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Abstract

We address three related problems. The first problem is to change the volume of a solid by a prescribed amount,
while minimizing Hausdorff error. This is important for compensating volume change due to smoothing, subdivision,
or advection. The second problem is to preserve the individual areas of infinitely small chunks of a planar shape,
as the shape is deformed to follow the gentle bending of a smooth spine (backbone) curve. This is important for
bending or animating textured regions. The third problem is to generate consecutive offsets, where each unit element
of the boundary sweeps the same region. This is important for constant material-removal rate during numerically
controlled (NC) machining. For all three problems, we advocate a solution based on normal offsetting, where the
offset distance is a function of local or global curvature measures. We discuss accuracy and smoothness of these
solutions for models represented by triangle or quad meshes or, in 2D, by spine-aligned planar quads. We also explore
the combination of local distance offsetting with a new selective smoothing process that reduces discontinuities and
preserves curvature sign.

1. Introduction

In this paper, we discuss the use of normal offsetting
[1] for volume or area preservation, where the offset
distance is computed globally or locally from curvature
measures. Specifically, we address the following three
problems.

1.1. Adjust volume while minimizing Hausdorff error

We are given a base solid P with volume VP. Typi-
cally, P is obtained by applying a small deformation to
some starting solid S , which has volume VS . The de-
formation may be the result of subdivision [2], smooth-
ing [3], or advection of a fluid/swimmer interaction [4].
We want to obtain an offset solid O that is similar to P,
but has volume VS . Specifically, we define O as the
shape that minimizes the Hausdorff distance, δ(P,O),
between P and O, with O constrained to having vol-
ume VS . Maintaining the volume is important in man-
ufacturing applications where weight matters [5] and
in physically based simulations where incompressibil-
ity matters [6]. The solution proposed here defines O
as the constant distance offset (CDO) of P: O = Ph.
We explain how to compute the correct distance h, both
in two and three dimensions. We discuss accuracy in
cases where P and O are represented by piecewise lin-
ear boundaries. In Fig. 1, we compare this solution to

Figure 1: The original 3-branch-star base shape P (green) is shown
with three offset shapes O (red) that enclose regions of the same area:
global scaling (left), variable distance offsetting (center), and con-
stant distance offsetting (right). The respective Hausdorff distances
are: 15.9, 4.6, and 3.1. A line segment connecting P and Q indicate
where the Hausdorff distance is reached. On the right, all points are at
the Hausdoff distance from the other set.

global scaling and to variable distance normal offsetting
(discussed in Sec. 1.3).

1.2. Preserve local area during spine bending
We are given a portion of a image R. R roughly

aligned along a smooth spine curve P. Note that P does
not need to be the medial axis of R and that the width of
R may vary along P. We are also given a bent version P̄
of P. We assume that P̄ and P have identical length and
are both parameterized by arc-length. Assume that each
point O of R has a unique closest projection on P. We
want a locally area-preserving homeomorphism H that
maps point O = P(s)+rN(s) to point P̄(s)+hN̄(s), where
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Figure 2: On the top (a), we show a texture region painted with an
axis-aligned checkerboard pattern along a straight spine curve P. Be-
low (b), we show a deformed version P̄ of the spine and the result of
a mapping where h = r. The squares of the checkerboard are colored
to indicate area preservation (more green), compression (more red),
or dilation (more blue). Below (c), we show the proposed corrected
mapping. At the bottom (d), we show the proposed corrected map-
ping while doubling the sampling density. Notice that this increased
sampling reduces area errors significantly.

N(s) is the normal to P at P(s) and N̄(s) is the normal to
P̄ at P̄(s). By locally area-preserving, we mean that any
subset Q of R has same area as its image H(Q).

The approach that we advocate here defines h in terms
of r and the curvature k(s) of P at P(s) and the curva-
ture k̄(s) of P̄ at P̄(s). For an exact solution h to ex-
ist, r must fall within a specific range defined by k(s)
and k̄(s). In Fig. 2, we compare this “fleshing” solution
to the common skinning solution with h = r. We also
discuss the computational and accuracy advantages of
the spine-aligned grid, as shown in Fig. 2, over an axis
aligned grid.

1.3. Generate contours for constant material removal

We are given the planar boundary P of a pocket to
be machined, and we want to compute a series, {O j},
of concentric variable-distance normal offset contours.
For each contour, we want to adjust the offset distance
locally, so that the area of a segment of the corridor be-
tween two consecutive contours is proportional to the
length of that segment. More precisely, consider an an-
imation that moves all points of O j along their normal
until they reach their offset point on O j+1. For any con-
nected subset S of O j, let u denote its length. Our objec-
tive is to ensure that the region swept by S during this

animation has area ur, where r is a given nominal depth.
This is important because NC machining is most effi-
cient when the cutter advances at constant speed (tan-
gentially along a contour Oi) and removes a constant
amount of material per unit of time [7]. Our solution
combines two steps: (1) a variable distance offset where
the local offset distance h is computed from the nominal
distance r and the local curvature k of O j using a simple
variation of the formulation discussed above, and (2) a
selective smoothing, which reduces the sharp features
introduced by step (1) and ensures that the curvature at
a point does not change sign during offsetting. In Fig. 3,
we compare constant distance offsetting, variable dis-
tance offsetting, and the proposed solution which com-
bines steps (1) and (2).

