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Abstract

This paper presents a High Order Reconstruction (HOR) method for improved multi-scale edge aware tone map-
ping. The study aims to contribute to the improvement of edge-aware techniques for smoothing an input image, while
keeping its edges intact. The proposed HOR methods circumvent limitations of the existing state of the art meth-
ods, e.g., altering the image structure due to changes in contrast; remove artefacts around edges; as well as reducing
computational complexity in terms of implementation and associated computational costs. In particular, the proposed
method aims at reducing the changes in the image structure by intrinsically enclosing an edge-stop mechanism whose
computational cost is comparable to the state-of-the-art multi-scale edge aware techniques.
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1. Introduction1

High Order Reconstruction (HOR) methods, intro-2

duced by Harten et al. [1], have been used exten-3

sively for solving the hyperbolic conservation laws and4

the Hamilton-Jacobi equations [2]. Additionally, these5

methods have been applied to image processing (image6

compression), denoising [3] and segmentation [4]. Due7

to their ability to reduce oscillations around function8

discontinuities, these methods can be potentially used9

as an edge aware interpolation tool. Edge-aware tech-10

niques such as anisotropic di↵usion [5], bilateral filter-11

ing [6, 7] and neighborhood filtering rely on sophisti-12

cated type of spatially varying kernels. Often, they tend13

to either generate artificially staircasing e↵ects or ring-14

ing e↵ects around sharp edges [8]. These artifacts can15

be reduced using a post-processing step at the price of16

increasing the computational cost and the number of pa-17

rameters used [9]. To have better control of the details18

over the spatial scale, one can apply edge-aware tech-19

niques in a multi-scale fashion. However, the bilateral20

filtering is inappropriate for multi-scale detailed decom-21

position [10]. Other edge-aware techniques that sup-22

port the multi-scale approach [10, 11, 9] also encompass23

some flaws, e.g., they are not able to achieve a plausible24

reproduction of all important image features [12] and25

may change the image structure.26

Therefore, there is a need to develop methods that are27

reducing as much as possible any change into the image28

structure without increasing the complexity or compu-29

tational cost.30

In this paper, we link the edge-aware problem to the31

typical problem of interpolation. In particular, we pro-32

pose a novel wavelet scheme that uses a robust predictor33

operator, based on the HOR method, which intrinsically34

encloses an edge-stop mechanism to avoid influence of35

pixels from both sides of an edge. To have a better con-36

trol of details over the spatial scale, we employ the HOR37

method in conjunction with a multi-scale scheme.38

We demonstrate the usability of the proposed method to39

solve a typical problem in the context of High Dynamic40

Range (HDR) imaging, called tone mapping as defined41

in Banterle et al. [13].42

The approach is formulated as follows; we decom-43

pose an input HDR image, making use of wavelet de-44

composition and through the use of HOR methods sep-45

arate its coarse and fine features (details). The coarse46

and fine features are then manipulated to achieve the de-47

sired tone and details levels. Finally, the output image48

is reconstructed. The advantage of the above approach49

is that it does not require the introduction of any edge-50

stopping function that limits possible image-structure51

changes.52

To understand this concept, Figure 1 shows the dis-53

tortion map as output of the Dynamic Range Indepen-54
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Figure 1: Comparison of the state-of-the-art multiscale edge aware based tone mapping operators and the present HOR: 1st row: output of the
various techniques. 2nd row: distortion map of the DRIM metric [12]. This map is showing the pixels that shows a distorsion with 95% of
probability to been seen by the Human Visual System (HVS ). Blue pixels are areas where invisible contrast is introduced; red pixels are areas
where reversal of visible contrast is noticeable and green pixels shows areas of lost of contrast. The map is showing of a reduction of more than
50% of the pixels a↵ected by loss of contrast when the the HOR method is used. Parameters used - Farbmann et al. [10] multiscale approach
balanced - Fattal’s [11] ↵ = 0.9, � = 0.16 and � = 0.8 - Paris et al. [9] �r = log(2.5), ↵ = 0.5 and � = 0.0 (for conveying the local e↵ect) - The
Present HOR � = 0.7, � = 0.9.

