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Abstract

This paper proposes a geometric iteration algorithm for computing point projection and inversion on planar paramet-

ric curves based on local biarc approximation. The iteration begins with initial estimation of the projection of the

prescribed test point. For each iteration, we construct a biarc that locally approximates a segment on the original

curve starting from the current projective point. Then we compute the projective point for the next iteration, as well as

the parameter corresponding to it, by projecting the test point onto this biarc. The iterative process terminates when

the projective point satisfies the required precision. Examples demonstrate that our algorithm converges faster and is

less dependent on the choice of the initial value compared to the traditional geometric iteration algorithms based on

single-point approximation.

Keywords: point project, parametric curves, biarc interpolation, local approximation

1. Introduction1

Projection of a test point on a curve or surface aims2

to find the closest point, as well as the corresponding3

parameter, on the curve or surface. Specially, when the4

test point lies on the curve or surface, the problem of5

point projection becomes the problem of point inver-6

sion. This operation has been extensively used in ge-7

ometric processing algorithms such as surface intersec-8

tion [1], interactive object selection and shape registra-9

tion [2, 3, 4]. Moreover, it is a fundamental compo-10

nent of the algorithms of curve and surface projection11

as well [5, 6]. In this paper, we address the problem of12

point projection and point inversion on planar paramet-13

ric curves. We provide a geometric iteration algorithm,14

which approximates a segment on the original curve by15

a biarc. Compared with traditional single-point approx-16

imation algorithms [7, 8, 4], our algorithm converges17

faster and is less dependent on the choice of the initial18

value.19

1.1. Related work20

The problem of point projection and inversion can21

be translated to solving the minimum distance equation22

(Q−P)×n = 0, where P is the prescribed test point, Q is23

the point closest to P on the original curve or surface and24

n is the normal vector of the original curve or surface at25

Q. In most of the early work, Newton-Raphson method,26

which involves the first and second order derivatives,27

was used to solve this minimum distance equation and28

get the projective point [1, 8]. Piegl and Tiller [9] gave a29

detailed description on this method for point projection30

and inversion.31

In order to achieve a good initial value, which is im-32

portant for Newton-Raphson method to converge reli-33

ably, subdivision methods were introduced [10, 11, 12,34

13, 14, 15, 16]. The key point of this kind of algorithms35

is to eliminate the curve segments or the surface patches36

which do not contain the nearest points. Ma and He-37

witt [12] divided the NURBS surface into several Bézier38

patches and checked the relationship between the test39

point and the control point nets of these Bézier patches.40

However their elimination criterion may fail in some41

cases [17]. Johnson and Cohen utilized the tangent cone42

to search for the portions of the surface contain the pro-43

jective points [13]. A more practical exclusion criterion44

based on Voronoi cell test was proposed in [16]. Chen45

et al. [15] improved their method using the clipping46

circle/sphere. By replacing the clipping circle/sphere47

with axis-aligned lines/planes, Oh et al. [14] reduced48

the computing time of [15]. Based on [14], they pre-49

sented an algorithm for projecting continuously moving50
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Figure 1: A comparison of the approximation precision of the first order algorithm [7, 8], the second order algorithm [4] and our algorithm: P is

the test point, the black curve is the original curve, Q0 is the initial point, orange point Q6, yellow point Q5, blue point Q2 and red point Q4 are

projective points obtained by Newton-Raphson method [9], the first order algorithm [7, 8], the second order algorithm [4] and our algorithm after

the first iteration, respectively. Q3 is the exact closest point. (a) the whole view of the projection; (b) the zoom view of (a).

