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The ever-growing arsenal of methods and parameters available for data visualization can be daunting to
the casual user and even to domain experts. Furthermore, comprehensive expertise is often not
available in a centralized venue, but distributed over sub-communities. As a means to overcome this
inherent problem, efforts have begun to store visualization expertise directly with the visualization
method and possibly the dataset, to then be utilized for user guidance in the data visualization,
suggesting to the user both the visualization method and its best parameters for the data and task at
hand. While this is certainly an immensely useful and promising development, one requirement
remains - the matching of a newly acquired dataset with the appropriate segment of the library storing
the expert knowledge. This requires one to detect and recognize the dataset’s category at some level of
granularity and then use this information as a library index. We describe a possible framework for
accomplishing the first stage of this process, namely the data categorization, using data classification via
a rich set of feature vectors sufficiently sensitive to detect critical variations. We demonstrate the utility
of our framework by ways of a set of medical and computational datasets and visualize the resulting

categorization as a layout in 2D.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Knowledge-assisted visualization (KAV) [5] seeks to augment
visualization methods as well as data with expert knowledge, in
order to make navigation through visualization parameters spaces
easier for users unfamiliar with a given method or data
visualization in general. Major challenges here are how this
knowledge is collected, selected and stored and how it is indexed
by data and task. It is obviously infeasible to have an expert pre-
view and navigate each and every newly acquired dataset before it
is released to the general public. This may be possible for an
isolated set of showcase datasets, but it is impossible in the
general case. Hence, we need to somehow learn and then
generalize the associations of data with the available collection
of expert knowledge. Such a task falls into the general domain of
categorization problems. It requires a set of rich feature vectors
capable of classifying data instances at suitable granularity. In the
following, we first motivate the need for rich feature vectors, from
a visualization standpoint. The remaining paper is then dedicated
to describe a set of feature vectors that we found to work well for
a number of diverse data examples. We envision that these feature
vectors could ultimately be used as a key to retrieve from a
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database of expert knowledge the segment of expertise applicable
to the dataset at hand. Further augmentation of this key by a
specific task as well as user expert level and personal preferences
would then be relatively straightforward.

The ultimate purpose of visualization is to exploit the
analytical powers of the human brain to integrate low-level
features, made visible in the graphics rendering, into a full
diagnostic evaluation. While the feature detection is a pre-
attentive process, the subsequent integration is a conjunctive
one that takes time and conscious attention. In fact, this bottom-
up approach constitutes the fundamental underpinnings of
Integration Theory [32] (as opposed to Gestalt Theory, which is
top-down), and has also given the new field of Visual Analytics its
great appeal. Discrete (sampled) data rendering has produced a
great variety of techniques to make data features visually salient
for easy detection by the human visual system. One measure of
distinguishing these many techniques is by the underlying feature
model, whose parameters are captured in a feature vector. Here, the
simplest model is the one that is purely sample-based, that is, just
the sample value (we shall assume scalar densities for this paper,
without loss of generality), which can be visually enhanced via
suitable RGB mappings in transfer functions. This leaves it
completely up to the user to infer structure in the visual
integration process. The next step up is to assist the user in
making the conjunctive feature integration. Shape is a strong cue,
and to infer it, one can calculate gradients from the sample
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neighborhood. More advanced local computations can emphasize
higher-level shape features, such as curvature, suggestive con-
tours, and others. All of these features have in common that they
have direct visual manifestations which can be readily brought
out by their interaction with light. Thus, the underlying models
have direct correspondences to familiar real-life expressive
artifacts. Similar is true for vector and flow fields where
streamlines or deforming textures can be used to visually aid in
feature integration. But feature models can also reflect more
abstract events, which can be deduced from the data. Popular here
are physical as well as topological events in iso-contour and flow
fields, which all can be visualized as a feature space of graph-like
representations [24,35]. Glyphs have also been devised to visually
communicate the presence, structure, and location of such
features to the user [34].

