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Realistic soft tissue models running in real-time are required for the development of computer-based
surgical training systems. To construct a realistic soft tissue model, finite element (FE) modeling
techniques are preferred over the particle-based techniques since the material properties can be
integrated directly into the FE model to provide more accurate visual and haptic feedback to a user
during the simulations. However, running even a static (time-independent) nonlinear FE model in real-
time is a highly challenging task because the resulting stiffness matrix (K) is not constant and varies
with the depth of penetration into the model.

We propose a new computational approach allowing visio-haptic interaction with an FE model of a
human liver having both nonlinear geometric and material properties. Our computational approach
consists of two main steps: a pre-computation of the configuration space of all deformation
configurations of the model, followed by the interpolation of the precomputed data for the calculation
of the nodal displacements and reaction forces that are displayed to the user during the real-time
interactions through a visual display and a haptic device, respectively. For the implementation of the
proposed approach, no a priori assumptions or modeling simplifications about the mathematical
complexity of the underlying soft tissue model, size and irregularity of the FE mesh are necessary.
Moreover, it turns out that the deformation and force responses of the liver in the simulations are
heavily influenced by the selected simulation parameters, such as the material model, boundary
conditions and loading path, but the stability of the visual and haptic rendering in our approach does
not depend on these parameters. In addition to showing the stability of our approach, the length of the
precomputations as well as the accuracy of the interpolation scheme are evaluated for different
interpolation functions and configuration space densities.
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1. Introduction developing realistic organ-force models is a highly challenging
task not only because of the nonlinearity, rate, and time

Simulating real-time visual interactions with deformable dependence of an organ’s material properties but also because

objects in virtual environments is an attractive, but computation-
ally demanding area of research with applications to medical
simulation and training. Integrating haptics into these simula-
tions imposes more stringent constraints on the speed and
accuracy of computations. While the refresh rate needed for
flawless visualization is about 30 Hz, the rate required for haptic
rendering of deformable objects is close to 1 kHz due to the higher
sensitivity of our haptic channel. Moreover, organ-force models
used in medical simulations must be convincing and therefore
based on real physics for positive training transfer. However,

* Corresponding author.
E-mail addresses: peterlik@ics.muni.cz (1. Peterlik), Isedef@ku.edu.tr (M. Sedef),
cbasdogan@ku.edu.tr (C. Basdogan), ludek@ics.muni.cz (L. Matyska).

0097-8493/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cag.2009.10.005

of its layered and nonhomogeneous structure. The relations from
the theory of elasticity are usually employed when establishing
the mathematical formulation of the problem that is finally solved
by some complex computational method such as finite elements
(FE). To implement the FE method, the geometric model of the
organ is divided into surface or volumetric elements, the proper-
ties of each element are formulated, and then the elements
are combined to compute the organ’s deformation states under
the influence of external forces such as the ones applied by the
surgical instruments. A major advantage of FE modeling is that it
uses continuum mechanics and has a solid mathematical
foundation. On the basis of the partial differential equations and
the selected constitutive relation, FE models can accurately
approximate static and dynamic deformations of an organ having
linear and nonlinear material properties. Another advantage is


www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2009.10.005
mailto:peterlik@ics.muni.cz
mailto:lsedef@ku.edu.tr
mailto:cbasdogan@ku.edu.tr
mailto:ludek@ics.muni.cz

44 1. Peterlik et al. / Computers & Graphics 34 (2010) 43-54

that FE models require only a few material parameters to describe
the realistic response of the organ. However, it is known that
simulating “ideal” soft tissue behavior using FE approach within
the haptic loop is far beyond the capabilities of today’s computers.
There have been several attempts to address this issue such as the
simplification of the underlying mathematical models or employ-
ing precomputations before the real-time interaction occurs.
Below, we provide a brief summary of the FE approaches used
for simulating deformable behavior of soft objects. The readers
can find more extensive coverage of the soft tissue modeling
techniques applied to medical simulation in our recent survey

paper [1].

1.1. Related work

One of the first studies in the field of soft-tissue modeling is
reported in [2]. The technique utilizes the FE approach for
implementation of a linear model. An update of 30 Hz, equivalent
to the visual refresh rate is achieved using the condensation
technique. A small-deformation model suitable for laparoscopic
surgery is implemented in [3]. In [4] modal analysis is applied
to a linear FE model to reduce the number of computations
and achieve real-time visual and haptic update rates. A method
based on small area of contact is proposed in [5] for real-time
interaction with a deformable static FE model running at haptic
refresh rate. While the complexity of on-line computations does
not depend on the size of the mesh in this paradigm, it can only be
implemented with a linear FE model. Extensive research on soft-
tissue modeling is performed within Epidaure project [6]. First, a
linear model employing displacement-driven haptic interaction is
proposed. It is based on a static superposition of unit displace-
ments which are precomputed in advance. Force extrapolation is
used for haptic rendering to compensate for the low update rate
of the model [7]. Further, to allow topological changes (such as
tearing or suturing), a dynamic mass-tensor model is proposed to
simulate linear but anisotropic material. The mass-tensor model
is extended by including geometrical nonlinearities via Green-St.
Venant strain tensor in [8], however, linear material properties
are assumed and reasonable haptic update rates are achieved by
utilizing the force extrapolation technique again. The point-
associated finite-field (PAFF) approach presented in [9], also
called the finite-spheres method, is a meshless FE approach
applied to surgical simulation. PAFF supports simulation of large
deformations as well as topology modifications such as cutting,
but the brute-force implementation of this technique is still
computationally intensive. A finite element model handling
geometric nonlinearities is proposed and implemented in [10].
The model employs mass-lumping for real-time simulation of
dynamic behavior. Both geometrical and material nonlinearities
based on Mooney-Rivlin material are modeled in [11]. The
implementation is based on dynamic progressive meshes which
allow realistic modeling of the deformation in the vicinity of the
contact. Although both types of nonlinearity are considered,
the initial mesh utilized during the precomputation must be
dense enough to cover all the expected deformations. A linear
viscoelastic model is developed in [12]. The approach is also
based on precomputations. First, the force response of each
surface node and the displacement responses of its neighboring
nodes are recorded for a unit step displacement applied to the
surface node for 30s. Second, the recovery displacement
responses of each surface node and its neighboring nodes are
recorded for a unit step force applied to the surface node
for 10 ms. These two sets of data are then used in tandem
for computation of nodal displacements and interaction forces
during real-time simulations. Recently, a new approach based on

precomputation is reported in [13]. Although this approach allows
the interaction with complex body having nonlinear geometry
properties, it is implemented with a linear material model
(St. Venant) only. The same authors have also investigated
6DoF haptic rendering of contact interactions with a deformable
FE model in [14]. An object with a complex 3D geometry
is considered in the simulations, nevertheless, the proposed
computational approach is suitable for one type of material
model only.

