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Abstract

Augmenting cloth in real video is a challenging task because cloth performs complex motions and deformations and
produces complex shading on the surface. Therefore, for a realistic augmentation of cloth, parameters describing
both deformation as well as shading properties are needed. Furthermore, objects occluding the real surface have to be
taken into account as on the one hand they affect the parameter estimation and on the other hand should also occlude
the virtually textured surface. This is especially challenging in monocular image sequences where a 3-dimensional
reconstruction of complex surfaces is difficult to achieve. In this paper, we present a method for cloth retexturing in
monocular image sequences under external occlusions without a reconstruction of the 3-dimensional geometry. We
exploit direct image information and simultaneously estimate deformation and photometric parameters using a robust
estimator which detects occluded pixels as outliers. Additionally, we exploit the estimated parameters to establish an
occlusion map from local statistical color models of texture surface patches that are established during tracking. With
this information we can produce convincing augmented results.

Keywords: augmented reality, cloth retexturing, optical flow, non-rigid tracking

1. Introduction and Related Work

The problem of merging computer generated content with real video is of wide interest in many applications such
as movies [1] and augmented reality [2, 3]. Often, a real object in a video sequence is replaced by a virtual, computer
generated one. To assure that the virtual object merges with the real video content, not only geometric parameters
describing position and shape of the real object have to be recovered, but also photometric parameters describing
shading and real lighting conditions on the object. Furthermore, objects occluding the real object must be taken into
account as they should also occlude the virtual object in the augmented video.

We are particularly interested in single-view real-time augmented reality applications of non-rigid surfaces, whose
deformations are difficult to describe, such as the movement of cloth. One approach would be to model the complete
3-dimensional geometry of the cloth surface from the image and reproject a new 3-dimensional cloth model into the
real video. However, an accurate 3-dimensional reconstruction of elastically deforming surfaces like cloth requires
a sophisticated multi-view camera setup and is computationally expensive [4, 5]. From single-view video this is
an ill-posed problem. Therefore, our approach to augment a piece of cloth in a real video sequence is completely
image-based and does not require any 3-dimensional reconstruction of the cloth surface. As we are rather interested
in convincing visualization than in accurate reconstruction, we approach the problem in the image plane and retexture
the moving surface in the image. We blend the virtual texture into the real video such that its deformation in the
image projection as well as lighting conditions and shading in the final image remain the same (see e.g. Figure 5 and
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Figure 6). For this purpose, we need to recover geometric parameters that describe the deformation of the projected
surface in the image plane. Without a 3-dimensional reconstruction of the surface we cannot explicitly model the light
conditions of the scene. However, we can recover the impact of the illumination on the intensity of a scene point.
Therefore, we model shading or changes in the lighting conditions in additional photometric parameters that describe
intensity changes in the image. We refer to this approach as retexturing in the following.

The issue of retrieving geometric deformation parameters from single view video has been studied by many re-
searchers in the last few years. Common deformation models are radial basis functions [6] or mesh-based models
[2, 7] and the parameters are retrieved by either optimizing over distinct feature points [2] or over the entire image
information [6, 7]. In recent years, also the issue of retexturing the tracked surface was addressed. Current retexturing
methods of deformable surfaces in single-view video usually either do not account for shading and illumination at all
[8] or treat geometric and photometric parameter estimation separately [9, 10]. Some approaches that require markers
for tracking use inpainting techniques to establish a shading map [11, 9]. Others restrict the surface to consist of a
limited set of colors which can be easily classified [10]. Scholz and Magnor [9] use color-coded patterns and a-priori
knowledge about surface connectivity for tracking of garments in single-view sequences. They determine shading
maps by removing the color markers used for tracking and interpolating the image intensity in the deleted regions.
White and Forsyth [10] presented a similar method for retexturing non-rigid objects from a single viewpoint using
color markers. They limited their method to recover irradiance to screen printing techniques with a finite number of
colors. However, the assumption of a-priori knowledge like in these papers is problematic in many applications and
limits the applicability for arbitrary video sequences.
Recently, also feature-based and direct methods for retexturing of deformable surfaces in videos were proposed that
also address the problem of external occlusions. Pilet et al. [2] proposed a feature-based real-time method for de-
formable object detection and tracking that uses a wide baseline matching algorithm and deformable meshes. They
retexure an image by multiplying a shading map, which is the quotient of the input and a warped reference image.
This method has problems at texture edges where the registration is not accurate enough such that the old texture is
still visible under the synthetic one. They later extended their work by establishing visibility maps taking into account
external occlusions in an expectation-maximization algorithm [12]. Generally, image-based methods yield more ac-
curate results in non-rigid deformation estimation than feature-based techniques because they exploit the entire image
instead of distinct points. In [8] Gay-Belille et al. proposed a direct method to estimate deformable motion under
self-occlusions. External occlusions are only considered in a robust estimator which rejects outliers based on image
intensity differences. Retexturing as well as illumination changes are not addressed in this paper such that geometric
tracking and the established occlusion map might be sensitive to illumination changes in the scene.