In all of the above cases, image analysis, guided by a suitable
feature model, was used to perform some low-level feature
integration for the user, so these patterns could be perceived,
visually encoded by appropriate graphical means. But there are
many situations where feature models are not known (yet), or at
least have not been formulated by a descriptive analytical process.
In this case, one must resort back to raw patterns in the data and
derive a model from scratch, using a learning approach (often
called model learning). Learning requires a specification of features
in the data that are characteristic for the sought model, able to
distinguish positive from negative candidate instances. This
specification is a key to finding an accurate model. Ideally, this
process is fully automatic. We accomplish this by first deriving a
set of rich feature vectors from the data and then using cluster
analysis to learn the feature vectors relevant to the model. Here
we will be looking for features that are less intuitive on first sight,
and are thus not pre-attentive, requiring computer analysis for
their derivation. Then, once these rich feature vectors have been
learned, they can be used for subsequent classification, selection,
and indexing. In that regard, unlike other works in volume
graphics based on machine learning [33] our focus is not
segmentation, but model-based object-level classification, detec-
tion, and categorization.

Our paper is structured as follows. First, Section 2 discusses
relevant work. Then, Section 3 presents the low-level feature
detection and description mechanisms we use, while Section 4
describes the high-level learning framework to support classifica-
tion and mining, and the visualization of the outcomes. Finally,
Section 5 presents results of some case studies we conducted with
our system, and Section 6 ends with conclusions.

2. Previous work

Voxel clustering has been a frequent mechanism for feature
characterization. It was popularized in the pioneering work of
Kindlmann and Durkin [14] who identified region (object)
boundaries by their characteristic arc-footprint in a 2D density-
gradient magnitude scatter plot. However, once there are a
sufficiently large number of boundaries, this scatter plot becomes
excessively cluttered, making the detection of isolated arcs
virtually impossible. For this reason, Kniss et al. [16] devised an
innovative dual-domain interaction interface, which enables
users to explore local regions of the volume in the volume
domain and simultaneously observe the emergence of arcs
corresponding to local iso-surfaces within the clutter of the
scatter plot domain. An iterative process conducted in this
manner then identifies, labels, and paints all volume features.
Although the emergence of GPUs enables such real-time interac-
tion, this type of feature detection still requires a significant
amount of user skill and time. Further, the approach also pointed

to the limits of how many dimensions can be simultaneously
managed within such an interactive interface.

Other clustering metrics have also been proposed since then,
for example the LH-values [30], which encode the two volume
values encountered by moving up and down the gradient
direction from a given voxel. The LH metric is a very informative
characterization of a boundary, as it reveals the regions which the
boundary separates. The LH histogram, however, also operates
within a scatter plot of two cluster variables, that is, L and H,
which can result in clutter in the presence of many features. The
incorporation of more than two metrics creates what is often
referred to as voxel signatures [31]. Traditionally these have
included densities, first and second derivative magnitudes, but
also more advanced statistical measures, such as skew and
kurtosis, as well as curvature [15], but one could easily add
further metrics, such as the LH-values discussed above. The
visualization of these high dimensional points is challenging, and
most typically an array of 2D projection scatter plots is used. This,
however, limits a holistic assessment of the present patterns — the
user must reconstruct the possibly complex high-dimensional
shape mentally. Dimension reduction methods, such as SOM (Self
Organizing Maps) [27], can be used to compress the high-
dimensional space into 2D, however, this can be prone to errors
and distortions, and it also requires a discretization into bins for
display. An early but powerful direct high-dimensional explora-
tion paradigm providing a combined scatter plot of an arbitrary
number of variables is the Grand Tour [1]. The user is guided
through hyper-space along a trajectory that is decided along the
way by selecting the maximum of a given projection pursuit
metric. The user stops when the current viewpoint is the local
maximum of this metric. In contrast, the method of parallel
coordinates [13] maps a high-dimensional point into a piece-wise
linear line that spans the vertical dimension axes. With Parallel
Coordinates, clusters can be isolated by brushing the appropriate
data axes. Another form of displaying high-dimensional data is
the spectral plot, as has been used in [23], where various cues
were added to help users perceive N-dimensional relationships.
However, once the number of dimensions becomes even modestly
large (dozens to hundreds) all of these paradigms fall victim to the
curse of dimensionality [2], which makes the search for interest-
ing patterns an unwieldy task.

To circumvent the scalability problems associated with visual
clustering and pattern detection, we choose to instead use more
descriptive, yet low-level, feature descriptors, which allow for
more informed (pre-integrated feature) clustering in the compu-
tational domain, to yield the desired categorization descriptor. A
subsequent visualization of the inter- and intra-cluster relation-
ships, along with iconic representation of the underlying patterns,
then optionally allows users to get a feel for the semantics of their
data. This enables an information-assisted visualization interface
[5], in which users, possibly experts, would select visualization
method and parameters based on this explanatory data property
illustration.

