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Abstract

This paper presents a High Order Reconstruction (HOR) method for improved multi-scale edge aware tone map-
ping. The study aims to contribute to the improvement of edge-aware techniques for smoothing an input image, while
keeping its edges intact. The proposed HOR methods circumvent limitations of the existing state of the art meth-
ods, e.g., altering the image structure due to changes in contrast; remove artefacts around edges; as well as reducing
computational complexity in terms of implementation and associated computational costs. In particular, the proposed
method aims at reducing the changes in the image structure by intrinsically enclosing an edge-stop mechanism whose
computational cost is comparable to the state-of-the-art multi-scale edge aware techniques.
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1 1. Introduction

2 High Order Reconstruction (HOR) methods, intro-
s duced by Harten et al. [1], have been used exten-
4 sively for solving the hyperbolic conservation laws and
s the Hamilton-Jacobi equations [2]. Additionally, these
¢ methods have been applied to image processing (image
7 compression), denoising [3] and segmentation [4]. Due
s to their ability to reduce oscillations around function
s discontinuities, these methods can be potentially used
10 as an edge aware interpolation tool. Edge-aware tech-
11 niques such as anisotropic diffusion [5], bilateral filter-
12 ing [6, 7] and neighborhood filtering rely on sophisti-
13 cated type of spatially varying kernels. Often, they tend
14 to either generate artificially staircasing effects or ring-
15 ing effects around sharp edges [8]. These artifacts can
16 be reduced using a post-processing step at the price of
17 increasing the computational cost and the number of pa-
18 rameters used [9]. To have better control of the details
19 over the spatial scale, one can apply edge-aware tech-
20 niques in a multi-scale fashion. However, the bilateral
21 filtering is inappropriate for multi-scale detailed decom-
22 position [10]. Other edge-aware techniques that sup-
23 port the multi-scale approach [10, 11, 9] also encompass
2« some flaws, e.g., they are not able to achieve a plausible
25 reproduction of all important image features [12] and
2s may change the image structure.

27 Therefore, there is a need to develop methods that are
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28 reducing as much as possible any change into the image
29 structure without increasing the complexity or compu-
a0 tational cost.

st In this paper, we link the edge-aware problem to the
a2 typical problem of interpolation. In particular, we pro-
as pose a novel wavelet scheme that uses a robust predictor
as operator, based on the HOR method, which intrinsically
a5 encloses an edge-stop mechanism to avoid influence of
3 pixels from both sides of an edge. To have a better con-
a7 trol of details over the spatial scale, we employ the HOR
s method in conjunction with a multi-scale scheme.

3 We demonstrate the usability of the proposed method to
40 solve a typical problem in the context of High Dynamic
+1 Range (HDR) imaging, called tone mapping as defined
« in Banterle et al. [13].

s The approach is formulated as follows; we decom-
4 pose an input HDR image, making use of wavelet de-
s composition and through the use of HOR methods sep-
4 arate its coarse and fine features (details). The coarse
47 and fine features are then manipulated to achieve the de-
48 sired tone and details levels. Finally, the output image
s 1s reconstructed. The advantage of the above approach
s0 1s that it does not require the introduction of any edge-
st stopping function that limits possible image-structure
s2 changes.

ss  To understand this concept, Figure 1 shows the dis-
s« tortion map as output of the Dynamic Range Indepen-
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Figure 1: Comparison of the state-of-the-art multiscale edge aware based tone mapping operators and the present HOR: 1% row: output of the
various techniques. 2"? row: distortion map of the DRIM metric [12]. This map is showing the pixels that shows a distorsion with 95% of
probability to been seen by the Human Visual System (HVS). Blue pixels are areas where invisible contrast is introduced; red pixels are areas
where reversal of visible contrast is noticeable and green pixels shows areas of lost of contrast. The map is showing of a reduction of more than
50% of the pixels affected by loss of contrast when the the HOR method is used. Parameters used - Farbmann et al. [10] multiscale approach
balanced - Fattal’s [11] @ = 0.9, 8 = 0.16 and y = 0.8 - Paris et al. [9] o = l0g(2.5), @ = 0.5 and B = 0.0 (for conveying the local effect) - The

Present HOR 8 = 0.7, y =0.9.