Figure 2: Intensity profile for the tone mapping operators on an HDR mage for line 300: The 1st zoomed area, clearly shows how Fattal’s [11]
method (undesirably) increases the intensity profile to the maximum value of 1. In the 2nd zoomed area (Paris et al. [9] green line), the intensity
profile is modified.
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dent metric (DRIM) introduced by Aydin et al. [12] for55

[10, 11, 9] and the technique proposed in this paper. The56

original HDR image is used as reference, and the output57

of the tone mapping operator is compared to it. A cer-58

tain amount of lost of contrast (green) is clearly visible,59

and this may change the overall image structure [12].60

The map shows that using the present HOR reduces the61

number of pixels a↵ected by loss of contrast by more62

than 50%.63

Moreover, the intensity profile may change as shown64

in Figure 2. The Fattal method [11] may have an un-65

desirable increase of the intensity profile to the maxi-66

mum output value 1 (1st zoomed area). The structure of67

the original profile may be undesirably modified (green68

line) as shown for the method [9] (2nd enlarged area).69

These methods may result in prohibitive computational70

costs (see Paris et al. [9]). An e�cient implementa-71

tion [14] of the method presented by Paris et al. [9]72

is also discussed in Section 6.73

The proposed approach retains the same advantages74

introduced by the traditional edge aware approaches75

such as Paris et al. [9], and Fattal [11], namely with re-76

spect to obtaining local properties and providing robust77

smoothing, hence avoiding the use of pixels from both78

sides of the edge. The main contributions of this work79

can be summarized as follows:80

1. Establish a link between the robust smoothing81

concept to the reconstruction problem of a non-82

smoothed function.83

2. Achieve a complex solution of the edge-aware84

problem, through a simple and flexible point-wise85

manipulation by using HOR method.86

3. Propose an edge-aware filter that produces halo87

free results; reduces the changes in the image88

structure as defined by the DRIM metric and its89

computational cost is increasing linearly with re-90

spect to the number of the input pixels N.91

2. Related Work92

Edge Aware Filters93

Edge aware techniques are used to smooth an image94

while keeping its edges intact, preventing pixels located95

on one side of a strong edge from influencing pixels on96

the other side. This concept can be used to separate high97

frequency information from low frequency information98

such as texture and details. Once this separation is pe-99

formed the high and low frequencies information can be100

independently manipulated and re-composed.101

In the past, techniques able to preserve edges [6, 8, 5]102

have been applied to image manipulation [15, 16, 17,103

11]. These techniques produce acceptable results, but104

often introduce visible ringing e↵ects arising from the105

Poisson equation [15] and filtering, as discussed in [10,106

8]. Moreover, they need several parameters, that are im-107

age dependent, making their set-up di�cult for practi-108

cal applications [17]. Our approach o↵ers a solution,109

that produces results at least as good as the above tech-110

niques, runs linearly in time with respect to the number111

of the input pixels and is not dependent on a large num-112

ber of parameters.113

Multi-Scale Edge Aware Filters114

Recently, several edge-aware techniques that can be115

used in the multi-scale framework, have been presented.116

Typically, these methods exploit the multi-scale ap-117

proach by making use of pyramid mechanisms such as118

Laplacian [18], Gaussian [19], and Wavelets [20].119

The Laplacian approach, in the context of edge-aware,120

has been recently revised by Paris et al. [9] through the121

use of local transformation which makes the Laplacian122

approach suitable for edge-aware operations. Farbman123

et al. [10] employed the weighted least square to build124

an alternative edge preserving operator and extend it to125

multi-scales as well. Fattal et al. [15] used the Gaus-126

sian Pyramid to compress the high dynamic range of the127

input image, followed by the full image reconstruction128

through the use of the Poisson solver.129

The aforementioned techniques share with our ap-130

proach the multi-scale ’philosophy’, but are using dif-131

ferent methods such as the Laplacian [10, 9] and Gaus-132

sian [15] pyramids. Moreover, they are based on the so-133