One of the feature descriptors we employ are local density
histograms, which have found frequent use in volume rendering
before. For example, [22] utilize histograms of local neighbor-
hoods to capture tissue characteristics for locally-sensitive
transfer function specification, while [28] employ local histo-
grams to simulate color bleeding and ambient occlusion effects.
Texture descriptors have also recently been used by Caban and
Rheingans [3]. But apart from densities and higher-order statistics
derived from them, we find it also helpful to characterize local
features by their gradient field statistics, in form of scale-space
gradient histograms. For this, we use the SIFT (Scale Invariant
Feature Transform) operator [20,21], which has become quite
popular in the computer vision literature and content-based



J.E. Nam et al. /| Computers & Graphics 33 (2009) 607-615 609

image retrieval, but to the best of our knowledge has rarely, if at
all, been used in the field of volume visualization. We note that
our descriptors may be augmented with other high-dimensional
feature vector descriptors, such as size [6] and moment statistics
[26], as well as with standard local descriptors, such as density
and derivatives, for potentially even better results.

3. Low-level feature detection and description

As mentioned, we use two types of statistical low-level feature
descriptors: density histograms to represent the overall texture
statistics and gradient histograms to capture the perceptual
effects of these. In particular the latter is targeted to support the
feature integrative systems of human vision, which is the target of
any visualization system. Both will be insensitive to affine
transformations, such as scale, rotation, and translation, to
support feature and object characterization in large datasets. We
describe both of these feature descriptors in the following.

A global histogram is not descriptive enough as a classifier, and
this motivated the use of more feature-oriented histograms. We
did not attempt automated segmentation which is still an open
research area, to confine the extent of histograms within object
boundaries. Instead, we aimed for a representation that has good
potential to capture the essence of an object, and yet is automatic
to compute. This led to our approach of computing the density
signatures in local histograms at a hierarchy of window sizes, to
enable the detection of feature density statistics at multiple levels
of scales. For this, we normalized the histograms. We also perform
optional smoothing at the histogram level (not the image level) to
reach independence of the sampling process that generated the
data. Rotation invariance is achieved by constructing the histo-
grams within slightly overlapping radial regions. We also
experimented with space-filling tilings: hexagons in 2D, rhombic
dodecahedrons in 3D, and so on. For reasons of simplicity in the
indexing [37], we eventually chose the radial primitives in our
work.

To encode the gradient signatures we used the SIFT feature
descriptor, as motivated in Section 2. In the following section, we
shall describe the SIFT feature descriptor for the traditional 2D
(image) case [21]. Section 3.2 will then describe how we make use
of it in time-varying 2D and 3D in light of our application.

3.1. The SIFT feature descriptor

The SIFT feature descriptor [20,21] is based on a model of the
behavior of cerebral cortex cells in primate vision, which are
sensitive to intensity gradients at different levels of scale. Founded
in these evolutionary principles, it has been shown to outperform
other local descriptors on both textured and structured scenes.
The SIFT algorithm consists of two phases: (i) the detection of
critical points (the keypoints) in scale-space and (ii) the encoding
of these into keypoint descriptors. As has been formally shown in
[19], the Gaussian forms the best scale-space kernel, and it is used
to compute the scale-space used by SIFT for key-point detection. A
Gaussian kernel is parameterized by the standard deviation o:

Gx,y,0) = —2;0_2 e~ (W x)/207 1)

The SIFT scale-space is formed by convolving the original
image by a cascade of Gaussians, yielding a set of N images with
band limit 2'c and down-sampled by a factor of 2/, 0 <i<N-1.
Each image thus represents an octave in scale-space. This pyramid
makes features at multiple scales accessible for a localized
detection of keypoints, and thus makes features scale-invariant.
The detection itself is performed by finding local extrema in a

Difference-of-Gaussians (DoG) representation on each pyramid
level. A DoG D(x, y, g) is computed by

D(x,y,0) = (G(x,y, ko) — G(x,y, o)I(x,y) 2

where I(x, y) is the image and G(x, y, o) the Gaussian kernel. SIFT
uses a set of DoG within each octave to enable a finer-scaled and
more spatially localized search for local extrema. Each scale-space
octave is first subdivided in a set of s images, progressively band-
limited with kKo where k = 2"/ and 1 <j<s. In fact, we require s+3
blurred images so that the final extrema detection covers the
complete octave.