This paper is an extension of our work presented in [7] and [3] where we treat the problem of recovering geometric
and photometric parameters for realistic retexturing as an image registration task solving for a warp that not only reg-
isters two images spatially but also photometrically. In contrast to [2], we do not handle deformation and illumination
parameters separately but estimate them jointly using direct image information instead of distinct features. We exploit
the optical flow constraint extended by a specific illumination model and jointly estimate deformation and illumina-
tion parameters of a mesh-based model by formulating a non-linear least-squares error functional and minimize it
with a Levenberg-Marquardt (LM) approach. This extension was first proposed by Negahdaripour [13] to stabilize
optical flow based tracking against illumination changes. In our approach, it not only stabilizes geometric tracking
against illumination changes but also allows us to actually retrieve parameters describing these changes. We utilize
the additional information about illumination changes to synthesize an augmented retextured version of the cloth by
incorporating a specific color model, that accounts not only for changes in the light intensity but also in the color of
the light. By local weighting of smoothness constraints our approach can cope with self-occlusions. In this paper, this
work is extended by the robust handling of external occlusions completing the next task in achieving realistic retextur-
ing. As we are working with monocular image sequences without 3D reconstruction, we cannot determine occlusions
from depth, like in stereo vision. Our approach to occlusion handling is two-fold. First, we use a robust estimator
in the optimization procedure instead of a least squares estimator which detects occluded pixels and reweights them
in the resulting error functional. Second, we establish a dense occlusion map specifying which texture points of the
deforming surface are visible and which are occluded. This occlusion map is established from local statistical color
models of texture surface patches and a global color model of the occluding object hat are built during tracking.
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This paper is structured as follows. Section 2 describes our mesh-based model comprising both deformation and
photometric parameters before Section 3 explains our method for image-based parameter estimation. We use a robust
estimator to account for outliers due to external occlusion but also need an occlusion map that explicitly indicates the
occluded pixels. The establishment of such an occlusion map is described in Section 4. Section 5 explains the final
retexturing for augmentation.

2. Combined Mesh-Based Shape and Illumination Model

The spatial motion and deformation of a surface in the image plane is described by a geometric warp ψg(x; θ) =

x +D(x; θ) of the image coordinates, whereD(x; θ) is a dense 2-dimensional pixel displacement field at each image
pixel x, parameterized by a N × 1 parameter vector θ. The photometric differences between the images are explained
by a multiplicative function ψp(x; θ) to the pixel intensities. We parameterize the warps ψg(x; θ) and ψp(x; θ) with a
deformable model that is presented as a planar regular 2-dimensional mesh with K vertices vk. The geometric warp
is parameterized by the vertex displacements δvk in x- and y-direction. Additionally, we model the brightness scale
between two images in a third photometric parameter ρk at each vertex. The resulting parameter vector θ is then given
by concatenating the 3 parameters of each vertex such that the total number of parameters is N = 3K

θ=

(
δvx1 ...δvxKδvy1 ...δvyK︸                    ︷︷                    ︸

θg (2K×1)

ρ1...ρK︸ ︷︷ ︸
θp (K×1)

)T

(1)

where θg comprises the geometric deformation parameters and θp comprises the photometric parameters. In the
following, we present one possible parameterization of the deformation field ψg(x; θ) and the brightness scale field
ψp(x; θ) by the parameter vector θ. We describe a parameterization which uses affine interpolation between the vertex
positions but higher order interpolation, like e.g. B-splines or thin-plate splines, are also possible.

