N

N

Projecting points onto planar parametric curves by local
biarc approximation
Hai-Chuan Song, Xin Xu, Kan-Le Shi, Jun-Hai Yong

» To cite this version:

Hai-Chuan Song, Xin Xu, Kan-Le Shi, Jun-Hai Yong. Projecting points onto planar parametric curves
by local biarc approximation. Computers and Graphics, 2014. hal-00920672

HAL Id: hal-00920672
https://inria.hal.science/hal-00920672
Submitted on 19 Dec 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-00920672
https://hal.archives-ouvertes.fr

Projecting points onto planar parametric curves by local biarc approximation

Hai-Chuan Song®?®4, Xin Xu®>4, Kan-Le Shi***¢, Jun-Hai Yong®“¢

“School of Software, Tsinghua University, Beijing 100084, P. R. China
bDepartment of Computer Science and Technology, Tsinghua University, Beijing 100084, P. R. China
¢Key Laboratory for Information System Security, Ministry of Education of China, Beijing 100084, P. R. China
dTsinghua National Laboratory for Information Science and Technology, Beijing 100084, P. R. China
¢INRIA, France

Abstract

This paper proposes a geometric iteration algorithm for computing point projection and inversion on planar paramet-
ric curves based on local biarc approximation. The iteration begins with initial estimation of the projection of the
prescribed test point. For each iteration, we construct a biarc that locally approximates a segment on the original
curve starting from the current projective point. Then we compute the projective point for the next iteration, as well as
the parameter corresponding to it, by projecting the test point onto this biarc. The iterative process terminates when
the projective point satisfies the required precision. Examples demonstrate that our algorithm converges faster and is
less dependent on the choice of the initial value compared to the traditional geometric iteration algorithms based on

single-point approximation.

Keywords: point project, parametric curves, biarc interpolation, local approximation

1 1. Introduction

2 Projection of a test point on a curve or surface aims
s to find the closest point, as well as the corresponding
4+ parameter, on the curve or surface. Specially, when the
s test point lies on the curve or surface, the problem of
¢ point projection becomes the problem of point inver-
7 sion. This operation has been extensively used in ge-
s ometric processing algorithms such as surface intersec-
o tion [1], interactive object selection and shape registra-
w tion [2, 3, 4]. Moreover, it is a fundamental compo-
1 nent of the algorithms of curve and surface projection
12 as well [5, 6]. In this paper, we address the problem of
13 point projection and point inversion on planar paramet-
14 ric curves. We provide a geometric iteration algorithm,
15 which approximates a segment on the original curve by
16 a biarc. Compared with traditional single-point approx-
17 imation algorithms [7, 8, 4], our algorithm converges
1s faster and is less dependent on the choice of the initial
19 value.

20 1.1. Related work

21 The problem of point projection and inversion can
22 be translated to solving the minimum distance equation
2 (Q—P)xn = 0, where P is the prescribed test point, Q is
24 the point closest to P on the original curve or surface and

25 1 1s the normal vector of the original curve or surface at
25 Q. In most of the early work, Newton-Raphson method,
27 which involves the first and second order derivatives,
2s was used to solve this minimum distance equation and
20 get the projective point [1, 8]. Piegl and Tiller [9] gave a
a0 detailed description on this method for point projection
a1 and inversion.

22 In order to achieve a good initial value, which is im-
s portant for Newton-Raphson method to converge reli-
as ably, subdivision methods were introduced [10, 11, 12,
s 13, 14, 15, 16]. The key point of this kind of algorithms
s 18 to eliminate the curve segments or the surface patches
a7 which do not contain the nearest points. Ma and He-
ss witt [12] divided the NURBS surface into several Bézier
a0 patches and checked the relationship between the test
40 point and the control point nets of these Bézier patches.
+1 However their elimination criterion may fail in some
42 cases [17]. Johnson and Cohen utilized the tangent cone
a3 to search for the portions of the surface contain the pro-
s jective points [13]. A more practical exclusion criterion
45 based on Voronoi cell test was proposed in [16]. Chen
ss et al. [15] improved their method using the clipping
47 circle/sphere. By replacing the clipping circle/sphere
ss with axis-aligned lines/planes, Oh et al. [14] reduced
40 the computing time of [15]. Based on [14], they pre-
so sented an algorithm for projecting continuously moving

Tangent

Os
Os

()

Circle®

(b)

Figure 1: A comparison of the approximation precision of the first order algorithm [7, 8], the second order algorithm [4] and our algorithm: P is
the test point, the black curve is the original curve, Qy is the initial point, orange point Qg, yellow point Qs, blue point Q> and red point Q4 are
projective points obtained by Newton-Raphson method [9], the first order algorithm [7, 8], the second order algorithm [4] and our algorithm after
the first iteration, respectively. Q3 is the exact closest point. (a) the whole view of the projection; (b) the zoom view of (a).

st query points onto planar spiral curves [18]. Seong et al.
s2 [19] dealt with this problem in another way. By elevat-
s ing the dimension of the problem, they transformed the
s« point projection onto planar parametric curve into the
ss intersection of an implicit surface and a straight line.

ss Besides algebraic methods (Newton-Raphson
s7 method), geometric methods were also proposed,
ss which only involve the geometric information that is
se common to all possible parameterizations. Hoschek
e and Lasser [7], Hartmann [8] introduced the first
¢t order geometric iteration method. Hu and Wallner [4]
e proposed a second order geometric iteration method,
s in which they generated an osculating circle (a circle
e possessing the same curvature with the original curve
es at the osculating point) and projected the test point on
e it instead of the original curve or surface. Liu et al.
7 [20] improved their method by replacing the circle of
es normal curvature with a second order osculating torus
e patch to the surface.

70 Note that the algebraic method and geometric meth-
71 0ods generally converge (if can converge) to the local
72 minimum projective point nearest to the initial value
73 [13]. All the subdivision methods we introduced above
7 [10, 11, 12, 13, 14, 15, 16] can generate the initial value
75 near to the global minimum projective point. Therefore,
76 generally, a complete point projection include two parts:
77 1. An algorithm to generate initial values; 2. An itera-
78 tion algorithm to compute the precise projective point.
7o In this paper, we mainly focus on the iteration algorithm
g in the second part. It means that we assume the initial

s1 value has been provided by some kind of initial value
s2 generating algorithm.