Keypoints are then detected by comparing a point’s 8
neighbors on the current scale and the 9 neighbors at the scales
above and below. This requires 27 comparisons to determine if the
point is a local maximum/minimum. Spatial localization of the
keypoint can be improved by a using a Taylor series expansion of
the local DoG gradients and setting the derivative to zero [21]. An
inherent problem with SIFT is that there can be an abundance of
keypoints. Thus additional metrics must be employed to define
the relevant saliency of the local extrema. One such metric is
contrast, defined by the magnitude of the DoG response’s local
extremum |D(X, Y, 6)max|- Typically, a value of Tp,c = 0.03 is used
in practice (assuming image values normalized in [0, 1]),
providing reductions on the order of 10%. A second criterion is
to reject all keypoints that are part of an edge. These can be
detected by gauging the local curvature using the point’s Hessian
matrix H. A point is an edge point if the ratio r of the two principal
components is above a certain threshold, say 10. This ratio can be
efficiently determined by computing the trace and determinant of
H and rejecting the point if the following relation does not hold:

Tr(H?  (r+ 1)
Det(H)< r

3

This test typically rejects an additional 20-30% of the potential
keypoints.

The surviving strong keypoints are now encoded into descrip-
tors which attempt to model the keypoint neighborhood and
make it sufficiently distinct for recognition tasks. This encoding is
by ways of an orientation histogram of local gradients
(measured in the scale space image that is closest to the scale of
the keypoint), quantized into bins. It is constructed by computing
the magnitude and orientation at each image sample point in a
region around the keypoint location, weighted by a Gaussian
function with ¢ equal to one half the width of the descriptor
window to achieve a certain level of smoothing. The samples are
then aggregated into 8-bin orientation histograms describing the
neighborhood over a 4 x 4 matrix of subregions. Fig. 1 shows a 2D
example. This histogram is stored into a 128-long feature vector,
along with the scale ID and location.

The SIFT feature descriptor can be made orientation indepen-
dent and therefore rotation invariant. For this, the highest peak in
the orientation histogram is detected and this orientation forms
the key-points alignment vector (that is, the orientation histo-
gram is rotated by this vector into a normalized orientation).
In addition, new keypoints are also created for all orientation
histogram directions with local peaks within 85% of the global
peak. This adds typically 15% keypoints, but it brings more
stability to matching tasks.

3.2. Extending the SIFT feature descriptor to time-varying 2D and 3D
imagery

SIFT has traditionally been used only in 2D in the context of
images, but recently [4] and [19] have generalized the framework
into higher dimensions, for the purpose of determining accurate
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feature point correspondences between medical volume datasets
for object alignment and for action recognition in video data,
respectively. Although both works extended SIFT to be used with
3-dimensional data, the former employs a more sophisticated
keypoint localization approach whereas the latter relies on a
random procedure for the extraction of interesting points. This
latter methodology allows for faster runtimes but fails to capture
the essence of the SIFT algorithm, which is the localization of
points that contain striking characteristics of an image. Thus, we
use a method similar to that of [4] (and described in Section 3.1)
to extract keypoints and compute their feature descriptor in our
application.

First a difference of Gaussian (DoG) pyramid of datasets is
built. A series of s Gaussian blurred volumes is computed from the
original dataset with sigma = o, ko, k%o, k0, ..., k°c forming an
octave (plus the additional two volumes at either end needed to
compute s DoGs). In our experiments, we have used s = 3 to keep
storage reasonable. The first volume of the first octave is the
original dataset and the first volume for the subsequent octaves is
a half-sized version of the last blurred volume of the previous
level. The DoG datasets are then computed from its neighboring
blurred datasets at scales K’ and k*'¢. Finally, each DoG volume
is searched for local maxima or minima. Similar to the SIFT
algorithm, every voxel is compared against all its neighboring
voxels in the current scale and in the DoG datasets in the scale
above and below. In 3-dimensions, this step requires checking 80
voxels (26 neighbor voxels in the current volume and the 2 x 27
voxels in the corresponding locations in the adjacent volumes in

Xk
* K

Fig. 1. SIFT keypoint neighborhood. Pre-computed gradients (background) are
accumulated into 8-bin orientation histograms (foreground) for each subregion.
This figure shows an 8 x 8 neighborhood with 2 x2 subregions, while SIFT
typically uses 16 x 16 neighborhoods with 4 x 4 subregions.

a b

the same octave). Similar to the 2D case, we use the two metrics,
contrast and edge, to cull some of the detected keypoints. For the
former, we set Tp,c = 0.3 (assuming voxel ranges in [0, 1]). Using
the edge metric is justified since in a full-fledged framework we
would prefer to use the 1st and 2nd derivative as a separate
feature descriptors, obviating the use of edge keypoints for our
SIFT-based feature descriptors. We use a 3D Hessian matrix in
Eq. (3) and set r = 10.