If a pixel xi is surrounded by a triangle consisting of the three mesh vertices va, vb, vc, and βa, βb, βc are the three
corresponding barycentric coordinates, the geometric and photometric warp at that position can be calculated by a
weighted sum of the three surrounding vertex parameters:

ψg (xi; θ) = xi +D (xi; θ) = xi +
∑

j∈{a,b,c}

β jδv j ψp (xi; θ) =
∑

j∈{a,b,c}

β jρ j .

This can also be written as

ψg (xi; θ) = xi + Mxi
g · θ ψp (xi; θ) = mxi

p · θ (2)

where Mxi
g and mxi

p are 2 × N and 1 × N matrices of the following form:

Mxi
g =

(
βa... βb... βc...
0... 0... 0...︸                 ︷︷                 ︸

(2×K)

0... 0... 0...
βa... βb... βc...︸                ︷︷                ︸

(2×K)

0... 0... 0...
0... 0... 0...

)
︸             ︷︷             ︸

(2×K)

mxi
p =

(
0... 0... 0...︸             ︷︷             ︸

(1×K)

0... 0... 0...︸            ︷︷            ︸
(1×K)

βa... βb... βc...
)︸                 ︷︷                 ︸

(1×K)

.

The superscript xi denotes that the indices a, b, c, the barycentric coordinates βa, βb, βc and therefore the matrix Mxi
g

are different for each pixel xi in the mesh region.

2.1. Extension of the Model to Color Images

For color images I =
(
IR IG IB

)T
we define the photometric warp as

ψp,color (xi; θcolor) =
(
ψR (xi; θcolor) ψG (x; θcolor) ψB (x; θcolor)

)T
.
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It is applied by entrywise multiplication with the three color channels of the image. ψR (x; θcolor), ψG (x; θcolor) and
ψB (x; θcolor) denote the photometric warp of the red, green and blue color channels of the image. One approach would
be to estimate a dense multiplier field for each color separately. However, this is time consuming and would increase
the parameter vector θcolor by twice the number of mesh vertices compared to θ as three intensity scale parameters ρR,
ρG and ρB would be necessary. Another model is to assume that the color of the light is spatially constant in the image
and only its intensity varies locally. This can be expressed through the following equation:

ψp,color (x; θcolor) = ψp (x; θ)·
(
crg, 1, cbg

)T (3)

crg and cbg denote global red and blue gains of the light color. For this color model, the parameter vector θcolor contains
two additional parameters (N = 3K + 2):

θcolor =

(
...δvxi ......δvyi ...︸            ︷︷            ︸

θg (2K×1)

,...ρi...︸︷︷︸
θp (K×1)

,crg, cbg︸︷︷︸
θc (2×1)

)T

(4)

such that now θp describes the intensity changes in the green channel that can vary spatially in the image and θc

comprises the red and blue intensity scale with respect to the green intensity. These parameters model the changes in
the light color over time but are global parameters for one image, i.e. they are assumed to be spatially constant. For
the extended parameter vector the geometric warp now is

ψg (xi; θcolor) = xi + M̃xi
g · θcolor

where M̃xi
g is a 2 × N matrix and equals Mxi

g as explained above with two further zero columns.

3. Image-based Parameter Estimation

We estimate the parameter vector θ by minimizing a cost function E(θ) that consists of two terms:

θ̂ = arg min
θ

(
ED(θ) + λ2ES (θ)

)
ED(θ) is the data term and ES (θ) represents prior knowledge on the shape and illumination model. It is often called the
smoothness term. λ is a regularization parameter which weights the influence of this prior knowledge against fitting
to the data term. We minimize the cost function in a Levenberg-Marquardt (LM) approach, iteratively solving for a
parameter update δθ̂ and updating the parameter vector θ̂ ← θ̂ + δθ̂. The optimization is performed hierarchically on
an image pyramid, each level yielding a more accurate parameter estimate.

3.1. Data Term

In the following, we first explain the data term for grayscale images and then address the extension to color
images. The data term ED(θ) is often derived by exploiting the optical flow constraint in its original form which
assumes brightness constancy between two successive image frames [14]:

In−1

(
ψg(x; θn)

)
= In (x)

where In (x) is the image intensity at pixel x of the nth frame of an image sequence and ψg(x; θn) is a geometric image
transformation that warps In−1 (x) onto In (x). For readability reasons we skip the index n for θ in the following. The
above equation assumes that an image pixel representing an object point does not change its brightness value from
frame n−1 to frame n and differences between successive frames are due to geometric deformation only. However, this
assumption is almost never valid for natural scenes. Furthermore, our aim is not only to retrieve geometrical but also
photometric parameters for realistic retexturing. Therefore, we relax the optical flow constraint in the above equation
allowing for multiplicative deviations from brightness constancy by introducing a brightness scale field ψp(x; θ):