.
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Figure 2: Intensity profile for the tone mapping operators on an HDR mage for line 300: The 1% zoomed area, clearly shows how Fattal’s [11]
method (undesirably) increases the intensity profile to the maximum value of 1. In the 27 z00med area (Paris et al. [9] green line), the intensity

profile is modified.



ss dent metric (DRIM) introduced by Aydin et al. [12] for
ss [10, 11, 9] and the technique proposed in this paper. The
s7 original HDR image is used as reference, and the output
ss of the tone mapping operator is compared to it. A cer-
s tain amount of lost of contrast (green) is clearly visible,
e and this may change the overall image structure [12].
¢t The map shows that using the present HOR reduces the
e number of pixels affected by loss of contrast by more
s than 50%.

e  Moreover, the intensity profile may change as shown
es in Figure 2. The Fattal method [11] may have an un-
es desirable increase of the intensity profile to the maxi-
&7 mum output value 1 (1*' zoomed area). The structure of
es the original profile may be undesirably modified (green
s line) as shown for the method [9] (2"¢ enlarged area).
70 These methods may result in prohibitive computational
71 costs (see Paris et al. [9]). An efficient implementa-
72 tion [14] of the method presented by Paris et al. [9]
72 1s also discussed in Section 6.

7« The proposed approach retains the same advantages
75 introduced by the traditional edge aware approaches
76 such as Paris et al. [9], and Fattal [11], namely with re-
77 spect to obtaining local properties and providing robust
78 smoothing, hence avoiding the use of pixels from both
79 sides of the edge. The main contributions of this work
s can be summarized as follows:

st 1. Establish a link between the robust smoothing

8 concept to the reconstruction problem of a non-
8 smoothed function.
s 2. Achieve a complex solution of the edge-aware

85 problem, through a simple and flexible point-wise
8 manipulation by using HOR method.

&7 3. Propose an edge-aware filter that produces halo
8 free results; reduces the changes in the image
89 structure as defined by the DRIM metric and its
9 computational cost is increasing linearly with re-
ot spect to the number of the input pixels N.

o2 2. Related Work

s Edge Aware Filters

o Edge aware techniques are used to smooth an image
s while keeping its edges intact, preventing pixels located
9 on one side of a strong edge from influencing pixels on
o7 the other side. This concept can be used to separate high
s frequency information from low frequency information
9 such as texture and details. Once this separation is pe-
100 formed the high and low frequencies information can be
101 independently manipulated and re-composed.

w2 In the past, techniques able to preserve edges [6, 8, 5]
103 have been applied to image manipulation [15, 16, 17,

14 11]. These techniques produce acceptable results, but
105 often introduce visible ringing effects arising from the
16 Poisson equation [15] and filtering, as discussed in [10,
107 8]. Moreover, they need several parameters, that are im-
18 age dependent, making their set-up difficult for practi-
100 cal applications [17]. Our approach offers a solution,
110 that produces results at least as good as the above tech-
111 niques, runs linearly in time with respect to the number
112 of the input pixels and is not dependent on a large num-
13 ber of parameters.

14 Multi-Scale Edge Aware Filters

115 Recently, several edge-aware techniques that can be
116 used in the multi-scale framework, have been presented.
17 Typically, these methods exploit the multi-scale ap-
1 proach by making use of pyramid mechanisms such as
19 Laplacian [18], Gaussian [19], and Wavelets [20].

120 The Laplacian approach, in the context of edge-aware,
121 has been recently revised by Paris et al. [9] through the
122 use of local transformation which makes the Laplacian
123 approach suitable for edge-aware operations. Farbman
12¢ et al. [10] employed the weighted least square to build
125 an alternative edge preserving operator and extend it to
126 multi-scales as well. Fattal et al. [15] used the Gaus-
127 sian Pyramid to compress the high dynamic range of the
128 input image, followed by the full image reconstruction
120 through the use of the Poisson solver.

10 The aforementioned techniques share with our ap-
131 proach the multi-scale ’philosophy’, but are using dif-
132 ferent methods such as the Laplacian [10, 9] and Gaus-
133 sian [15] pyramids. Moreover, they are based on the so-
134 lution of a linear system [10], a Poisson solver [15], or
135 bilateral filtering all of which generate artifacts around
136 edges [8]. Li et al. [21] proposed a multi-scale approach
137 based on wavelets where each sub-band signal is mod-
138 ified using a gain map that controls the local contrast.
139 Fattal [11] presented an edge avoiding technique based
1o on a second generation wavelet. Our approach inte-
141 grates within the wavelet mechanism a HOR technique
142 that does not require any edge-stop function for com-
143 puting a large set of weights in the interpolation step
1s as in [11]. Consequently, using the present approach
s there is no need for any particular precaution against
16 the strong edges and distortions of the image structure
147 are reduced.

1 3. Background

149 Fixed stencil approximation techniques, such as
150 piecewise linear and cubic interpolation, are often used
151 to reconstruct the missing points of a function. These
1.2 methods are working well in the case where the func-
1s3 tion is smooth; however, if the function is only piece-
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Figure 3: Example of the HOR scheme mechanism. (Top row) The
original staircase signal. (2"¢ row) The uniform grid points: (circle
red) input points, (square blue) points to be interpolated. (3"¢ row)
The stencil points used by the HOR scheme. (4" and 5" rows):
Two separated stencils used to define the two interpolants by the HOR
scheme.

