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Abstract

Natural objects can be subject to various transformatiaetsstill preserve
properties that we refer to as invariants. Here, we use tiefisi of affine in-
variant arclength for surfaces & in order to extend the set of existing non-rigid
shape analysis tools. In fact, we show that by re-definingstiréace metric as
its equi-affine version, the surface with its modified metensor can be treated
as a canonical Euclidean object on which most classicalidi@ah processing and
analysis tools can be applied. The new definition of a megriasied to extend
the fast marching method technique for computing geodesiarttes on surfaces,
where now, the distances are defined with respect to an affilagiant arclength.
Applications of the proposed framework demonstrate itariimnce, efficiency, and
accuracy in shape analysis.

Introduction

Modeling 3D shapes as Riemannian manifold is a ubiquitopsageh in many shape
analysis applications. In particular, in the recent decatiape descriptors based on
geodesic distances induced by a Riemannian metric haverigepopular. Notable
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examples of such methods are the canonical forms [7] and tbm@/-Hausdorff[[9,
13,[2] and the Gromov-Wasserstein[12] frameworks, usedhaps comparison and
correspondence problems. Such methods consider shapestrés spaces endowed
with a geodesic distance metric, and pose the problem ofeskiapilarity as finding
the minimum-distortion correspondence between the nsetrithe advantage of the
geodesic distances is their invariance to inelastic dedtioms (bendings) that preserve
the Riemannian metric, which makes them especially appg&dir non-rigid shape
analysis. A particular setting of finding shape self-simityacan be used for intrinsic
symmetry detection in non-rigid shapesl[17,,23,[11, 22].

The flexibility in the definition of the Riemannian metric@Ms extending the in-
variance of the aforementioned shape analysis algorithntohbstructing a geodesic
metric that is also invariant to global transformationstedf embedding space. A par-
ticularly general and important class of such transforameiare theaffine transfor-
mations, which play an important role in many applicatiomshie analysis of images
[14] and 3D shapes [8]. Many frameworks have been suggestedpe with the ac-
tion of the affine group in a global manner, trying to undo tfima transformation in
large parts of a shape or a picture. While the theory of affiwariance is known for
many years[[4] and used for curvés|[18] and flols [19], no nizakconstructions
applicable to manifolds have been proposed.

In this paper, we construct gaqui-)affine-invarianRiemannian geometry for 3D
shapes. By defining an affine-invariant Riemannian metriocan in turn define affine-
invariant geodesics, which result in a metric space withh@ngfer class of invariance.
This new metric allows us to develop efficient computatidoals that handle non-rigid
deformations as well as equi-affine transformations. Weatestnate the usefulness of
our construction in a range of shape analysis applicatisunsh as shape processing,
construction of shape descriptors, correspondence, anchsyry detection.

2 Background

We model a shapéX, g) as a compact complete two-dimensional Riemannian man-
ifold X with a metric tensoy. The metricg can be identified with an inner product
(,z : T, X x T, X — R on the tangent plan€, X at pointz. We further assume
that X is embedded int®3 by means of a regular map: U C R? — R3, so that the
metric tensor can be expressed in coordinates as

Lo ox Ox
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(1)

whereu; are the coordinates &f.
The metric tensor relates infinitesimal displacementsarpirametrization domain
U to displacement on the manifold

dp? = gridur® + 2gi2durdus + gaodus®. (2)

This, in turn, provides a way to measure length structurethermanifold. Given a



curveC : [0,T] — X, its length can be expressed as

T
oy = [ cm.conda ©)
whereC' denotes the velocity vector.

2.1 Geodesics

Minimal geodesicsre the minimizers of(C'), giving rise to thegeodesic distances

dx(r.2) = _min () @

whereT'(x,2’) is the set of all admissible paths between the paingdz’ on the
surfaceX, where due to completeness assumption, the minimizer alexsigts.
Structures expressible solely in terms of the metric tegsare calledintrinsic.
For example, the geodesic can be expressed in this way. T@tamce of intrinsic
structures stems from the fact that they are invariant uisbenetric transformations
(bendings) of the shape. In an isometrically bent shapegéuelesic distances are
preserved — a property allowing to use such structures asiamt shape descriptors