ψp(x; θ) · In−1

(
ψg(x; θ)

)
= In (x) (5)
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The parameter vector θ is given by equation (1) and ψg(x; θ) and ψp(x; θ) are warp functions given by equation (2).
The reason why we chose to explain the intensity changes in the image by a multiplier field and not by both multiplier
and offset fields as in [13] is that the decomposition into multiplier and offset fields yields ambiguities and is not
unique. The data term ED(θ) is now given by the Sum of Squared Differences

ED(θ) =
1
2

∑
xi∈R

ψp(xi; θ) · In−1

(
ψg(xi; θ)

)
− In (xi)︸                                        ︷︷                                        ︸

ri(θ)


2

. (6)

The Taylor series of the residual ri(θ) yields:

ED(θ̂ + δθ) ≈
1
2

∑
xi∈R

(
ri(θ̂) +

∂ri(θ̂)
∂θ

· δθ

)2

In matrix notation, this can be written as

ED(θ̂ + δθ) ≈
1
2
‖Jr · δθ + r‖2

r = r(θ̂) is an m × 1 vector given by concatenating the m pixel values of the residuals and Jr = Jr(θ̂) is its Jacobian
whose rows are given by

∂ri(θ̂)
∂θ

= ψp(xi; θ̂) · ∇In−1

(
ψg(xi; θ̂)

)
·Mxi

g + In−1

(
ψg(xi; θ̂)

)
·mxi

p

The parameter update is now calculated via:

δθ = −(JT
r Jr + αI)−1JT

r r

where α is the damping factor of the LM-method and I is the identity matrix. When dealing with color images
I = (IR IG IB)T , equation (5) is changed to

ψp,color(x; θcolor) ◦ I n−1

(
ψg(x; θcolor)

)
= I n (x) (7)

where IR,IG,IB are the red, green and blue color channels of image I and ◦ denotes the entrywise product or
Hadamard product of two vectors. The parameter vector θcolor is given by equation (4). ψp,color (x; θcolor) denotes
the local intensity changes of the red, green and blue color channels as specified in equation (3). Each pixel now
contributes three equations to the resulting equation system, one for each color channel.

3.2. Smoothness Term

In order to incorporate prior knowledge of the smoothness of the deformation and illumination fields we penalize
the discrete second derivative of the motion and illumination parameters in the mesh in a smoothness term ES(θ)
by applying a discrete Laplace operator on the vertex parameters of the mesh [15]. For a mesh with K vertices the
Laplace matrix L is a K × K matrix with one row and one column for each vertex and Lk,l = −1 if vertex vk and vl are
connected and Lk,k = |Nk |. Here, the subscripts denote the row and column number of the matrix. All other entries
are set to zero. We introduce a scaled Laplace matrix L̃ with entries L̃k,l = wk,l if vertex vk and vl are connected
and L̃k,k = −1 with wk,l =

1/dk,l∑
i∈Nk

1/dk,i
which gives closer neighbors a higher influence. This matrix is applied to the

parameter vector such that the smoothness term of the objective function can be rewritten as

ES (θ) =

∥∥∥∥∥∥∥∥K · θ︸︷︷︸
s(θ)

∥∥∥∥∥∥∥∥
2

(8)
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where K is a block diagonal matrix composed of three scaled Laplace matrices L̃ of the mesh, two for the vertex
displacements and one for the photometric parameter:

K =

 L̃ 0 0
0 L̃ 0
0 0 λpL̃

 .

λp weights the smoothing terms of the geometric parameters against the smoothing terms of the photometric scale.
This is necessary due to the different scaling of the pixel displacement and the photometric parameter as the former is
additive while the latter is multiplicative.