lution of a linear system [10], a Poisson solver [15], or134

bilateral filtering all of which generate artifacts around135

edges [8]. Li et al. [21] proposed a multi-scale approach136

based on wavelets where each sub-band signal is mod-137

ified using a gain map that controls the local contrast.138

Fattal [11] presented an edge avoiding technique based139

on a second generation wavelet. Our approach inte-140

grates within the wavelet mechanism a HOR technique141

that does not require any edge-stop function for com-142

puting a large set of weights in the interpolation step143

as in [11]. Consequently, using the present approach144

there is no need for any particular precaution against145

the strong edges and distortions of the image structure146

are reduced.147

3. Background148

Fixed stencil approximation techniques, such as149

piecewise linear and cubic interpolation, are often used150

to reconstruct the missing points of a function. These151

methods are working well in the case where the func-152

tion is smooth; however, if the function is only piece-153
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Figure 3: Example of the HOR scheme mechanism. (Top row) The
original staircase signal. (2nd row) The uniform grid points: (circle
red) input points, (square blue) points to be interpolated. (3rd row)
The stencil points used by the HOR scheme. (4th and 5th rows):
Two separated stencils used to define the two interpolants by the HOR
scheme.

wise smooth the fixed stencil approximation may not be154

adequate near discontinuities. In fact, oscillations at the155

function discontinuities are visible,156

Essential Non-oscillatory Scheme157

Essential Non-oscillatory Schemes (ENO) have been in-158

troduced by Harten et al. [1] to solve this problem. The159

ENO scheme makes use of adaptive stencils, thus the160

use of discontinuity cells is avoided. Let us consider a161

signal function f (x) with given grid of points of evalu-162

ated values such as v[i] = f [xi].163

The ENO scheme reconstructs f from the point values164

v assuming that f is piecewise polynomial. This means165

that for each cell Ii ⌘ [xi�1, xi+1] a polynomial inter-166

polant pi(x) is defined using the set of points defined in167

the stencil S i. The idea is to find a stencil of k + 1 con-168

secutive points, including xi�1 and xi+1, where the signal169

f (x) is the smoothest in this stencil when comparing it170

with the other possible stencils. To evaluate the smooth-171

ness of f (x) we can use the Newton divide di↵erences172

of f :173

f [x0] ⌘ f (x0);
f [x0, x1] ⌘ f [x0]

(x0�x1) +
f [x1]

(x1�x0) ;
.......

(1)174

In general, the j-th degree divided di↵erence of f (x)175

is equivalent to176

f [xi�1, ., xi+ j�1] ⌘ f [xi, ., xi+ j�1] � f [xi�1, ., xi+ j�2]
xi+ j�1 � xi�1

.(2)177

Starting from a two points stencil178

S 2(i) = xi�1,xi+1, (3)179

the linear interpolation of the stencil S 2 in a Newton180

form is181

p1(x) = f [xi�1] + f [xi�1, xi+1](x � xi�1). (4)182

To expand the stencil we have two possibilities, either183

add the left neighbor xi�2 or the right one xi+2. In both184

cases this will be a quadratic interpolation polynomial.185

This will di↵er from the linear polynomial of eq. 4, by186

the same function multiplied by two di↵erent constants.187

These constants are the two 2-nd degrees of divided dif-188

ferences of f (x) in two di↵erent stencils defined by the189

left and right neighbors.This procedure is continued un-190

til the k + 1 points in the stencil are reached.191

High Order Interpolation Scheme (HOR)192

The typical problem of the ENO scheme is that it193

can exhibit oscillatory behavior and is also fairly ex-194

pensive in its implementation [22]. As an alterna-195

tive, the weighted ENO (WENO) variant has been pro-196

posed1. WENO uses a convex combination of all the197

corresponding interpolating polynomials on the stencil198

to compute an approximated polynomial for each cell199

(Figure 3). A convex combination is a linear combina-200

tion where the coe�cients (weights) are all positive and201

their sum is equal to 1. The key points of the reconstruc-202

tion scheme are (at 3rd order accuracy):203

1. Stencils definition: Taking a cell defined in the in-204

terval [xi�1/2, xi+1/2] (see Figure 3), the stencils are205

defined as [22]206

S 1 = (xi�3/2, xi�1/2, xi+1/2);
S 2 = (xi�1/2, xi+1/2, xi+3/2) (5)207

2. Interpolation polynomials: For each stencil the lin-208

ear interpolation polynomial is computed as209

p1 = f [xi] +
f [xi]� f [xi�1]

�x
(x � xi);

p2 = f [xi] +
f [xi+1]� f [xi]