15« wise smooth the fixed stencil approximation may not be
155 adequate near discontinuities. In fact, oscillations at the
156 function discontinuities are visible,

157 Essential Non-oscillatory Scheme

158 Essential Non-oscillatory Schemes (ENO) have been in-
159 troduced by Harten et al. [1] to solve this problem. The
10 ENO scheme makes use of adaptive stencils, thus the
161 use of discontinuity cells is avoided. Let us consider a
162 signal function f(x) with given grid of points of evalu-
163 ated values such as v[i] = f[x;].

1sa The ENO scheme reconstructs f from the point values
165 vV assuming that f is piecewise polynomial. This means
166 that for each cell I; = [x;_1, x;+1] a polynomial inter-
167 polant p;(x) is defined using the set of points defined in
1es the stencil S;. The idea is to find a stencil of k + 1 con-
169 secutive points, including x;_; and x;;, where the signal
70 f(x) is the smoothest in this stencil when comparing it
171 with the other possible stencils. To evaluate the smooth-
172 ness of f(x) we can use the Newton divide differences
173 of f .

flxol = f(xo);
e Flxo, x1] = L2l 4 Sl . 0

(xo—x1)  (x1=x0)’

175 In general, the j-th degree divided difference of f(x)
176 1S equivalent to

177 Slxict, o Xisjo1] =
Xitj-1 — Xi-1

178 Starting from a two points stencil

179 So(D) = Xi—1,Xi+1, €)

STxis o Xivj1] = fxic1, . Xiv j2]

1e0 the linear interpolation of the stencil S, in a Newton
1e1 form is

182 p1(0) = flxioi] + flxict, xi11(x = xi-1). 4

183 To expand the stencil we have two possibilities, either
184 add the left neighbor x;_, or the right one x;;,. In both
185 cases this will be a quadratic interpolation polynomial.
185 This will differ from the linear polynomial of eq. 4, by
1e7 the same function multiplied by two different constants.
1s These constants are the two 2-nd degrees of divided dif-
180 ferences of f(x) in two different stencils defined by the
190 left and right neighbors.This procedure is continued un-
11 til the k + 1 points in the stencil are reached.

122 High Order Interpolation Scheme (HOR)

13 The typical problem of the ENO scheme is that it
194 can exhibit oscillatory behavior and is also fairly ex-
15 pensive in its implementation [22]. As an alterna-
196 tive, the weighted ENO (WENO) variant has been pro-
17 posed'. WENO uses a convex combination of all the
198 corresponding interpolating polynomials on the stencil
199 to compute an approximated polynomial for each cell
200 (Figure 3). A convex combination is a linear combina-
201 tion where the coefficients (weights) are all positive and
202 their sum is equal to 1. The key points of the reconstruc-
205 tion scheme are (at 3’ order accuracy):

204 1. Stencils definition: Taking a cell defined in the in-

205 terval [x;_1/2, xi+1,2] (see Figure 3), the stencils are
206 defined as [22]

S1 = (Xiz3/25 Xi—1/25 Xis1/2)5 )

207
S = (Xi—1/2, Xis1/2> Xis3/2)

28 2. Interpolation polynomials: For each stencil the lin-
209 ear interpolation polynomial is computed as

pr = flx] + - ),

210 [xier - L (6)
p2 = flx] + L - )
211 where the f[x] elements are the available data
212 points of the function to be reconstructed (red
213 points in Figure 3).
214 3. Convex combination: The interpolation polynomi-
215 als are combined following a convex combination
P - ag aj .
216 i = i i pl + i i p2 ( )
ao + al Clo + al
217 where
d =S .
e 0 xSy (8)
A 1
4 = s

'WENO schemes have been widely used in computational fluid
dynamics; see, for example, Drikakis et al. [23] [24] [25] and refer-
ences therein
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Figure 4: Overview of the present approach. Firstly, a pyramid repre-
sentation of the input HDR image is produced using a forward wavelet
lifting scheme with integrated the HOR interpolation method pre-
sented in this paper. Secondly, the coarse level of the pyramid struc-
ture (blue continue arrow) and the details levels (blue dashed arrows)
are manipulated. Thirdly, the modified pyramid is collapsed to recon-
struct the output tone mapped image. This is done, using the backward
wavelet lifting scheme with integrated the HOR interpolation model.

219 IS are the smoothness indicators, which are calcu-
220 lated as (IS); = (f[x;] — f[)c,-,l])z'0 and (IS), =
221 (flxis1] = fIx:D?0. The gradient magnitude is well
222 known to be a good estimator of edge information.
223 Based on this observation, we have used the im-
224 age gradient to select the coefficients C as given
225 by [22], allowing the interpolation step to be aware
226 of edge information in order to avoid an edge-
227 stopping function.