83 1.2. Our contributions

s« The main idea of geometric methods is to locally ap-
ss proximate the original curve by a special curve (first or-
ss der algorithm uses tangent line, and second order algo-
e7 rithm uses osculating circle). The next projective point
ss 1S estimated by projecting the test point onto the ap-
eo proximation curve instead of the original curve. It is
o0 shown in the evolution of the geometric methods that
o1 higher approximation precision generally means higher
s convergence speed and better stability. However, during
s each iteration step, the traditional geometric algorithms
o approximate the original curve only with curve deriva-
ss tives computed at a single point. So the approximation
s region is limited around this point, the approximation
o7 precision will reduce when moving away from this point
s on the original curve.

s In order to improve the convergence speed and sta-
100 bility of the point projection and inversion, we provide
101 @ geometric iteration algorithm based on local biarc ap-
102 proximation. Our method approximates the correspond-
103 ing segment on the original curve by a biarc rather than
104 only one point during each iteration. Our local biarc ap-
105 proximation has larger approximation region and higher
106 approximation precision compared to traditional single-
107 point approximation. According to the experimental re-
108 sults in Section 4, our algorithm converges faster and is
109 more robust than the traditional geometric algorithms.

2

2.50E-01

5

& 2.00E-01 7,
R
S 150E-01 Dy
2 . ’

T 100E-01 LA

E P d 4

X . 27

S 500E-02 S

o - -

2 - ="

T 0.00E+00 - et

0.25 0.28 0.31 0.34 0.37 0.4 0.43 0.46 0.48 0.51
Parameter order

== o Tangent e = =Circle = pBiarc

Figure 2: Approximation deviation comparison in Figure 1. Abscissa
is the parameter of the moving point on the original curve. Ordinate
is the distance from the moving point to approximation curve.

1o A brief comparison of the traditional geometric algo-
11 rithms and our algorithm is shown in Figure 1. In this
12 figure, the violet test point P = (0.5,0.5) is projected
13 onto the black planar Bézier curve, the control points
14 of which are {(-1,0),(-0.5,1),(0,0),(0.5,-1),(1,0)}.
11s The parameter of the initial point Qy is 0.25. The orange
116 point Qg, yellow point Qs, blue point @, and red point
17 Q4 are projective points obtained by Newton-Raphson
1s method [9], the first order algorithm [7, 8], the sec-
119 ond order algorithm [4] and our algorithm after the first
120 Step iteration, respectively. Q3 is the exact closest point,
121 whose parameter is 0.51. The yellow line is the tangent
122 line at Qy and is used to approximate the original curve
123 and estimate the next projective point in the first order
124 algorithm [7, 8]. The blue dashed curve is the osculat-
125 ing circle at Qp and is used to approximate the original
126 curve and estimate the next projective point in the sec-
12z ond order algorithm [4]. The red curve from Qg to Q>
128 1S the biarc used to approximate the curve segment from
129 Qp to Q> on the original curve in our algorithm. Q; is
130 the middle point of the biarc. Figure 2 compares the
131 distances from the moving point on the original curve
122 (from Qp to Q3) to the three types of approximation
133 curves: tangent, osculating circle, biarc. When moving
1.« away from Qy, the approximation precisions of tangent
135 and osculating circle drop significantly, while that of
136 biarc seldom changes. This means compared to tangent
17 and osculating circle, our biarc has a higher approxi-
138 mation precision and a larger approximation region. So
139 the next projective point Q4 is much closer to the exact
140 projective point than other single-point methods.

121 The contributions of this paper are as follows:

12 1. We propose a point projection and inversion al-
143 gorithm by local biarc approximation, which has
144 a higher approximation precision and a larger ap-

145 proximation region compared to traditional single-
146 point approximation algorithms.

17 2. We present a framework that adapts to any single-
148 point approximation algorithm. If a single-point
149 algorithm is integrated in our framework, the con-
150 vergence speed and independence of the initial
151 value of this single-point algorithm will be im-
152 proved.

153 1.3. Outline of our algorithm

14« Given a test point P, a planar parametric curve C(¢)
15 and the parameter value # of the roughly estimated pro-
156 jective point Qy, as illustrated in Figure 1, we need to
157 compute the parameter of the exact projective point.
158 Our algorithm framework can be described in summary
159 as follows:

w0 1. According to the initial projection parameter t,

161 compute the interval width Az using any step length
162 strategy (we can use constant parameter increment,
163 Newton-Raphson method [9], first order algorithm
164 [7, 8], or second order algorithm [4]).

s 2. Compute the tangent vectors C’(fy) and C’(fy + At),
166 respectively. Interpolate the boundary conditions
167 C(ty), C’'(tp) and C(ty + Ar), C’'(ty + At) with a biarc
168 BA(s) (the red curve in Figure 1), which is used to
169 approximate the curve segment from C(#y) to C(#p+
170 At) on the original curve C(¥).

171 3. Project the test point P onto the biarc BA(s) and
172 compute a new estimated parameter of the projec-
173 tive point (Qs in Figure 1) on the original curve
174 C().

izs 4. Use the new parameter as the initial value 7y and
176 repeat steps 1-3 until the corresponding projective
177 point satisfies the precision requirement.

17s The rest paper is organized as follows. Section 2
179 presents the method for local curve approximation by
180 biarc interpolation. In Section 3, the methods of point
181 projection onto the biarc and parameter inversion to the
12 original curve are described. The experimental results
1e3 including the evaluation of performance data are given
184 in Section 4. Finally, Section 5 concludes the paper.

1s 2. Local biarc approximation of a curve segment

186 We approximate a curve segment on the original
17 curve C(7) by a biarc according to the initial projection
188 parameter fy, which consists of the following steps:

1o 1. Compute the interval width Ar.
190 2. Compute the interpolation boundary conditions
191 C(tg), C’'(tg) and C(tg + A1), C'(tg + Ap).

3

12 3. Interpolate the boundary conditions with a biarc.
113 We present the three steps in details in the following
194 subsections, respectively.

15 2.1. Compute the interval width

e The interval width At determines which curve seg-
17 ment on C(7) is to be approximated. We select any step

18 length strategy from following ones:

1. User-defined constant parametric increment, and

At = const_t. (1)
2. Newton-Raphson method [9], and
_ C'(ty) - (C(t) = P) @
C"(to) - (C(to) = P) + |C’ (1o)I?
3. First order algorithm [7, 8], and
C’'(tp) - (O — C(1
Af = (1) - (O (0))’ 3)
C' (1) - C' (o)
199 where Q is the projective point of P on the tangent
200 line at C(ty).
4. Second order algorithm [4], and
— C(tg)) X C" (1
pr = (@2 C0) X C") @
KIIC” (o)l
201 where Q is the projective point of P on the osculat-
202 ing circle at C(ty), « is the curvature of C(z), and

203 we have « = (C" (1) x C" (10))/IIC" (t0)II-

20« Note that, except Strategy 1, all the other strategies
20s based on single-point approximation can be used to
200 cOMpute point projection and inversion independently.
207 Our algorithm therefore provides a framework that
208 adapts to any single-point approximation algorithm (use
200 it to compute Ar). Moreover, according to our exper-
210 iments, the integration converges faster and is less de-
211 pendent on the choice of the initial value compared to
212 the integrated original single-point algorithm alone.