�x
(x � xi)

(6)210

where the f [x] elements are the available data211

points of the function to be reconstructed (red212

points in Figure 3).213

3. Convex combination: The interpolation polynomi-214

als are combined following a convex combination215

Pi =
ai

0

ai
0 + ai

1
p1 +

ai
1

ai
0 + ai

1
p2 (7)216

where217

ai
0 =

Ci
0

(✏+(IS )1)2.0 ;

ai
1 =

Ci
1

(✏+(IS )2)2.0

(8)218

1WENO schemes have been widely used in computational fluid
dynamics; see, for example, Drikakis et al. [23] [24] [25] and refer-
ences therein
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Figure 4: Overview of the present approach. Firstly, a pyramid repre-
sentation of the input HDR image is produced using a forward wavelet
lifting scheme with integrated the HOR interpolation method pre-
sented in this paper. Secondly, the coarse level of the pyramid struc-
ture (blue continue arrow) and the details levels (blue dashed arrows)
are manipulated. Thirdly, the modified pyramid is collapsed to recon-
struct the output tone mapped image. This is done, using the backward
wavelet lifting scheme with integrated the HOR interpolation model.

IS are the smoothness indicators, which are calcu-219

lated as (IS )1 = ( f [xi] � f [xi�1])2.0 and (IS )2 =220

( f [xi+1]� f [xi])2.0. The gradient magnitude is well221

known to be a good estimator of edge information.222

Based on this observation, we have used the im-223

age gradient to select the coe�cients C as given224

by [22], allowing the interpolation step to be aware225

of edge information in order to avoid an edge-226

stopping function.227

• @E( f )/@ f > 0: Ci
0 = 1/2 and Ci

1 = 1;228

• @E( f )/@ f < 0: Ci
0 = 1 and Ci

1 = 1/2.229

4. HOR Wavelet Scheme230

In this paper we propose a robust smoothing through the231

use of a polynomial interpolant that makes use of the232

smoothest stencils. It is integrated in a wavelet scheme233

(lifting scheme) to take advantage of the multi-scale234

representation such as the capability to retain image in-235

formation at di↵erent scale. Figure 4 shows the princi-236

ple of the present approach. Firstly, a pyramid repre-237

sentation of the original input image I is produced us-238

ing a forward wavelet lifting WENO scheme. Secondly,239

the coarse (blue continued arrows) and fine levels (blue240

dashed arrow) are manipulated. Thirdly, the modified241

multiscale representation is collapsed to the output im-242

age using the backwards wavelet lifting WENO scheme.243

A multi-scale representation can be obtained by making244

use of a nested series of decimation D and reconstruc-245

tion R operators. As a D operator, we have used a simple246

Figure 5: Pyramid image representation, after having applied the for-
ward wavelet lifting WENO scheme. The coarse level is the image
at the upper left corner (with red frame). The other images are repre-
senting the details, at di↵erent levels, for the horizontal, diagonal and
vertical directions.

splitting operation which separates the pixels of the in-247

put at level k in two di↵erent grids based on the index248

number (odd and even). For the R operator the WENO249

scheme has been employed according to which the level250

k is reconstructed from k + 1 using eq. 9:251

Ĩk[x, y] = w0[x, y](Ik+1[x � 1, y]+
Ik+1[x�1,y]�Ik+1[x�3,y]

[x�1,y]�[x�3,y] ([x, y] � [x � 1, y]))
+w1[x, y](Ik+1[x � 1, y]+

Ik+1[x+1,y]�Ik+1[x�1,y]
[x+1,y]�[x�1,y] ([x, y] � [x + 1, y])).