To summarize, most of the approaches presented above
either assume linear material and geometric properties or make
modeling assumptions or simplifications to implement nonlinea-
rities with FE models, but then the accuracy of solutions are
jeopardized. Integrating both geometric and material nonlinea-
rities into a static FE model and simulating realistic visual and
haptic interactions with a deformable mesh having complex
geometry at real-time rendering rates still remains an open
problem.

1.2. Our contribution

If linear FE models are used, only small deformations are
rendered realistically. However, it is known that soft organ tissues
show large deformations under the influence of external forces
and the small deformation assumption is not valid for modeling
their behavior. In addition to geometric nonlinearities, material
properties of soft organ tissues are also nonlinear and our sense
of touch is sensitive to these nonlinearities as demonstrated
experimentally in [15]. If modeling assumptions are made to solve
nonlinear FE models in real-time, undesired artifacts may appear
in the simulations depending on the level of accuracy of these
assumptions. We have developed a new precomputation ap-
proach allowing haptic interaction with static FE models having
both geometric and material nonlinearities. The approach is based
on a notion of traveling through a configuration space which is
precomputed in advance. In the past, we used this approach for
the simulation of haptic interactions with biomolecules [16].

The main difference between our approach and the earlier
precomputation approaches is that we do not make any assump-
tions about the mathematical complexity of the underlying soft
tissue model, size and irregularity of the FE mesh and the
computational complexity of the corresponding solution method.
Therefore, also nonhomogeneity and anisotropic tissue models
can be considered, as the approach being proposed is independent
of the underlying properties of the FE model. On the other hand,
the current implementation of the proposed approach has some
limitations. First, only static model of the tissue is considered and
no topology changes are currently allowed. Second, the approach
is demonstrated using a single point interaction only. Finally, the
force vector is interpolated during the real-time interaction, so an
approximation error is introduced affecting the realistic force
response of the model.

Having a formulation of the boundary problem derived within
the theory of elasticity, the finite element method is applied in a
standard manner resulting in large system of nonlinear algebraic
equations. These equations must be solved iteratively, which is
not possible to do in real-time. In our approach, all these
expensive iterative computations are performed in advance
during an off-line precomputation phase. This results in a large
number of precomputed configurations which are stored to a data
file. An advantage of this approach is that any convergence issues
which are quite usual in the area of nonlinear modeling can be
addressed within the off-line calculations. During the real-time
interaction, the precomputed configurations are interpolated to
calculate the displacements of the nodes and the reaction force
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vector displayed to the user through a haptic device. The
interpolation approach used for the estimation of the force vector
is simple enough to execute in the haptic update loop. It is
important to emphasize that the proposed approach is not based
on the superposition principle, which is not valid for the nonlinear
models, however, the configurations are “sampled” by standard
FE method.

The outline of the paper is the following. First, the mathema-
tical background of the problem is briefly presented together with
iterative solution method. Further, the integration of the material
parameters of the soft tissues into the model is described. In the
fourth section, the simulation parameters are identified and the
technique based on the precomputation and reconstruction is
presented.

The fifth section is dedicated to the implementation of the
approach. The distributed version of the precomputation is shown
and the overview of the computational experiments is given. This
is followed by evaluation section where the behavior of the model
is briefly studied, the length of the precomputation phase and the
accuracy of the reconstruction are discussed.

2. Mathematical background and numerical solution

In this section, we briefly present the mathematical back-
ground of the deformation modeling of the soft tissues. First, the
physical formulation of the problem is sketched and then, the
numerical solution is described.

2.1. Physical representation of deformations

Since the realistic behavior of the model is one of the key
requirements in surgical simulation, the relation between nodal
displacements of deformable body and applied surface forces is
derived based on the theory of elasticity. Denoting an arbitrary
particle in a deformable body as x, the deformation is defined as a
mapping ¢ : Q— Q' from the undeformed to the deformed domain
given as ¢(x;) =x/ =x;+u; where u; are components of displace-
ment defined as a function u;(xq, X2, X3).

The important entity which can be regarded as internal
measure of the strain is represented by the Green-St. Venant
strain tensor y; which is defined as

Vij = 5(Uij+Uj 4 U iUmj) (M

where the notation convention u;; = d;u; = 6u;/6x; for derivatives
together with the summation convention are applied.

Throughout this paper, the static equilibrium between the
external and internal forces in the deformed configuration €' is
considered. The former usually constitutes the surface traction
forces g and applied body forces f/, whereas the latter are
calculated by Cauchy stress tensor t’. Based on the conservation
laws it can be shown that the static equilibrium of the deformed
domain €’ in the Eulerian system is represented by

0=fX)+V -7(X), XeQ 2)

gX)=TX,n), X eoQ 3)

where 6Q’ is boundary of the domain €', i’ is surface normal in x’
and T’ is Cauchy stress vector related to the Cauchy stress tensor
via T =7'n’. The above equations can be transformed from the
deformed coordinate system which is not a priori known to the
undeformed coordinate system by Piola transformations [17].
Then, the equilibrium equation can be formulated using the
symmetric second Piola stress tensor S; as

~fi = 0{(Oim +Uim)Smy) @

where the summation convention is applied. The connection
between the strain tensor p; and the stress tensor S is provided
by the constitutive law [18]. In this paper, we focus on hyperelastic
materials which are typically used for the soft-tissue modeling.
The hyperelastic materials are characterized by the concept of
stored energy function W, a scalar function which fully determines
the stress/strain relationship. The function W is coupled with the
second Piola stress tensor as
Sij= ?ﬂ (5)
Oyy

There are multiple definitions of W suitable for various types
of materials [17]. In our study, we implement and compare
the St. Venant-Kirchhoff material having Lamé coefficients 1 and p
defined in terms of the strain tensor y as

A
W= ) ViiVii MY Vji (©)

and the Mooney-Rivlin material having two material constants Cjg
and Co1

W =2[y;(C10+2Co1) +2Co1 [y — ViiYiill (7)

where the nonlinear incompressibility condition det(d;+dju;) = 1
must be applied.

In the case of St. Venant material combined with the large-
strain tensor y;;, the resulting law is referred as being nonlinear in
geometry and linear in material, whereas if the Mooney-Rivlin
stored energy with the incompressibility conditions is used, the
resulting law is regarded as nonlinear in geometry and material.