228 e JE(f)/of > O: Cé:l/ZandCi =1;

229 e JE(f)/of <O C{) =1 and Cli =1/2.

220 4. HOR Wavelet Scheme

231 In this paper we propose a robust smoothing through the
22 use of a polynomial interpolant that makes use of the
2ss smoothest stencils. It is integrated in a wavelet scheme
2a4 (lifting scheme) to take advantage of the multi-scale
235 representation such as the capability to retain image in-
26 formation at different scale. Figure 4 shows the princi-
237 ple of the present approach. Firstly, a pyramid repre-
238 sentation of the original input image / is produced us-
23 ing a forward wavelet lifting WENO scheme. Secondly,
200 the coarse (blue continued arrows) and fine levels (blue
241 dashed arrow) are manipulated. Thirdly, the modified
222 multiscale representation is collapsed to the output im-
213 age using the backwards wavelet lifting WENO scheme.
22« A multi-scale representation can be obtained by making
2as use of a nested series of decimation D and reconstruc-
246 tion R operators. As a D operator, we have used a simple

Figure 5: Pyramid image representation, after having applied the for-
ward wavelet lifting WENO scheme. The coarse level is the image
at the upper left corner (with red frame). The other images are repre-
senting the details, at different levels, for the horizontal, diagonal and
vertical directions.

247 splitting operation which separates the pixels of the in-
208 put at level k in two different grids based on the index
29 number (odd and even). For the R operator the WENO
250 scheme has been employed according to which the level
251 k is reconstructed from k + 1 using eq. 9:

ik[xay] = WO[X,)’](IHI [x - 1,)’]4‘

k1T v 1 v TAH [y R
e ([, y] = [x = 1,y])
+wi [x, Y] [ = 1, y]+

1k+]| +1’},]_1k+1[. —1,y]
P Aol ([, y] = [+ 1, y]).

®

252

23 Eq. 9 is equivalent to eq. 7 where wy and w; are its
254 factorial terms.The difference in the indices between
25 eq. 9 and eq. 7 is due to the fact that we have inserted
256 zero pixels at k + 1 level and would like to retain in-
257 teger numbers in the indexing of the grid. Fattal [11]
258 presented a robust average operator, for both type of
250 wavelet approaches, red — black and weighted CDF,
20 making use of an edge stop function to compute the
261 prediction weights. In our case, as described in eq. 7,
22 We present a convex combination of polynomial inter-
263 polants. However, these polynomial interpolants are lin-
264 €ar, thus we can consider the overall operator as a com-
265 bination of linear interpolants.

26 At the boundaries of the input image, we have
267 adopted a standard extrapolation approach to generate
266 the missing values in the stencil . The restored I* level
260 is later used to obtain the details of the k + 1 level
20 d*! = IF — ¥, To preserve the overall sum of the coarse
271 elements I, and based on the fact that the operator R
272 can be seen as combination of two linear interpolants

5



273 we have decided to use a linear interpolator as update-
274 operator U

A x = 1,y] +d*' [x + 1,y]
4

275 U(dk”)[x, y] = ;(10)

276 and the level k + 1 of coarse elements is updated using
077 Ik+1 — Ik+1 + U(dk+1).

27s This process is repeated both for the rows and
270 columns of the input image.

20 Discussion An example of the behaviour of the
21 present HOR, integrated in the wavelet scheme, is
2.2 shown in Figure 5. The coarse, ¢, and ’details’ coeffi-
283 cients, d, (vertical, diagonal and horizontal) for three
284 levels are shown. Edges are detected by the wavelet
25 scheme avoiding the influence of pixels on both sides
286 at each scale. This is obtained without the introduction
27 of an edge stop function utilized for the computation of
2s8 the set of weights used in the interpolation step as pro-
20 posed by Fattal [11] .

200 5. Tone Mapping Manipulation

20t In this subsection, we will show how to make use
202 of the proposed technique in the classical tone ma-
203 nipulation problem. Tone manipulation allows to re-
20« duce the intensity of the luminance range of HDR con-
205 tent. This objective is achieved through compression of
206 large-scale variation and keeping the fine level informa-
297 tion. The filtering approach is applied to the natural log-
208 arithmic scale of the luminance, keeping the color ratio
200 Unaltered as in Paris et al. [9], using a gamma correction
a0 Of 2.2.

a1 To manipulate the tone and the details of the input HDR
a2 image, we have followed a similar approach to the one
as used by Fattal [11]. The tone is linearly manipulated
s« modifying the coarse coefficient ¢ of the coarsest level n
aos through a parameter 3, as S¢”. This allows us to achieve
as the compression of the vast dynamic range available in
a7 the input HDR image. A second parameter y is used
as to manipulate the details. This is obtained from the
a0 progressive decreasing of the ’details’ coefficients d*,
s10 such as y*d* where k is the number of levels varying be-
ain tween 1 to n. The 8 and y parameters are in the range of
a2 (0.0, 1.0].

a1z Since our approach shares several aspects with the tech-
a1a nique presented by Fattal [11], we first provide an anal-
a1s ysis and comparison to show how the present technique
ais performs with respect to the preservation of edges,
ai7 while at the same time adjusting the tone of the input
a1s image.