Figure 3: We show a series of contours produced by constant distance
offsetting (a), curvature-based distance offsetting (b), and curvature-
based distance offsetting with selective smoothing (c). The successive
constant distance offsets (a) do not preserve a constant area-to-length
ratio and produce self-intersections for larger offset distances. Suc-
cessive curvature-based offsets (b) preserve that ratio, but exhibit an
increasing amount of discontinuities where the curvature of the pre-
vious offset changes rapidly (we only render the first few contours).
The proposed combination of curvature-aware offsetting and selective
smoothing (c) produces concentric offset contours that are smooth and
approach a constant area-to-length ratio. The selective smoothing en-
sures that the curvature at each point maintains its sign or becomes
zero. Hence, the process converges towards a convex shape, as can be
extrapolated from the drawing.

1.4. Summary of contributions

The solutions to all three problems are based on
a curvature-based distance correction, which maps a
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nominal distance r to a distance h. In two dimensions,
assuming that k is the curvature, h is a specific root of

1
2

kh2 + h − r = 0 (1)

In three dimensions, assuming that g is the Gaussian and
m the mean curvature, h is a specific root of

1
3

gh3 + mh2 + h − r = 0 (2)

The derivation of these equations and their prior use for
constant area or volume offsetting is discussed in the
next section. Our contributions comprise the following:

1) To solve the first problem of constant distance off-
setting for a desired volume change, we generalize the
Steiner formula [8] for the volume change under con-
stant distance offsetting to non-convex solids as well as
to higher genus solids, and we describe an efficient im-
plementation. We also analyze the error sensitivity of
our formula, study the impact of sampling density on
its accuracy, and report the results on benchmark curves
and surfaces.

2) To solve the second problem of local area preser-
vation during skeletal bending, we have adapted the for-
mulation (Equ. 1) originally developed by Chirikjian [9]
for locally area-preserving bending. Chirikjian dis-
cusses divergence-free deformation for continuous
models. We explore its use for deforming discrete,
texture-mapped quads to follow the bending of a polyg-
onal spine. Specifically, we propose the use of a spine-
aligned grid, and argue its advantages over axis-aligned
grids.

3) To address the third problem of constant material
removal modeling, we build upon the solution proposed
by Moon [7], but show that it produces sharp discon-
tinuities of the offset curve near concave features. We
propose a novel selective smoothing technique which
eliminates these sharp features while preserving the cur-
vature sign between the original points and their offsets.

2. Prior Art

In this section, we discuss relevant prior work in
constant distance offsetting, variable distance offsetting,
volume correction, and skeleton-driven shape deforma-
tions.

2.1. Constant distance offsetting

The constant-distance offset (CDO) S r of a solid S
by distance r [10], also called dilation, is formulated as

the Minkowski sum [11] of S with a ball of radius r cen-
tered at the origin. It may also be expressed as the union
of all balls of radius r with center in S . S r contains all
points at distance r or less from S . Steiner [8] has de-
rived formulae for the area change and volume change
under constant distance offsetting for the special cases
of convex sets of genus zero. Here in Sec. 4 we prove its
generalization to non-convex solids and to higher genus
solids.

CDO operations are important in planning and sim-
ulating NC-machning processes [12], where they are
used to generate constant thickness layers of material
to be removed by successive machining passes, and for
creating fillets and blends [13] by offsetting the solid
and then its complement or vice versa. In 2D, CDO
preserves the domain of shapes bounded by piecewise-
circular curves [14]. In 3D, we obtain our approxi-
mation by offsetting each vertex by a constant distance
along an estimated vertex normal. Numerical and topo-
logical accuracy issues of CDOs of solids bounded by
triangle meshes and polyhedral surfaces have been in-
vestigated in various applications [12] [15].