[

2.2 Fast marching

The geodesic distands (z¢, =) can be obtained as the viscosity solution togh®nal
equation||Vd||2 = 1 with boundary condition at the source poifitey) = 0. In the
discrete setting, a family of algorithms for finding the wisity solution of the dis-
cretized eikonal equation by simulated wavefront propagas calledfast marching
method$21,[10]. On a discrete shape represented as a triangulanmigsN vertices,
the general structure of fast marching closely resembksattthe classical Dijkstra’s
algorithm for shortest path computation in graphs, withrttan difference in the up-
date step. Unlike the graph case where shortest paths &tietegkto pass through the
graph edges, the continuous approximation allows patrsmaanywhere in the mesh
triangles. For that reason, the valued¢f,, =) has to be computed from the values of
the distance map at two other vertices forming a trianglé wit Computation of the
distance map from a single source point has the complexity(af log N).

3 Affine-invariant geometry

An affine transformatiox — Ax + b of the three-dimensional Euclidean space can
be parametrized using twelve parameters: nine for the ditraasformationA, and
additional threeb, for a translation, which we will omit in the following disssion.
Volume-preserving transformations, knownsgecialor equi-affineare restricted by
det A = 1. Such transformations involve only eleven parameters.



The equi-affine metric can be defined through the paramébizaf a curve on the
surfacel[1/ 3, 4,16, 15, 19]. L&t be a curve onX parametrized by. By the chain
rule,

dC duy dug

-~ _ -1 - 5
dp X1 dp + X9 p (5)
¢ Pu (A duduy )
a2 1 P2 2 dp? 11 dp 12 dp dp 22 dp )
where, for brevity, we denote;, = g—; andx;; = %' As volumes are pre-

served under the equi-affine group of transformations, viieelthe invariant arclength
p through

f(X)det(x1,x%2,Cpp) = 1, (6)

where f(X) is a normalization factor for parameterization invarian&ugging [6)
into (G) yields

dp2 = f(X) det(xl, X2, xudu% + 2x12du1 dUQ + x22du§)
= f(X) (gudui + 2g12durus + Goodu3) . )

Wheregij = det(xl, X2, Xij)-

In order to evaluatg (X ) such that the quadratic forral(7) will also be parame-
terization invariant, we introduce an arbitrary paramatem u; andus, for which
X; = g—; andx;; = %&j. The relation between the two sets of parameterizations
can be expressed using the chain rule

Xl = Xﬁl = X’u,1u1ﬁ1 + Xu2u2ﬁ1 (8)
X2 = X’ag = Xu1u1ﬂ2 + X’uz“’?ﬂg'

It can shown([4] using the Jacobian
J = <u1u1 u2u1> , (9)
ulﬂg u2ﬂ2
that
g11du; + 2g12dundis + Goadtis = (Jrrdu® + 2g12dudv + Gaodv®) | J], (10)
_ _ -~ o~ ~ 4 _ o
andgi1g22 — g3y = (11922 — G32) » whereg;; = det(X1,%2,%;;). From [10) we

evaluate the affine invariant parameter normalizafioX ) = |g|_1/4, and define an
equi-affine pre-metric tensarl[4, 19]

gij = giyla ™" (11)

The pre-metric tensd(11) defines a true metric only foc8yrconvex surfaces[4];
A simialr problem appeared in equi-affine curve evolutiorevethe flow direction was



Figure 1: The three neighboring triangles together withcérgral one are unfolded flat
to the plane. The central triangle is canonized into a righsceles triangle while the
rest of its three neighboring triangles follow the same afaaffine transformation. Fi-
nally, the six surface coordinate values at the verticessed to interpolate a quadratic
surface patch from which the metric tensor is computed.

Figure 2: Geodesic level sets of the distance function caetpiiom the tip of the tail,
using the standard (left) and the proposed equi-affinetrgggpodesic metrics.

determined by the curvature vector. In two dimentions wearaounter non-positive
definite metrics in concave, and hyperbolic points. We psepiixing the metric by
flipping the main axes of the operator, if needed. In prastiegestrict the eigenvalues
of the tensor to be positive, and re-avaluate it. From therelgcompositiolG =
UT'UT of g in matrix notation, wherdJ is orthonormal and™ = diag{v1,72}, we
compose a new metrié, such thatG = U|T'|U" is positive definite and equi-affine
invariant.
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Figure 3: Distance maps from different source points cated using the standard
(second to fourth columns) and the proposed equi-affineg@odnetric (fifth to sev-

enth columns) on a reference surface (first and third rond)itaraffine (second row)

and isometric deformation+affine transformation (foudtv). Thirds and sixth rows

show the global histogram of geodesic distances before #iadthe transformation

(green and blue curves). The overlap between the histogeaamsevidence of invari-

ance.

