3D surfaces and it could effectively register these models with or without landmark constraints.
The main contribution is twofold: (1) incorporation of our recently proposed large scale
SPHARM expansion method into the framework for facilitating the possibility of using
SPHARM to accurately model large scale 3D surfaces, (2) design of a new STPS-based
SPHARM alignment method that can register SPHARM models together under pre-existing
landmark constraints as well as minimize parametric distortions. Our experimental results show
the effectiveness of the proposed methods. These methods greatly enable the potential of
applying the highly promising SPHARM method to broader areas such as computer graphics,
medical imaging, CAD/CAM, bioinformatics, and other related geometric modeling and
processing fields. The proposed methods will be incorporated into SPHARM-MAT, a 3D shape
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modeling and analysis toolkit, and will be released at the Neuroimaging Informatics Tools and
Resources Clearinghouse (NITRC) website http://www.nitrc.org/ in the near future.

While image registration is considered as one of the most important topic in image processing
and analysis, surface registration plays a similarly important role in computer graphics and
shape analysis. The reasonable choice for criterion used for quantifying registration quality is
critical. Different applications may require different criteria for obtaining optimal results. For
smooth surfaces without landmarks (e.g., hippocampus, ventricle), we can use traditional
SPHARM registration methods [3,21] to align them. In these cases, their underlying
parameterizations are not distorted. However, for surfaces associated with homologous
landmarks (e.g., many biological structures), the underlying parameterizations have to be
distorted so that the corresponding landmarks can be registered together across different
objects. While the proposed registration methods are designed for this purpose and aim to
control the area and length distortions, it remains an interesting future topic to examine the
effects of using alternative criteria (i.e., considering a different combination of the area, length
and angle distortions) for developing other effective registration schemes.
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Figure 1.
Sample SPHARM reconstruction: (a) A hippocampal surface, (b-e) its SPHARM
reconstructions using coefficients up to degrees 1, 5, 10 and 15, respectively, (f) its spherical
parameterization, (g) a regular mesh grid on the sphere that is used for reconstructions shown
in (b) and (c), (h) an icosahedral subdivision at level 3 that is used for reconstructions shown
in (d) and (e).
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Figure 2.
Sample spherical parameterization.
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Figure 3.
Application of basic STPS method. When one or more landmarks are closely located to the
north or south pole, the parametric mesh of the individual can be severely distorted. The average
cost a and the worst cost w are shown as (a, w) for ADC and LDC.
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Figure 4.
Effect of rotation along z-axis on the results of STPS. Rotation along z-axis does not affect the
distortion level of the STPS results. The average cost a and the worst cost w are shown as (a,
w) for ADC and LDC.
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Figure 5.
Comparison of the number of samples in rotation space (left) and running time (right) for
hierarchical and non-hierarchical rotational approaches.
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Figure 6.
Performance comparison of different STPS methods. The first row shows (a) the original
template Torg and (b) the original individual Iorg, and (c-d) the results of BSTPS and HSTPS.
The second row shows (e) the rotated template Trot and (f) the rotated individual Irot where
landmarks are moved away from the poles, and (g-h) the results of R-BSTPS and R-HSTPS.
The average cost a and the worst cost w are shown as (a, w) for ADC and LDC. In general,
HSTPS and R-BSTPS outperform BSTPS, and R-HSTPS performs the best in term of the mesh
distortion costs. More performance results are available in Table 3 of Section 5.2.
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Figure 7.
Shown from left to right are original models and their SPHARM reconstructions (with
reconstruction error Ea) of degrees 10, 20 and 85. SPHARM can accurately model large scale
3D surfaces as well as be used for interesting applications such as geometric compression,
surface filtering, etc.; see text for details.
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Figure 8.
SPHARM reconstructions using different spherical sampling schemes: The top two rows use
icosahedral subdivisions and the bottom two rows use regular spherical meshes. Potential
applications include remeshing, multi-resolution modeling, and level of details.
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Figure 9.
Two alignment results between cortical models. The first two rows show the result of aligning
an individual left hemisphere to its template, while the last two rows show the results for a
right hemisphere case. The first column shows a template model. The second and the third
columns exhibit an individual model before and after SPHARM registration respectively. A
quadrilateral mesh and a bump map on sphere show the correspondence between each object
and its parameterization. Landmarks are shown as blue dots on the surface.

Shen et al. Page 23

Comput Graph. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Three alignment results between graphics models. The first two rows show the result of aligning
armadillo to gargoyle, the second two rows show the result of aligning gargoyle to bunny, and
the last two rows show the result of aligning cow to horse. The first column shows a template
model. The second and the third columns exhibit an individual model before and after
SPHARM registration respectively. A quadrilateral mesh and a bump map on sphere indicate
the correspondence between each object and its parameterization. Landmarks are shown as
blue dots on the surface. Note that the first two examples (i.e., armadillo-gargoyle and gargoyle-
rabbit) are expressive, showing that the proposed method can align very different models.
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Figure 11.
Comparing morphing using original and registered SPHARM models. The first, third, and fifth
rows show the results of morphing templates to original individuals and the second, forth, and
sixth rows show the results of morphing templates to registered models. Morphing using
registered models exhibits more intuitive and natural morphing sequences. The templates and
the original and registered individuals are all reconstructed using their degree 85 SPHARM
models.
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