2.2. Finite element formulation and numerical solution

The governing system introduced in the previous section
consists of the partial differential equation given by Eq. (4)
which is to be solved over some domain £ which can be irre-
gular and complex. Such a problem is usually solved by finite
element method which consists of several steps. First, a weak
formulation of the problem is derived based on multiplication
of both sides by weight functions ; and integration over the
domain Q, resulting in

/Q (Bim — U)W AV — /Q fapidv - / gids =0 (8)

where also the boundary conditions from Eq. (2) are included.
Then, the discretization of the domain € is constructed using
finite elements such as tetrahedra. Each element is equipped
with a complete set of shape functions {¢;} which are used for
two purposes. First, the unknown function u is interpolated as
uxy;¢;u; where u; are scalar coefficients representing the
unknown variables. Further, the shape functions are used also
as the weight functions ; in the weak form given by Eq. (8).
Putting this together, the weak form can be reformulated over a
typical element QF resulting in a local system K°(@®) = f¢ where K°
is nonlinear local mapping between the actual displacement u®
and response forces f¢ for the element e. Global system K@) =f is
then assembled from the contributions of the local elements.
The system is nonlinear due to the nonlinearity of the
underlying PDE and cannot be solved directly. In this paper,
iterative solution method combining the incremental loading and
Newton-Raphson methods is considered. First, let’s assume, that
the deformation for some given load F is to be computed. Then, an
incremental loading path {(0) =F ), F), ...,Fum), =F} is constructed
and sequence of nonlinear systems K(u;)=F; with initial
estimation u;_q, is solved for i=1,...,M. The solution in each
step is obtained by Newton-Raphson method: having some
estimation vector U? of the solution in the j-th iteration of the
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method, correction AY*? is computed solving linear system and
applied to obtain a new estimation of @¥*?

K@MHAI+Y = f — K@?) )

al™V =u? 4 ATt (10

where K’ is global tangent stiffness matrix which can be again
assembled from the local tangent stiffness matrices K'¢ computed
for each element Q°. The scalar factor w e(0,1] is obtained by
line-search procedure in order to improve the convergence of
the method by restricting the step size in each iteration so that
the magnitude of decrease is maximized in each step of the
Newton-Raphson method [19]. There are two criteria for the
Newton-Raphson method to stop: first, if the condition IIf —
K@)l < ¢ holds in j th iteration for some chosen ¢, the resulting
solution converges and is considered to be a valid data. Second,
the iteration process is also stopped after N maximum iterations
also if the condition above does not hold. In this case, the
calculation is nonconvergent and the data are considered to be
invalid.

It is important to emphasize that before the solution to Eq. (9)
takes place, the Dirichlet boundary conditions (BC) must be
imposed. Basically, there are two main types: homogeneous and
nonhomogeneous boundary conditions. In the first case, the zero
displacements are prescribed for some components of the
unknown vector u, i.e. U; =0 for some i. These conditions fixing
the body in the space are essential for the uniqueness of the
solution. Besides, nonhomogeneous conditions @i;=b; can be
prescribed for some components of the vector u. The nonhomo-
geneous conditions can be regarded as another “input” of the
method, since although no external forces are applied, the body
gets deformed if nonzero deformation is prescribed for some part
of the body (e.g. one node).

There are several techniques for imposing the Dirichlet
boundary conditions such as elimination, penalization, and
Lagrange multipliers. Among the three, the Lagrange multipliers
can be used straightforwardly for obtaining the response of a node
with prescribed displacement. Since the force is of a great
importance for our application, the boundary conditions are
imposed via Lagrange multipliers. The method based on the
Lagrange multipliers is also utilized for the implementation of the
incompressibility conditions introduced in the previous section.
In this case, the system is augmented and the resulting multipliers
can be understood as pressure applied to the nodes of the mesh.

3. Integration of soft tissue material properties into model

One of the main obstacles in developing realistic soft tissue
models is the lack of data on the material properties of live organ
tissues. Measuring and characterizing in vivo organ properties is a
highly challenging task, but is a requirement for development
of realistic surgical simulators. Soft tissue models with incorrect
material properties will adversely affect training in VR-based
surgical simulator systems. The research on tissue mechanics is
extensive, but most of the earlier experiments took place in a
laboratory environment (in vitro studies) under well-defined
boundary and loading conditions. Typically, tissue samples taken
from an organ of interest are transferred to a laboratory in a
chemical solution for measurement. Because researchers carefully
decide on the sample geometry and experimental conditions in
advance, they can easily obtain stress and strain values from the
measurement data. However, mechanical properties of soft
tissues change with time and the results obtained through in
vitro measurements do not represent actual tissue properties.

We developed a robotic indenter for minimally invasive
measurement of live tissue properties in a living body [20]. This
system includes a robotic arm (Phantom haptic device from
Sensable Technologies, model 1.0), a force sensor (Nano 17 from
ATI Industrial Automation), and a long probe that has a round tip
with a 2mm radius. Using the robotic indenter, we performed
static indentation experiments on the liver of three pigs and
successfully measured the nonlinear material properties of pig
liver. An effective elastic modulus of pig liver was estimated from
the static indentation data using the linear elastic contact theory
and the small deformation assumption. In addition, an inverse FE
solution was developed using ANSYS FE package to estimate the
optimum values of nonlinear hyper-elastic material properties of
pig liver via iterations. Hyper-elastic behavior of liver was
modeled using 2-term Mooney-Rivlin strain-energy function
defined by Eq. (7) in Section 2.1 and the material coefficients
Co1 and Cyq are estimated from the inverse solution.

In this study, the linear elastic modulus of pig liver estimated
from the static indentation data (E = 15.48 kPa) is utilized in the
linear St. Venant material model to calculate the Lamé coefficients
and the nonlinear material coefficients estimated via the inverse
FE solution (Co; = 1.28 kPa, Cj¢ = 1.3 kPa) are utilized in Mooney-
Rivlin material model.

4. Visio-haptic simulation based on precomputations
4.1. Simulation parameters

In this section, the parameters affecting our visio-haptic
simulations are introduced. In our simulations, we consider a
displacement-driven interaction. The response forces displayed to
a user of the system through a haptic device is calculated based on
the position of the haptic interface point (HIP) in 3D space [21,22].
From the computational point of view, this implies that the
position is taken as the input and force is calculated and returned
as the output of the computations.