213 According to our experience, considering the conver-
214 gence speed and the stability, priority of the four strate-
215 gies is 4 > 2 > 3 > 1, where ‘>’ means better (con-
216 verge faster and less independent on the initial value)
217 than. After we derive At, the interval is determined by
218 [fo, to + At].

Figure 3: A biarc (red) and the joint circle (black) [21].

219 2.2. Approximate the curve segment by biarc

220 In this part, we approximate the corresponding curve
221 segment C(ty) ~ C(tp + Ar) on the original curve by a
222 biarc interpolation on the G' boundary data C(ty), C’(to)
223 and C(ty + Ar), C'(ty + At), where C’(¢) is the first order
224 derivative of C(¢). Before that, we review the problem of
25 biarc interpolation of G' boundary data. The definition
226 Of biarc interpolation given in [21] is as follows:

227 Definition 1. The two circular arcs Ay, A; are said to
2 form a biarc interpolating given oriented G' data, rep-
220 resented by end points Py, P; and unit tangent vectors
20 Uy, U (see Figure 3) if and only if the two circular arcs
21 share one common end point J called joint and satisfy
232 the following properties:

2s 1. The arc Ag has the end points Py and J, and Uj is

234 tangent to Ao with orientation corresponding to a
235 parametrization of Ay from Py to J.

26 2. The arc A; has the end points J and P; and U is
237 tangent to A; with orientation corresponding to a
238 parametrization of A; from J to P;.

29 3. The two arcs have a common unit tangent vector at
240 J, with orientation corresponding to a parametriza-
241 tion of Ay from Py to J and of A from J to P;.

22 The biarc interpolation plays an important part in tool
243 path generation in CNC (Computerized Numerical Con-
244 trol) [22, 23], and approximation of curves [23] and dis-
2ss crete data [24]. Constrained interpolation with biarc is
246 also widely studied [21, 25].

27 The locus of all possible joint J is a circle (C in Fig-
228 Ure 3) passing through Py and P; [21]. Various biarc
249 interpolation schemes are distinguished by the choice
20 of the joint J. Among the most important ones are
251 the “equal chord” biarc and the “parallel tangent” biarc.
252 The former one is constructed so that the two segments

4

23 PoJ and JP; have equal arc lengths on C, while the lat-
254 ter one ensures that the tangent at point J is parallel
255 to segment PoPy. In this paper we choose the “equal
256 chord” biarc as the interpolation tools, owning to its
257 simplicity in implementation and better approximation
258 precision according to our experiments.

25 Given boundary data Py = C(ty), Dy = C’(tp) and
20 Py = C(ty + At), Dy = C'(ty + Ar), we generate the biarc
261 BA(s) in following steps:

22 1. Find the center of the joint circle C, by intersecting
263 the bisectors of PyP; and of (Py + Up)(P; + Uy),

264 where Uy and U, are the unit vectors of Dy and Dy,
265 respectively.

266 2. Find J by intersecting the bisector of the PyP; and
267 the minor arc on C bounded by Py and P;.

28 3. Construct the unique arcs Ao, A satisfying proper-
269 ties 1, 2 of Definition 1.

20 4. Generate a piecewise parametric biarc BA(s),

271 where s € [0, 1]. It follows that BA(s) = Ap when
272 s € [0,sy], and BA(s) = A; when s € [sy,1],
273 where s; = ArcLength(Ag)/(ArcLength(Ay) +
274 ArcLength(Ay)).

275 An example is shown in Figure 1, where we use the
276 second order algorithm to generate the approximation
277 interval. In this figure, the biarc is much more closer to
278 the original curve C(f) compared to the approximation
279 geometries of the first and the second order algorithms.
2s0 [t means that its approximation precision is higher than
281 the first and the second order algorithms.

222 The reasons why we choose biarc as our approxima-
283 tion curve are as follows:

28« 1. The construction of the biarc is simple, and can be

285 done in constant time.

2 2. The interpolating biarc is G' osculating with the
287 original curve. The approximation order of biarc
288 is 3 [21]. We therefore can obtain a good local ap-
289 proximation of the corresponding curve segment.
20 3. The point projection on biarc can be computed by
291 simply projecting the test point onto the two circles
202 which Ag and A; are embed in, respectively.

203 3. Point projection on the biarc and parameter in-
204 version

205 3.1. Point projection on the biarc

206 As shown in Figure 4, the point projection on biarc
207 BA(s) can be computed by simply projecting the test
206 point onto the two circles which A and A; are embed
299 1n, respectively.

Figure 4: Point projection on the biarc.

ao There are four projective points on the two circles.
a0 For the projective points we obtained, we only choose
a0z one valid projective point by the following method:

as 1. If there is only one projective point in the paramet-

304 ric domain [0, 1], this point is chosen as the valid
a0 projective point.

as 2. If there are more than one projective point in the
307 parametric domain [0, 1], we choose the projective
308 point, which is closest to the test point P, from the
309 projective points in the parametric domain [0, 1] as
310 the valid projective point.

ain 3. If there is no projective point in the parametric do-
312 main [0, 1], we choose the projective point, whose
313 parameter is closest to the boundary of the para-
314 metric domain [0, 1], as the valid projective point.

ais The parameter of the valid projective point is recorded
a1s in variable param_biarc.

a7 3.2. Estimate the next projective point
s After we derived the projective parameter
sts param_biarc on the biarc, we refine Ar with it.
a0 Recall that the curve segment BA(O) ~ BA(l) on
a2 the biarc is corresponding with the curve segment
a2 C(tg) ~ C(to + At) on the original curve. So Ar can
a3 be refined by At = param_biarc X At (note that, for
a4 extreme high-order Bézier curves, this linear parameter
a5 interpolation may be unstable). Then the parameter of
a2s the next projective point is estimated by 7y = o + At,
a7 which will be used for the next iteration.

We apply the convergence criteria provided by Piegl

and Tiller [9], which are

|(tir1 = 1)C' (@) < &1 &)
IC(t:) — Pl < &1. (6)

|C’(ti) . (C([,) _ P)|
IC"()IIC(5) — P <&. e

Table 1: Convergence comparisons for Example 1.