(9)252

Eq. 9 is equivalent to eq. 7 where w0 and w1 are its253

factorial terms.The di↵erence in the indices between254

eq. 9 and eq. 7 is due to the fact that we have inserted255

zero pixels at k + 1 level and would like to retain in-256

teger numbers in the indexing of the grid. Fattal [11]257

presented a robust average operator, for both type of258

wavelet approaches, red � black and weighted CDF,259

making use of an edge stop function to compute the260

prediction weights. In our case, as described in eq. 7,261

we present a convex combination of polynomial inter-262

polants. However, these polynomial interpolants are lin-263

ear, thus we can consider the overall operator as a com-264

bination of linear interpolants.265

At the boundaries of the input image, we have266

adopted a standard extrapolation approach to generate267

the missing values in the stencil . The restored Ĩk level268

is later used to obtain the details of the k + 1 level269

dk+1 = Ik � Ĩk. To preserve the overall sum of the coarse270

elements Ik+1, and based on the fact that the operator R271

can be seen as combination of two linear interpolants272
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we have decided to use a linear interpolator as update-273

operator U:274

U(dk+1)[x, y] =
dk+1[x � 1, y] + dk+1[x + 1, y]

4
;(10)275

and the level k + 1 of coarse elements is updated using276

Ik+1 = Ik+1 + U(dk+1).277

This process is repeated both for the rows and278

columns of the input image.279

Discussion An example of the behaviour of the280

present HOR, integrated in the wavelet scheme, is281

shown in Figure 5. The coarse, c, and ’details’ coe�-282

cients, d, (vertical, diagonal and horizontal) for three283

levels are shown. Edges are detected by the wavelet284

scheme avoiding the influence of pixels on both sides285

at each scale. This is obtained without the introduction286

of an edge stop function utilized for the computation of287

the set of weights used in the interpolation step as pro-288

posed by Fattal [11] .289

5. Tone Mapping Manipulation290

In this subsection, we will show how to make use291

of the proposed technique in the classical tone ma-292

nipulation problem. Tone manipulation allows to re-293

duce the intensity of the luminance range of HDR con-294

tent. This objective is achieved through compression of295

large-scale variation and keeping the fine level informa-296

tion. The filtering approach is applied to the natural log-297

arithmic scale of the luminance, keeping the color ratio298

unaltered as in Paris et al. [9], using a gamma correction299

of 2.2.300

To manipulate the tone and the details of the input HDR301

image, we have followed a similar approach to the one302

used by Fattal [11]. The tone is linearly manipulated303

modifying the coarse coe�cient c of the coarsest level n304

through a parameter �, as �cn. This allows us to achieve305

the compression of the vast dynamic range available in306

the input HDR image. A second parameter � is used307

to manipulate the details. This is obtained from the308

progressive decreasing of the ’details’ coe�cients dk,309

such as �kdk where k is the number of levels varying be-310

tween 1 to n. The � and � parameters are in the range of311

(0.0, 1.0].312

Since our approach shares several aspects with the tech-313

nique presented by Fattal [11], we first provide an anal-314

ysis and comparison to show how the present technique315

performs with respect to the preservation of edges,316

while at the same time adjusting the tone of the input317

image.318

Figure 6: Comparisons with state-of-the-art method Fattal’s
method [11] . 1st row: Fattal [11] using wavelet Red and Black model
with ↵ = 0.8, � = 0.11 and � = 0.68 - 2nd row: the present approach
with � = 0.3 and � = 0.7 -2nd column: Gradient of a zoomed area, it
showing the degree of edge preservation.

Figure 7: Comparisons of di↵erent methods. 1st column: Fattal [11]
using wavelet Red and Black model with parameters as per web
project page [26] - 2nd column: The present approach with � = 0.7
and � = 0.9 - 2nd row: Gradient of the zoomed area in the 3rd row.
Distortions at the edges are visible.
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(a) Fattal [11] � = 0.7 - Weak (b) Fattal [11] � = 0.5 - Strong

Figure 8: Results from the application of Fattal’s et al. [11] tech-
nique making use of the new contractive concave mapping as specified
in [26].

The present technique produces results comparable319

to this state-of-the-art operator, while o↵ering the ad-320

vantage of not using an extra edge-stop function. The321

technique of [11] is capable to capture more details but322

at the cost of introducing some distortions at the edge323

level, as shown in Figures 7 (a) (zoomed lamp area and324

its edge map) and 6 (b) (edge map).325

One may reduce these distortions by making use of a326

new compression technique, as suggested in [26] (Fig-327

ure 8 ). However, artifacts may appear as shown in Fig-328

ure 8 (b) 2nd row.329

6. Experimental Results330

The HOR approach has been implemented in Matlab331

and the experiments have been performed on a Mack-332

book air with Intel i7-core CPU 1.8 GHz, 64-bit ma-333

chine and 4GB of RAM. We have compared our tech-334

nique with the latest edge aware state-of-the-art multi-335

scale approaches, applied to the tone mapping problem,336

such as[11, 9, 10]. We have used the Matlab code as337

well as parameters provided by the authors.338

We have chosen the set of images shown in Figure 9.339

This set consists of 18 images with di↵erent dynamic340

range that span from outdoor to indoor and from light to341

dark illumination conditions.342

Figure 9: Images used in the experiments. The numbering in Tables 1
and 2 follows the order of the images from the top to the bottom and
from the left to the right.