The first order Taylor series of the smoothness term is given by

ES (θ̂ + δθ) =
1
2
‖Js · δθ + s‖2

were Js = K is the Jacobian of the smoothness term and s = s(θ̂). Incorporating the smoothness term into the LM
approach now leads to the following parameter update:

δθ = −(JT J + αI)−1JT b

J =

(
Jr
λJs

)
, b =

(
r
s

)
ES (θ) penalizes the discrete second derivative of the mesh [15, 16] and regularizes the optical flow field in addition
to the mesh-based motion model itself, especially in case of lack of information in the data due to e.g. homogeneous
regions with low image gradient in the surrounding triangles. One important advantage of using direct image informa-
tion is, that less image information, i.e. small image gradients in less textured regions, automatically lead to a higher
local weighting of the smoothness constraint in the resulting equation system because less image information in a
region leads to less equations in the data term corresponding to the vertices of that region. Also, the smoothing func-
tion dominates for vertices detected as outliers when using the Huber function for robust estimation or for occluded
vertices that do not contribute to the data term (see Sections 3.3 and 4).

3.3. Robust Estimation

In this section, we address the issue of external occlusions. Occluded pixels can be seen as outliers that should
contribute less to the parameter estimation. To make the parameter estimation more robust against these outliers we
can embed a robust estimator ρ(ri) into the data term instead of using the least squares estimator ρLS (ri) = 1

2 r2
i in

equation (6). A very efficient robust estimator is the Huber function [17]

ρH(ri) =

{ 1
2 r2

i if |ri| ≤ σ

σ |ri| −
1
2σ otherwise

which is a parabola in the vicinity of zero, and increases linearly at a given level |ri| > σ of the residuals. Incorporating
such an estimator into the data term

ED(θ) =
∑
xi∈R

ρ(ri(θ))

can be formulated as an equivalent reweighted least-squares problem:

ED(θ) =
∑
xi∈R

w(ri(θ̂)) · r2
i (θ)

with a weight function

w(ri) =
1
ri

∂ρ(ri)
∂ri

=

{
1 if |ri| ≤ σ
σ
|ri |

otherwise .
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This can be easily incorporated into the LM-approach by determining the parameter update by

δθ = −(JT
r WJr + αI)−1JT

r Wr

where W = diag(w(ri(θ̂))) is a weighting matrix which is calculated with the parameter estimate of the previous
iteration. The Huber function does not reject outliers, i.e. residuals with |ri| > σ, completely. The general idea is
to give these outliers less influence on the parameter estimation than in the least-squares approach. However, if σ is
chosen too small, we lose a lot of information as too many data points are detected as outliers. We estimate a value
for σ using the median absolute deviation (MAD) of the residuals which is an efficient score for outlier rejection [18].

3.4. Analysis-by-Synthesis Approach
Intensity-based differential techniques, which estimate the motion only between two successive frames, often

suffer from drift because they accumulate errors indefinitely. This limits their effectiveness when dealing with long
video sequences. To avoid error accumulation we make use of an analysis-by synthesis approach where the error
minimization is always carried out between a synthesized reference image and the actual camera frame. We use the
previous parameter sets {θ̂1, ..., θ̂n−1} to generate a synthetic version of the previous frame In−1 from a model image
I0. The new parameters θ̂n are then estimated from this synthetic previous frame În−1 to the current camera frame In.
This way, the model frame serves as reference frame and we assure that no misalignment of the model and the previous
frame occurs. Thereby we allow for recovery from small inaccuracies during parameter estimation. Technically, this
means that in equations (5) and (6) the original previous frame In−1 is replaced by its synthetic version În−1.

4. External Occlusion Handling

The robust estimator explained in Section 3.3 weights detected outliers less than inliers in the resulting equation
system to make the parameter estimation more robust against occluded pixels. For larger occluded areas this is not
enough to prevent errors in the parameter estimation. These areas should not contribute to the parameter estimation
at all. Additionally, for realistic retexturing an occlusion map is needed, i.e. a binary map which indicates the oc-
cluded pixels which have to be spared out from retexturing. As we are working with monocular image sequences
without 3-dimensional reconstruction we cannot determine occlusions from depth, like in stereo imaging. Therefore,
we will establish an occlusion map from local statistical color models of each texture point on the surface. For this
purpose, we warp back the current frame In with the previous parameter estimates {θ̂1, ..., θ̂n} such that it is regis-
tered onto the model image I0. We will denote this backwarped image as Ĩn in the following. We establish local
statistical color models of each texture point, and update these models with every frame in which a texture point is
classified as visible. As texture point we denote a fixed point on the deforming texture in contrast to a fixed pixel po-
sition. Geometric backwarping is necessary to associate each pixel in the current image with a texture point, whereas
photometric backwarping is needed to eliminate changes in the pixel value due to shading or changes in the scene light.