Figure 6: Comparisons with state-of-the-art method Fattal’s
method [11]. 1% row: Fattal [11] using wavelet Red and Black model
with @ = 0.8, 8 = 0.11 and y = 0.68 - 2" row: the present approach
with 8= 0.3 and y = 0.7 -2 column: Gradient of a zoomed area, it
showing the degree of edge preservation.

Figure 7: Comparisons of different methods. 1% column: Fattal [11]
using wavelet Red and Black model with parameters as per web
project page [26] - 2" column: The present approach with 8 = 0.7
and y = 0.9 - 2" row: Gradient of the zoomed area in the 3" row.
Distortions at the edges are visible.



(a) Fattal [11] 8=0.7- Weak (b) Fattal [11] 8 =0.5 - Strong

Figure 8: Results from the application of Fattal’s et al. [11] tech-
nique making use of the new contractive concave mapping as specified
in [26].

sis  The present technique produces results comparable
a2 to this state-of-the-art operator, while offering the ad-
s21 vantage of not using an extra edge-stop function. The
a2z technique of [11] is capable to capture more details but
a2s at the cost of introducing some distortions at the edge
a24 level, as shown in Figures 7 (a) (zoomed lamp area and
a25 its edge map) and 6 (b) (edge map).

a2s One may reduce these distortions by making use of a
a7 new compression technique, as suggested in [26] (Fig-
a2s ure 8 ). However, artifacts may appear as shown in Fig-
320 ure 8 (b) 2™ row.

x0 6. Experimental Results

st The HOR approach has been implemented in Matlab
sz and the experiments have been performed on a Mack-
s33 book air with Intel i7-core CPU 1.8 GHz, 64-bit ma-
s chine and 4GB of RAM. We have compared our tech-
as nique with the latest edge aware state-of-the-art multi-
ass scale approaches, applied to the tone mapping problem,
sz such as[11, 9, 10]. We have used the Matlab code as
ass well as parameters provided by the authors.

ass  We have chosen the set of images shown in Figure 9.
a0 This set consists of 18 images with different dynamic
a1 range that span from outdoor to indoor and from light to
a2 dark illumination conditions.

Figure 9: Images used in the experiments. The numbering in Tables 1
and 2 follows the order of the images from the top to the bottom and
from the left to the right.

as 6.1. Quality

aa  To provide a fair comparison, we have selected the
as parameters of the different techniques to convey sim-
as 1lar appearance in term of contrast, edges and details
a7 preservation to all the techniques presented in this com-
as parison.

us  We may observe that the DRIM metric is measur-
s ing changes in contrast, in other words the overall ap-
a1 pearance of the image, and it is not able to detect if
a2 small-scale details are not well preserved. On the other
s hand, edge-aware techniques are able to preserve well
as« small-scale details. This is preserved intrinsically by the
ass mechanisms described in the previous sections as well
ass as by the results shown here that are comparable with
as7 the existing state-of-the-art edge aware technique [11].
sss  Based on the fact that small-scale details are to certain
ase extent well reproduced by the edge-aware techniques,
a0 Our objective was to examine how these techniques are
31 able to convey the overall appearance of the input HDR
a2 into the tone mapped result. In doing so, we have de-
ass cided to use the DRIM metric as specified below.

ss  Since the DRIM metric accepts cd/ m? values, the in-
ass put images need to be calibrated. In the case of the tone
as mapped input image, we need to linearize the input sig-
37 nal and then map it to the dynamic range of the display
as Where the image will be visualized. In our case, the y
ase value used for the linearization step is 2.2, and the dy-
a0 namic range chosen is [0.5, 100] cd/m? . In the case
an of the HDR input image, there was no need to linearize
a2 the signal, and the dynamic range has been chosen as
a3 [0.015, 3000] cd/m?.

s DRIM Results Discussion

7



Figure 10: Output and DRIM comparison with state-of-the-art edge aware approaches.1*’ - row output of the edge aware technique; 2"? row -
DRIM metric [12] with probability of 75%; 3" 4 row - DRIM metric [12] with probability of 95%. Parameters used - Farbmann et al. [10] multiscale
approach balanced - Fattal’s [11] @ = 0.9, 8 =0.19 and y = 0.5 - Paris et al. [9] o = log(2.5), @ = 0.5 and 8 = 0.0 (for conveying the local effect) -

The Present HOR g = 0.7, y = 0.9.