Let us assume a deformable body with a domain  that has
been discretized resulting in the mesh M given by the set V of the
vertices (nodes) and set £ of the elements. First, the behavior
observed during the interaction is determined by physical
parameters. These are mainly the material coefficients defined
for the selected model. Besides, there can be other parameters
representing some external conditions; for example, the magni-
tude of an external force (e.g. gravitation) can be considered as
physical parameter of the simulation. Second, there are geometric
parameters which are related to the mesh of the deformable body.
The first geometric parameter is represented by a set 7 cV of
surface nodes which are fixed in space during the interaction.
From the numerical point of view, the set F defines the
homogeneous Dirichlet conditions setting the components of the
nodes in F to zero.

As the displacement driven interaction is being considered,
there is at least one surface node, for which a nonzero
displacement is prescribed. In this paper, single-point interaction
is studied: when the haptic interaction point (HIP) penetrates into
the object, a single active node A on the surface of the body is
selected. During the simulation, the active node is associated with
the components of its actual displacement. These values represent
the last parameter which is, unlike the parameters introduced
before, updated in each iteration of the haptic loop depending on
the actual position of HIP. The prescribed displacement of A is
therefore the control parameter of the simulation and from the
numerical point of view, it can be regarded as nonhomogeneous
Dirichlet condition.
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Ideally, the computational model of the single-point
static-equilibrium interaction works as follows: given the
mesh of the deformable body, all the physical parameters of
the model are specified together with the set F of the fixed
vertices. Then, the interaction starts and in each iteration
of the haptic loop, the instant position of HIP is acquired and
the collision detection between HIP and the geometric surface
model is performed. If the collision occurs, the surface node which
is closest to the HIP position is selected as active and it is coupled
with the HIP. From now on, in each iteration of the haptic loop,
the control parameter (i.e. the actual position of the active node)
is updated and the corresponding static equilibrium is calculated
resulting in the overall deformation of the body and response
force.

It is important to recall that the calculation of the static
equilibrium of a complex body using FEM and prescribed
displacement as the control parameter is a computationally
expensive iterative process as shown in the mathematical back-
ground section. These iterations cannot be performed inside the
haptic loop running at an update rate high enough for stable
haptic interaction. Therefore, an approach based on precomputa-
tion of configuration spaces is presented for real-time interaction
in the following section.

4.2. Configuration spaces: discretization and approximation

After specifying the parameters of the interaction,
notion of configurations and configuration spaces are now
introduced.

For a given set F of the fixed nodes and active node A,
the actual state of the simulation can be completely described
by configuration C consisting of the current position p of HIP
(the control parameter), vector u of displacements and force h
acting on the active node.

As the control parameter changes from p to p/, the new
reaction force h’ and deformation u’ of the body are computed so
that the static equilibrium is restored. In other words, a transition
from the previous configuration C to the new configuration C’
occurs: C—C'. The set of all possible configurations, computed
while having node A as active, is denoted as S4. Now, the haptic
interaction can be regarded as traveling through configuration
space S4 where each step is defined by a transition from one
configuration to another.

Obviously, the configuration space S, is continuous and
infinite. The main idea of the method is to discretize S, by
constructing a finite subspace D4 c S4 that can be efficiently
precomputed and moreover, each configuration Ce S, can be
approximated by some fast procedure using only the data from
D 4. Thus, the approach proposed in this paper can be summarized
as follows:

Off-line precomputation phase: For a given FE mesh,
all the physical parameters are specified and both the
set F and the active node A are selected. Then, a set of
points G, is chosen around the rest position of the active
node A and for each such a point ge G4, the active node is
displaced to the position g and the corresponding configuration
is computed and stored. Details on this process are presented
in Section 4.3.

On-line interaction phase: The precomputed configurations
from the discrete set D, are used to approximate an
arbitrary configuration C associated with the current position p
of HIP. The approximation is calculated by interpolation of the
precomputed data which is fast enough to be performed inside
the haptic loop. The details of the interpolation phase are
presented in Section 4.4.

4.3. Off-line precomputations

In this section, we discuss the methods for the selection of
points in G4 and the construction of D 4. The algorithm presented
for the construction of D, is based on the assumption that the
solution of the boundary problem solved in each step of the
simulation is unique. This assumption is based on the ellipticity of
the boundary problem being solved in each step of the simulation.
This assumption combined with the single-point interaction
implies that there is at most one configuration C corresponding
to the particular position p of the HIP.

By virtue of the assumption about the uniqueness of the
solution, it is sufficient to define the discretization structure G4 as
a uniform grid of points surrounding the rest position x; of the
active node .4 which coincides with one of the grid points. So for
i,j,k e Z, the grid is defined as

Ga = {8 € R° |81 < Tg A Zooo = X5} (11

There are two parameters of the grid. The first one is represented
by the radius rg determining how far the active node is going to be
displaced from the rest position. The second parameter sets the
density of the grid, i.e. the distance between two adjacent points
of the grid.

The construction of the corresponding set D4 can be defined
recursively as follows.

1. For the point gy, corresponding to the rest position of the
active node, store the zero configuration Cogp Where all the
displacements of the nodes as well as the response forces
are set to zero.

2. If a configuration Gy, has been already computed and stored in
the point g;;, compute the transitions Gy — Gy to all adjacent
positions g;;, such that lli —i,j—j.k—Kle {1,+/2,+/3} pro-
vided Gyji has not been already computed. This step can be
regarded as a configuration expansion.

The particular transition Cj,— Cyj is constructed by the
incremental loading technique: the path between g,
and g;; is split into M steps and Cgk is set to Cji. Then, the
path is traversed by executing Newton-Raphson method to
compute the configuration Ciik from the initial state C}};c—l for
m={1,...,M}.

The intermediate configurations can be stored as well since
they can be utilized by the interpolation methods implemen-
ted in this study to calculate reaction forces.

3. Repeat the step 2 until a corresponding configuration G is
computed and stored for each point gj; € Ga.

It must be emphasized that the configuration space will not cover
all the points from the grid G4 (i.e. for some of the points in the
grid, the corresponding configurations will not be computed).
There are two main reasons for this:

1. Haptic devices have a physical limitation concerning the
maximal force fp.x that it can display. This implies that if
the reaction force f in some configuration Cj; exceeds fimax, the
configuration is not reachable since the force limitation of the
device does not allow the user to reach this position by HIP.
Therefore, such a configuration is not expanded any more and
the configurations corresponding to the points beyond gy are
not computed.

2. The construction of each step within a transition Gy, — Gji is
an iterative process which can fail numerically. This can
happen for several reasons; either the deformation is too large
to be modeled physically, or some elements of the mesh get
degenerated causing the distortion of the mesh or the chosen
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material is not suitable for that type of deformation. If such a
failure point occurs on the path from gy, — g;;, the configura-
tion Gyj, is not inserted to the state space (i.e. there is no
configuration for the point g ).