query points onto planar spiral curves [18]. Seong et al.51

[19] dealt with this problem in another way. By elevat-52

ing the dimension of the problem, they transformed the53

point projection onto planar parametric curve into the54

intersection of an implicit surface and a straight line.55

Besides algebraic methods (Newton-Raphson56

method), geometric methods were also proposed,57

which only involve the geometric information that is58

common to all possible parameterizations. Hoschek59

and Lasser [7], Hartmann [8] introduced the first60

order geometric iteration method. Hu and Wallner [4]61

proposed a second order geometric iteration method,62

in which they generated an osculating circle (a circle63

possessing the same curvature with the original curve64

at the osculating point) and projected the test point on65

it instead of the original curve or surface. Liu et al.66

[20] improved their method by replacing the circle of67

normal curvature with a second order osculating torus68

patch to the surface.69

Note that the algebraic method and geometric meth-70

ods generally converge (if can converge) to the local71

minimum projective point nearest to the initial value72

[13]. All the subdivision methods we introduced above73

[10, 11, 12, 13, 14, 15, 16] can generate the initial value74

near to the global minimum projective point. Therefore,75

generally, a complete point projection include two parts:76

1. An algorithm to generate initial values; 2. An itera-77

tion algorithm to compute the precise projective point.78

In this paper, we mainly focus on the iteration algorithm79

in the second part. It means that we assume the initial80

value has been provided by some kind of initial value81

generating algorithm.82

1.2. Our contributions83

The main idea of geometric methods is to locally ap-84

proximate the original curve by a special curve (first or-85

der algorithm uses tangent line, and second order algo-86

rithm uses osculating circle). The next projective point87

is estimated by projecting the test point onto the ap-88

proximation curve instead of the original curve. It is89

shown in the evolution of the geometric methods that90

higher approximation precision generally means higher91

convergence speed and better stability. However, during92

each iteration step, the traditional geometric algorithms93

approximate the original curve only with curve deriva-94

tives computed at a single point. So the approximation95

region is limited around this point, the approximation96

precision will reduce when moving away from this point97

on the original curve.98

In order to improve the convergence speed and sta-99

bility of the point projection and inversion, we provide100

a geometric iteration algorithm based on local biarc ap-101

proximation. Our method approximates the correspond-102

ing segment on the original curve by a biarc rather than103

only one point during each iteration. Our local biarc ap-104

proximation has larger approximation region and higher105

approximation precision compared to traditional single-106

point approximation. According to the experimental re-107

sults in Section 4, our algorithm converges faster and is108

more robust than the traditional geometric algorithms.109
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Figure 2: Approximation deviation comparison in Figure 1. Abscissa

is the parameter of the moving point on the original curve. Ordinate

is the distance from the moving point to approximation curve.

A brief comparison of the traditional geometric algo-110

rithms and our algorithm is shown in Figure 1. In this111

figure, the violet test point P = (0.5, 0.5) is projected112

onto the black planar Bézier curve, the control points113

of which are {(−1, 0), (−0.5, 1), (0, 0), (0.5,−1), (1, 0)}.114

The parameter of the initial point Q0 is 0.25. The orange115

point Q6, yellow point Q5, blue point Q2 and red point116

Q4 are projective points obtained by Newton-Raphson117

method [9], the first order algorithm [7, 8], the sec-118

ond order algorithm [4] and our algorithm after the first119

step iteration, respectively. Q3 is the exact closest point,120

whose parameter is 0.51. The yellow line is the tangent121

line at Q0 and is used to approximate the original curve122

and estimate the next projective point in the first order123

algorithm [7, 8]. The blue dashed curve is the osculat-124

ing circle at Q0 and is used to approximate the original125

curve and estimate the next projective point in the sec-126

ond order algorithm [4]. The red curve from Q0 to Q2127

is the biarc used to approximate the curve segment from128

Q0 to Q2 on the original curve in our algorithm. Q1 is129

the middle point of the biarc. Figure 2 compares the130

distances from the moving point on the original curve131

(from Q0 to Q3) to the three types of approximation132

curves: tangent, osculating circle, biarc. When moving133

away from Q0, the approximation precisions of tangent134

and osculating circle drop significantly, while that of135

biarc seldom changes. This means compared to tangent136

and osculating circle, our biarc has a higher approxi-137

mation precision and a larger approximation region. So138

the next projective point Q4 is much closer to the exact139

projective point than other single-point methods.140

The contributions of this paper are as follows:141

1. We propose a point projection and inversion al-142

gorithm by local biarc approximation, which has143

a higher approximation precision and a larger ap-144

proximation region compared to traditional single-145

point approximation algorithms.146

2. We present a framework that adapts to any single-147

point approximation algorithm. If a single-point148

algorithm is integrated in our framework, the con-149

vergence speed and independence of the initial150

value of this single-point algorithm will be im-151

proved.152

1.3. Outline of our algorithm153

Given a test point P, a planar parametric curve C(t)154

and the parameter value t0 of the roughly estimated pro-155

jective point Q0, as illustrated in Figure 1, we need to156

compute the parameter of the exact projective point.157

Our algorithm framework can be described in summary158

as follows:159

1. According to the initial projection parameter t0,160

compute the interval width ∆t using any step length161

strategy (we can use constant parameter increment,162

Newton-Raphson method [9], first order algorithm163

[7, 8], or second order algorithm [4]).164

2. Compute the tangent vectors C′(t0) and C′(t0+∆t),165

respectively. Interpolate the boundary conditions166

C(t0), C′(t0) and C(t0+∆t), C′(t0+∆t) with a biarc167

BA(s) (the red curve in Figure 1), which is used to168

approximate the curve segment from C(t0) to C(t0+169

∆t) on the original curve C(t).170

3. Project the test point P onto the biarc BA(s) and171

compute a new estimated parameter of the projec-172

tive point (Q5 in Figure 1) on the original curve173

C(t).174

4. Use the new parameter as the initial value t0 and175

repeat steps 1-3 until the corresponding projective176

point satisfies the precision requirement.177

The rest paper is organized as follows. Section 2178

presents the method for local curve approximation by179

biarc interpolation. In Section 3, the methods of point180

projection onto the biarc and parameter inversion to the181

original curve are described. The experimental results182

including the evaluation of performance data are given183

in Section 4. Finally, Section 5 concludes the paper.184

2. Local biarc approximation of a curve segment185

We approximate a curve segment on the original186

curve C(t) by a biarc according to the initial projection187

parameter t0, which consists of the following steps:188

1. Compute the interval width ∆t.189

2. Compute the interpolation boundary conditions190

C(t0), C′(t0) and C(t0 + ∆t), C′(t0 + ∆t).191
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3. Interpolate the boundary conditions with a biarc.192