6.1. Quality343

To provide a fair comparison, we have selected the344

parameters of the di↵erent techniques to convey sim-345

ilar appearance in term of contrast, edges and details346

preservation to all the techniques presented in this com-347

parison.348

We may observe that the DRIM metric is measur-349

ing changes in contrast, in other words the overall ap-350

pearance of the image, and it is not able to detect if351

small-scale details are not well preserved. On the other352

hand, edge-aware techniques are able to preserve well353

small-scale details. This is preserved intrinsically by the354

mechanisms described in the previous sections as well355

as by the results shown here that are comparable with356

the existing state-of-the-art edge aware technique [11].357

Based on the fact that small-scale details are to certain358

extent well reproduced by the edge-aware techniques,359

our objective was to examine how these techniques are360

able to convey the overall appearance of the input HDR361

into the tone mapped result. In doing so, we have de-362

cided to use the DRIM metric as specified below.363

Since the DRIM metric accepts cd/m2 values, the in-364

put images need to be calibrated. In the case of the tone365

mapped input image, we need to linearize the input sig-366

nal and then map it to the dynamic range of the display367

where the image will be visualized. In our case, the �368

value used for the linearization step is 2.2, and the dy-369

namic range chosen is [0.5, 100] cd/m2 . In the case370

of the HDR input image, there was no need to linearize371

the signal, and the dynamic range has been chosen as372

[0.015, 3000] cd/m2.373

DRIM Results Discussion374
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Figure 10: Output and DRIM comparison with state-of-the-art edge aware approaches.1st - row output of the edge aware technique; 2nd row -
DRIM metric [12] with probability of 75%; 3rd row - DRIM metric [12] with probability of 95%. Parameters used - Farbmann et al. [10] multiscale
approach balanced - Fattal’s [11] ↵ = 0.9, � = 0.19 and � = 0.5 - Paris et al. [9] �r = log(2.5), ↵ = 0.5 and � = 0.0 (for conveying the local e↵ect) -
The Present HOR � = 0.7, � = 0.9.