2.2. Variable distance offsetting
Variable-distance offsetting (VDO) is specified by as-

signing a distance h(s) to each point P(s) of the base
shape P (curve in 2D or surface in 3D). Three differ-
ent interpretations of this specification have been com-
pared in [16]. The radial offset is the union of balls
(P(s), h(s)). The ball offset [17] is the union of balls
of diameter h(s) that are tangent to P at P(s). Finally,
the normal offset [1] is the union of all line segments
of length h(s) that are normal to P at P(s). In all three
cases, under sufficient assumptions on the smoothness
and curvature of P, there is a bijective mapping between
P and a portion of the boundary of the offset shape,
which may be formulated as an envelope of a set of line
segments or balls. (Note that each formulation imposes
a different set of constraints on the relation between the
offset distance function and the curvature of P [1].) The
shape and curvature of these envelopes may be com-
puted efficiently [16]. Here, we restrict our attention to
the normal offset, hoping that the other two interpreta-
tions will be investigated later. One issue addressed in
this paper is the computation of the offset distance field
h(s) that distributes the “invaded” space uniformly. Let
P be a surface in 3D. Let, Q be a subset of P, and R
be the region swept by Q during the offset. We want
to compute a variable offset distance function h(s) such
that the ratio r of R’s volume over the area of Q is a con-
stant. If P is a curve in 2D, r is the ratio of the area of R
over the arc-length of Q. This equi-volumetric offsetting
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has been investigated by Moon [7] [18] for NC machin-
ing, so as to ensure a constant material-removal rate,
rather than constant depth of removal. Moon has shown
that, in valid situations where the curvature is smaller
than some limit defined in terms of r, h(s) may be for-
mulated as the root of a quadratic equation, for the 2D
case, and of a cubic equation, for the 3D case. Specifi-
cally, in 2D, h is the root of 1

2 k(s)h(s)2 + h(s) − r = 0,
where k(s) is the curvature of P at P(s). In 3D, h(s)
is the root of 1

3 g(s)h(s)3 + m(s)h(s)2 + h(s) − r = 0
where g(s) is the local Gaussian curvature and m(s) is
the local mean curvature of P at P(s). These curvature
based distance functions have been studied by Hagen
and Hahmann as generalized focal surfaces [19] as a
tool for surface interrogation. We build our local off-
setting solutions to the volume compensation and to the
area-preserving bending on these equations.

2.3. Skeleton-driven deformations

Consider the planar shape S to be the union of an
infinite set of disjoint line segments intersected at their
midpoints by a continuous spine P. Let 2h(s) and a(s)
define the length of the line segment and its angle to
the tangent to P at P(s). Cavlieri’s principle [20] im-
plies that, when bending P, the area of the convex hull
of two infinitely close line segments remains constant
regardless of the shape of S , as long as we preserve
h(s) and a(s) and do not bend P(s) excessively (ensur-
ing that the radius of curvature at P(s) does not exceed
h(s)). Although this solution preserves the area of each
convex hull of consecutive two line segments, it does
not preserve the local area on each side of the spine, as
discussed in the introduction. Several approaches have
been proposed to maintain a constant local area of a re-
gion as its spine is bent. Chirikjian [9] has derived the
quadratic equation mentioned above by constraining the
Jacobian of the deformation to be 1, so as to make it lo-
cally area preserving. When the spine bend exceeds the
local limit, the normal offsetting is no longer appropri-
ate. More general techniques for skinning and fleshing
with locally-preserving bending have been proposed by
Rohmer and colleagues [21]. They adjust both the di-
rection and distance of the offsetting and solve for an
optimal solution that favors locality.

3. Curvature-based Offset Distance Computation

In this section, we discuss implementation and accu-
racy issues of computing the curvature-based offset dis-
tance. For implementation simplicity, we define a func-
tion f in 2D and in 3D, which returns the proper offset

distance, when it exists within the allowable range, or
the appropriate range bound otherwise. We use a sub-
script ( f2D and f3D) to distinguish the 2D and 3D ver-
sions of f . We also discuss how to select the proper
root in each case.

3.1. Function interface and capping
f2D takes as input the signed curvature k and and

the reference distance r respectively. The output h =

f2D(k, r) is the quadratic root −1+
√

1+2kr
k of Equ. 1 when

1+2kr > 0. Otherwise, f caps the value of h and returns
the limit −1/k so as to prevent a local self-intersection.

f3D takes as input the signed Guussian curvature g,
the mean curvature m and the reference distance r. The
output h = f3D(g,m, r) is the valid cubic root of Equ. 2.
Notice that if g = 0, then h is computed via the 2D solu-
tion discussed above, as f2D(2m, r). Otherwise, we need
to select the proper real root and to ensure that the solu-
tion is capped to an allowable bound. Moon [18] has de-
rived the existence condition and the monotonic region
where the valid root exists. In our implementation, we
use a change of variables: h∗ = h

r , g∗ = gr2 and m∗ =

mr. Then if 2
√

m∗2 − g∗ − m∗ > 3(m∗ −
√

m∗2 − g∗),
there is a unique positive real root in [0, 1√

m∗2−g∗−m∗
].

Otherwise, no valid real root exists and we output the
maximum offset distance that is free from a local self
intersection.

3.2. Error Sensitivities
Estimating curvature from a sampling of a smooth

curve will produce an incorrect offset distance. Below
we show that the error in h is a linear function of the
errors in the curvature estimation, both in 2D and in 3D.