We present the three steps in details in the following193

subsections, respectively.194

2.1. Compute the interval width195

The interval width ∆t determines which curve seg-196

ment on C(t) is to be approximated. We select any step197

length strategy from following ones:198

1. User-defined constant parametric increment, and

∆t = const t. (1)

2. Newton-Raphson method [9], and

∆t =
C′(t0) · (C(t0) − P)

C′′(t0) · (C(t0) − P) + |C′(t0)|2
. (2)

3. First order algorithm [7, 8], and

∆t =
C′(t0) · (Q −C(t0))

C′(t0) ·C′(t0)
, (3)

where Q is the projective point of P on the tangent199

line at C(t0).200

4. Second order algorithm [4], and

∆t =
(Q −C(t0)) ×C′′(t0)

κ‖C′(t0)‖3
, (4)

where Q is the projective point of P on the osculat-201

ing circle at C(t0), κ is the curvature of C(t0), and202

we have κ = (C′(t0) ×C′′(t0))/‖C′(t0)‖3.203

Note that, except Strategy 1, all the other strategies204

based on single-point approximation can be used to205

compute point projection and inversion independently.206

Our algorithm therefore provides a framework that207

adapts to any single-point approximation algorithm (use208

it to compute ∆t). Moreover, according to our exper-209

iments, the integration converges faster and is less de-210

pendent on the choice of the initial value compared to211

the integrated original single-point algorithm alone.212

According to our experience, considering the conver-213

gence speed and the stability, priority of the four strate-214

gies is 4 > 2 > 3 > 1, where ‘>’ means better (con-215

verge faster and less independent on the initial value)216

than. After we derive ∆t, the interval is determined by217

[t0, t0 + ∆t].218

U0

P0

J

A0

C

A1

P1

U1

Figure 3: A biarc (red) and the joint circle (black) [21].

2.2. Approximate the curve segment by biarc219

In this part, we approximate the corresponding curve220

segment C(t0) ∼ C(t0 + ∆t) on the original curve by a221

biarc interpolation on the G1 boundary data C(t0), C′(t0)222

and C(t0 + ∆t), C′(t0 + ∆t), where C′(t) is the first order223

derivative of C(t). Before that, we review the problem of224

biarc interpolation of G1 boundary data. The definition225

of biarc interpolation given in [21] is as follows:226

Definition 1. The two circular arcs A0, A1 are said to227

form a biarc interpolating given oriented G1 data, rep-228

resented by end points P0, P1 and unit tangent vectors229

U0, U1 (see Figure 3) if and only if the two circular arcs230

share one common end point J called joint and satisfy231

the following properties:232

1. The arc A0 has the end points P0 and J, and U0 is233

tangent to A0 with orientation corresponding to a234

parametrization of A0 from P0 to J.235

2. The arc A1 has the end points J and P1 and U1 is236

tangent to A1 with orientation corresponding to a237

parametrization of A1 from J to P1.238

3. The two arcs have a common unit tangent vector at239

J, with orientation corresponding to a parametriza-240

tion of A0 from P0 to J and of A1 from J to P1.241

The biarc interpolation plays an important part in tool242

path generation in CNC (Computerized Numerical Con-243

trol) [22, 23], and approximation of curves [23] and dis-244

crete data [24]. Constrained interpolation with biarc is245

also widely studied [21, 25].246

The locus of all possible joint J is a circle (C in Fig-247

ure 3) passing through P0 and P1 [21]. Various biarc248

interpolation schemes are distinguished by the choice249

of the joint J. Among the most important ones are250

the “equal chord” biarc and the “parallel tangent” biarc.251

The former one is constructed so that the two segments252
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P0J and JP1 have equal arc lengths on C, while the lat-253