Py =(381,252), 19 = 0.75

Step 1 2 3 4 5 6 CPU time (ms)
Atyga 201 x 10702 —438x107%* —2.81x 1077 0.00 t=0.769514 1.15 x 10702
Atpoa 324x 1072 -238x 107 188x 107 -143x107% 1.13x107%2 -8.75x 1072 1.54 x 1072
Atsoa 2.07x 1072 —121x1073 —4.13x107% 0.00 t=0.769514 2.46 x 10793
Atngipa 1.95x 1072 3.02x107% 0.00 1=0.769514 2.11x 107
Atrorga 197 x 1072 —1.89 x 1074 0.00 t=0.769514 221 %1079
Atsorpa 1.95x 1079 6.59 x 10796 0.00 t=0.769514 2.96 x 10793
P> =(332,200), tp = 0.5
Step 1 2 3 4 5 6 CPU time (ms)
Atyga 1.53x 10700 —287x 1072 -229x 107 -2.05x107% 0.00 t=0.6223419 1.65 x 10702
Atpoa 853x107%2 286x 1072 688x107% 129%x107% 225x10°™ 386x10°% 3.46 x 1079
Atson 121 %1079 124%x10°9 -376x107% 0.00 t=0.6223419 2.98 x 1079
Atygipa - 1.19x 10700 384% 107 3.08 x 10777 0.00 1=0.6223419 241x 1070
Atporga 1.27x 1070 —433%x 107 —4.81x107% 0.00 t=0.6223419 2.89 x 10793
Atsorpa 123%x 10700 —2.02x 10°™ 0.00 t=0.6223419 2.96 x 1079
azs 1; 1S the parameter obtained at the ith iteration, and &1, &, 356 number of iterations and the CPU time. We record
a0 are two zero tolerances of Euclidean distance and co- ssz the average and the worst numbers of iterations in
a0 sine. The iteration is halted if any of the three conditions s each computation.
sa1 above 1s satisfied. a9 3. Independence on the initial value. The initial value
360 has a significant impact on the correctness of the
s 4. Examples and comparisons 361 Newton-like iteration algo'rlthr.ns'.' Although there
362 were lots of methods finding initial value (as de-
333 We present five examples for point projection’ 363 scribed in subsection 11), no method can claim
a4 and make comparis()ns with NRA (Newton_Raphson 364 that its initial value is gOOd enough to make the it-
ws method [9]), FOA (first order algorithm [7, 8]), s eration always converge. So if the iteration method
ass SOA (second order algorithm [4]), NRIBA (Newton- 3t is less dependent on the initial value, the method
s> Raphson-integrated biarc algorithm: our algorithm s will be more robust.
s whose Ar is generated by Newton-Raphson algorithm ses In the following examples, all the initial values are
s30 [9] as introduced in subsection 2.1), FOIBA (first-order- ses set by hand (except Example 1 which uses the same
a0 integrated biarc algorithm: our algorithm whose Az is s initial value in [4] to compare with its second or-
s+ generated by first order algorithm [7, 8] as introduced in &7 der algorithm) in order to test the performance of
a2 subsection 2.1), SOIBA (second-order-integrated biarc 7 different iteration methods. In practice, we recom-
as algorithm: our algorithm whose At is generated by sec- 73 mend to estimate the initial value with the method
aa ond order algorithm [4] as introduced in subsection 2.1). a7 introduced in [15].

as All the experiments are implemented with Intel Core 15
aus CPU 3.0 GHz, 8G Memory. In all of our experiments
a7 €1, & are both the convergence tolerances introduced in
as subsection 3.2.

aus There are three main criteria to evaluate point projec-
as0 tion iteration methods.

st 1. Correctness. If the distance between the computed
as projective point and the exact closest point satisfies
353 a given precision, it is treated as a correct solution.
se 2. Speed of convergence. We measure the conver-
ass gence speed by two kinds of experimental data: the

s Example 1. We first test Example 2 of [4] (see
are Figure 5), where two test points P; = (381,252) and
a7 P, = (332,200) are projected onto a cubic B-spline
azs curve C(f) with initial parameter 0.75 and 0.5, respec-
a7e tively. In this example, we set &) = &, = 107°, which is
a0 the same with [4].

st In Table 1, we compare the convergence of the six
as2 algorithms. If any method can converge within 10 iter-
ass ations, we will provide the convergence parameter in
ass this table. As shown in this table, our integrated al-
ass gorithms (NRIBA, FOIBA and SOIBA) converge with

6

Figure 5: Illustration of Example 1: Q1 and Q» are the exact projective
points of P; = (381,252) and P> = (332,200). The control points and
knot vector of C(r) are {(100, 100), (140, 196), (200, 240), (260, 164),
(340, 164), (400, 240), (460, 196), (500, 100)} and (0, 0, 0, 0, 0.2, 0.4,
0.6,0.8, 1, 1, 1, 1), respectively.

Table 2: Comparisons of the number of iterations for Example 1,
where P = (381,252).

Methods ~ Worst Best Average
NRA 12 3 7.92
FOA 68 48 55.08
SOA 8 4 5.69

NRIBA 6 2 3.98
FOIBA 6 3 4.55
SOIBA 5 2 3.84

ass less iterations than the corresponding single-point algo-
ae7 rithms (NRA, FOA and SOA). The processing times of
ass SOA, NRIBA, FOIBA and SOIBA are comparable, and
ase are less than those of NRA and FOA.

s InTable 2, we compare the robustness of the six algo-
ao1 rithms with respect to the choice of the initial parameter
a2 1p. We use Py and C(¢) in Example 1, and choose 101
a3 different ¢y from 0,0.01,0.02, ..., 1. Table 2 shows the
s« number of iterations to converge correctly for the six
ass algorithms. As shown in this table, our integrated algo-
ass rithms averagely converge with less iterations than the
a7 corresponding single-point algorithms.

as In Table 3, we compare the convergence of the six al-
ase gorithms under different tolerances. As shown in this ta-
400 ble, when we decrease the tolerance, the numbers of it-
401 erations of FOA, SOA, FOIBA increase; however NRA,
sz NRIBA and SOIBA remain. NRA performs better than
403 FOA and SOA, because the initial value is not too far
s04 from the exact projective point. However, NRIBA con-
a0s verges much faster than NRA. FOIBA converges much
06 faster than FOA. In the third tolerance case, the number
s07 of iteration of FOA jumped significantly from 66 to 91.
ws Influenced by FOA, the number of iteration of FOIBA
a0 jumped from 5 to 18, which is still relatively acceptable.
410 SOIBA converges faster than SOA, and the gap is get-

~e

() (®) (©

Figure 6: Illustration of Example 2. The yellow point is the
initial projection. The control points of the Bézier curve are
{(0,0), (110, 1000), (90, 1000), (200,0)}: (a) projection result Q of
NRA and its tangent; (b) projection result Q of SOA and its tangent;
(c) projection result Q of SOIBA.

a1 ting larger as we decrease the tolerance.

sz Example 2. We project point P = (381,252) onto a
a13 cubic Bézier curve, and we set fy = 0.53 (see Figure 6).
a1 In this example, we set €] = & = 107°. Table 4 shows
a1s the iteration steps of the six algorithms.

s NRA converges to the local projective point C(r =
417 0.487) in 4 steps, which is not the global nearest pro-
a1s jective point (see Figure 6 (a)). However NRIBA con-
a9 verges to the correct global nearest projective point
w20 C(t = 0.916) in 5 steps. It means that our integrated
421 algorithm is less independent on the initial value, and is
422 more likely to converge to the global nearest projective
423 point.