Let εx represent a small variation in the variable x.
Assume that r is a constant. For 2D, we take the deriva-
tive of Equ. 1 and arrive at

h2

2
εk + khεh + εh = 0

From this, we conclude that εh is proportional (∝) to εk:

εh ∝
h2

1 + kh
εk

Similar for 3D, we take the derivative of Equ. 2 and ob-
tain

εh ∝
εgh3 + εmh2

1 + 2mh + gh2

Therefore, the numerical error in the output of f is linear
in the errors of its inputs when kh > 0 in 2D, or 2mh +

gh2 > 0 in 3D.
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3.3. Curvature approximation
Densely sampled polylines and polygonal meshes are

often used in modeling solids with smooth boundaries
whose parametric expression may not be conveniently
available. Hence, we adopt discrete formulas to evaluate
the curvatures.

3.3.1. Local curvatures
Let P denote a watertight quad or triangle mesh and

Pi a vertex of P. The local curvature at Pi can be eval-
uated from its one-ring neighbors {Q j}. In 2D, the dis-
crete curvature ki may be conveniently calculated by fit-
ting a parabola to Pi and its neighbors. In 3D, we use
the discrete formulas proposed by Meyer, et. al. [22].
Specifically, the local area Ai associated with Pi is ap-
proximated by the area sum of incident Voronoi cells.
The gradient of Ai with respect to Pi, also known as
the discrete Laplace Beltrami operator, has the follow-
ing closed form [23]:

∇Ai =
1
2

∑
j

(
PiQ j−1 · Q j−1Q j

|PiQ j−1 × Q j−1Q j|
+

PiQ j+1 · Q j+1Q j

|PiQ j+1 × Q j+1Q j|
)PQi

(3)
Then, the local mean curvature is approximated by a
scaled dot product of ∆Ai with the unit normal at Pi. The
local Gaussian curvature is approximated by the angle
deficit at Pi [22].

3.3.2. Global curvatures
Let AP denote the total surface area of P. We refer

to the surface integral of Gaussian curvature divided by
AP as the global Gaussian curvature (gP) and the surface
integral of mean curvature divided by AP as the global
mean curvature (mP). The integrated Gaussian is intrin-
sic to P and equals 2πχP, where χP is the Euler charac-
teristic of P. (χP = V−E+F where V , E, F are numbers
of vertices, edges and faces.) Therefore,

gP =
2πχP

AP
(4)

The surface integral of mean curvature is related to the
bending energy [24], which we denote as EP. Note that
EP can be approximated by the scaled sum of |∇Ai| at
each vertex. Therefore,

mP =
EP

AP
(5)

In 2D when P denotes a Jordan curve, its integrated cur-
vature is intrinsic and equals 2π [25]. Let LP denote the
length of P. The global curvature of P, kP, is defined as

kP =
2π
LP

(6)

Note that a global curvature has the same unit as its local
counterpart.

4. Dilation with Prescribed Volume Change

Consider a 3D shape P with volume VP. We want
to compute O from P by a single step of dilation, so
that the enclosed volume is increased by a prescribed
amount ∆V . We first discuss methods that are not based
on curvature measures. Then we present our solution.

4.1. Uniform scaling

The work of Desbrun et. al. [23] introduces a simple
approach of rescaling P around its barycenter C by a
uniform amount s:

O = C + s(P −C) (7)

where s = 3

√
VP+∆V

VP
. Uniform scaling guarantees that the

enclosed volume is increased exactly by ∆V . However,
this approach generates unbounded Hausdorff error be-
tween O and P (Fig. 1).

4.2. Linearized solution

In contrast, when a constant distance normal offset by
a distance h is used, the Hausdorff error is exactly h (as-
suming that h is smaller than the least feature size of the
shape). When using a constant distance offset (CDO), to
increase the volume of a solid by ∆V , one must compute
the proper offset distance h. One approach [21] is to use
h = ∆V

AP
. We compare below this approximate solution

to the one proposed here.

4.3. Normal offset based on the global curvature

The correct solution defines h as the appropriate root
computed by f2D or f3D as explained earlier in Sec. 3.1.
We include below the derivation of this result.

4.3.1. 2D
Let P denote a Jordan curve of length LP. Let, k(s)

and N(s) be the signed curvature and the unit normal
of P at P(s). The curvature k(s) is the derivative of the
unit normal. Hence, we have the following expression
of the area increase ∆A associated with offsetting P by
a constant distance h:

∆A =

∫∫
γ∈[0,h]

|
∂(P(s) + γN(s))

∂s
|dγds

= hLP +
h2

2

∫
k(s)ds
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By the Total Curvature Theorem [25], we have∫
k(s)ds = 2π

Therefore we arrive at,

π

LP
h2 + h −

∆A
L

= 0 (8)

Hence to compensate for the area change ∆A, we need
to offset the curve P by a constant distance h computed
by h = f2D( 2π

LP
, ∆A

LP
). Or equivalently, h = f2D(kP,

∆A
LP

)
using the global curvature defined in Equ. 6.