ars  Tables 1 and 2 show the results of the DRIM metric
are applied to the test set images. The numbers represent
a7 the percentage of pixels with probability for the distor-
a7s tion to be perceived by the HVS. Tables 1 and 2 show
a7e the results with probability 95% and 75%, respectively.
a0 The colors used to depict the type of distortion are the
ss1 same with those used to describe the distortion - R (red)
as2 reversal, - G (green) lost and - B (blue) amplification of
ass contrast. We have colored the methods that show the
as« higher probability, as well as the ones that show signifi-
ass cant percentage of pixels with the specified probability.
ass In the case of probability 95%, the significant distortion
a7 introduced by the state-of-the-art edge aware methods,
ass as well as by the present HOR is mostly due to the loss
ase Of contrast; neither reversal nor amplification of con-
aso trast are significant. The lost of contrast is attributed to
ao1 the fact that the edge-aware methods are using simple
aee linear scaling for compressing the large luminance dy-
ass namic range. This may affect the overall preservation of
ass local contrast. With probability 95% the state-of-the-art
ass methods may present high percentage of pixels affected
ase by loss of contrast. This is the case of the images 1, 3,
37 5, 11,13 and 14. In most of the other cases, this number
ase 1S negligible. For the images 1, 13 and 14, the HOR
ase shows a slightly higher percentage value for the loss
a0 of contrast. However, this value is either comparable
s01 or lower than the value provided by the state-of-the-art
w2 edge-aware methods.We have also tried to analyze the

a0s results of the DRIM metric at lower probability such
404 as 75% and the results are shown in Table 2. As ex-
405 pected, the percentage of pixels is drastically increased
106 and more images are affected by a significant percent-
407 age value. In this case, reversal of contrast (red) and in
s some cases amplification of contrast (blue) may appear.
400 In the case of loss of contrast the Fattal [11] and Paris et
410 al. [9] results show that the majority of the images are
a1 affected by this type of distortion. This type of distor-
412 tion also affects the present HOR, but when compared
s13 with the state-of-the-art edge-aware methods shows a
412 lower percentage of pixels affected by this distortion.
a5 Only in the case of image 18 the present HOR shows
16 higher value for the loss of contrast. However, this per-
417 centage value is quite small and it is not actually per-
418 ceivable by the HVS. The results are also affected by
a9 the reversal of contrast. In particular, several results
a20 Of Fattals [11] method are showing this distortion. The
421 present HOR shows reversal of contrast higher than the
422 other methods only for three images (11, 12 and 18).
423 Finally, the amplification of contrast (blue) does almost
s24 nOt exist, and the only image that is affected by using
425 the proposed HOR is the image 15.

«2s  DRIM Visual Analysis

w27 Figures 10, 11, 13 and 14 show results with the
428 corresponding DRIM distortion maps. Figure 10 and
420 Figure 11 compares the DRIM maps at probability 75%
a0 (2 row) and at 95% (3" row) for each output result.

8



Figure 11: Output and DRIM comparison with state-of-the-art edge aware approaches.1*' - row output of the edge aware technique; 2"/ row -
DRIM metric [12] with probability of 75%; 3" row - DRIM metric [12] with probability of 95% (for both images). Parameters used - Farbmann et
al. [10] multiscale approach balanced - Fattal’s [11] @ = 0.8, 8= 0.12 and y = 0.9 - Paris et al. [9] o = l0og(2.5), @ = 0.5 and 8 = 0.0 (for conveying
the local effect) - The Present HOR 8 = 0.7, y = 0.9.