4 Discretization

We model the surfac& as a triangular mesh, and construct three coordinate it
x(u,v), y(u,v), andz(u,v) for each triangle. While this can be done practically in
any representation, we use the fact that a triangle andrig thdjacent neighbors, can
be unfolded to the plane, and produce a parameter domain.cddrelinates of this
planar representation are used as the parametrizationr@sghect to which the first
fundamental form coefficients are computed at the barycerfitthe simplex (Figure
[0). Using the six base functiods, v, uv, u? andv? we can construct a second order
polynom for each coordinate function. This step is perfatifoe every triangle of the
mesh.



Calculating geodesic distances was well studied in pasidiésc Several fast and
accurate numerical schemes|[L0] 20, 24] can be used offiek-for this purpose.
We use FMM technique, after locally rescaling each edgerdaugto the equi-affine
metric.

The (affine invariant) length of each edge is definediBydz, dy) = gi1dx? +
2g12dxdy+goody?. Specifically, for our canonical triangle with verticeg@t0), (1, 0)
and(0,1) we have

L2 = g11(1—=0)2+2g12(1 —0)(0 = 0) + g22(0 — 0)?
= 411
L = g11(0=0)2 +2912(0 — 0)(1 — 0) + gaa(1 — 0)?
= g22
L = g11(1—=0)?+2g12(0 = 1)(1 = 0) + gaa(1 — 0)?
= g11 — 2912 + goo. (12)

Each edge may appear in more than one triangle. We foundibaiverage length is
a good approximation, assuming the triangle inequalitg&oln figure$ 2 andl3 we
compare between geodesic distances induced by the staamidualir affine-invariant
metric.

5 Results
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Figure 4: Voronoi cells generated by a fixed seR6fpoints on a shape undergoing
an equi-affine transformation. The standard geodesic ecn@éfit) and its equi-affine
counterpart (right) were used. Note that in the latter cheeteéssellation commutes
with the transformation.

The equi-affine metric can be used in many existing methatgttocess geodesic
distances. In what follows, we show several examples foregiding the new metric in
known applications such as voronoi tessellation, candfacens, non-rigid matching
and symmetry detection.



5.1 Voronoi tessellation

Voronoi tessellation is a partitioning ¢fX, ¢g) into disjoint open sets called Voronoi
cells. A set ofk points(z; € X)¥_, on the surface define the Voronoi ce(lg)"_,
such that the-th cell contains all points oX closer toz; than to any other; in

the sense of the metrig. Voronoi tessellations created with the equi-affine metric
commute with equi-affine transformations as visualizedigure[4.

5.2 Canonical forms

Methods considering shapes as metric spaces with somesiict(e.g. geodesic) dis-
tance metric is an important class of approaches in shapgsémaGeodesic distances
are particularly appealing due to their invariance to isgtadeformations that preserve
the Riemannian metric.

Elad and Kimmel[[] proposed a shape recognition algoritlaseld on embedding
the metric structure of a shap¥, dx ) into a low-dimensional Euclidean spaces. Such
a representation, referred to @nonical form reduces the number of degress of free-
dom by tanslating all deformations into a much simple Ewdinlisometry group.

Given a shape sampled At points and anV x N matrix of pairwise geodesic
distances, the computation of the canonical form consfdiading a configuration of
N pointszy, ..., zxy INR™ such that| z; — z;||2 = dx (z;, z;). This problemis known
asmultidimensional scalingMDS) and can be posed as a non-convex least-squares
optimization problem of the form

{z1,...,en} = argminy _|llzi — 22 — dx (@i, 2;)[*. (13)
21

1N

The invariance of the canonical form to shape transformatidepends on the
choice of the distance metri¢y. Figure[5 shows an example of a canonical form
of the human shape undergoing different bendings and affinsformations of vary-
ing strength. The canonical form was computed using the egodnd the proposed
equi-affine distance metric. One can clearly see the neantfeg invariance of the
latter. Such a strong invariance allows to compute cormedence of full shapes under
a combination of inelastic bendings and affine transforomati