The idea of updating a statistical color model for each texture point is adopted from common background estima-
tion techniques where statistical models are updated for each image pixel over the image sequence. A pixel from a
new frame is classified as background if it fits in the model [19]. Background estimation techniques are often used
in video surveillance of outdoor scenes and the updating strategy makes the method more robust against changes in
the scene lighting. The difference is, that for background estimation the background is assumed to be static while we
are interested in a statistical model of texture points on a moving and deforming surface under varying illumination.
However, we register the two images spatially as well as photometrically, so that geometric differences due to motion
and deformation as well as intensity differences between In and I0 are removed in Ĩn ideally. As there can still be
noise in the image due to the sensor or image sampling as well as inaccuracies in the parameter estimation, we also
update our color models with each frame. Furthermore, due to the above mentioned reasons we build the local color
models from texture patches centered at each texture point instead of a single texture point. In our experiments these
patches had a size of 3×3 pixels. We assume that during the first 10 frames of a sequence there is no occlusion so that
we can establish an initial color model for each texture patch. Many background estimation techniques not only build
a model of the background but also of the foreground, i.e. the occluding object, to make the background estimation
more reliable. At the beginning of a sequence we do not have any information on the occluding object. However,
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Figure 1: Occlusion handling: Frame with external occlusion, color distribution of a texture patch and occlusion color distribution with n = 3 in
the RG-plane, color coded Mahalanobis distances to local patch color models and to the global color model of the occluding object.

once an occlusion is detected because pixels do not fit into the corresponding patch color models, we additionally
establish a global color model of the occluding object which follows the same updating strategies in the subsequent
frames. Having a color model of both the deforming texture and the occluding object makes the occlusion estimation
more reliable. In the following we will illustrate the statistical color models, the updating strategy and the occlusion
detection in detail.

The local patch color distributions are each associated with a mean color value in RGB-space µi and a Gaussian
distribution about that mean described by the covariance matrix Σi. For each new frame we calculate the Mahalanobis
distance between the pixel color values of the backwarped image Ĩn and the color distribution of the corresponding
texture patch in RGB-space:

Di =

√(
ci − µi

)T
Σ−1 (

ci − µi
)

where ci denotes the RGB-color values at pixel xi. If no occlusion has been detected in the previous frames, the
external occlusion mapMEO(x) is established by putting a threshold on the Mahalanobis distances to the patch color
distributions. This threshold is determined using the median-absolute-deviation (MAD) which is a resistant score for
successful outlier rejection [18]:

MEO(xi) =

 1
∣∣∣∣Di−D̄

MAD

∣∣∣∣ > υEO

0 otherwise

Here, D̄ denotes the median of all distances and MAD = median
∣∣∣Di − D̄

∣∣∣ denotes the median of absolute deviations.
MEO = 1 denotes occluded pixels in the occlusion map andMEO = 0 denotes visible pixels. For visible pixels the
parameters µi and Σi are updated. An occluded pixel that is misclassified as visible can lead to error accumulation in
the patch color model. Therefore, to account for this uncertainty we only update those color models with a score that
is smaller than 0.7υEO. The accuracy of the occlusion map is improved by enforcing spatial constraints, e.g. dense
regions without holes. For this purpose, erosion and dilation operators are applied onMEO(x).

Once an occlusion is detected, we also establish one global color model for the occluding object to make the
occlusion estimation more reliable in the subsequent frames. In contrast to the local color models of the texture
patches which are each modeled as one Gaussian distribution, the global color model of the occlusion consists of a
mixture of n Gaussian distributions, each associated with a mean µ̃ j and a covariance matrix Σ̃ j, ( j = 1...n). To classify
whether a pixel is visible or not, we now calculate the Mahalanobis distance of a pixel color value to the n Gaussian
distributions of the occlusion and to the color distribution of the corresponding texture patch. Pixels are now classified
as occluded if the Mahalanobis distance to one of the occlusion color distributions is smaller than the distance to the
distribution of the texture patch.