The 3D-SIFT feature descriptor is comprised of a 4 x4 x4
matrix of subregions, each 4 x 4 x 4 voxels large. This results in a
cubic voxel region around the keypoint, with each of the 64
subregions summarized by an 8 x 8 histogram of voxel orienta-
tions (see Fig. 2). The natural generalization of the SIFT gradient
direction representation to 3-dimensional datasets uses 2
spherical coordinates (8, @) and gives rise to 2-dimensional
orientation histograms with b bins for each coordinate, spanning
(2w, m) radians. Every gradient magnitude is weighted by a
Gaussian function centered at the keypoint before being
accumulated into the corresponding bin of the subregion
histogram. The concatenation of such histograms form the 3D-
SIFT feature descriptor.

4. High-level learning and classification, and signature
visualization

Having captured the essential perceptual features of a sampled
object or phenomenon by way of the feature descriptors described
in Section 3, we are now ready to assemble these into high-level
constructs. Our goal is to learn a high-level representation of the
sampled object, using its low-level features. Here, we distinguish
between three levels. The level-1 categorization distinguishes
different types (categories) of objects to give a general description
to each class of objects (for example, smoke vs. fire). The level-2
categorization is run on objects of the same class but distin-
guishes them by their unique characteristics (for example,
turbulent smoke vs. laminar smoke). Finally, the level-3 categor-
ization groups similar individual features within a level-1 or level-
2 category. This similarity grouping can be achieved via cluster
analysis, such as k-means clustering [9] or affinity clustering [10]
and uses the entire feature vector. In k-means clustering the data
are partitioned into k clusters, such that each data point belongs
to the cluster with the nearest mean. The number of clusters is
chosen beforehand, but can be automatically adapted using some
quality metric as iterations proceed [25]. Affinity clustering, on
the other hand, simultaneously considers all data points as
potential center points (called exemplars) and gradually identifies
clusters by iterative message passing among points, “electing” the

Difference of
Gaussian

Gaussian
Blurred volumes

AT

Fig. 2. Summary of the 3D-SIFT algorithm: (a) One octave of the pyramid. The scale increases along the up-direction. (b) Depiction of subregions adjacent to a keypoint. The
figure shows only 2 x 2 subregions while the algorithm employs 4 x 4 regions. (c) 2-Dimensional histogram of gradient orientations of one subregion. Black squares

correspond to 1 and white squares to 0. The histogram is normalized to [0, 1].
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Fig. 3. The main pipeline. The dataset used for illustration includes four different 2D water jet flows (water2 through water5, from top to bottom). All jet flows have the
same direction: ejected from the top-right corner to the bottom-left corner. They have different speeds from slowest (water2) to fastest (water5). Water5 flows slightly to
the side direction partially: (1) the four instances of the 2D water jet flow dataset; (2) computing the SIFT feature descriptors for each dataset and creating a set of feature
vectors; (3) for each dataset, performing k-means clustering of the feature vectors into a set of sub-features; and (4) visualizing the clusters in an MDS map to convey their

relative similarities.

most agreeable centers. We note that the top two levels may
overlap in terms of the third level, that is, third-level features may
be part of separate categories and instances thereof.

