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Abstract

Natural objects can be subject to various transformations yet still preserve
properties that we refer to as invariants. Here, we use definitions of affine in-
variant arclength for surfaces inR3 in order to extend the set of existing non-rigid
shape analysis tools. In fact, we show that by re-defining thesurface metric as
its equi-affine version, the surface with its modified metrictensor can be treated
as a canonical Euclidean object on which most classical Euclidean processing and
analysis tools can be applied. The new definition of a metric is used to extend
the fast marching method technique for computing geodesic distances on surfaces,
where now, the distances are defined with respect to an affine invariant arclength.
Applications of the proposed framework demonstrate its invariance, efficiency, and
accuracy in shape analysis.

1 Introduction

Modeling 3D shapes as Riemannian manifold is a ubiquitous approach in many shape
analysis applications. In particular, in the recent decade, shape descriptors based on
geodesic distances induced by a Riemannian metric have become popular. Notable
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examples of such methods are the canonical forms [7] and the Gromov-Hausdorff [9,
13, 2] and the Gromov-Wasserstein [12] frameworks, used in shape comparison and
correspondence problems. Such methods consider shapes as metric spaces endowed
with a geodesic distance metric, and pose the problem of shape similarity as finding
the minimum-distortion correspondence between the metrics. The advantage of the
geodesic distances is their invariance to inelastic deformations (bendings) that preserve
the Riemannian metric, which makes them especially appealing for non-rigid shape
analysis. A particular setting of finding shape self-similarity can be used for intrinsic
symmetry detection in non-rigid shapes [17, 23, 11, 22].

The flexibility in the definition of the Riemannian metric allows extending the in-
variance of the aforementioned shape analysis algorithms by constructing a geodesic
metric that is also invariant to global transformations of the embedding space. A par-
ticularly general and important class of such transformations are theaffine transfor-
mations, which play an important role in many applications in the analysis of images
[14] and 3D shapes [8]. Many frameworks have been suggested to cope with the ac-
tion of the affine group in a global manner, trying to undo the affine transformation in
large parts of a shape or a picture. While the theory of affine invariance is known for
many years [4] and used for curves [18] and flows [19], no numerical constructions
applicable to manifolds have been proposed.

In this paper, we construct an(equi-)affine-invariantRiemannian geometry for 3D
shapes. By defining an affine-invariant Riemannian metric, we can in turn define affine-
invariant geodesics, which result in a metric space with a stronger class of invariance.
This new metric allows us to develop efficient computationaltools that handle non-rigid
deformations as well as equi-affine transformations. We demonstrate the usefulness of
our construction in a range of shape analysis applications,such as shape processing,
construction of shape descriptors, correspondence, and symmetry detection.

2 Background

We model a shape(X, g) as a compact complete two-dimensional Riemannian man-
ifold X with a metric tensorg. The metricg can be identified with an inner product
〈·, ·〉x : TxX × TxX → R on the tangent planeTxX at pointx. We further assume
thatX is embedded intoR3 by means of a regular mapx : U ⊆ R

2 → R
3, so that the

metric tensor can be expressed in coordinates as

gij =
∂xT

∂ui

∂x

∂uj
, (1)

whereui are the coordinates ofU .
The metric tensor relates infinitesimal displacements in the parametrization domain

U to displacement on the manifold

dp2 = g11du1
2 + 2g12du1du2 + g22du2

2. (2)

This, in turn, provides a way to measure length structures onthe manifold. Given a
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curveC : [0, T ] → X , its length can be expressed as

ℓ(C) =

∫ T

0

〈Ċ(t), Ċ(t)〉
1/2
C(t)dt, (3)

whereĊ denotes the velocity vector.

2.1 Geodesics

Minimal geodesicsare the minimizers ofℓ(C), giving rise to thegeodesic distances

dX(x, x′) = min
C∈Γ(x,x′)

ℓ(C) (4)

whereΓ(x, x′) is the set of all admissible paths between the pointsx andx′ on the
surfaceX , where due to completeness assumption, the minimizer always exists.

Structures expressible solely in terms of the metric tensorg are calledintrinsic.
For example, the geodesic can be expressed in this way. The importance of intrinsic
structures stems from the fact that they are invariant underisometric transformations
(bendings) of the shape. In an isometrically bent shape, thegeodesic distances are
preserved – a property allowing to use such structures as invariant shape descriptors
[7].