MEO(xi) =

{
1 min(D̃ j) < Di, j = 1...n
0 otherwise

where n is the number of Gaussians in the occlusion color model, Di denotes the Mahalanobis distance to the corre-
sponding patch color distribution and D̃ j denotes the Mahalanobis distances to the color distributions of the occlusion.
Figure 1 shows an example frame with an external occlusion, example color models of one texture patch and the global
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Figure 2: Illustration of the retexturing approach.

occlusion color model as well as color coded Mahalanobis distances to the color models in the image. As the color
models of the texture patches are established on local positions in the image and the color distribution of the occluding
object is a global distribution, the number of data in the local color models is much smaller than in the global occlusion
model (see Figure 1). Therefore, we model the local color distributions with a minimum variance of σpc = 0.001 in
the principal component direction of the distribution. The occlusion map is used to retexure the surface as explained
in the following section. Additionally, occluded pixels do not contribute to the parameter estimation in Section 3 such
that equation (6) is changed to

ED(θ) =
1
2

∑
xi∈R

(
1 −MEO(xi)

)
·
(
ψp(xi; θ) · In−1

(
ψg(xi; θ)

)
− In (xi)

)2
.

5. Realistic Retexturing

In our model as explained in Section 2 the intensity of each color channel at pixel xi in the image I (xi) =

(IR IG IB)T is described as an entrywise product of a factor ψp,color(xi; θ̂) representing photometric conditions of the
scene, comprising e.g. physical lighting conditions, medium properties, spectral response characteristics etc., and the
actual color cpi = (cR cG cB)T of the underlying surface point pi:

I (xi) = ψp,color(xi; θ̂) ◦ cpi (9)

where ψp,color(xi; θ̂) is given in equation (3). It describes the change of the color intensity at surface point pi due to
changes in the scene light. Here, we assume that the change of the light color, i.e. the fraction of the scale in the red
and the blue channel to the scale in the green channel, is spatially constant in the image and only the light intensity
varies spatially due to shading. Of course, this is a simplification and the above equation is only true if the first frame
of the sequence we analyze is white balanced as we estimate the lighting changes always compared to a reference
frame. Retexturing now means to change the underlying surface color cpi to a new value, namely to that of the new
synthetic texture, and keep the photometric conditions of the scene the same. The change of a pixel intensity in the
original image sequence can arise from motion and lighting changes. With our method described in Section 3 we can
separate the lighting changes from motion and the underlying surface color.

We can now use the estimated deformation and photometric parameters to retexture the deforming surface in the
video sequence with correct deformation and lighting. The vertex displacements δvk are used to spatially warp a new
synthetic texture image T (x) such that the original image I (x) and the warped synthetic texture T (ψg(x; θ̂) are now
geometrically registered. A shading mapMS (x) is established from the photometric warp:

MS (xi) = ψp,color(xi; θ̂)

9
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Again, higher order interpolation is possible. In fact, the above parametrization describes Gouraud shading. The color
channels of the geometrically registered synthetic texture image T (ψg(xi; θ̂) are then multiplied with the shading map
to achieve realistic shading and illumination properties

T synth(xi) =MS (xi) ◦ T (ψg(xi; θ̂).

As stated above, equation (9) is not strictly true, especially in case of saturation or specularities which make the
estimation of the photometric parameter unreliable. We treat these cases by simply thresholding the resulting values
in T synth(xi) which showed to be perceptionally convincing. The synthetic texture is finally integrated into the original
image via alpha-blending at the mesh borders and the external occlusion map. Our retexturing method is schematically
illustrated in Figure 2.

6. Experimental Results

We applied our method to several real video sequences with a resolution of 1024 × 768 pixels and a frame rate of
25 fps showing deforming surfaces, in particular pieces of paper and cloth, under varying illumination conditions. To
this end we use 4 levels of resolution in the image pyramid and experiments with synthetic image sequences with this
hierarchical scheme showed that it is able to estimate displacements of up to 25 pixels between two frames with an
average error of 0.2 pixels. In our experiments we evaluated different aspects which are explained in the following.

6.1. Registration Accuracy
We evaluate the registration results based on the Root Mean Squared Error (RMSE) between the synthetic image