«2s FOA and FOIBA both converge to the correct pro-
s2s jective point C(+ = 0.916) in 5 steps. As shown in
426 Table 4, the first parametric increment of FOA is 2.49.
427 This makes the parameter equal to 3.02 and run out of
428 the parametric domain of the curve (0 ~ 1), which is un-
s29 acceptable in practice. In our implementation, we patch
130 FOA by drawing the parameter back to the nearest para-
431 metric domain boundary 1, and the iteration continues.
12 However, FOIBA always iterate within the parametric
sss domain of the curve, and converges to the correct pro-
s jective point C(f = 0.916) in 5 steps. It means that, our
w5 integrated algorithm is more stable.

ws SOA converges to the wrong projective point C(t =
a7 0.513) (neither the closest point nor the orthogonal pro-
438 jective point) in 6 steps, which is still close to the initial
a30 value (see Figure 6 (b)). However SOIBA converges to
a0 the correct projective point C(# = 0.916) in 5 steps (see
a1 Figure 6 (c)). This is because (Q — C(#)) is nearly par-
a2 allel with C” (%) in Equation (4), leading to Az ~ 0, and
a3 the iteration can hardly move away from C(zy) for SOA

7

Table 3: Comparisons of number of iterations / CPU time (ms) under different tolerances for Example 1, where P; = (381,252), 1o = 0.75.

Tolerance (&1 = &)

10°6

1077

1078

107

10710

AfNra 5/1.15%x 10792 5/1.17 x 10792 5/1.11 x 10792 5/1.21 %1072 5/1.22x 10792
Atposa 57/1.54%10792 66/1.95x 10792 91/296x 10792 101/3.43x 10792 112/3.64 x 10792
Atsoa 5/2.46%x 1079 5/297x1073 11/6.48x107% 11/6.51x 1079 11/6.50 x 10793
AtNgIBA 4/211x107% 472141079 4/2.12x% 1079 4/221 %1079 4/223 %1079
Atrorsa 4/221%x 1079 5/235%x 107 18/1.50 x 10702 18/1.51 x 10792 18/1.50 x 10792
Atsorpa 4/2.96x 1079 4/3.06x 1079 4/4.06x 10793 4/4.07x 10793 4/4.06x 10793
Table 4: Convergence comparisons for Example 2, where P = (381, 252).
Step 1 2 3 4 5 6 7
Atyra —432x 10792 3.98x 1079 —4.98x 10708 0.00 t=0.4872014
Atroa 249 —764%x10792 —705x10 -6.12x107% 0.00 t=0.9164463
Atspoa —3.18 x 10702 1.30 x 10792 1.36 x 10793 471%107% -1.08 x 1077 0.00 t=0.5126524
AINRIBA 8.78 x 10792 2.14 x 10791 844 %1072 —945x10™% 0.00 t=0.9164463
Atroisa 3.11 x 1079 7.53 x 10792 8.64x107% -8.98x 1077 0.00 t=0.9164463
Atsorsa 1.16 x 10701 1.85x 10701 8.64x 10792 —3.90x 10~ 0.00 t=0.9164463
Table 5: Statistic data for Example 3.
Methods Correct ‘Worst Average CPU time (ms)
solutions iterations iterations
NRA 118 35 438 1.47
FOA 91 179 18.10 2.27
SOA 131 7 425 1.29
NRIBA 131 11 4.03 0.44
FOIBA 127 37 5.27 1.38
SOIBA 134 5 3.23 0.37

Figure 7: Ilustration of Example 3: point projections on a smooth
curve.

aaa (see the first steps of SOA in Table 4). This case al-
ws ways occurs at the special point whose curvature is rel-
s atively much bigger than its neighboring region, leading
w7 to a very small osculating circle, the approximation re-
s gion of which is small. With the help of our local biarc
we approximation in SOIBA, the approximation region is
ss0 enlarged, and the iteration can “jump” away from the
451 special point (see the first two steps of SOIBA in Ta-
ss2 ble 4), and converges to the correct projective point even
ass with the “bad” initial value. In this example, all the
ss4 single-point algorithms fail to some extent, while our
sss integrated algorithms all converge to the correct projec-
456 tive point.

7 Example 3. We project 134 points on a spurious off-

sss set of a smooth curve onto the curve itself (see Figure 7),
ss0 using the six algorithms, respectively. In this example,
w0 We set £, = &, = 10719, and the average initial value er-
w1 1ot is 2.27 x 10792, The statistic data of the projection is
ss2 shown in Table 5. Note that the average iterations only
ss3 record the correct projections, and the CPU time records
ss+ all the projections (including both correct and incorrect
465 projections).

ss Experimental results show that, our SOIBA finds all
467 correct solutions, while the successful ratio of SOA is
a8 97.8%, even if there is no special points mentioned in
a0 Example 2 (because all initial values are not too far
a0 from the exact projective points and there is no sharp
a1 features). The successful ratios of other algorithms are
a2 NRA: 88.1%, FOA: 67.9%, NRIBA: 97.8%, FOIBA:
473 94.8%, respectively. The average number of iterations

8

Figure 8: Illustration of Example 4: point projections on a star with
sharp features.

Table 6: Statistic data for Example 4.

Methods Correct Worst Average CPU time (ms)
solutions iterations iterations

NRA 62 8 6.77 5.35
FOA 0 - - -
SOA 67 176 19.11 7.66
NRIBA 100 5 4.7 0.24
FOIBA 79 43 5.98 4.85
SOIBA 100 5 4.04 0.43

a7+ and the CPU time of our integrated algorithms are also
475 less than the corresponding single-point algorithms.