4.4. On-line interaction

In this section, the interpolation of the reaction force h which
is computed during the real-time haptic interaction phase is
explained. The nodal displacements u are computed in the same
manner for the visualization purposes at a lower refresh rate. Each
component of h is interpolated separately using the precomputed
force data. In the following, two different methods are considered:
polynomial and radial-based interpolation (see survey [23]). For
each of them, linear and cubic versions are employed.

The polynomial interpolation works with uniformly distrib-
uted grid data, i.e. only the precomputed configurations G stored
in the points of the grid G 4 can be utilized. For the simplest case of
the linear interpolation, the cell of the grid G 4 where the currently
active node A is located can be identified based on the position of
A (p4)- Afterwards, the components of the force vector can be
easily calculated by tri-linear interpolation using the eight corners
of the cell. The technique is illustrated in Fig. 1(a). Clearly, the tri-
linear interpolation is fast, however, it becomes unreliable as the
nonlinearities in the model dominate the force response. One can
use a finer grid to solve this problem, but this approach increases
the number of precomputations significantly. It is also important
to emphasize that the interpolation within a cell can be computed
provided all eight nodes of the cell are available. Therefore,
as soon as the current position p, gets out of the grid, the
configuration cannot be approximated well.

The next alternative within the frame of the polynomial
method is tri-cubic interpolation. In this case, besides the cell
containing the actual position p4, eight additional neighboring
cells, resulting in a super-cell with 64 grid points, are used for the
interpolation (see Fig. 1(b)). In this case, computations are more
demanding, but still can be done within the haptic loop. As in the
case of tri-linear interpolation, the tri-cubic interpolation is
reliable only if all the configurations for the 64 points of the
super-cell is already available. For a given grid of precomputed
configurations, the tri-cubic interpolation may not work close
to the border of the grid or for the case when the grid points
are missing due to the nonconvergent calculations. Therefore, it
cannot be applied to the regions close to the boundary of the grid
where sufficient data are not available.

Regarding the complexity of the polynomial interpolations, the
number of floating-point operations for both tri-linear and tri-
cubic polynomial interpolations are independent of the size of the
grid: in the former case, about 250 floating-point operations are
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needed to compute one component of the force, whereas 2000
operations are necessary for the tri-cubic method. When
comparing to the performance of today’s processors, the inter-
polation of the force vector can be easily achieved within the
haptic loop.

For further improvement in the accuracy of the approximation,
a radial-basis function (RBF) is employed for the interpolation
(see Fig. 1). It is suitable for irregularly scattered data, so beside
the configurations Cy stored in the points of the grid Gy,
the intermediate states Cfj, can be utilized as well. For example,
having a set of positions Xx; in space together with the cor-
responding associated values y; stored in those positions, the
interpolated value y at some position X is computed as

=

-1
y= w;p(IIx — x;ll) 12)

—_

where ¢ is a user-defined function known as the kernel. In our
study, ¢(r)=|r| and ¢@)=r3 are used for linear and cubic
interpolation, respectively. The interpolation procedure given
above is used for each component of the force and displacement
vectors. The weights w; can be calculated during the off-line
phase of the computation by solving the linear system which is
assembled after substituting the components of the force vector h
into Eq. (12). Similarly, the nodal displacements can also be
interpolated using Eq. (12).

Therefore, the proposed approach consists of two consecutive
phases—computation of the weights and interpolation. Each
phase of the computation has different complexities. Let us first
focus on the interpolation phase. Comparing to the tri-linear
and tri-cubic interpolation, the computational complexity of this
phase linearly depends on the number of nodes in the grid. In
other words, it is O(+/N) for the three-dimensional grid rg.

The interpolation phase can be easily executed in real time
for grids having number of grid points varying from hundreds
to thousands depending on the performance of the computer
running the haptic loop. On the other hand, the computational
complexity of the first phase (computation of weights) is O(N) and
it is computationally much more demanding. In the actual setting,
the radius of influence of each grid point is infinite for the force
interpolation. Therefore, a dense system must be solved in order
to compute the RBF weights. Nevertheless, this can be done
efficiently using LU decomposition during the precomputation
phase, adding only a small amount of computation time to the
total time spent for the precomputations. The radial basis function
can be used for the interpolation of points close to the border of
the uniform grid. In fact, it can be used even when there are some
configurations missing. However, the accuracy of the solution is
not guaranteed anymore and the results of the approximation
may become physically invalid.

c

L -:..

Fig. 1. A 2D illustration of the three interpolation methods discussed in this paper: (a) bi-linear interpolation (b) bi-cubic interpolation and (c) interpolation using radial-

basis function.
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5. Implementation and computations
5.1. Distributed implementation of the space precomputation

First, we briefly focus on the implementation of the precom-
putation phase. As stated before, all the deformations considered
in this paper have been computed using finite element method.
For this purpose, a freely available finite element library GetFEM
[24] has been employed. The solution of the nonlinear FE
equations for small changes of the control parameter (i.e. the
prescribed displacement of a node) is obtained by incremental
loading. In each step, the Newton-Raphson method with line
search is applied to minimize the residual. In each iteration of the
Newton method, the linearized system is solved using the MUMPS
linear solver [25].

The construction of the configuration space has been
implemented recursively as described in the Section 4.3. In
order to speed up the precomputations, the independent calcula-
tions are executed in a distributed manner using a cluster
of computers. A centralized approach is used for the implementa-
tion; a central client process working as a very simple scheduler
distributes the work among the servers. There are two tables
maintained by the scheduler. First, it is the table of idle
servers which are available. Initially, all the servers are inserted
to the table. Second, it is the table of all the configurations which
are to be computed. Each is marked by exactly one of the
following tags:

e unknown: the configuration has not been computed so far, only
its location within the grid is known;

e expandable: the configuration has been successfully computed
and can be used as initial estimation for further computations;

e terminating: the configuration has been successfully computed,
but it is not reachable by the haptic device, so it is not
necessary to perform further computations;

e failed: the computation of the configuration has failed due to
the convergence issues.

Initially, the zero configuration corresponding to the rest position
of the active node is marked as expandable and all other
configurations are marked as unknown. The configuration space
is then constructed as follows: if there is at least one idle server,
the scheduler chooses some unknown configuration C’ for which
there is an expandable configuration C such that C and C' are
adjacent in the grid. Afterwards, the computation of the transition
C— (' is assigned to the idle server which is removed from the
table of idle servers.