2.2 Fast marching

The geodesic distancedX(x0, x) can be obtained as the viscosity solution to theeikonal
equation‖∇d‖2 = 1 with boundary condition at the source pointd(x0) = 0. In the
discrete setting, a family of algorithms for finding the viscosity solution of the dis-
cretized eikonal equation by simulated wavefront propagation is calledfast marching
methods[21, 10]. On a discrete shape represented as a triangular mesh withN vertices,
the general structure of fast marching closely resembles that of the classical Dijkstra’s
algorithm for shortest path computation in graphs, with themain difference in the up-
date step. Unlike the graph case where shortest paths are restricted to pass through the
graph edges, the continuous approximation allows paths passing anywhere in the mesh
triangles. For that reason, the value ofd(x0, x) has to be computed from the values of
the distance map at two other vertices forming a triangle with x. Computation of the
distance map from a single source point has the complexity ofO(N logN).

3 Affine-invariant geometry

An affine transformationx 7→ Ax + b of the three-dimensional Euclidean space can
be parametrized using twelve parameters: nine for the linear transformationA, and
additional three,b, for a translation, which we will omit in the following discussion.
Volume-preserving transformations, known asspecialor equi-affineare restricted by
detA = 1. Such transformations involve only eleven parameters.
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The equi-affine metric can be defined through the parametrization of a curve on the
surface [1, 3, 4, 6, 15, 19]. LetC be a curve onX parametrized byp. By the chain
rule,

dC

dp
= x1

du1

dp
+ x2

du2

dp
(5)

d2C

dp2
= x1

d2u1

dp2
+ x2

d2u2

dp2
+ x11

(

du1

dp

)2

+ 2x12
du1

dp

du2

dp
+ x22

(

du2

dp

)2

,

where, for brevity, we denotexi = ∂x
∂ui

andxij = ∂2
x

∂ui∂uj
. As volumes are pre-

served under the equi-affine group of transformations, we define the invariant arclength
p through

f(X) det(x1,x2, Cpp) = 1, (6)

wheref(X) is a normalization factor for parameterization invariance. Plugging (6)
into (6) yields

dp2 = f(X) det(x1,x2,x11du
2
1 + 2x12du1du2 + x22du

2
2)

= f(X)
(

g̃11du
2
1 + 2g̃12du1u2 + g̃22du

2
2

)

. (7)

whereg̃ij = det(x1,x2,xij).
In order to evaluatef(X) such that the quadratic form (7) will also be parame-

terization invariant, we introduce an arbitrary parameteriation ū1 and ū2, for which
x̄i =

∂x
∂ūi

andx̄ij = ∂2
x

∂ūi∂ūj
. The relation between the two sets of parameterizations

can be expressed using the chain rule

X̄1 = Xū1
= Xu1

u1ū1
+Xu2

u2ū1
(8)

X̄2 = Xū2
= Xu1

u1ū2
+Xu2

u2ū2
.

It can shown [4] using the Jacobian

J =

(

u1ū1
u2ū1

u1ū2
u2ū2

)

, (9)

that

ḡ11dū
2
1 + 2ḡ12dū1dū2 + ḡ22dū

2
2 =

(

g̃11du
2 + 2g̃12dudv + g̃22dv

2
)

|J |, (10)

and ḡ11ḡ22 − ḡ212 =
(

g̃11g̃22 − g̃212
)4

, whereḡij = det(x̄1, x̄2, x̄ij). From (10) we

evaluate the affine invariant parameter normalizationf(X) = |ḡ|
−1/4, and define an

equi-affine pre-metric tensor [4, 19]

ĝij = ḡij |ḡ|
−1/4

. (11)

The pre-metric tensor (11) defines a true metric only for strictly convex surfaces [4];
A simialr problem appeared in equi-affine curve evolution where the flow direction was
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Figure 1: The three neighboring triangles together with thecentral one are unfolded flat
to the plane. The central triangle is canonized into a right isosceles triangle while the
rest of its three neighboring triangles follow the same planar affine transformation. Fi-
nally, the six surface coordinate values at the vertices areused to interpolate a quadratic
surface patch from which the metric tensor is computed.