6 Example 4. We project 100 points on a bounding
477 circle (loose bounding) onto a hexagonal star (designed
478 by hand, not an exact hexagonal star), which has sharp
479 features (corresponding to the special points mentioned
a0 in Example 2) on its six angles (see Figure 8), using
se1 the six algorithms, respectively. In this example, we set
we, = & = 10719 and the average initial value error
ws is 5.48 x 10793, The statistic data of the projection is
s« shown in Table 6. Note that the average iterations only
sss record the correct projections, and the CPU time records
ass all the projections (including both correct and incorrect
487 projections).

ss Experimental results show that, our SOIBA and
ses NRIBA find all correct solutions, FOA fails in all pro-
a0 jection, while the successful ration of FOIBA is 79.0%.
a0t The successful ratios of other algorithms are NRA:
a2 62.0%, SOA: 67.0%, respectively. The average number
ass Of iterations and the CPU time of our integrated algo-
404 rithms are also less than the corresponding single-point
s0s algorithms.

w5 Example 5. We project 266 points on the bounding

Table 7: Statistic data for Example 5.

Methods Correct ‘Worst Average CPU time (ms)
solutions iterations iterations

NRA 237 8 4.77 3.03
FOA 75 167 11.23 5.38
SOA 256 9 4.72 0.782
NRIBA 251 6 4.38 141
FOIBA 226 30 5.98 0.79
SOIBA 266 6 3.63 0.72

SR L
=

NN

Figure 9: Illustration of Example 5: point projections on font charac-
ters.

/

—
—

—
—

a7 box (loose bounding) of several characters (represented
108 by B-spline curves) onto these characters (see Figure 9),
109 using the six algorithms, respectively. In this example,
s0 we set &1 = & = 1071°, and the average initial value
so1 error is 7.01 x 1072, The statistic data of the projection
s 1S shown in Table 7. Note that the average iterations
ses only record the correct projections, and the CPU time
so« records all the projections (including both correct and
sos incorrect projections).

ss Experimental results show that, our SOIBA finds all
s07 correct solutions, while the successful ratio of SOA is
s08 96.2%, even if there are no special points mentioned
so0 in Example 2 (because all initial values are not too far
s10 from the exact projective points and there is no sharp
sin features). The successful ratios of other algorithms are
siz NRA: 89.1%, FOA: 28.2%, NRIBA: 94.7%, FOIBA:
s13 85.0%, respectively. The average number of iterations
s1« and the CPU time of our integrated algorithms are also
s15 less than the corresponding single-point algorithms.

s 5. Conclusion

st We present a geometric iteration algorithm to com-
s1s pute the projection and inversion of a point onto pla-

9

ste nar parametric curves. Our algorithm uses biarcs to
s20 approximate the curve locally, and this local approxi-
s21 mation achieves both higher precision and larger fitting
s22 region as compared to the single-point approximation
s23 Using tangents or osculating circles [7, 8, 4]. Given the
s2« same initial value, the next projective point estimated by
s2s our algorithm is remarkably closer to the exact projec-
s26 tive point than traditional geometric iteration algorithms
s27 based on single-point approximation. As a result, our
algorithm converges faster and is less dependent on the
initial value than them. Moreover, our algorithm pro-
vides a framework that adapts to any single-point ap-
ss1 proximation algorithm. The integration converges faster
and is less dependent on the choice of the initial value
compared to the integrated single-point algorithm alone.
s Our algorithm can be easily extended to point pro-
sss jection and inversion on 3D parametric curves, by re-
s placing our 2D biarc interpolation method introduced
se7 in subsection 2.2 with a 3D biarc interpolation method
s [26]. In future work, the local segment approximation
ss method will be extended to support point projection and
se0 inversion on parametric surfaces, where the biarc will
se1 be replaced by some special 3D surface patch (for ex-
se2 ample, the biarc approximation surface [27]).

528
529

530

532

533

ss Acknowledgements

s« The research was supported by Chinese 973
ses Program(2010CB328001) and Chinese 863 Pro-
ss6 gram(2012AA040902). The second author was
se7 supported by the NSFC(61035002, 61272235). The
ses third author was supported by the NSFC(61063029,
se0 61173077). The fourth author was supported by the
sso NSFC(91315302).

551 References

[1] A. Limaiem, F. Trochu, Geometric algorithms for the intersec-
tion of curves and surfaces, Computers & graphics 19 (3) (1995)
391-403.

P. J. Besl, N. D. McKay, Method for registration of 3-d shapes,
in: Robotics-DL tentative, International Society for Optics and
Photonics, 1992, pp. 586-606.

H. Pottmann, S. Leopoldseder, M. Hofer, Registration without
ICP, Computer Vision and Image Understanding 95 (1) (2004)
54-71.

S.-M. Hu, J. Wallner, A second order algorithm for orthogonal
projection onto curves and surfaces, Computer Aided Geometric
Design 22 (3) (2005) 251-260.

H.-C. Song, J.-H. Yong, Y.-J. Yang, X.-M. Liu, Algorithm for
orthogonal projection of parametric curves onto B-spline sur-
faces, Computer-Aided Design 43 (4) (2011) 381-393.

J. Pegna, F.-E. Wolter, Surface curve design by orthogonal pro-
jection of space curves onto free-form surfaces, Journal of Me-
chanical Design 118 (1) (1996) 45-52.

552
553
554
555
556
557
558
559
560
se1 [4]
562
563
564
565
566
567

[2]

[3]

[5]

[6]
568
569

570
571
572
573
574
575
576
577 [10]
578

579

s80 [11]
581

(71
(8]

(91

582
583
584 [12]
585
586
587 [13]
588
589
590 [14]
591
592
593 [15]
594
595
596 [16]
597
598
599 [17]
600
601
602 [18]
603
604
605 [19]
606
607
608 [20]
609
610
611 [21]
612
613
614 [22]
615
616
617 [23]
618
619
620 [24]
621
622
623 [25]
624
625
626 [26]
627
628
629 [27]
630
631

10

J. Hoschek, D. Lasser, Fundamentals of Computer Aided Geo-
metric Design, A.K. Peters, 1993.

E. Hartmann, On the curvature of curves and surfaces defined by
normalforms, Computer Aided Geometric Design 16 (5) (1999)
355-376.

L. A. Piegl, W. Tiller, The NURBS Book, second ed, Springer-
Verlag, Berlin, Heidelberg, New York, 1997.

L. A. Piegl, W. Tiller, Parameterization for surface fitting in re-
verse engineering, Computer Aided Design 33 (8) (2001) 593—
603.

D. E. Johnson, E. Cohen, A framework for efficient minimum
distance computation, in: Proceedings - IEEE International
Conference on Robotics and Automatio, Vol. 4, 1998, pp. 3678—
3684.

Y. L. Ma, W. Hewitt, Point inversion and projection for NURBS
curve and surface: Control polygon approach, Computer Aided
Geometric Design 20 (2) (2003) 79-99.

D. E. Johnson, E. Cohen, Distance extrema for spline models
using tangent cones, in: Proceedings of Graphics Interface 2005,
2005, pp. 169-175.