Image Farbman [10] Fattal [11]. Paris [9] HOR
1 AhwahneeGL | R 0.28 G B 0.0 R0.22G B 0.0 R0.6 G B0.0O | R0.26G B 0.0
2 Belgium R0.0G0.0B0.0 R0.11G0.35B0.0 R0.0G0.0B0.0 R0.0G0.0BO0.0
3 Cadik1 R0.0G B 0.0 R02G B 0.73 R0.0G B 0.0 R0.0G0.0B0.0
4 smallOffice R0.0G0.0B0.0 R0.14G0.0B 0.0 R0.0G0.0B0.0 R0.0G0.0B0.0
5 Cadik2 R0O.0OG B 0.0 R0.0G B 0.0 R0.0G B 0.0 R0.0G0.89B 0.0
6 Kitchen R0.0G0.0B0.0 R0.19G0.22B 0.0 R0.0G0.8B0.0 R0.0G0.0B0.0
7 GroveD R0.0G0.0B0.0 R0.29G0.0B 0.0 R0.0G0.0B0.0 R0.0G0.0B0.0
8 Synagouge R0.0G0.0B0.0 R0.13G0.0B 0.0 R0.0G0.0B0.0 R0.0G0.0B0.0
9 Cathedral R0.0G0.0B0.0 R0.23G0.0B 0.0 R0.0G0.0B0.0 R0.17G0.0B 0.0
10 Clockbui R0.0G0.0B0.0 R0.14G0.0B 0.0 R0.0G0.0B0.0 R0.0G0.0B0.0
11 Desk R0.0G0.86B 0.0 RO031G B 0.0 RO.11G B0.0 | R0.23G0.96B 0.0
12 FogMap R0.13G0.8B 0.0 R0.14G0.79B 0.0 R0.0G0.0B0.0 R0.25G0.74B 0.0
13 Memorial RO.1G B 0.0 R0.27G B 0.0 R0.24G B 0.0 RO0.13G B 0.0
14 DesignCenter R0.0G B 0.0 R0.6G B 0.0 R0.0G B 0.0 RO.18G B 0.0
15 Tinterna R0.0G0.0B0.0 R0.27G0.0B 0.0 R0.0G0.0B0.0 R0.0G0.0B0.0
16 Yosemite R0.0G0.0B0.0 R0.32G0.0B0.0 R0.0G0.0B0.0 R0.0G0.0B0.0
17 Doll R0.0G0.0B0.0 R0.0G0.0B0.0 R0.0G0.0B0.0 R0.31G0.13B0.0
18 Paull R0.0G0.0B0.0 R0.0G0.0B0.0 R0.0G0.0B0.0 R0.11G0.0B 0.0
AVERAGE | R0.028G 0.97B 0.0 | R0.19G B 0.041 | R0.053 G B0.0 | R0.09G 0.89B 0.0

Table 1: DRIM results over the set of images presented in Figure 9. We show the percentage of pixels with probability of 95% that
present the distortion of reverse (R), loss (G), or amplification (B) of contrast.

w1 The visual analysis of the results shows that in the
2 case of probability 75% the state-of-the-art methods
a3s show a consistent number of distorted pixels localized
aa in large areas, when compared with the present HOR.
w5 On the other hand, when the probability increases to
16 95%, the size of these areas are either reduced or are
47 almost not affected by any distortion. However, in some
s cases the state-of-the-art methods are still showing large
a9 areas of lost of contrast (green) and reversal of contrast
440 (red).

a1 Figures 13 and 14 are showing other results with the
w2 distortion maps with probability at 95%, where the all
w3 methods are showing similar behavior..

ws Comparison with Simpler TMO’s

ws  One can observe that the global operators are faster
ws and convey an overall better appearance (Artusi et
a7 al. [28]). For this purpose, we have computed the
as DRIM maps for a well known global version of two
ws TMOs published by by Reinhard et al. [27] and Drago
ss0 et al. [27]. The comparison is limited to the global op-
451 erator showing that the quality of the results is not com-
a2 parable with the state-of-the-art edge aware techniques.
ssa The results are shown in Figure 12 for the distortion
45« maps at probability of 95%.

a5 The results reveal that the DRIM obtained for the
sss Reinhard et al. [27] and the Drago et al. [27] opera-
ss7 tors often show larger areas of amplification of contrast;
sss see the window area in Figure 12, in comparison with
ase the results obtained by the majority of the edge-aware

0 techniques employed in this experiment.

w1 Figure 12 (2"d row shows reversal of contrast, in
a2 large areas of the window, for both global operators.
sa On the other hand, the edge-aware techniques have very
4 tiny areas affected by reversal of contrast. Moreover,
45 we emphasize in general that global operators are not
s designed for edge-awareness and do not encapsulate
4«7 mechanisms for retaining the fine details at different
s spatial scale, as in the case of the present HOR and
469 edge-aware techniques.

a0 6.2. Computational Analysis

an Another aspect that needs to be taken into account
472 is the computational cost associated with the different
473 algorithms. Here, we have performed a computational
474 cost analysis for the proposed technique versus other
475 state-of-the-art techniques.

a7 Our approach presents computational complexity and
477 associated cost comparable to the one presented in [11,
478 10] and outperforming the method of [9] .

a7 Specifically, the method presented by Paris et al. [9]
40 requires 1738 sec to process an image size of 800x525,
se1 420 sec for an image size of 400x262 and 190 sec. for
w2 an image size of 267x174. When compared with the
s computational cost of our method and the approaches
s of [11, 10], the computational cost is significantly re-
45 duced: 14 sec to process an image size of 800x525, 3
4 sec for an image size of 400x262, and 1 sec for an im-
se7 age size of 267x174.
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Image Farbman [10] Fattal [11]. Paris [9] HOR

1 AhwahneeGL R1.0G B0.17 R091G B 0.15 R196G21B0.2 R 133G B0.11

2 Belgium R0.13G0.0B 0.0 R09G B 0.0 R0.27G0.18 B0.15 R0.14G0.0B 0.4
3 Cadik1 R04G92B0.0 R1.1G B 0.0 R031G B0.12 | R0.13G B0.14