As a result of the transition, a three different tags can be
assigned to the configuration C'. First, if the iterative transition
process does not fail, then the configuration C’ is valid and the
magnitude of the estimated reaction force is compared to
the force limit fyax. If it is less than the limiting value, the
configuration C’ is marked as expandable since it is reachable
during the interaction and other configurations can be computed
using C’ as an initial estimation. In the opposite case, the
configuration is marked as terminating, because it is not
necessary to expand it further since it is not reachable by the
haptic device. In both cases, the configuration C' is stored to be
used later for the interpolation process. Second, if the transition
process fails, the configuration C’' is marked as failed. In this case it
is not stored, since it cannot be used by the interpolation process.
For all the cases enumerated above, the scheduler is notified by
the server about the results of the transition computations, so that
the server can update the tables: the tag of the configuration C’ is
updated according to the results of the computations and the

Fig. 2. The hardware components of our simulation system.

server is set to idle. This process is repeated until all the
configurations in the grid are marked as either expandable,
terminating or failed.

5.2. Implementation of the space approximation

After giving the details of the precomputation phase, we now
focus on the implementation of the interaction phase. We have
simulated the real-time visio-haptic interactions between a point
(i.e. HIP) and the 3D surface model of human liver (made of
triangular patches). The hardware components of our simulation
system include a computer monitor for visual display of
deformations and a haptic device for feeding the interaction
forces back to the user (Fig. 2). The underlying code is written in
MS Visual C+ + environment, the graphical rendering of the liver
model and the visual deformations are displayed using Open
Inventor (a scene graph API) [26,27], and the haptic feedback to
the user is provided via PHANToM haptic device (SensAble
Technologies) using GHOST v.4.0 driver.

Our real-time computational architecture for simulating non-
linear tissue response consists of two threads running asynchro-
nously: haptic and visual threads. The haptic thread, updated at
1kHz, acquires the new position of the haptic probe as the user
manipulates the probe, performs collision detection, determines
the active node, and calculates the collision response based on the
interpolation of the precomputed data stored at the grid points
surrounding the active node. In the current setting, the HIP
instantly snaps to the nearest vertex. The visual thread, updated
at 30 Hz, graphically renders the haptic interaction point and the
deformations of the 3D liver model.

5.3. Model and computations overview

All the experiments discussed in the next paragraph of
this section have been performed on the 3D model of human
liver obtained from the INRIA repositories. The model has been
meshed by TetGEN mesh generation tool [28], resulting in two
meshes with 1777 elements (501 nodes) and 10,280 elements
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Fig. 3. (a) The liver model used for the experiments. The nodes are colored according to the functionality: the green and red nodes belong to the fixed-node sets ; and F»,
respectively. The blue nodes belong to the set of the active nodes. (b) Illustration of a grid used for the precomputation of configuration spaces. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Three frames from the real-time FE simulation showing various types of deformations. The rest pose of the liver is depicted by blue, the deformation caused by
displacement path of a node (green) is depicted by red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

(2011 nodes), respectively. For the experiments, two diffe-
rent sets of fixed points 7, and F, are tested, fixing the area on
the left and top parts of the organ, respectively. Further,
10 different active nodes are selected for the testing purposes
(see Fig. 3(a)).

Regular and random loading paths are generated and the
corresponding configuration spaces are computed. Regarding the
regular paths, 26 paths are tested for 10 active nodes with two
sets of fixed nodes (F; and F,) so in total of 520 paths
(26 x 10 x 2) are tested for each material type. Each path starting
in some active node .4; is 10 cm long and the length of each step
in the incremental loading is 1 mm to improve the convergence
of the Newton-Raphson method. The construction of a single
path takes from 15 to 30 min depending on the type of material
law and convergence rate. Since more than 150,000 configura-
tions have been constructed in total, the generation of regular
paths has been performed on a cluster having 32 CPU cores
(Intel Xeon running at 3.0 GHz). It takes about 60h to compute
all configurations. The results are stored on shared disk arrays
for inspection and interpolation later. Regarding the random
paths, about 5000 paths are tested for each material type.
Each path consists of 200 steps and the incremental step size is
1mm. In total, about 3 million configurations are constructed.
The computation of random paths takes about 120 h on cluster of
48 CPUs (Intel Xeon running at 3.0 GHz). Four uniform grids with
different densities are generated and the corresponding config-
urations are computed. Each grid is enclosed in a sphere with
a radius of 10cm for each active node being the center of the
sphere. The points inside the grid are distributed regularly
dividing the volume of the sphere into cubic cells. The cell sizes
are 20mm, 14.3mm, 10mm and 6.667 mm, the corresponding
grids have 514, 1418, 4168 and 14,146 points respectively. The
grid with 514 points is illustrated in Fig. 3(b) and three frames of
the simulation are shown in Fig. 4.

6. Evaluation and discussion
6.1. Behavior of the model

In the following, the behavior of the liver model is briefly
studied using force-response plots obtained from the appli-
cation of the regular loading paths introduced in Section 5.3.
First, the stability of the computations is analyzed, as the
nonlinear systems are considered. Then, the influence of active
node and boundary conditions on the force displacement is
investigated.

The detection of the nonconvergent computations during the
construction of the configurations is crucial for the evaluation of
the method presented in this paper, since the interpolation cannot
be applied successfully to invalid data produced by nonconver-
gent computations (see Section 2.2). The tests using the regular
paths show that the convergence problems are mostly encoun-
tered for the St. Venant-Kirchhoff material. In this case, 53% of
the paths are nonconvergent compared to less than 5% in
Mooney-Rivlin material. The visual comparison of linear elasti-
city, St. Venant and Mooney-Rivlin materials with nonlinear
strain tensor is given in Fig. 5.

Further investigation reveals that mainly the paths causing
compression-like deformation are problematic. The history of
the mesh deformation is then studied more precisely for the
nonconvergent paths. It turns out that despite the fact that
incompressibility is imposed implicitly for the St. Venant material
by setting Poisson ratio to 0.49, some elements are degenerated
during the loading process. In order to solve this problem, the
explicit incompressibility conditions (see Section 2.1) are imposed
also for the St. Venant material resulting in much more stable
behavior with 95% of convergent paths. The St. Venant material
equipped with the incompressibility conditions is called as
modified St. Venant material in the paper.
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Fig. 5. Visual differences for various models. On both figures, gray and red colors are used for the undeformed mesh and the deformed mesh modeled using the Mooney-
Rivlin material. The deformation shown in blue is obtained by using (a) linear elastic equations (notice the excessive volume change) and (b) St. Venant-Kirchhoff material
with nonlinear strain tensor (only a small difference is observed w.r.t. the Mooney-Rivlin material). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 6. Force-displacement curves for the combinations of the fixed nodes (F;, ;) and active nodes (A;,A>). The results are depicted for three materials: (a) St. Venant-

Kirchhoff, (b) modified St. Venant-Kirchhoff and (c) Mooney-Rivlin.