Y.-T. Oh, Y.-J. Kim, J. Lee, M.-S. Kim, G. Elber, Efficient point
projection to freeform curves and surfaces, in: Advances in Ge-
ometric Modeling and Processing, Springer, 2010, pp. 192-205.
X.-D. Chen, J.-H. Yong, G. Wang, J.-C. Paul, G. Xu, Computing
the minimum distance between a point and a NURBS curve,
Computer-Aided Design 40 (10) (2008) 1051-1054.

I. Selimovic, Improved algorithms for the projection of points
on NURBS curves and surfaces, Computer Aided Geometric
Design 23 (5) (2006) 439-445.

X.-D. Chen, H. Su, J.-H. Yong, J.-C. Paul, J.-G. Sun, A coun-
terexample on point inversion and projection for NURBS curve,
Computer Aided Geometric Design 24 (5) (2007) 302.

Y.-T. Oh, Y.-J. Kim, J. Lee, M.-S. Kim, G. Elber, Continuous
point projection to planar freeform curves using spiral curves,
The Visual Computer 28 (1) (2012) 111-123.

J.-K. Seong, D. E. Johnson, G. Elber, E. Cohen, Critical
point analysis using domain lifting for fast geometry queries,
Computer-Aided Design 42 (7) (2010) 613-624.

X.-M. Liu, L. Yang, J.-H. Yong, H.-J. Gu, J.-G. Sun, A torus
patch approximation approach for point projection on surfaces,
Computer Aided Geometric Design 26 (5) (2009) 593-598.

Z. Sir, R. Feichtinger, B. Jiittler, Approximating curves and
their offsets using biarcs and pythagorean hodograph quintics,
Computer-Aided Design 38 (6) (2006) 608-618.

J.-H. Yong, X. Chen, J.-C. Paul, An example on approximation
by fat arcs and fat biarcs, Computer-Aided Design 38 (5) (2006)
515-517.

J.-H. Yong, S.-M. Hu, J.-G. Sun, Bisection algorithms for
approximating quadratic Bézier curves by G! arc splines,
Computer-Aided Design 32 (4) (2000) 253-260.

J.-H. Yong, S.-M. Hu, J.-G. Sun, A note on approximation of
discrete data by G! arc splines, Computer-Aided Design 31 (14)
(1999) 911-915.

X.-Z. Liu, J.-H. Yong, G.-Q. Zheng, J.-G. Sun, Constrained in-
terpolation with biarcs, Journal of Computer Aided Design &
Computer Graphics 19 (1) (2007) 1-7.

X. Song, M. Aigner, F. Chen, B. Jiittler, Circular spline fitting
using an evolution process, Journal of computational and ap-
plied mathematics 231 (1) (2009) 423-433.

Y.-J. Tseng, Y.-D. Chen, Three dimensional biarc approximation
of freeform surfaces for machining tool path generation, Inter-
national Journal of Production Research 38 (4) (2000) 739-763.

Figure 8: Illustration of Example 4: point projections on a star with
sharp features.

Table 6: Statistic data for Example 4.

Methods Correct Worst Average CPU time (ms)
solutions iterations iterations

NRA 62 8 6.77 5.35
FOA 0 - - -
SOA 67 176 19.11 7.66
NRIBA 100 5 4.7 0.24
FOIBA 79 43 5.98 4.85
SOIBA 100 5 4.04 0.43

a7+ and the CPU time of our integrated algorithms are also
475 less than the corresponding single-point algorithms.

6 Example 4. We project 100 points on a bounding
477 circle (loose bounding) onto a hexagonal star (designed
478 by hand, not an exact hexagonal star), which has sharp
479 features (corresponding to the special points mentioned
a0 in Example 2) on its six angles (see Figure 8), using
se1 the six algorithms, respectively. In this example, we set
we, = & = 10719 and the average initial value error
ws is 5.48 x 10793, The statistic data of the projection is
s« shown in Table 6. Note that the average iterations only
sss record the correct projections, and the CPU time records
ass all the projections (including both correct and incorrect
487 projections).

ss Experimental results show that, our SOIBA and
ses NRIBA find all correct solutions, FOA fails in all pro-
a0 jection, while the successful ration of FOIBA is 79.0%.
a0t The successful ratios of other algorithms are NRA:
a2 62.0%, SOA: 67.0%, respectively. The average number
ass Of iterations and the CPU time of our integrated algo-
404 rithms are also less than the corresponding single-point
s0s algorithms.

w5 Example 5. We project 266 points on the bounding

Table 7: Statistic data for Example 5.

Methods Correct ‘Worst Average CPU time (ms)
solutions iterations iterations

NRA 237 8 4.77 3.03
FOA 75 167 11.23 5.38
SOA 256 9 4.72 0.782
NRIBA 251 6 4.38 141
FOIBA 226 30 5.98 0.79
SOIBA 266 6 3.63 0.72

SR L
=

NN

Figure 9: Illustration of Example 5: point projections on font charac-
ters.

/

—
—

—
—

a7 box (loose bounding) of several characters (represented
108 by B-spline curves) onto these characters (see Figure 9),
109 using the six algorithms, respectively. In this example,
s0 we set &1 = & = 1071°, and the average initial value
so1 error is 7.01 x 1072, The statistic data of the projection
s 1S shown in Table 7. Note that the average iterations
ses only record the correct projections, and the CPU time
so« records all the projections (including both correct and
sos incorrect projections).

ss Experimental results show that, our SOIBA finds all
s07 correct solutions, while the successful ratio of SOA is
s08 96.2%, even if there are no special points mentioned
so0 in Example 2 (because all initial values are not too far
s10 from the exact projective points and there is no sharp
sin features). The successful ratios of other algorithms are
siz NRA: 89.1%, FOA: 28.2%, NRIBA: 94.7%, FOIBA:
s13 85.0%, respectively. The average number of iterations
s1« and the CPU time of our integrated algorithms are also
s15 less than the corresponding single-point algorithms.

s 5. Conclusion

st We present a geometric iteration algorithm to com-
s1s pute the projection and inversion of a point onto pla-

9

ste nar parametric curves. Our algorithm uses biarcs to
s20 approximate the curve locally, and this local approxi-
s21 mation achieves both higher precision and larger fitting
s22 region as compared to the single-point approximation
s23 Using tangents or osculating circles [7, 8, 4]. Given the
s2« same initial value, the next projective point estimated by
s2s our algorithm is remarkably closer to the exact projec-
s26 tive point than traditional geometric iteration algorithms
s27 based on single-point approximation. As a result, our
algorithm converges faster and is less dependent on the
initial value than them. Moreover, our algorithm pro-
vides a framework that adapts to any single-point ap-
ss1 proximation algorithm. The integration converges faster
and is less dependent on the choice of the initial value
compared to the integrated single-point algorithm alone.
s Our algorithm can be easily extended to point pro-
sss jection and inversion on 3D parametric curves, by re-
s placing our 2D biarc interpolation method introduced
se7 in subsection 2.2 with a 3D biarc interpolation method
s [26]. In future work, the local segment approximation
ss method will be extended to support point projection and
se0 inversion on parametric surfaces, where the biarc will
se1 be replaced by some special 3D surface patch (for ex-
se2 ample, the biarc approximation surface [27]).