5.3 Non rigid matching

Two non-rigid shape&’, Y can be considered similar if there exists an isometoic
respondenc€ C X x Y between them, such ther € X there existy € Y with
(z,y) € C and vice-versa, andlx (x, 2’) = dy (y,y’) forall (z,y), («',y") € C, where
dx,dy are geodesic distance metrics &nY. In practice, no shapes are truly iso-
metric, and such a correspondence rarely exists; howermercan attempt finding a
correspondence minimizing the metdistortion,

dis(C) = max |dx(z,2") —dy (y,y)|. (14)
(z,y)eC
(I/7y/)ec
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Figure 5. Embedding int®? of a human shape and its equi-affine transformations
of varying strength. Classical scaling was used with a matfigeodesic (left) and
equi-affine geodesic (right) distances. In the latter caaapnical forms remain ap-
proximately invariant up to a rigid transformation.

The smallest achievable value of the distortion is called@tomov-Hausdorff distance
[5] between the metric spacéX, dx) and(Y, dy ),

c@ﬂXﬂU:%%ﬂMWL (15)

and can be used as a criterion of shape similarity.

The choice of the distance metri¢s, dy defines the invariance class of this sim-
ilarity criterion. Using geodesic distances, the similais invariant to inelastic de-
formations. Here, we use geodesic distances induced byquita#fine Riemannian
metric tensor, which gives additional invariance to affimmsformations of the shape.

Bronsteinet al. [2] showed how[(I5) can be efficiently approximated using an
optimization algorithm in the spirit of multidimensionalaing (MDS), referred to as
generalized MDS (GMDS). Since the input of this numeric fearark are geodesic
distances between mesh points, all is needed to obtain draffipe GMDS is one
additional step where we substitute the geodesic distamitiesheir equi-affine equiv-
alents. Figurél6 shows the correspondences obtained beveequi-affine trans-
formation of a shape using the standard and the equi-affivegiant versions of the
geodesic metric.

5.4 Intrinsic symmetry

Raviv et al. [17] introduced the notion oihtrinsic symmetriegor non-rigid shapes
as self-isometries of a shape with respect to a deformaticariant (e.g. geodesic)
distance metric. These self-isometries can be detecteimg tto identify local min-
imizers of the metric distortion or other methods proposetbllow-up publications
[16,[23/11[27].

Here, we adopt the framework ¢f [17] for equi-affine intrmsymmetry detection.
Such symmetries play an important role in paleontologippliaations([8]. Equi-affine



Figure 6: The GMDS framework is used to calculate corresponés between a shape
and its isometry (left) and isometry followed by an equiradfiransformation (right).
Matches between shapes are depicted as identically col@maahoi cells. Standard
distance (first row) and its equi-affine-invariant coungetgsecond row) are used as
the metric structure in the GMDS algorithm. Inaccuracietmied in the first case are
especially visible in the legs and arms.
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Figure 7: As the affine transformation becomes strongertiadity of the symmetry
detection decreases (B) when the standard geodesic ngetised. On the other hand,
detection quality is hardly affected (C) by the transforiorag when using the equi-
affine geodesic metric.

intrinsic symmetries are detected as local minima of théodisn, where the equi-
affine geodesic distance metric is used. Figuire 7 shows #irag the traditional metric
we face a decrease in accuracy of symmetry detection as fine &fansformation
becomes stronger (the accuracy is the average geodesi@atofsmith relation to the
ground-truth symmetry). Such a decrease does not occuy tigrequi-affine metric.

6 Conclusions

We introduced a numerical machinery for computing equinafinvariant geodesic
distances. The proposed tools were applied to applicatlixessymmetry detection,

finding correspondence, and canonization for efficient shmptching. We have ex-
tended the ability to analyze approximately isometric otgglike articulated objects,
by treating affine deformations as well as non-rigid onesoésanalysis is based on
local geometric structures, the affine group could in fatt@ally and vary smoothly

in space as long as it is encapsulated within our approximdtamework. We intend

to explore this direction and further enrich the set of tfarmeations one can handle
within the scope of metric geometry in the future.
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