ter one ensures that the tangent at point J is parallel254

to segment P0P1. In this paper we choose the “equal255

chord” biarc as the interpolation tools, owning to its256

simplicity in implementation and better approximation257

precision according to our experiments.258

Given boundary data P0 = C(t0), D0 = C′(t0) and259

P1 = C(t0 +∆t), D1 = C′(t0 +∆t), we generate the biarc260

BA(s) in following steps:261

1. Find the center of the joint circle C, by intersecting262

the bisectors of P0P1 and of (P0 + U0)(P1 + U1),263

where U0 and U1 are the unit vectors of D0 and D1,264

respectively.265

2. Find J by intersecting the bisector of the P0P1 and266

the minor arc on C bounded by P0 and P1.267

3. Construct the unique arcs A0, A1 satisfying proper-268

ties 1, 2 of Definition 1.269

4. Generate a piecewise parametric biarc BA(s),270

where s ∈ [0, 1]. It follows that BA(s) = A0 when271

s ∈ [0, sJ], and BA(s) = A1 when s ∈ [sJ , 1],272

where sJ = ArcLength(A0)/(ArcLength(A0) +273

ArcLength(A1)).274

An example is shown in Figure 1, where we use the275

second order algorithm to generate the approximation276

interval. In this figure, the biarc is much more closer to277

the original curve C(t) compared to the approximation278

geometries of the first and the second order algorithms.279

It means that its approximation precision is higher than280

the first and the second order algorithms.281

The reasons why we choose biarc as our approxima-282

tion curve are as follows:283

1. The construction of the biarc is simple, and can be284

done in constant time.285

2. The interpolating biarc is G1 osculating with the286

original curve. The approximation order of biarc287

is 3 [21]. We therefore can obtain a good local ap-288

proximation of the corresponding curve segment.289

3. The point projection on biarc can be computed by290

simply projecting the test point onto the two circles291

which A0 and A1 are embed in, respectively.292

3. Point projection on the biarc and parameter in-293

version294

3.1. Point projection on the biarc295

As shown in Figure 4, the point projection on biarc296

BA(s) can be computed by simply projecting the test297

point onto the two circles which A0 and A1 are embed298

in, respectively.299

C

J

P0

P

P1

Figure 4: Point projection on the biarc.

There are four projective points on the two circles.300

For the projective points we obtained, we only choose301

one valid projective point by the following method:302

1. If there is only one projective point in the paramet-303

ric domain [0, 1], this point is chosen as the valid304

projective point.305

2. If there are more than one projective point in the306

parametric domain [0, 1], we choose the projective307

point, which is closest to the test point P, from the308

projective points in the parametric domain [0, 1] as309

the valid projective point.310

3. If there is no projective point in the parametric do-311

main [0, 1], we choose the projective point, whose312

parameter is closest to the boundary of the para-313

metric domain [0, 1], as the valid projective point.314

The parameter of the valid projective point is recorded315

in variable param biarc.316

3.2. Estimate the next projective point317

After we derived the projective parameter318

param biarc on the biarc, we refine ∆t with it.319

Recall that the curve segment BA(0) ∼ BA(1) on320

the biarc is corresponding with the curve segment321

C(t0) ∼ C(t0 + ∆t) on the original curve. So ∆t can322

be refined by ∆t = param biarc × ∆t (note that, for323

extreme high-order Bézier curves, this linear parameter324

interpolation may be unstable). Then the parameter of325

the next projective point is estimated by t0 = t0 + ∆t,326

which will be used for the next iteration.327

We apply the convergence criteria provided by Piegl

and Tiller [9], which are

|(ti+1 − t1)C′(ti)| ≤ ε1. (5)

|C(ti) − P| ≤ ε1. (6)

|C′(ti) · (C(ti) − P)|

|C′(ti)||C(ti) − P|
≤ ε2. (7)

5



Table 1: Convergence comparisons for Example 1.

P1 = (381, 252), t0 = 0.75

Step 1 2 3 4 5 6 CPU time (ms)

∆tNRA 2.01 × 10−02 −4.38 × 10−04 −2.81 × 10−07 0.00 t=0.769514 1.15 × 10−02

∆tFOA 3.24 × 10−02 −2.38 × 10−02 1.88 × 10−02 −1.43 × 10−02 1.13 × 10−02 −8.75 × 10−02 1.54 × 10−02

∆tS OA 2.07 × 10−02 −1.21 × 10−03 −4.13 × 10−06 0.00 t=0.769514 2.46 × 10−03

∆tNRIBA 1.95 × 10−02 3.02 × 10−06 0.00 t=0.769514 2.11 × 10−03

∆tFOIBA 1.97 × 10−02 −1.89 × 10−04 0.00 t=0.769514 2.21 × 10−03

∆tS OIBA 1.95 × 10−02 6.59 × 10−06 0.00 t=0.769514 2.96 × 10−03

P2 = (332, 200), t0 = 0.5

Step 1 2 3 4 5 6 CPU time (ms)

∆tNRA 1.53 × 10−01 −2.87 × 10−02 −2.29 × 10−03 −2.05 × 10−05 0.00 t=0.6223419 1.65 × 10−02

∆tFOA 8.53 × 10−02 2.86 × 10−02 6.88 × 10−03 1.29 × 10−03 2.25 × 10−04 3.86 × 10−05 3.46 × 10−02