4.3.2. 3D
Let P(u, v) denote a point on a surface P parameter-

ized by u and v. We derive the exact expression of the
volume increase when offsetting P(u, v) by a constant
distance h. Let m(u, v) and g(u, v) represent the local
mean and Gaussian curvature of P at (u, v). Since the
mean curvature is the divergence of the unit normal and
the Gaussian curvature is the determinant of its Hessian,
the volume increase ∆V can be expressed as follows:

∆V =

∫∫∫
γ∈[0,h]

|∇(P(u, v) + γN(u, v))|dγdudv

= h
∫∫

|∇P|dvdu +
1
2

h2
∫∫

∇ · Ndvdu

+
1
3

h3
∫∫

|∇N|dudv

= hAP + h2
∫∫

m(u, v)dudv

+
1
3

h3
∫∫

g(u, v)dudv

By the Gauss-Bonnet Theorem [25], we have∫∫
g(u, v)dudv = 2πχP

where χP is the Euler characteristic of P which is 2 − g
for a genus-g surface. The other integral term is the total
integral of the mean curvature: EP =

∫∫
m(u, v)dudv.

Therefore, we arrive at:

2πχP

3AP
h3 +

EP

AP
h2 + h −

∆V
AP

= 0 (9)

Hence to increase the current volume by ∆V , we offset
P by h = f3D( 2πχP

AP
, EP

AP
, ∆V

AP
). Notice that the definition of

global curvatures in Equ.4 and Equ. 5, the solution can
also be written as h = f3D(gP,mP, r).

4.4. Proof of minimizing Hausdorff error

Let P, O and Q either be regularized planar regions or
solids. Assume that O = Pd for some positive distance
d. (If instead we want a negative d, the argument below
will hold for the complements of P, O and Q and still
support our conclusion.) We will prove that ∀Q , O,
VQ = VO ⇒ H(Q, P) > H(O, P), where H defines
Hausdorff distance and VX denotes the area or volume
of X.

Assume that VQ = VO. First, we note that Q can-
not be a proper subset of O, otherwise we would have
VQ < VO. Second, we note that Q cannot contain any
point q outside of O, otherwise we would have the dis-
tance from q to P, d(q, P) > d (Since O includes all
points at distances less or equal to d from P) and hence
H(Q, P) > d. From these two observations (Q is not a
proper subset of O and Q is a subset of O), we conclude
that if Q , O then H(Q, P) > H(O, P). Hence, O is
Hausdorff distance minimized. �

4.5. Implementation

We have implemented the three volume correction
schemes (Uniform scaling, Linearized, and Curvature-
based solutions) on quad as well as triangle meshes. Our
implementation uses a Corner Table [26] representation
and the associated corner operators. The whole process
is only a few lines of code. First, to compute the global
mean curvature mP we sum the area gradient at each
vertex and divide it by 3 for triangle meshes or 2 for
quad meshes. Then, the normal at each vertex is the
weighted sum of the normals of the incident triangles
scaled by their areas. Then, we compute the surface area
AP of P (as the sum of triangle areas), the volume VP (as
a sum of signed volumes of the tetrahedron formed by
each triangle with the origin). For a quad mesh, we treat
each quad face as a bi-linear patch interpolating the four
face vertices. We compute the total volume and the to-
tal surface area as the sums of the sub-volume and the
sub-area associated with each bi-linear patch, using for-
mulae presented in [21]. The extraction of the proper
root of the cubic polynomial was discussed in Sec. 3.1.
Although we have not optimized the code, the whole
process of computing the corrected offset distance and
of performing the offsetting is instantaneous (it takes a
very small fraction of a second for all models tested).

We evaluate P’s barycenter C as the area-weighted
sum of geometric centers of all faces of P divided by
AP. The Hausdorff distance between P and O is approx-
imated by

max{max{d(p,O), p ∈ P},max{d(o, P), o ∈ O}}
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Figure 4: Steps of volume compensation through dilation. Left: origi-
nal control meshes of volume VS ; Center: fair and subdivided meshes
with volume VP; Right: meshes after dilation with volume VO

where d(x,Y) calculates the distance from a vertex x to
mesh Y .

4.6. Results
We present our experiment results on 11 meshes

shown in Fig. 5. In these examples, 9 (Cross, Holes,
Bunny, Horse, Donut, Spikes, Sphere-(coarse, fine)) are
obtained from coarse solids by Catmull [2] or Butter-
fly [27] subdivision and smoothing [3] steps shown in
Fig. 4. Mesh “Horse-noise” is obtained by adding ran-
dom noises to the subdivided horse model. We prescribe
the desired volume change ∆V , and want to offset P to
produce a solid O = Ph with volume VP+∆V . We report
in Tab. 1 the number of vertices nV , volume VP, area AP

for each mesh P. The volume after correction is denoted
as VO. It is not exactly VP + ∆V due to numerical errors.
We measure the discrepancies between VP + ∆V and VO

in terms of ε defined as follows:

ε =
|VP + ∆V − VO|

VP
(10)

Tab. 1 shows the errors of the linearized solu-
tion (εlinear) where h = ∆V

A and the errors of our solution
based on the global curvatures (εcurv.). The results show
that in general the curvature-based solution is about 3
times more accurate than the linearized solution. We
also report the Hausdorff error between P and O. For
meshes that contain parts that are long and thin, the
Hausdorff error (δscaling) produced by uniform scaling
is much larger than the Hausdorff error (δcurv.) produced
by our solution based on global curvatures. For spheres,
δscaling and δcurv. are roughly the same. We also observe
that for all models tested, repeating the offsetting with
the correct solution (Equ. 9) for h (each time using the
remaining volume error as inputs) three or four times
reduces the relative error to 0.00003% or less.

Figure 5: Mesh models used in our experiments: Cross, Holes, Bunny,
Horse, Donut, Spikes, Sphere-noise, Sphere, Sphere-fine, Fan, Horse-
noise

5. Spine Bending with Local Area Preservation

Volume and area preserving deformation are often
keys to simulations with physical realism. The funda-
mental idea for locally volume/area-preservation is to
make the deformation field divergence-free, which im-
plies that the Jacobian determinant is 1.

Here we consider the problem in 2D. The spine is
represented by a polygonal curve produced by subdivi-
sion or by a dense sampling of a smooth curve. Appli-
cations of bending curves range from rendering brush
strokes with variable thickness and textures [28] to im-
age and shape manipulation [29]. We notice that a
ribbon-style framework suitable for bending an open
continuous curve was first proposed by Alan Barr [30].
The framework provides an efficient method for a planar
deformation controlled by a skeletal curve. We present
below a locally area-preserving shape manipulation ap-
plication based on this framework.

5.1. Continuous model

We include here a derivation of Equ. 1 for bending
with a continuous curve. Given a skeletal curve which
we denote as P(s), a nearby point O is expressed as:

O(s, r) = P(s) + rN(s)
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Model nV VP AP εlinear εcurv. δscaling δcurv.

Cross 3198 2.15e7 7.05e5 2.5% 0.12% 12.5 2.8
Holes 1922 4.26e7 7.26e5 1.9% 0.11% 14.8 5.7
Bunny 1522 5.19e6 1.73e5 2.4% 0.065% 6.3 2.9
Horse 4002 8.29e6 3.12e5 2.95% 0.21% 12.3 2.5
Donut 256 1.43e7 4.03e5 2.2% 0.18% 7.4 4.8
Spikes 3842 7.69e6 5.165e5 3.20% 0.65% 17.6 1.4

Sphere-coarse 194 3.01e7 4.73e5 3.1% 0.62% 5.8 5.7
Sphere 770 3.08e7 4.78e5 3.8% 0.83% 6.4 6.4

Sphere-fine 3074 3.08e7 4.78e5 3.9% 1.0% 6.4 6.4
Fan 25895 5.022e7 1.07e6 2.2% 1.3% 8.7 4.5

Horse-noise 4002 1.21e7 4.69e6 2.7% 0.96% 11.5 2.3

Table 1: Mesh statistics and results of different volume-correction schemes corresponding to the models in Fig. 5

here r is the distance from O to its orthogonal projec-
tion on P. We denote the skeletal curve after length-
preserving bending as P̄ with its unit normal and curva-
ture denoted as N̄ and k̄. The deformed position Ō is
then:

Ō(s, r) = P̄(s) + hN̄(s)

Setting h = r produces an approximate solution as pre-
viously discussed in Sec. 1.2. However, the deformation
is not locally area-preserving as the local rate of expan-
sion varies depending on the curvatures at P(s) and P̄(s).
Hence, h , r. By the chain rule, we have:

∂Ō
∂O

=
∂Ō

∂(s, h)
∂(s, h)
∂(s, r)

∂(s, r)
∂O

By setting the determinant of the above transformation
to 1, we have:

dh
dr

(1 + hk̄(s))(1 + rk(s))−1 = 1

Therefore,

k̄(s)
2

h2 + h − (r +
r2

2
k(s)) = 0

The solution for h is a curvature-based distance which
can be computed by h = f2D(k̄(s), r +

k(s)
2 r2).