528
529

530

532

533

ss Acknowledgements

s« The research was supported by Chinese 973
ses Program(2010CB328001) and Chinese 863 Pro-
ss6 gram(2012AA040902). The second author was
se7 supported by the NSFC(61035002, 61272235). The
ses third author was supported by the NSFC(61063029,
se0 61173077). The fourth author was supported by the
sso NSFC(91315302).

551 References

[1] A. Limaiem, F. Trochu, Geometric algorithms for the intersec-
tion of curves and surfaces, Computers & graphics 19 (3) (1995)
391-403.

P. J. Besl, N. D. McKay, Method for registration of 3-d shapes,
in: Robotics-DL tentative, International Society for Optics and
Photonics, 1992, pp. 586-606.

H. Pottmann, S. Leopoldseder, M. Hofer, Registration without
ICP, Computer Vision and Image Understanding 95 (1) (2004)
54-71.

S.-M. Hu, J. Wallner, A second order algorithm for orthogonal
projection onto curves and surfaces, Computer Aided Geometric
Design 22 (3) (2005) 251-260.

H.-C. Song, J.-H. Yong, Y.-J. Yang, X.-M. Liu, Algorithm for
orthogonal projection of parametric curves onto B-spline sur-
faces, Computer-Aided Design 43 (4) (2011) 381-393.

J. Pegna, F.-E. Wolter, Surface curve design by orthogonal pro-
jection of space curves onto free-form surfaces, Journal of Me-
chanical Design 118 (1) (1996) 45-52.

552
553
554
555
556
557
558
559
560
se1 [4]
562
563
564
565
566
567

[2]

[3]

[5]

[6]
568
569

570
571
572
573
574
575
576
577 [10]
578

579

s80 [11]
581

(71
(8]

(91

582
583
584 [12]
585
586
587 [13]
588
589
590 [14]
591
592
593 [15]
594
595
596 [16]
597
598
599 [17]
600
601
602 [18]
603
604
605 [19]
606
607
608 [20]
609
610
611 [21]
612
613
614 [22]
615
616
617 [23]
618
619
620 [24]
621
622
623 [25]
624
625
626 [26]
627
628
629 [27]
630
631

10

J. Hoschek, D. Lasser, Fundamentals of Computer Aided Geo-
metric Design, A.K. Peters, 1993.

E. Hartmann, On the curvature of curves and surfaces defined by
normalforms, Computer Aided Geometric Design 16 (5) (1999)
355-376.

L. A. Piegl, W. Tiller, The NURBS Book, second ed, Springer-
Verlag, Berlin, Heidelberg, New York, 1997.

L. A. Piegl, W. Tiller, Parameterization for surface fitting in re-
verse engineering, Computer Aided Design 33 (8) (2001) 593—
603.

D. E. Johnson, E. Cohen, A framework for efficient minimum
distance computation, in: Proceedings - IEEE International
Conference on Robotics and Automatio, Vol. 4, 1998, pp. 3678—
3684.

Y. L. Ma, W. Hewitt, Point inversion and projection for NURBS
curve and surface: Control polygon approach, Computer Aided
Geometric Design 20 (2) (2003) 79-99.

D. E. Johnson, E. Cohen, Distance extrema for spline models
using tangent cones, in: Proceedings of Graphics Interface 2005,
2005, pp. 169-175.

Y.-T. Oh, Y.-J. Kim, J. Lee, M.-S. Kim, G. Elber, Efficient point
projection to freeform curves and surfaces, in: Advances in Ge-
ometric Modeling and Processing, Springer, 2010, pp. 192-205.
X.-D. Chen, J.-H. Yong, G. Wang, J.-C. Paul, G. Xu, Computing
the minimum distance between a point and a NURBS curve,
Computer-Aided Design 40 (10) (2008) 1051-1054.

I. Selimovic, Improved algorithms for the projection of points
on NURBS curves and surfaces, Computer Aided Geometric
Design 23 (5) (2006) 439-445.

X.-D. Chen, H. Su, J.-H. Yong, J.-C. Paul, J.-G. Sun, A coun-
terexample on point inversion and projection for NURBS curve,
Computer Aided Geometric Design 24 (5) (2007) 302.

Y.-T. Oh, Y.-J. Kim, J. Lee, M.-S. Kim, G. Elber, Continuous
point projection to planar freeform curves using spiral curves,
The Visual Computer 28 (1) (2012) 111-123.

J.-K. Seong, D. E. Johnson, G. Elber, E. Cohen, Critical
point analysis using domain lifting for fast geometry queries,
Computer-Aided Design 42 (7) (2010) 613-624.

X.-M. Liu, L. Yang, J.-H. Yong, H.-J. Gu, J.-G. Sun, A torus
patch approximation approach for point projection on surfaces,
Computer Aided Geometric Design 26 (5) (2009) 593-598.

Z. Sir, R. Feichtinger, B. Jiittler, Approximating curves and
their offsets using biarcs and pythagorean hodograph quintics,
Computer-Aided Design 38 (6) (2006) 608-618.

J.-H. Yong, X. Chen, J.-C. Paul, An example on approximation
by fat arcs and fat biarcs, Computer-Aided Design 38 (5) (2006)
515-517.

J.-H. Yong, S.-M. Hu, J.-G. Sun, Bisection algorithms for
approximating quadratic Bézier curves by G! arc splines,
Computer-Aided Design 32 (4) (2000) 253-260.

J.-H. Yong, S.-M. Hu, J.-G. Sun, A note on approximation of
discrete data by G! arc splines, Computer-Aided Design 31 (14)
(1999) 911-915.

X.-Z. Liu, J.-H. Yong, G.-Q. Zheng, J.-G. Sun, Constrained in-
terpolation with biarcs, Journal of Computer Aided Design &
Computer Graphics 19 (1) (2007) 1-7.

X. Song, M. Aigner, F. Chen, B. Jiittler, Circular spline fitting
using an evolution process, Journal of computational and ap-
plied mathematics 231 (1) (2009) 423-433.

Y.-J. Tseng, Y.-D. Chen, Three dimensional biarc approximation
of freeform surfaces for machining tool path generation, Inter-
national Journal of Production Research 38 (4) (2000) 739-763.