∆tS OA 1.21 × 10−01 1.24 × 10−03 −3.76 × 10−06 0.00 t=0.6223419 2.98 × 10−03

∆tNRIBA 1.19 × 10−01 3.84 × 10−03 3.08 × 10−07 0.00 t=0.6223419 2.41 × 10−03

∆tFOIBA 1.27 × 10−01 −4.33 × 10−03 −4.81 × 10−06 0.00 t=0.6223419 2.89 × 10−03

∆tS OIBA 1.23 × 10−01 −2.02 × 10−04 0.00 t=0.6223419 2.96 × 10−03

ti is the parameter obtained at the ith iteration, and ε1, ε2328

are two zero tolerances of Euclidean distance and co-329

sine. The iteration is halted if any of the three conditions330

above is satisfied.331

4. Examples and comparisons332

We present five examples for point projection,333

and make comparisons with NRA (Newton-Raphson334

method [9]), FOA (first order algorithm [7, 8]),335

SOA (second order algorithm [4]), NRIBA (Newton-336

Raphson-integrated biarc algorithm: our algorithm337

whose ∆t is generated by Newton-Raphson algorithm338

[9] as introduced in subsection 2.1), FOIBA (first-order-339

integrated biarc algorithm: our algorithm whose ∆t is340

generated by first order algorithm [7, 8] as introduced in341

subsection 2.1), SOIBA (second-order-integrated biarc342

algorithm: our algorithm whose ∆t is generated by sec-343

ond order algorithm [4] as introduced in subsection 2.1).344

All the experiments are implemented with Intel Core i5345

CPU 3.0 GHz, 8G Memory. In all of our experiments346

ε1, ε2 are both the convergence tolerances introduced in347

subsection 3.2.348

There are three main criteria to evaluate point projec-349

tion iteration methods.350

1. Correctness. If the distance between the computed351

projective point and the exact closest point satisfies352

a given precision, it is treated as a correct solution.353

2. Speed of convergence. We measure the conver-354

gence speed by two kinds of experimental data: the355

number of iterations and the CPU time. We record356

the average and the worst numbers of iterations in357

each computation.358

3. Independence on the initial value. The initial value359

has a significant impact on the correctness of the360

Newton-like iteration algorithms. Although there361

were lots of methods finding initial value (as de-362

scribed in subsection 1.1), no method can claim363

that its initial value is good enough to make the it-364

eration always converge. So if the iteration method365

is less dependent on the initial value, the method366

will be more robust.367

In the following examples, all the initial values are368

set by hand (except Example 1 which uses the same369

initial value in [4] to compare with its second or-370

der algorithm) in order to test the performance of371

different iteration methods. In practice, we recom-372

mend to estimate the initial value with the method373

introduced in [15].374

Example 1. We first test Example 2 of [4] (see375

Figure 5), where two test points P1 = (381, 252) and376

P2 = (332, 200) are projected onto a cubic B-spline377

curve C(t) with initial parameter 0.75 and 0.5, respec-378

tively. In this example, we set ε1 = ε2 = 10−6, which is379

the same with [4].380

In Table 1, we compare the convergence of the six381

algorithms. If any method can converge within 10 iter-382

ations, we will provide the convergence parameter in383

this table. As shown in this table, our integrated al-384

gorithms (NRIBA, FOIBA and SOIBA) converge with385
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P2

C(t)

P1
Q2

Q1

Figure 5: Illustration of Example 1: Q1 and Q2 are the exact projective

points of P1 = (381, 252) and P2 = (332, 200). The control points and

knot vector of C(t) are {(100, 100), (140, 196), (200, 240), (260, 164),

(340, 164), (400, 240), (460, 196), (500, 100)} and (0, 0, 0, 0, 0.2, 0.4,

0.6, 0.8, 1, 1, 1, 1), respectively.

Table 2: Comparisons of the number of iterations for Example 1,

where P1 = (381, 252).

Methods Worst Best Average

NRA 12 3 7.92

FOA 68 48 55.08

SOA 8 4 5.69

NRIBA 6 2 3.98

FOIBA 6 3 4.55

SOIBA 5 2 3.84

less iterations than the corresponding single-point algo-386

rithms (NRA, FOA and SOA). The processing times of387

SOA, NRIBA, FOIBA and SOIBA are comparable, and388

are less than those of NRA and FOA.389

In Table 2, we compare the robustness of the six algo-390

rithms with respect to the choice of the initial parameter391

t0. We use P1 and C(t) in Example 1, and choose 101392

different t0 from 0, 0.01, 0.02, ..., 1. Table 2 shows the393

number of iterations to converge correctly for the six394

algorithms. As shown in this table, our integrated algo-395

rithms averagely converge with less iterations than the396

corresponding single-point algorithms.397

In Table 3, we compare the convergence of the six al-398

gorithms under different tolerances. As shown in this ta-399

ble, when we decrease the tolerance, the numbers of it-400

erations of FOA, SOA, FOIBA increase; however NRA,401

NRIBA and SOIBA remain. NRA performs better than402

FOA and SOA, because the initial value is not too far403

from the exact projective point. However, NRIBA con-404

verges much faster than NRA. FOIBA converges much405

faster than FOA. In the third tolerance case, the number406

of iteration of FOA jumped significantly from 66 to 91.407

Influenced by FOA, the number of iteration of FOIBA408

jumped from 5 to 18, which is still relatively acceptable.409

SOIBA converges faster than SOA, and the gap is get-410

Q

P

(a)

Q

P

(b)

Q
P

(c)