Figure 2: Geodesic level sets of the distance function computed from the tip of the tail,
using the standard (left) and the proposed equi-affine (right) geodesic metrics.

determined by the curvature vector. In two dimentions we canencounter non-positive
definite metrics in concave, and hyperbolic points. We propose fixing the metric by
flipping the main axes of the operator, if needed. In practicewe restrict the eigenvalues
of the tensor to be positive, and re-avaluate it. From the eigendecomposition̂G =
UΓU

T of ĝ in matrix notation, whereU is orthonormal andΓ = diag{γ1, γ2}, we
compose a new metricG, such thatG = U|Γ|UT is positive definite and equi-affine
invariant.
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Standard Equi-affine

Standard Equi-affine

Figure 3: Distance maps from different source points calculated using the standard
(second to fourth columns) and the proposed equi-affine geodesic metric (fifth to sev-
enth columns) on a reference surface (first and third rows) and its affine (second row)
and isometric deformation+affine transformation (fourth row). Thirds and sixth rows
show the global histogram of geodesic distances before and after the transformation
(green and blue curves). The overlap between the histogramsis an evidence of invari-
ance.

4 Discretization

We model the surfaceX as a triangular mesh, and construct three coordinate functions
x(u, v), y(u, v), andz(u, v) for each triangle. While this can be done practically in
any representation, we use the fact that a triangle and its three adjacent neighbors, can
be unfolded to the plane, and produce a parameter domain. Thecoordinates of this
planar representation are used as the parametrization withrespect to which the first
fundamental form coefficients are computed at the barycenter of the simplex (Figure
1). Using the six base functions1, u, v, uv, u2 andv2 we can construct a second order
polynom for each coordinate function. This step is performed for every triangle of the
mesh.
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Calculating geodesic distances was well studied in past decades. Several fast and
accurate numerical schemes [10, 20, 24] can be used off-the-shelf for this purpose.
We use FMM technique, after locally rescaling each edge according to the equi-affine
metric.

The (affine invariant) length of each edge is defined byL2(dx, dy) = g11dx
2 +

2g12dxdy+g22dy
2.Specifically, for our canonical triangle with vertices at(0, 0), (1, 0)

and(0, 1) we have

L2
1 = g11(1 − 0)2 + 2g12(1− 0)(0− 0) + g22(0− 0)2

= g11
L2
2 = g11(0 − 0)2 + 2g12(0− 0)(1− 0) + g22(1− 0)2

= g22
L2
3 = g11(1 − 0)2 + 2g12(0− 1)(1− 0) + g22(1− 0)2

= g11 − 2g12 + g22. (12)

Each edge may appear in more than one triangle. We found that the average length is
a good approximation, assuming the triangle inequality holds. In figures 2 and 3 we
compare between geodesic distances induced by the standardand our affine-invariant
metric.

5 Results

Figure 4: Voronoi cells generated by a fixed set of20 points on a shape undergoing
an equi-affine transformation. The standard geodesic metric (left) and its equi-affine
counterpart (right) were used. Note that in the latter case the tessellation commutes
with the transformation.

The equi-affine metric can be used in many existing methods that process geodesic
distances. In what follows, we show several examples for embedding the new metric in
known applications such as voronoi tessellation, canonical forms, non-rigid matching
and symmetry detection.

7



5.1 Voronoi tessellation

Voronoi tessellation is a partitioning of(X, g) into disjoint open sets called Voronoi
cells. A set ofk points(xi ∈ X)

k
i=1 on the surface define the Voronoi cells(Vi)

k
i=1

such that thei-th cell contains all points onX closer toxi than to any otherxj in
the sense of the metricg. Voronoi tessellations created with the equi-affine metric
commute with equi-affine transformations as visualized in Figure 4.

5.2 Canonical forms

Methods considering shapes as metric spaces with some intrinsic (e.g. geodesic) dis-
tance metric is an important class of approaches in shape analysis. Geodesic distances
are particularly appealing due to their invariance to inelastic deformations that preserve
the Riemannian metric.

Elad and Kimmel [7] proposed a shape recognition algorithm based on embedding
the metric structure of a shape(X, dX) into a low-dimensional Euclidean spaces. Such
a representation, referred to ascanonical form, reduces the number of degress of free-
dom by tanslating all deformations into a much simple Euclidean isometry group.

Given a shape sampled atN points and anN × N matrix of pairwise geodesic
distances, the computation of the canonical form consists of finding a configuration of
N pointsz1, . . . , zN in R

m such that‖zi−zj‖2 ≈ dX(xi, xj). This problem is known
asmultidimensional scaling(MDS) and can be posed as a non-convex least-squares
optimization problem of the form

{z1, . . . , zN} = argmin
z1,...,zN

∑

i>j

|‖zi − zj‖2 − dX(xi, xj)|
2. (13)

The invariance of the canonical form to shape transformations depends on the
choice of the distance metricdX . Figure 5 shows an example of a canonical form
of the human shape undergoing different bendings and affine transformations of vary-
ing strength. The canonical form was computed using the geodesic and the proposed
equi-affine distance metric. One can clearly see the nearly perfect invariance of the
latter. Such a strong invariance allows to compute correspondence of full shapes under
a combination of inelastic bendings and affine transformations.