We generated a number of animated sequences of water flows
to experiment with our framework (see Fig. 3 for an illustration of
the process). First, we computed SIFT feature descriptors of five
different water flows (panel 1). We then used the SIFT feature
descriptors of each dataset to form the high-level categorizations,
level-1 and level-2, and ran k-means clustering for the level-3
categorization. A value k = 5 worked best for our experiments, but
we could also have used adaptive k-means or affinity clustering to
gain more independence from choosing an initial k. Now, each
dataset has five clusters of feature descriptors, and each cluster in
each dataset constitutes an individual feature. If the user runs
clustering on an individual feature to create sub-features, a two-
level hierarchy is formed and can be categorized at the lower
level. In fact, the clustering can be performed at any level of the
hierarchy using different parameters and various clustering
methods. Panel 3 shows a spectral plot [23] of the separated
clusters. Each row is one feature vector where value is coded as
color (from blue to red, the value is increasing). However, the
complexity of this spectral plot prohibits one to discern cluster
relationships in an intuitive fashion. We therefore added further
support by visualizing the clusters (at all three levels) via
Multidimensional Scaling (MDS) [17]. For this, we computed the
distances between all cluster pairs using various distance metrics
(explained further below) and stored them into an M x M distance
matrix, where M is the number of clusters. There are many
methods to embed this distance matrix into a 2-dimensional
plane, preserving the original N-D distances as close as possible
[7]. We chose the classical form of MDS which uses the top two
principal components of this distance matrix as the embedding
coordinates (see panel 4). The closer the distance the more similar
are the clusters, according to the chosen metric. The composition
of the MDS map depends on the categorization level of interest. In
Fig. 3, each point in the MDS map corresponds to each dataset
since we are interested in the level-2 instance categorization. The
computed cluster distances, shown in the MDS maps, are an
important part of the categorization algorithm, so we shall
examine the various methods we used in the following.

We have tried three similarity metrics to calculate the
distances for the MDS map: (1) simple Euclidean distance
between cluster centers, (2) Euclidean distance between all data
points in the cluster, and (3) CURE similarity. The CURE similarity
is a distance metric which we borrowed from the CURE clustering
algorithm [36]. In this scheme, well-scattered representatives are
selected in each cluster and their Euclidean distances are

1 Water3. keys

water2. keys

"= water3 keys ‘waterd keys

water2 keys

water‘.klﬁters_key

water5.keys

Fig. 4. Cluster visualization using two different similarity measurements for MDS:
(a) Euclidean distance of cluster centers; (b) CURE similarity: distances between 15
well-scattered representatives. Only the CURE similarity metric can successfully
separate the very different water5 flow.

computed as a metric for similarity. We selected 15 data points
to represent each cluster. While the Euclidean distance tends to
find neighbors related on the cluster centers, the CURE similarity
better represents clusters of arbitrary shape. Fig. 4(a) shows an
MDS plot generated by the Euclidian center distance metric. Here,
water2 and water3 flows appear very similar, and likewise water4
and water5. However, by visual inspection of the original flows
(panel 1), this is not true. Indeed, if the cluster shape is not
uniformly distributed about the cluster center, this metric may
not capture the similarity correctly in terms of shape. For better
results (Fig. 4(b)), we use the CURE similarity metric. Here, water4
is gathered with water2 and water3, while water5 is well
separated from the group, which is also evident in the images of
these flows. This indicates that while water5 may have a similar
cluster center than water2, 3, and 4, it does not have a similar
shape within the group.

In order to give the user further insight into the cluster’s
composition we represent each MDS node as an icon that depicts a
matrix of the dimension values. From the bottom left to the top
right corner of the each node, the matrix is divided into the
number of dimensions. Each cell encodes the average value of
each dimension as brightness. This small icon can provide users
with insight on the activities in all dimensions in a comprehensive
and space-efficient way.

Let us now drill into the MDS plot to assess the cluster
decomposition and explore the intra- and inter-cluster relation-
ships. This exposes the level-3 features in relation to the level-2
instances (still using only one level-2 category: water flow). As
mentioned above, we run K-means clustering on each flow using
K =5 (giving rise to the second level of the hierarchy shown on
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Fig. 5. Separating out individual sub-features (level-3 clusters) in the level-2
clusters using K-means clustering. Sub-feature clusters are gathered into three
larger groups (red circles) (for interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article).
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cluster0

Fig. 6. Clusters in Group 1 in Fig. 5: (a) Clusters represented in spectral plots. The
colored patterns are very similar. The histogram (green bars above each spectral
plot) also shows similar patterns. (b) Some example positions of keypoint
descriptors (red dots) in each corresponding cluster (for interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article).

the right edge of Fig. 4, panel 3). Fig. 5 shows the entire MDS map
(for example, water3.keys-2 denotes the 2nd cluster of the water3
flow). We observe that small clusters from different flow datasets
overlap at several locations. The spectral plot in Fig. 6 takes a
closer look into the feature vectors of the clusters inside the left
circle, where we indeed observe that water2-4, water3-4,
water4-2, and water5-0 are very similar.