Figure 6: Illustration of Example 2. The yellow point is the

initial projection. The control points of the Bézier curve are

{(0, 0), (110, 1000), (90, 1000), (200, 0)}: (a) projection result Q of

NRA and its tangent; (b) projection result Q of SOA and its tangent;

(c) projection result Q of SOIBA.

ting larger as we decrease the tolerance.411

Example 2. We project point P = (381, 252) onto a412

cubic Bézier curve, and we set t0 = 0.53 (see Figure 6).413

In this example, we set ε1 = ε2 = 10−6. Table 4 shows414

the iteration steps of the six algorithms.415

NRA converges to the local projective point C(t =416

0.487) in 4 steps, which is not the global nearest pro-417

jective point (see Figure 6 (a)). However NRIBA con-418

verges to the correct global nearest projective point419

C(t = 0.916) in 5 steps. It means that our integrated420

algorithm is less independent on the initial value, and is421

more likely to converge to the global nearest projective422

point.423

FOA and FOIBA both converge to the correct pro-424

jective point C(t = 0.916) in 5 steps. As shown in425

Table 4, the first parametric increment of FOA is 2.49.426

This makes the parameter equal to 3.02 and run out of427

the parametric domain of the curve (0 ∼ 1), which is un-428

acceptable in practice. In our implementation, we patch429

FOA by drawing the parameter back to the nearest para-430

metric domain boundary 1, and the iteration continues.431

However, FOIBA always iterate within the parametric432

domain of the curve, and converges to the correct pro-433

jective point C(t = 0.916) in 5 steps. It means that, our434

integrated algorithm is more stable.435

SOA converges to the wrong projective point C(t =436

0.513) (neither the closest point nor the orthogonal pro-437

jective point) in 6 steps, which is still close to the initial438

value (see Figure 6 (b)). However SOIBA converges to439

the correct projective point C(t = 0.916) in 5 steps (see440

Figure 6 (c)). This is because (Q − C(t0)) is nearly par-441

allel with C′′(t0) in Equation (4), leading to ∆t ≈ 0, and442

the iteration can hardly move away from C(t0) for SOA443
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Table 3: Comparisons of number of iterations / CPU time (ms) under different tolerances for Example 1, where P1 = (381, 252), t0 = 0.75.

Tolerance (ε1 = ε2) 10−6 10−7 10−8 10−9 10−10

∆tNRA 5 / 1.15 × 10−02 5 / 1.17 × 10−02 5 / 1.11 × 10−02 5 / 1.21 × 10−02 5 / 1.22 × 10−02

∆tFOA 57 / 1.54 × 10−02 66 / 1.95 × 10−02 91 / 2.96 × 10−02 101 / 3.43 × 10−02 112 / 3.64 × 10−02

∆tS OA 5 / 2.46 × 10−03 5 / 2.97 × 10−03 11 / 6.48 × 10−03 11 / 6.51 × 10−03 11 / 6.50 × 10−03

∆tNRIBA 4 / 2.11 × 10−03 4 / 2.14 × 10−03 4 / 2.12 × 10−03 4 / 2.21 × 10−03 4 / 2.23 × 10−03

∆tFOIBA 4 / 2.21 × 10−03 5 / 2.35 × 10−03 18 / 1.50 × 10−02 18 / 1.51 × 10−02 18 / 1.50 × 10−02

∆tS OIBA 4 / 2.96 × 10−03 4 / 3.06 × 10−03 4 / 4.06 × 10−03 4 / 4.07 × 10−03 4 / 4.06 × 10−03

Table 4: Convergence comparisons for Example 2, where P = (381, 252).

Step 1 2 3 4 5 6 7

∆tNRA −4.32 × 10−02 3.98 × 10−04 −4.98 × 10−08 0.00 t=0.4872014

∆tFOA 2.49 −7.64 × 10−02 −7.05 × 10−03 −6.12 × 10−05 0.00 t=0.9164463

∆tS OA −3.18 × 10−02 1.30 × 10−02 1.36 × 10−03 4.71 × 10−05 −1.08 × 10−07 0.00 t=0.5126524

∆tNRIBA 8.78 × 10−02 2.14 × 10−01 8.44 × 10−02 −9.45 × 10−05 0.00 t=0.9164463

∆tFOIBA 3.11 × 10−01 7.53 × 10−02 8.64 × 10−04 −8.98 × 10−07 0.00 t=0.9164463

∆tS OIBA 1.16 × 10−01 1.85 × 10−01 8.64 × 10−02 −3.90 × 10−04 0.00 t=0.9164463

Figure 7: Illustration of Example 3: point projections on a smooth

curve.

(see the first steps of SOA in Table 4). This case al-444

ways occurs at the special point whose curvature is rel-445

atively much bigger than its neighboring region, leading446

to a very small osculating circle, the approximation re-447

gion of which is small. With the help of our local biarc448

approximation in SOIBA, the approximation region is449

enlarged, and the iteration can “jump” away from the450

special point (see the first two steps of SOIBA in Ta-451

ble 4), and converges to the correct projective point even452

with the “bad” initial value. In this example, all the453

single-point algorithms fail to some extent, while our454

integrated algorithms all converge to the correct projec-455

tive point.456

Example 3. We project 134 points on a spurious off-457

Table 5: Statistic data for Example 3.