Location of the fixed nodes and active node are used as
the control parameters while simulating the behavior of liver
model for different material laws. For the evaluation, two sets
of fixed nodes F; and F, and two choices of active nodes 4,
and A, are used (the former located closer to the gravity center
of the body, the latter closer to the right “tip” of the liver). The
force-displacement responses of the three materials for different
combinations of the fixed nodes and the active nodes are given
in Fig. 6. When comparing the shape of the curves within each
graph, it is clear that selection of the boundary conditions
(i.e. fixed and active nodes) plays important role in force
response. First, the concave curves have been observed for
the case when the set of nodes F, on the top of the liver
was fixed. This selection of the fixed nodes is quite restrictive
resulting in local deformations. Hence only the elements around
the active node are deformed to follow the prescribed
displacement. On the other hand, for the set 7; the liver can be
deformed globally, since both active nodes are located on the
opposite side of the liver w.r.t. the set F;. This results in convex
force-response. It is observed that the magnitude of the response
force seems to be determined by the location of the active node
w.r.t. the liver geometry. For example, the displacement of the

Table 1

Wall time of single Newton iteration showing the length of the assembly phase
(computation of the stiffness and tangent stiffness matrices), LU-based solution
phase and the total (sum of assembly and solution) in seconds.

No. 1 2 3 4 5
Material N MR N MR MR
Order Linear Linear Linear Quadratic Linear
#nodes 501 501 2011 501 2011
#elements 1777 1777 10,270 1777 10,270
#equations 1539 2040 6069 12,323 8080
Assembly (s) 0.49 1.05 3.22 3.38 8.15
Solve (s) 0.05 0.23 0.71 3.18 1.74
Total (s) 0.54 1.28 3.93 6.56 9.89

node A; results in larger response force than that of A, (for the
same boundary condition F1), since it is closer to the gravity
center. Putting it all together, the force-displacement curves
recorded during the large number of the experiments with regular
loading paths show the importance of the boundary conditions,
i.e. location of the fixed and active nodes, on the force response of
the soft body.
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6.2. Construction of configuration spaces

Before discussing the computational cost of constructing
configuration space, we first present the computational time
required for one Newton-Raphson iteration employing two
different materials, St. Venant-Kirchhoff (SV) and Mooney-Rivlin
(MR) and two meshes of different sizes: one with linear and
another with both linear and quadratic elements (see Table 1).
The computational times for the modified St. Venant material are
close to those obtained for the Mooney-Rivlin material.

The computations have been executed sequentially on AMD
Opteron Processor 250 (2 GHz) with 8 GB of physical memory.
The execution times reported in Table 1 are the average of large
number of iterations. The larger number of equations for
the Mooney-Rivlin material is caused by the enforcement of the
incompressibility conditions via the Lagrange multipliers. This
also leads to longer time needed for the assembly process. In the
case when line search technique is applied, additional time is
required in each iteration. Since the wall time spent by a single
Newton iteration is shown, it must be multiplied by the number
of iterations needed for the computation of one configuration.
Therefore, the total time of the Newton method including the line
search can result in more than 1 min.

For this reason the configuration space is constructed using a
distributed computing approach. All the experiments have been
executed on 16 nodes of a cluster, each having 2 x Dual Core AMD
Opteron Processor 270 with 8 GB of physical memory running at
2 GHz, so in total, 64 processor cores (16 x 4) have been used for
the precomputation and the data is stored on local disks for
further processing. The lengths of the computations are shown in
Fig. 7. The configuration space can be constructed quickly for the
grid with 514 points, ranging from 2 to 28 min depending on the
complexity of the model. The computational cost of constructing
the grid with 1418 points is still acceptable (about 1h for FE
model having more than 10,000 elements). The finer grid
(4168 points) is affordable mainly for simpler models (a linear
FE model having 501 nodes is computed in less than 45 min), but
more complex models may take about 3 h. Finally, the grid with
14,146 points is tested only with two simple FE models,
confirming the cubic increase of the computational time due to
the increase in number of grid points.

An important aspect of the presented work is the size of the
data file, storing the precomputed configurations. For the coarser
FE mesh with 1777 elements, the size of data file is 3 MB for the
grid with 514 points and 81 MB for the grid with 14146 grid
points. Further, for the FE mesh with 10,270 elements, the
corresponding sizes are 11 and 325 MB, respectively. Therefore, a
data file storing the deformation configurations of a 3D object
under the influence of a point load (i.e. a single active node) can
be easily loaded into the memory of today’s computers to be used
for real-time computations later.
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Fig. 7. The clock time needed to compute a single configuration space for the
Mooney-Rivlin material using the FE mesh with 1777 elements. The computations
were run on 64 CPU cores. Each group corresponds to one combination of
parameters as indexed in Table 1.

6.3. Evaluation of the space reconstruction

In this section, the reconstruction process of the configuration
space is validated. This is performed by comparing the config-
urations computed precisely with their counterparts obtained by
the interpolation of the precomputed data. For this purpose, both
the regular and the random loading paths are utilized: for each
configuration C computed during a particular loading, its counter-
part C is reconstructed by interpolation using the precomputed
spaces. This reconstruction process is tested with four different
interpolation methods: tri-linear and tri-cubic and radial-basis
function with linear and cubic kernels. Moreover, each interpola-
tion method is tested with four precomputed uniform grids
having different number of points (514, 1418, 4168 and 14,146).

For the purpose of evaluating the interpolation accuracy, two
error measures are defined and calculated for each interpolation
method and the grid density. Both error measures are calculated
using the components of the force (x, y and z in this case) instead
of its magnitude in order to determine the accuracy more strictly.
First, the absolute mean error E showing the average difference
between the interpolated force component f ¢ and precisely
computed force component fé of each configuration along a path
P is calculated as

E‘P:W > IR fc\ (13)
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Similarly, the relative mean error € is computed as ratio of
absolute mean error to the precisely computed force component

f
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When small forces (e.g. below 0.5 N) are interpolated, the relative
error can increase rapidly, although the absolute difference is
even bellow the resolution of the device or human haptic
perception. For the case of larger forces (above 20 N), the absolute
difference can be significant (over 1N), but it is negligible
w.r.t. the overall magnitude of the force.