Using these learnt relationships, we could now easily categor-
ize new water flow datasets at all 3 levels. But in a more general
context, an important finding from this experiment is that in
general there is not a unique set of features that defines a given
dataset, but a (random) subset of features might be shared among
datasets of the same type, or even of different types or domains.
Yet, the combination of these features will likely be unique (which

was certainly true for the water flows we used to illustrate our
framework). Therefore, as a direct consequence for knowledge-
assisted visualization, it will depend on the level of detail
(or aspects) one seeks to visualize to determine which knowl-
edgebase segments would need to be indexed (and which would
be shared). This was also our motivation for adding the various
methods for providing visual feedback, which allow a visual
steering of the various parameters. This visual interactive
interface will be useful when adding datasets to the knowledge-
base which we consider in some sense a knowledge design
activity. In the knowledge retrieval stage, all analyses would of
course be automated, using the stored parameters, or possibly
tunable by a single slider encoding a suitable combination of
parameters [29].

5. Results

To evaluate the categorization power of our framework in a
more general context, we tested it on a set of medical image data,
such as various body parts scanned with MRI and CT, as well as on
datasets obtained from fluid dynamics simulations. Further, we
also compared the results obtained when treating animated data
as a set of independent frames or combined as a time-series. All
medical data were obtained from [39].

5.1. Categorization of MRI and CT volumes

We tested four different medical datasets: a knee, a chest, and
two head datasets (see side panel of Fig. 7 for an arbitrary
rendering of these — the feature descriptors were computed on the
raw data). We computed the global and local density histograms
as well as the 3D SIFT feature descriptors for each dataset. For the
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separates the data objects best.
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calculation of the local density histograms, the rhombic
dodecahedrons were inscribed in a sphere with radius equal to
8 voxels extended 12.5% to allow for the overlapping of adjacent
spheres. At each successive level, the radius of the sphere was
doubled, eventually reaching one fourth of the smallest dimension
of the volume. The extraction of 3D SIFT feature descriptors was
executed with Tpoc set equal to 0.0075 (considering the voxels
were normalized in the range [0,1]), ¢ = 4.0, 3 DoG datasets per
octave and 8 bins for the gradient orientation histogram (for each
spherical coordinate).

Fig. 7 shows the MDS plots for each feature descriptor. We
make the interesting observation that while all feature descriptors
are able to categorize the knee, the chest, and the heads, only 3D
SIFT is sufficiently sensitive to distinguish the two instances of the
head, keeping a smaller feature space distance than to the very
different datasets. This distance may then subsequently be used to
steer the applied knowledge to the finer distinguishing properties
in the KAV process.

Fig. 8 compares the categorization of MRI data with the three
feature descriptors. These data consist of three brain scans and a
leg scan (sample renderings are shown in the side panel). Here we
observe that the global histogram descriptor is only able to
distinguish brain data from non-brain (here knee) data. The local
histogram descriptor, on the other hand, distinguishes the various
brains, but categorizes the knee and one of the brains into
overlapping bins, which is less desirable. Finally, the 3D SIFT
descriptor spaces the knee and all brains far apart, while detecting
a closer match between two of the brains.

5.2. Categorization of flow data

The first set of flow data we tested were time-sequences
generated with the program Wondertouch Particle Illusion 3.0
[38]. We used this program since it allowed us to generate a
highly diverse set of amorphous phenomena, which we recorded
as a sequence of images, one for each frame. Specifically, we
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rendering of the data. We observe that the knee scan can be well separated from
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generated sets of instances of three (level-1) flow categories:
water jet, smoke, and fire. Section 4 already presented the level-2
and level-3 analysis of the water jet category - in this current
section we shall now concentrate on the level-1 categorization.
We only used SIFT for the flow data since we found it to be
superior to the histogram-based descriptor.

We first applied (2D) SIFT to each frame separately. All
keypoint descriptors were then concatenated to form one single
set of feature descriptors for the entire sequence. In addition, in
order to examine if time-coherency can yield better categorization
power, we also performed 3D SIFT on the volume assembled by
stacking all frames of the flow in order. In such cases, the depth of
the volume reflected the number of frames, while the width and
height correspond to the width and height of the flow sequence.
All parameters were the same as those used with the CT datasets
of the previous section.

Fig. 9 presents two MDS plots from the fire category generated
with the CURE similarity metric based on both SIFT and 3D SIFT
descriptors (Fig. 9(a) and (b), respectively). Although almost
imperceptible, the differences between flows 1, 2, and 3 rely on
the speed and angle of emission of the particles source. On the
other hand, both flows 5 and 6 are unique instances in this
category being generated with very different parameter settings,
while flow 6 is somewhat related to flows 1, 2, and 3. Being
presented with these flow sequences, we notice that SIFT fails to
categorize flows 3 correctly. In addition flows 6 and 5 are also
(incorrectly) categorized into the cluster of flows 1, 2, and 3. On
the other hand, 3D SIFT, taking temporal features and coherencies
into account creates a meaningful grouping and categorization.