Methods Correct Worst Average CPU time (ms)

solutions iterations iterations

NRA 118 35 4.38 1.47

FOA 91 179 18.10 2.27

SOA 131 7 4.25 1.29

NRIBA 131 11 4.03 0.44

FOIBA 127 37 5.27 1.38

SOIBA 134 5 3.23 0.37

set of a smooth curve onto the curve itself (see Figure 7),458

using the six algorithms, respectively. In this example,459

we set ε1 = ε2 = 10−10, and the average initial value er-460

ror is 2.27× 10−02. The statistic data of the projection is461

shown in Table 5. Note that the average iterations only462

record the correct projections, and the CPU time records463

all the projections (including both correct and incorrect464

projections).465

Experimental results show that, our SOIBA finds all466

correct solutions, while the successful ratio of SOA is467

97.8%, even if there is no special points mentioned in468

Example 2 (because all initial values are not too far469

from the exact projective points and there is no sharp470

features). The successful ratios of other algorithms are471

NRA: 88.1%, FOA: 67.9%, NRIBA: 97.8%, FOIBA:472

94.8%, respectively. The average number of iterations473
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Figure 8: Illustration of Example 4: point projections on a star with

sharp features.

Table 6: Statistic data for Example 4.

Methods Correct Worst Average CPU time (ms)

solutions iterations iterations

NRA 62 8 6.77 5.35

FOA 0 - - -

SOA 67 176 19.11 7.66

NRIBA 100 5 4.7 0.24

FOIBA 79 43 5.98 4.85

SOIBA 100 5 4.04 0.43

and the CPU time of our integrated algorithms are also474

less than the corresponding single-point algorithms.475

Example 4. We project 100 points on a bounding476

circle (loose bounding) onto a hexagonal star (designed477

by hand, not an exact hexagonal star), which has sharp478

features (corresponding to the special points mentioned479

in Example 2) on its six angles (see Figure 8), using480

the six algorithms, respectively. In this example, we set481

ε1 = ε2 = 10−10, and the average initial value error482

is 5.48 × 10−03. The statistic data of the projection is483

shown in Table 6. Note that the average iterations only484

record the correct projections, and the CPU time records485

all the projections (including both correct and incorrect486

projections).487

Experimental results show that, our SOIBA and488

NRIBA find all correct solutions, FOA fails in all pro-489

jection, while the successful ration of FOIBA is 79.0%.490

The successful ratios of other algorithms are NRA:491

62.0%, SOA: 67.0%, respectively. The average number492

of iterations and the CPU time of our integrated algo-493

rithms are also less than the corresponding single-point494

algorithms.495

Example 5. We project 266 points on the bounding496

Table 7: Statistic data for Example 5.

Methods Correct Worst Average CPU time (ms)

solutions iterations iterations

NRA 237 8 4.77 3.03

FOA 75 167 11.23 5.38

SOA 256 9 4.72 0.782

NRIBA 251 6 4.38 1.41

FOIBA 226 30 5.98 0.79

SOIBA 266 6 3.63 0.72

Figure 9: Illustration of Example 5: point projections on font charac-

ters.

box (loose bounding) of several characters (represented497

by B-spline curves) onto these characters (see Figure 9),498

using the six algorithms, respectively. In this example,499

we set ε1 = ε2 = 10−10, and the average initial value500

error is 7.01× 10−02. The statistic data of the projection501

is shown in Table 7. Note that the average iterations502

only record the correct projections, and the CPU time503

records all the projections (including both correct and504

incorrect projections).505

Experimental results show that, our SOIBA finds all506

correct solutions, while the successful ratio of SOA is507

96.2%, even if there are no special points mentioned508

in Example 2 (because all initial values are not too far509

from the exact projective points and there is no sharp510

features). The successful ratios of other algorithms are511

NRA: 89.1%, FOA: 28.2%, NRIBA: 94.7%, FOIBA:512

85.0%, respectively. The average number of iterations513

and the CPU time of our integrated algorithms are also514

less than the corresponding single-point algorithms.515

5. Conclusion516

We present a geometric iteration algorithm to com-517

pute the projection and inversion of a point onto pla-518
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nar parametric curves. Our algorithm uses biarcs to519

approximate the curve locally, and this local approxi-520

mation achieves both higher precision and larger fitting521

region as compared to the single-point approximation522

using tangents or osculating circles [7, 8, 4]. Given the523

same initial value, the next projective point estimated by524

our algorithm is remarkably closer to the exact projec-525

tive point than traditional geometric iteration algorithms526

based on single-point approximation. As a result, our527

algorithm converges faster and is less dependent on the528

initial value than them. Moreover, our algorithm pro-529

vides a framework that adapts to any single-point ap-530

proximation algorithm. The integration converges faster531

and is less dependent on the choice of the initial value532

compared to the integrated single-point algorithm alone.533

Our algorithm can be easily extended to point pro-534

jection and inversion on 3D parametric curves, by re-535

placing our 2D biarc interpolation method introduced536

in subsection 2.2 with a 3D biarc interpolation method537

[26]. In future work, the local segment approximation538

method will be extended to support point projection and539

inversion on parametric surfaces, where the biarc will540

be replaced by some special 3D surface patch (for ex-541

ample, the biarc approximation surface [27]).542
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[21] Z. Šı́r, R. Feichtinger, B. Jüttler, Approximating curves and611