4 smallOffice R0.43G0.58B 0.0 R0.57G0.67B1.63 | R0.78G B045 | R0.24G0.0B0.24

5 Cadik2 R04G B 0.0 R044G B 0.0 R045G25B0.18 R0.12G6.7B 0.0

6 Kitchen R0.0G0.0B 0.0 R092G49B0.0 R0.3G0.11B0.16 R0.0G0.59B 0.0

7 GroveD R0.15G0.0B0.13 R59G0.42B0.67 R0.5G0.0B0.32 R0.79G0.0B0.4

8 Synagouge R0.18G0.1BO0.15 R24G B 0.1 R0.1G0.0B0.3 R0.3G0.33B 0.81

9 Cathedral R0.0G0.0BO0.15 R2.29G B 0.57 R0.64 G0.0B 0.0 R 1.66 G0.76 B 2.0

10 Clockbui R0.29G0.0B 0.0 R0.61 G0.0B 0.20 R1.12G0.0B 0.6 R0.6G0.18 B 0.24
11 Desk R04G39B0.12 R228G B 0.18 R19G B 0.54 R3.03G B 0.73

12 FogMap R0.34G0.73B 0.0 R00OG B 0.03 R1.1G19BO0.0 R2.45 G B 0.0

13 Memorial R0.6G B 0.0 R1.55G B 0.0 R19G B 0.0 R097G B 0.0
14 DesignCenter R031G B 0.0 R38G B 0.0 R055G B 0.0 R135G B 0.0
15 Tinterna R0.5G0.0B 0.6 R3.7G0.63B0.55 | R0.18G0.11B0.57 | R0.17G0.0B 4.36

16 Yosemite R0.23G0.0B 0.0 R4.1G0.49B0.21 R0.38G0.0B 0.48 R0.15G 0.0 B 0.45

17 Doll R0.13G0.0B0.35 R0.82G B0.14 R0.35G0.31B0.2 R1.7G 1.5B0.53

18 Paull R0.18G0.0B 0.1 R 1.8G0.36 B0.25 R024G0.1B04 R25G B0.4
AVERAGE | R0.32 G B0.098 | R1.89G B0.26 | R0.72G B0.26 | R0.98 G B 0.59

Table 2: DRIM results over the set of images presented in Figure 9. We show the percentage of pixels with probability of 75% that
present the distortion of reverse (R), loss (G), or amplification (B) of contrast.

ss  Recently, Aubry et al. [14] presented a fast im-
s plementation of Paris et al. [9] technique that signif-
a0 icantly improves its computational performances (50
s01 times faster). However, our comparison is done on the
a2z Matlab implementation of the all techniques used in the
49s evaluation, as provided by the authors, without includ-
a4 ing any optimization. Even if we apply the 50-fold im-
sss provement in the measured time of the Matlab imple-
s mentation of Paris et al. [9], the present HOR delivers
a7 an excellent overall performance.

se 7. Concluding remarks

ws  We have introduced a new edge preserving tech-
so0 nique that makes use of a HOR method, which is able
so1 to preserve edges without introducing artifacts and re-
so2 ducing any changes in the image structure when com-
sos pared to the state-of-the-art edge preserving operators.
soe The present method does not require an extra stop-edge
sos function, thus offering simplicity. Futhermore, its com-
sos putational cost increases linearly in time. We have
so7 demonstrated the accuracy of the present technique on a
sos variety of images and parameter settings. The use of the
soo HOR technique in other applications such as details en-
s1o hancement and image colorisation is also possible and
st1 will be part of future work. The proposed HOR tech-
stz nique will be further implemented in graphics hardware
s13 with reference to video applications, allowing substan-
s14 tial improvements in computational performance.
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Figure 13: Output and DRIM comparison with state-of-the-art edge aware approaches. 1* and 3" - rows output of the edge aware techniques; 2"
and 4™ rows - DRIM metric [12] with probability of 95%. Parameters used - Farbmann et al. [10] multiscale approach balanced - Fattal’s [11] @ =

0.8,8=10.19 and y = 0.9; - Paris et al. [9] o = log(2.5), @ = 0.5 and 8 = 0.0 (for conveying the local effect) - The Present HOR 1% row: 8 = 0.4, y
=0.8;3 row: =0.6,y=0.8.
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Figure 14: Output and DRIM comparison with state-of-the-art edge aware approaches. 1% and 3"/ - rows output of the edge aware techniques; 2
and 4" rows - DRIM metric [12] with probability of 95%. Parameters used - Farbmann et al. [10] multiscale approach balanced - Fattal’s [11] @ =

0.8,8=10.19 and y = 0.9; - Paris et al. [9] o = log(2.5), @ = 0.5 and 8 = 0.0 (for conveying the local effect) - The Present HOR 1% row: 8 = 0.6, y
=0.9; 3 row: B=0.7,y =0.9.
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