În generated from the parameter estimates θ̂n and the original current frame In computed over all image pixels in the
mesh region R for several video sequences and compared our approach with the classical optical flow approach. With
classical optical flow approach we refer to the original optical flow constraint that does not account for illumination
changes, the geometric deformation model and optimization method are equal. Figure 3 shows the progress of the
RMSE over frames for two video sequences. The solid line shows the RMSE with our approach and the dashed line
shows the RMSE with the classical optical flow approach. Experiments with nine sequences showed that taking illu-
mination parameters into account significantly reduces the mean RMSE over the entire sequence by up to 74%.
Additionally, we manually labeled prominent feature points in every 50th frame of two test sequences which serve as
ground truth points. We then warped the ground truth points of the reference frame with the geometric deformation
parameters of these frames. The mean difference between the estimated positions and the manually labeled ground
truth position describes the geometric registration error. This additional evaluation approach is chosen to evaluate
geometric registration accuracy separately from photometric registration. We can reduce the mean distance between
the estimated and the ground truth position by approximately 40% when taking illumination into account. The right
images in Figure 3 show frame 250 of one test sequence with the real and estimated positions of the ground truth
points overlayed for our approach and the classical optical flow approach. Here, classical optical flow leads to geo-
metric misregistration, e.g. in the upper left corner, in contrast to our method.

6.2. Retexturing
We used the estimated deformation and illumination parameters to establish shading maps and produce augmented

versions of several video sequences which are best evaluated by visual inspection. Figure 4 shows example frames
from two video sequences of deforming cloth with different characteristics. The left images show thick cloth with
very smooth deformations while the right images show cloth that produces small wrinkles and creases. The figure
shows both the tracking mesh on the original frame and the synthetically generated texture image. Figure 5 shows
retexturing results of a video sequence showing a shirt folded in front of the camera. Retexturing results with and
without illumination recovery as well as the established shading map are depicted. These examples demonstrate how
crucial illumination recovery is for convincing texture augmentation of deforming surfaces. The addition of realistic
lighting increases the perception of spatial relations between the real and virtual objects. Note, that spatial deformation
is purely 2-dimensional and the 3-dimensional impression comes from shading.
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Figure 3: Evaluation of the registration accuracy. Left images: RMSE of two video sequences with our approach (solid line) and the classical
optical flow approach (dashed line). Right images: Estimated (crosses) and ground truth (squares) positions of the feature points with (left) and
without (right) illumination consideration.

Figure 4: Tracking and retexturing cloth with different characteristics. The left images show the original frame with the deformation mesh and
the right images show synthetic results which we achieved with our retexturing approach. Note that the mesh is purely 2-dimensional and the
3-dimensional illusion comes from shading.

6.3. External Occlusions

To evaluate our approach to occlusion detection we synthetically rendered occlusions in video sequences and
evaluated the occlusion masks by calculating the pixel differences to the alpha mask we used for rendering. In our
experiments we used a threshold of υEO = 3.5 and described the color model of the external occlusion with n = 3
Gaussians. 96.84% of the pixels were correctly classified as visible or occluded. Figure 2 shows an example where
we artificially rendered a hand into a video sequence. The color distributions of the occluding object and one texture
patch are depicted in the RG-plane. The right images show the color-coded Mahalanobis distance to the local texture
color distribution and the global distribution of the occluding object. Figure 6 shows two retexturing results under
external occlusions. The left images depict the augmented results and the right images show the estimated occlusion
maps.

7. Conclusion

In this paper, we presented a method for augmentation of deformable surfaces, like e.g. cloth, in single view
sequences. We exploit the fact that for the visualization of the virtually textured surface in the augmented video
sequence a 3-dimensional reconstruction of the surface geometry is not needed. We rather retrieve geometric and
photometric parameters which describe the appearance of the surface in the image. These parameters are estimated
using an extended optical flow constraint and a specific color model that not only accounts for changes in the light
intensity but also in the light color. We account for external occlusions in an occlusion map classifying whether a
pixel is visible or not based on local texture patch color distributions and a global occlusion color distribution. The
final visualization is achieved by warping the new texture with the geometric parameters and multiplying it with a
shading map built from the photometric parameters. The synthetic texture is rendered in the original video sequence
via alpha-blending at the mesh-borders and the occlusion map. Our method is currently limited to video sequences
with smooth deformations and shading due to the smoothness terms. Future work will e.g. concentrate on modeling
discontinuities in both the warp, e.g. in case of folding, and in the shading map, e.g. in case of sharp shadows.

11



Computers & Graphics 34(5), pp. 567-574, October 2010.

Figure 5: Tracking and retexturing a shirt. Left to right: original image, retexturing without illumination considering, retexturing with our approach,
shading map. The addition of real lighting increases the perception that the paper is truly exhibiting the virtual texture.

Figure 6: Retexturing under external occlusions. Left images: Retextured image, right images: occlusion maps.
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