their offsets using biarcs and pythagorean hodograph quintics,612

Computer-Aided Design 38 (6) (2006) 608–618.613

[22] J.-H. Yong, X. Chen, J.-C. Paul, An example on approximation614

by fat arcs and fat biarcs, Computer-Aided Design 38 (5) (2006)615

515–517.616

[23] J.-H. Yong, S.-M. Hu, J.-G. Sun, Bisection algorithms for617
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Figure 8: Illustration of Example 4: point projections on a star with

sharp features.

Table 6: Statistic data for Example 4.

Methods Correct Worst Average CPU time (ms)

solutions iterations iterations

NRA 62 8 6.77 5.35

FOA 0 - - -

SOA 67 176 19.11 7.66

NRIBA 100 5 4.7 0.24

FOIBA 79 43 5.98 4.85

SOIBA 100 5 4.04 0.43

and the CPU time of our integrated algorithms are also474

less than the corresponding single-point algorithms.475

Example 4. We project 100 points on a bounding476

circle (loose bounding) onto a hexagonal star (designed477

by hand, not an exact hexagonal star), which has sharp478

features (corresponding to the special points mentioned479

in Example 2) on its six angles (see Figure 8), using480

the six algorithms, respectively. In this example, we set481

ε1 = ε2 = 10−10, and the average initial value error482

is 5.48 × 10−03. The statistic data of the projection is483

shown in Table 6. Note that the average iterations only484

record the correct projections, and the CPU time records485

all the projections (including both correct and incorrect486

projections).487

Experimental results show that, our SOIBA and488

NRIBA find all correct solutions, FOA fails in all pro-489

jection, while the successful ration of FOIBA is 79.0%.490

The successful ratios of other algorithms are NRA:491

62.0%, SOA: 67.0%, respectively. The average number492

of iterations and the CPU time of our integrated algo-493

rithms are also less than the corresponding single-point494

algorithms.495

Example 5. We project 266 points on the bounding496

Table 7: Statistic data for Example 5.
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solutions iterations iterations
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FOA 75 167 11.23 5.38

SOA 256 9 4.72 0.782

NRIBA 251 6 4.38 1.41

FOIBA 226 30 5.98 0.79

SOIBA 266 6 3.63 0.72

Figure 9: Illustration of Example 5: point projections on font charac-

ters.

box (loose bounding) of several characters (represented497

by B-spline curves) onto these characters (see Figure 9),498

using the six algorithms, respectively. In this example,499

we set ε1 = ε2 = 10−10, and the average initial value500

error is 7.01× 10−02. The statistic data of the projection501

is shown in Table 7. Note that the average iterations502

only record the correct projections, and the CPU time503

records all the projections (including both correct and504

incorrect projections).505

Experimental results show that, our SOIBA finds all506

correct solutions, while the successful ratio of SOA is507

96.2%, even if there are no special points mentioned508

in Example 2 (because all initial values are not too far509

from the exact projective points and there is no sharp510

features). The successful ratios of other algorithms are511

NRA: 89.1%, FOA: 28.2%, NRIBA: 94.7%, FOIBA:512

85.0%, respectively. The average number of iterations513

and the CPU time of our integrated algorithms are also514

less than the corresponding single-point algorithms.515
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We present a geometric iteration algorithm to com-517

pute the projection and inversion of a point onto pla-518
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nar parametric curves. Our algorithm uses biarcs to519

approximate the curve locally, and this local approxi-520

mation achieves both higher precision and larger fitting521

region as compared to the single-point approximation522

using tangents or osculating circles [7, 8, 4]. Given the523

same initial value, the next projective point estimated by524

our algorithm is remarkably closer to the exact projec-525

tive point than traditional geometric iteration algorithms526

based on single-point approximation. As a result, our527

algorithm converges faster and is less dependent on the528

initial value than them. Moreover, our algorithm pro-529

vides a framework that adapts to any single-point ap-530

proximation algorithm. The integration converges faster531

and is less dependent on the choice of the initial value532

compared to the integrated single-point algorithm alone.533

Our algorithm can be easily extended to point pro-534

jection and inversion on 3D parametric curves, by re-535

placing our 2D biarc interpolation method introduced536

in subsection 2.2 with a 3D biarc interpolation method537

[26]. In future work, the local segment approximation538

method will be extended to support point projection and539

inversion on parametric surfaces, where the biarc will540

be replaced by some special 3D surface patch (for ex-541
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