5.3 Non rigid matching

Two non-rigid shapesX,Y can be considered similar if there exists an isometriccor-
respondenceC ⊂ X × Y between them, such that∀x ∈ X there existsy ∈ Y with
(x, y) ∈ C and vice-versa, anddX(x, x′) = dY (y, y

′) for all (x, y), (x′, y′) ∈ C, where
dX , dY are geodesic distance metrics onX,Y . In practice, no shapes are truly iso-
metric, and such a correspondence rarely exists; however, one can attempt finding a
correspondence minimizing the metricdistortion,

dis(C) = max
(x,y)∈C

(x′,y′)∈C

|dX(x, x′)− dY (y, y
′)|. (14)

8



Figure 5: Embedding intoR3 of a human shape and its equi-affine transformations
of varying strength. Classical scaling was used with a matrix of geodesic (left) and
equi-affine geodesic (right) distances. In the latter case,canonical forms remain ap-
proximately invariant up to a rigid transformation.

The smallest achievable value of the distortion is called theGromov-Hausdorff distance
[5] between the metric spaces(X, dX) and(Y, dY ),

dGH(X,Y ) =
1

2
inf
C
dis(C), (15)

and can be used as a criterion of shape similarity.
The choice of the distance metricsdX , dY defines the invariance class of this sim-

ilarity criterion. Using geodesic distances, the similarity is invariant to inelastic de-
formations. Here, we use geodesic distances induced by our equi-affine Riemannian
metric tensor, which gives additional invariance to affine transformations of the shape.

Bronsteinet al. [2] showed how (15) can be efficiently approximated using an
optimization algorithm in the spirit of multidimensional scaling (MDS), referred to as
generalized MDS (GMDS). Since the input of this numeric framework are geodesic
distances between mesh points, all is needed to obtain an equi-affine GMDS is one
additional step where we substitute the geodesic distanceswith their equi-affine equiv-
alents. Figure 6 shows the correspondences obtained between an equi-affine trans-
formation of a shape using the standard and the equi-affine-invariant versions of the
geodesic metric.

5.4 Intrinsic symmetry

Raviv et al. [17] introduced the notion ofintrinsic symmetriesfor non-rigid shapes
as self-isometries of a shape with respect to a deformation-invariant (e.g. geodesic)
distance metric. These self-isometries can be detected by trying to identify local min-
imizers of the metric distortion or other methods proposed in follow-up publications
[16, 23, 11, 22].

Here, we adopt the framework of [17] for equi-affine intrinsic symmetry detection.
Such symmetries play an important role in paleontological applications [8]. Equi-affine
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Figure 6: The GMDS framework is used to calculate correspondences between a shape
and its isometry (left) and isometry followed by an equi-affine transformation (right).
Matches between shapes are depicted as identically coloredVoronoi cells. Standard
distance (first row) and its equi-affine-invariant counterpart (second row) are used as
the metric structure in the GMDS algorithm. Inaccuracies obtained in the first case are
especially visible in the legs and arms.
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Figure 7: As the affine transformation becomes stronger, thequality of the symmetry
detection decreases (B) when the standard geodesic metric is used. On the other hand,
detection quality is hardly affected (C) by the transformations when using the equi-
affine geodesic metric.

intrinsic symmetries are detected as local minima of the distortion, where the equi-
affine geodesic distance metric is used. Figure 7 shows that using the traditional metric
we face a decrease in accuracy of symmetry detection as the affine transformation
becomes stronger (the accuracy is the average geodesic mismatch with relation to the
ground-truth symmetry). Such a decrease does not occur using the equi-affine metric.

6 Conclusions

We introduced a numerical machinery for computing equi-affine-invariant geodesic
distances. The proposed tools were applied to applications, like symmetry detection,
finding correspondence, and canonization for efficient shape matching. We have ex-
tended the ability to analyze approximately isometric objects, like articulated objects,
by treating affine deformations as well as non-rigid ones. Asour analysis is based on
local geometric structures, the affine group could in fact act locally and vary smoothly
in space as long as it is encapsulated within our approximation framework. We intend
to explore this direction and further enrich the set of transformations one can handle
within the scope of metric geometry in the future.
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