The next experiment tested our framework on a set of standard
time-varying 3D datasets generated in scientific flow simulations:
Jet, Vortex, and Shockwave (pictured in that order in Fig. 10(d)).
Global and local histograms as well as 3D SIFT feature descriptors
were computed and evaluated. Five (3D) frames were extracted
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We observe that the time-coherent (3D) SIFT performs significantly better in the
categorization task.
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different feature descriptors. Clusters are circled in the same color than the frames
in the data renderings shown in (d).

from each flow and processed according to the global histogram,
local histograms and 3D SIFT algorithms. These frames correspond
to the first and last frames and frames located at 25%, 50%, and
75% in the sequence. Fig. 10 illustrates the results we obtained
with (a) global histogram, (b) local histogram, and (c) 3D SIFT
descriptors (the Shockwave is labeled sclb_reversed in these plots).
Each node shown corresponds to one frame. Using global
histograms, MDS segregates properly both the Vortex and Jet
datasets but is not able to correctly cluster frames from the
Shockwave dataset. If, on the other hand, local histograms are
used as the descriptor, the diagram shows that all frames are
correctly clustered except for the first frame of the Shockwave
dataset, which is far from the other frames. This is because in the
first frame the wave has not started yet and the histogram
distribution is rather narrow. 3D SIFT descriptors provide a good
clustering as well, but here the first frame is not differently
classified. Thus, overall, the local histogram feature descriptor
appears to capture the diversity of the individual frames better
(the level-2 categorization), while 3D SIFT appears to be more
descriptive in the level-1 categorization.

As a final experiment we tested the framework’s ability to
detect and separate an instance from a foreign category in a set of
instances of a known category (which is somewhat related to the
method’s sensitivity and specificity). Fig. 11 presents MDS plots of
our attempt to detect a water jet instance in a set of diverse smoke
simulations. We observe in the side panel of Fig. 11 that
smoke 3, 5, and 6 are different only in terms of speed and angle
of emission. Smoke 7 is a rotated version of the other flows, while
smoke 2 is very different from the others in all aspects. We then
added a completely different water jet flow to verify the validity of
the level-1 and level-2 categorizations. Indeed. both 2D SIFT (a)
and 3D SIFT (b) are able to detect the water jet outlier by grouping
it further apart than the instances within the smoke category,
although 3D SIFT does somewhat better in this.

6. Conclusions

We have described a framework that expresses sampled
datasets common in the fields of volume graphics and visualiza-
tion as a set of rich, yet general, salient low-level feature vectors,
and then uses these to create high-level models of the sampled
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Fig. 11. MDS plots of the smoke category against an unknown flow (water jet flow
1). Plots generated with (a) 2D SIFT, and (b) 3D SIFT keypoint descriptors. We
observe that we can successfully differentiate the foreign water flow instance from
the smoke category.

data objects. We aimed for a general framework to support
classification tasks needed for indexing the knowledge base in
future knowledge-assisted visualization (KAV) systems. We
demonstrated these capabilities for a variety of scenes of sampled
objects and phenomena, consisting of medical and flow data.

At this stage, we have built the models only by ways of
k-means clustering to determine descriptive feature groupings
based on similarity. This worked already quite well. However, a
richer set of object dichotomies could be obtained by introducing
probabilistic techniques, such as EM, into the framework, to
discover more specific objects in the data [18]. Another useful
extension of our framework would be to associate the learned
object and feature models with information on appropriate
rendering parameters, learned from user studies [12] or auto-
mated observers, such as Daly’s Visible Differences Predictor
(VDP) [8], or a combination of these. Here, it will be probably
useful to also include other low-dimensional feature descriptors,
such as density, gradients, LH, and the like, for more robust
categorization results.

Any low-dimensional embedding, including MDS, has residual
errors, which result from imperfect mappings of N-D to 2D space.
Our current work is directed towards using more accurate non-
linear MDS-based space embeddings, via force-directed methods
[11], in place of our linear PCA-based method. Finally, we also plan
to incorporate 4D SIFT descriptors to capture the temporal
coherencies in time-varying 3D volumes.
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