To be able to present the details in a compact way, the absolute
and relative errors introduced above are further averaged over all
the computed paths resulting in mean absolute error E and mean
relative error e. The results for different interpolation methods are
presented in Fig. 8.

The graph shows that the influence of the interpolation on the
accuracy is significant. For example, the accuracy obtained by the
RBF interpolation with cubic kernel using the coarsest grid with
514 points is comparable to the accuracy of the tri-linear
interpolation using the finest grid with 14146 points. The tri-
cubic interpolation seems to show the best accuracy w.r.t. the
absolute error. Nevertheless, it is important to emphasize that the
tri-cubic interpolation can be used only if a supercell, composed
of 64 grid points, is available. For example, for the grid having 514
points, only 31% of the configurations generated during the
experiments can be interpolated using the tri-cubic method due
to the missing data. Therefore, the utilization of tri-cubic
interpolation is limited to a smaller area closer to the rest
position of the active node. This reduces the absolute error since
larger forces corresponding to the boundary areas are not
included in this type of interpolation.

Besides presenting the average error for the different inter-
polation methods, the maximum error representing the worst
case scenario is investigated using the maximum relative and
absolute errors for each path denoted er and Ep, respectively.
The definition of both quantities is similar to Eqgs. (13) and (14)
except the summation signs are replaced with maximum signs.
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Fig. 9. Maximum errors of tri-linear and RBF-cubic interpolation: maximum error for each generated path is depicted by one circle and cross, respectively.

The results are shown in Fig. 9 where tri-linear and RBF cubic
interpolations are presented for two grids having different
densities. The graph shows that the maximum relative error
(x axis) can be significantly reduced if RBF cubic interpolation is
used instead of tri-linear interpolation. The figure shows that tri-
linear interpolation on the dense grid (blue dots on the right-hand
side) results in maximum relative error achieving 30%, whereas
the RBF interpolation on the coarse grid (red dots on the left-hand
side) results in maximum relative error under 20%. Moreover, the
distribution of dots in both graphs show the relation between the
absolute and relative errors. As the dots depicting the maximum
errors are close to the axis, it can be concluded that although the
relative error is large, the corresponding absolute difference is low
or vice versa, the large absolute error occurs mainly when the
absolute magnitude of the force is large and so the relative error is
in fact low.

7. Discussion and future work

In the first part of the evaluation section, the influence of the
simulation parameters such as material type and location of fixed
and displaced nodes on the force and displacement response of a
deformable, but static FE model was studied. It was concluded
that the parameters significantly affect the behavior of the
simulation if geometric and material nonlinearities are considered
in the model. From the numerical point of view, the convergence
of the computations is determined by the FE model, whereas from
the physical point of view, the response of the material depends
on the actual choice of the material law and boundary conditions.
Therefore, the technique proposed in this paper does not depend
on the complexity of the mathematical model and its parameters,
as any computationally expensive calculations are performed off-

line, independently from the real-time haptic interaction. For
example, if the actual setting of the parameters results in slow
convergence of the computations, this will not affect the stability
of the haptic interaction. Moreover, if some configurations are not
valid due to nonconvergence, they are excluded from the data set
before the interaction phase, so they do not introduce additional
error into the interpolation. Further, the configuration spaces for
various models and parameters can be constructed during the
precomputation phase, so the differences in the behavior of the
tissue can be tested and compared on-line during the haptic
interaction. Putting it all together, our approach allows the user to
study various static deformation models and parameter settings
without any influence on the haptic loop.

It is important to emphasize that although mainly the force
response was studied in the paper, the approach covers both
visual and haptic rendering: during the precomputation phase,
the displacement vectors are generated together with the forces,
so they can be used to approximate the actual deformation of the
body. During the interaction, the displacement components for
each visible node must be interpolated, nevertheless this can be
safely done in the visual loop running at a refresh rate of 30 Hz.
Moreover, since the visual accuracy is not as crucial as the haptic
accuracy, the tri-linear interpolation of the nodal displacements is
by far sufficient.

On the other hand, the main limitation of the proposed
approach is the computational time required for the precomputa-
tions. Also, necessity of constructing the configuration spaces for
each model and parameter setting can be inconvenient. Never-
theless, the length of the precomputation phase can be signifi-
cantly shortened using a distributed computing approach suitable
for computational grid architectures. As the algorithms does not
depend on the network latency, it scales well also for large
number of servers involved in the computations.
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Concerning the reconstruction phase, the simple tri-linear
interpolation can be acceptable, if implemented on a denser grid.
The tri-cubic interpolation displayed better results even on the
sparser grids, but this method can be used only when all the
64 points are available for the interpolation of a configura-
tion. Nonetheless, these two interpolation methods can be used
together so that the tri-cubic interpolation is used in the region
close to the rest position of the active node, where sufficient data
is available, whereas the tri-linear method is applied to the
regions close to the border of the grid.

The RBF method showed to be the best choice when
the accuracy is important, as it still can be computed within
the haptic loop, provided that the weights are computed within
the precomputation phase. It was shown even that the cubic
variant of RBF applied to the sparsest grid gives better results in
terms of the accuracy than the tri-linear method applied to the
densest.

In this paper, a single point interaction is studied employing
3DOF haptic device. The extension of the approach towards
multiple point interaction would result in significant increase in
the number of precomputed configurations, since k simulta-
neously controlled nodes would introduce a multiplicative factor
of ©(2%). Nevertheless, the configuration space can be indexed
by the position and orientation of the 3D tool interacting with the
tissue to reduce the size of the configuration space. Then,
the configurations for a given set of tool positions and orienta-
tions can be computed and stored during the precomputation
phase and reused for the interpolation during the interaction.
A preliminary study implementing this idea using a spherical tool
made of multiple points can be found in [29]. This topic requires
further investigation in the future.

Concerning the future work, we are currently working
on a solution which does not depend on the time consuming
precomputation phase. The idea is based on the fact that the
motion of HIP controlled by the user is relatively slow. Therefore,
if the trajectory followed by HIP is roughly estimated based on the
previous positions of HIP, the possible configurations surrounding
the trajectory can be computed in advance and the reaction force
corresponding to the actual position of HIP can be interpolated
from the precomputed subspace. Hence, the whole configuration
space is not constructed again, but only a part of it is updated.
Then, GPU accelerators can be used perhaps to generate the
configurations in real time. We believe that this approach based
on local configuration spaces can handle topological changes and
dynamical effects, which are both of great interest in the area of
surgical simulations.
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