5.2. Discretization

To bend an image, the designer specifies the initial
and final spine curves. We use a grid of quads and paint
the bent image as a texture onto the deformed quads.
One could do this using an axis-aligned grid, but such an
approach has two drawbacks: (1) there is an expense of
computing the closest projection of each grid point onto
the initial spine curve, and (2) aliasing artifacts occur

Figure 6: The user draw a initial curve (left) over an image and a de-
formed curve (right). The deform image is rendered as a texture map-
ping over the spine-aligned grid. We preserve the length of the spine
by keeping the number of samples and the distance between consec-
utive samples as constants, when sampling from a curve manipulated
by the user.

when the spine curve is not sufficiently sampled, as sev-
eral grid points that would project on different points of
a continuous spine may have, as closest projection, the
same vertex of a polygonal approximation. To allevi-
ate these drawbacks, we advocate using a spine-aligned
grid, as shown in Fig. 2. For simplicity, we sample the
smooth spine curve so that all edges of its polygonal
approximation have the same length. We generate the
initial grid by estimating the normal at each vertex Pi of
the initial spine (as being orthogonal to the line passing
by its neighbors) and by generating offset points in both
directions by jr, with j being an integer in some desired
range. At each such grid-point, we record its coordi-
nates in the image as texture coordinates. To display the
deformed image, we use the same process to establish
the normal at each vertex of the bent spine, and gener-
ate the corresponding grid points, but instead of offset-
ting them by jr, we offset them by f2D(k̄, jr + k

2 ( jr)2),
where k and k̄ are the local curvatures before and after
bending. Then we render the grid quads with texture
mapping. An example of this bending process is shown
in Fig. 6.
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Figure 7: A family of curvature-based distance offsets. Notice that
the offset curve may contain sharp pointy protrusion at concave side
of the spine curve when r approaches the limit − 1

2k(s) .

5.3. Limitations

As the half-width of the grid approaches the valid-
ity limit discussed above, the corrected offset distance
increases rapidly, creating a spike, as shown in Fig. 7.
Hence, in practice, we must limit the width of the area
of the picture upon which we operate or the amount of
curvature change at every point between the initial and
final spines. Specifically, we limit |k| to [0, 1

2r ] where k
is the local curvature and r is the half-width of the grid.
In practice, to avoid spikes, we limit |k| to [0, 1

2.5r ].

6. Constant Material Removal Rate

6.1. Machining

We recall the quadratic formula proposed by Hwan
Pyo Moon [7] in the context of machining:

1
2

k(s)h(s)2 + h(s) − r = 0

where k(s) is the local curvature of the progenitor curve
P, h(s) is the depth of cut, and r is the material removal
rate to feedrate ratio. Moon argues its importance in
NC milling with constant power consumption. General
milling tools have sufficient degrees of freedom which
allow them to follow arbitrary planar paths. One of the
challenges is to define a tool path that lead to constant
material removal rate in milling for a target shape mod-
eled by P. Since we want to keep the translational speed
of the milling tool as constant as possible, the removed
area per unit length should also be constant in order to
achieve stable power consumption. Let this constant be
r, solving the above equation gives the offset distance
that defines the tool path with removed area per unit
length equal to r.

6.2. Successive offsets

In practice, the tool path could consist of a set of con-
centric offsets from P. They form a set of successive

Figure 8: A set of successive curvature-based distance offsets. Left:
direct offset curves without fairing; Right: the same set of offsets with
selective smoothing

offsets {O j}, j = 1, 2, . . . from P:

O1(s) = P(s) + f (kP(s), r)NP(s)

O j+1(s) = O j(s) + f (kO j(s), r)NO j(s)

6.3. Loss of smoothness

It is known in differential geometry that the curva-
ture transformation kP(s) is a second-order operator on
the parametric curve P(s). Naturally, the curvature-
based distance function f (kP(s), r) is second order as
well. Hence only Cd−2 continuity is observed in the off-
set when P(s) is Cd continuous. To verify this loss of
smoothness when P is approximated by dense polyloop,
we show a set of successive offsets on a dense polyloop
P produced by the J1.5 subdivision scheme [31] whose
limiting curve is of C4 continuity.

Fig. 8 (Left) shows the result of directly applying f2D

to discrete curvatures evaluated at points of P and {O j}.
The first two offset curves appear smooth. However,
the third appears jaggy and the fourth contains self-
intersections. These discontinuities result from large
differences of curvature estimates between neighboring
vertices. Variances in evaluating the discrete curvatures
could cause the offset to contain unwanted local convex-
ities and concavities, and further increase the curvature
variances in the offset curve. Therefore, we propose
below an iterative algorithm called selective smooth-
ing, for successively generating visually smooth offset
curves.

6.4. Selective Smoothing

We observe that changes in the sign of the curva-
ture are undesirable in generating a smooth offset curve.
Hence, our smoothing strategy focuses on producing a
curvature-compatible offset curve, where a point with
non-negative curvature is mapped to a offset point with
non-negative curvature, and the same for non-positive
curvature.
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Figure 9: The 1st, 3rd, 6th, 12th, 14th iteration of selective smoothing. Points with incompatible curvatures are shown in red.

Selective Smoothing is similar to the Laplacian
smoothing except that only points with non-compatible
curvatures are subject to the operation. It consists of two
steps in each iteration (Fig. 9): Select and Smoothen.
Let ko

i denote the discrete curvature at the i-th vertex on
the offset curve O; ki and Ni denote the signed curvature
and the unit normal at P.

• Select: Check each vertex Oi in O and put i into a
smoothing list L if ki and ko

i are of different signs.

• Smoothen: Compute a list of Laplacian vectors
{Vi} at vertices of L; Move each vertex of L along
the unit normal Ni by the dot product of Vi and Ni,
and then empty L.

Typically, as shown in Fig. 9, there are only a few in-
compatible points along the initial offset curve. As
these are made compatible by a step of the selective
smoothing, some of their immediate neighbors may be-
come incompatible. However, the process converges
rapidly. Fig. 8 (Right) and 3 (Right) show results of
applying selective smoothing: in Fig. 8, unwanted noise
is smoothed out while the rest of a curve is not modified;
in Fig 3, we are able to generate a large series of consec-
utive offsets using this combination of curvature-based
distance and selective smoothing.

6.5. Discussion and limitations
Consider now selective smoothing as a separate pro-

cess. It could be used to smoothen a polygonal curve so
that each vertex is either flat (has zero curvature) or has
a curvature with a prescribed sign. Selective smooth-
ing identifies incompatible vertices—those where the
curve makes the wrong turn—and moves them to the
average of their immediate neighbors. When a chain
of incompatible vertices has the same prescribed cur-
vature sign, repeating the process is essentially equiva-
lent to Laplacian smoothing and converges to a straight
line. However, selective smoothing can fail if the curve
becomes self-crossing. When used as a smoothing to
curvature-based normal offsetting, we restrict the mo-
tion of each vertex to be along the normal to the original
curve. Furthermore, the extent of that motion is con-
strained by the cap on the corrected offset value (|h| is

Figure 10: The yellow vertices are having compatible curvature signs
with the green vertices on the black curve.

confined to [0,−1/k] if k < 0). Hence, allowable vertex
motions cannot create local loops. Therefore, we con-
jecture that our Selective Smoothing process will con-
verge to a compatible curve. Of course, the offset curve
may exhibit global self-intersections, which can be de-
tected and should be prevented or resolved by trimming,
if topological changes are desired. But such a global
post-processing is necessary regardless of the smooth-
ing step.

Finally, due to the discretization and numerical errors
when evaluating k, an offset contour may still contain
a local self-intersecting loop (Fig. 10). To detect these
situations, we detect self-crossing along the offset curve
and flag, as incompatible, all vertices between two con-
secutive self-crossing points. This heuristic works cor-
rectly only when the loops are isolated.

7. Discussion

This section discusses the impact of sampling den-
sity on the accuracy of locally area/volume distribution
computed by the curvature-based normal offset. We
compute variable distance normal offset from prototyp-
ical curve and surface patch (denoted as P). In order to
show the error on both local and global scales, we di-
vide P into a constant number of portions and define the
following measures:

In 2D, we compute the sub-area ak swept by offset-
ting the kth portion of P with length lk. The local rel-
ative error for each portion is defined as δk = ak

lkr − 1.
We report the maximum absolute value, δmax, and the
mean absolute value, δmean, of the local relative errors
for all portions of P. We also report the global relative
error as δglobal =

∑
k ak

r
∑

k lk
− 1. δglobal measures the relative

difference from the total-increased-area to perimeter ra-
tio from the user-input reference distance r. In 3D, we
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Figure 11: Dependence of the local and the global error on sam-
pling density: (a) finely sampled curve that consists of 256 points.
(b) coarsely sampled curve that consists of 32 points.

Figure 12: Dependence of the local and the global error on mesh res-
olutions

define similar measures which we use to analyze the er-
rors associated with different types of surface patches.
Fig. 11 shows values of δmax, δmean and δglobal at 5 dif-
ferent sampling densities of a polygonal curve. Both the
local and the global relative errors converge to zero as
the subdivision depth increases. For example, the rela-
tive errors are less than 0.5% when there are 256 sam-
ple points on P. Fig. 12 shows values of δmax, δmean and
δglobal at different subdivision levels of bi-cubic surface
patches. We collect statistics from three types of surface
patches to avoid biases. Again, both the global and the
local relative errors fall quickly as the sampling density
increases. The relative errors are less than 0.5% when
there are 529 sample points on each surface patch.

These results show that in general, the accuracy of
even-area/volume distribution can be improved by in-
creasing the sampling density.

8. Conclusion

In this paper, we have presented our study and im-
plementation on the curvature-based offset distance for
several applications. Specifically, we present a simple
formulation of the offset distance and discuss its accu-
racy and smoothness, when computed on discrete mod-
els. We provide an exact formulation of the offset dis-
tance for adjusting the offset of 3D shapes by a constant
distance offset. Our solution generalizes prior art which
was limited to convex, zero-genus shapes. For bend-

ing images, we propose the use of an axis-aligned grid
and the formulation of the offset mapping between two
curved spines. Finally, for machining, we propose com-
bining curvature-based local offsetting with an iterative
selective smoothing process.
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