Tables 1 and 2 show the results of the DRIM metric375

applied to the test set images. The numbers represent376

the percentage of pixels with probability for the distor-377

tion to be perceived by the HVS. Tables 1 and 2 show378

the results with probability 95% and 75%, respectively.379

The colors used to depict the type of distortion are the380

same with those used to describe the distortion - R (red)381

reversal, - G (green) lost and - B (blue) amplification of382

contrast. We have colored the methods that show the383

higher probability, as well as the ones that show signifi-384

cant percentage of pixels with the specified probability.385

In the case of probability 95%, the significant distortion386

introduced by the state-of-the-art edge aware methods,387

as well as by the present HOR is mostly due to the loss388

of contrast; neither reversal nor amplification of con-389

trast are significant. The lost of contrast is attributed to390

the fact that the edge-aware methods are using simple391

linear scaling for compressing the large luminance dy-392

namic range. This may a↵ect the overall preservation of393

local contrast. With probability 95% the state-of-the-art394

methods may present high percentage of pixels a↵ected395

by loss of contrast. This is the case of the images 1, 3,396

5, 11,13 and 14. In most of the other cases, this number397

is negligible. For the images 1, 13 and 14, the HOR398

shows a slightly higher percentage value for the loss399

of contrast. However, this value is either comparable400

or lower than the value provided by the state-of-the-art401

edge-aware methods.We have also tried to analyze the402

results of the DRIM metric at lower probability such403

as 75% and the results are shown in Table 2. As ex-404

pected, the percentage of pixels is drastically increased405

and more images are a↵ected by a significant percent-406

age value. In this case, reversal of contrast (red) and in407

some cases amplification of contrast (blue) may appear.408

In the case of loss of contrast the Fattal [11] and Paris et409

al. [9] results show that the majority of the images are410

a↵ected by this type of distortion. This type of distor-411

tion also a↵ects the present HOR, but when compared412

with the state-of-the-art edge-aware methods shows a413

lower percentage of pixels a↵ected by this distortion.414

Only in the case of image 18 the present HOR shows415

higher value for the loss of contrast. However, this per-416

centage value is quite small and it is not actually per-417

ceivable by the HVS. The results are also a↵ected by418

the reversal of contrast. In particular, several results419

of Fattals [11] method are showing this distortion. The420

present HOR shows reversal of contrast higher than the421

other methods only for three images (11, 12 and 18).422

Finally, the amplification of contrast (blue) does almost423

not exist, and the only image that is a↵ected by using424

the proposed HOR is the image 15.425

DRIM Visual Analysis426

Figures 10, 11, 13 and 14 show results with the427

corresponding DRIM distortion maps. Figure 10 and428

Figure 11 compares the DRIM maps at probability 75%429

(2nd row) and at 95% (3rd row) for each output result.430
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Figure 11: Output and DRIM comparison with state-of-the-art edge aware approaches.1st - row output of the edge aware technique; 2nd row -
DRIM metric [12] with probability of 75%; 3rd row - DRIM metric [12] with probability of 95% (for both images). Parameters used - Farbmann et
al. [10] multiscale approach balanced - Fattal’s [11] ↵ = 0.8, � = 0.12 and � = 0.9 - Paris et al. [9] �r = log(2.5), ↵ = 0.5 and � = 0.0 (for conveying
the local e↵ect) - The Present HOR � = 0.7, � = 0.9.
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Image Farbman [10] Fattal [11]. Paris [9] HOR
1 AhwahneeGL R 0.28 G 3.72 B 0.0 R 0.22 G 3.0 B 0.0 R 0.6 G 6.16 B 0.0 R 0.26 G 5.24 B 0.0

2 Belgium R 0.0 G 0.0 B 0.0 R 0.11 G 0.35 B 0.0 R 0.0 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0
3 Cadik1 R 0.0 G 1.34 B 0.0 R 0.2 G 5.1 B 0.73 R 0.0 G 3.44 B 0.0 R 0.0 G 0.0 B 0.0

4 smallO�ce R 0.0 G 0.0 B 0.0 R 0.14 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0
5 Cadik2 R 0.0 G 4.0 B 0.0 R 0.0 G 3.02 B 0.0 R 0.0 G 8.4 B 0.0 R 0.0 G 0.89 B 0.0

6 Kitchen R 0.0 G 0.0 B 0.0 R 0.19 G 0.22 B 0.0 R 0.0 G 0.8 B 0.0 R 0.0 G 0.0 B 0.0
7 GroveD R 0.0 G 0.0 B 0.0 R 0.29 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0

8 Synagouge R 0.0 G 0.0 B 0.0 R 0.13 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0
9 Cathedral R 0.0 G 0.0 B 0.0 R 0.23 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0 R 0.17 G 0.0 B 0.0

10 Clockbui R 0.0 G 0.0 B 0.0 R 0.14 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0
11 Desk R 0.0 G 0.86 B 0.0 R 0.31 G 3.0 B 0.0 R 0.11 G 1.78 B 0.0 R 0.23 G 0.96 B 0.0

12 FogMap R 0.13 G 0.8 B 0.0 R 0.14 G 0.79 B 0.0 R 0.0 G 0.0 B 0.0 R 0.25 G 0.74 B 0.0
13 Memorial R 0.1 G 2.4 B 0.0 R 0.27 G 7.1 B 0.0 R 0.24 G 7.9 B 0.0 R 0.13 G 3.9 B 0.0

14 DesignCenter R 0.0 G 4.35 B 0.0 R 0.6 G 20.6 B 0.0 R 0.0 G 18.0 B 0.0 R 0.18 G 4.2 B 0.0
15 Tinterna R 0.0 G 0.0 B 0.0 R 0.27 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0

16 Yosemite R 0.0 G 0.0 B 0.0 R 0.32 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0
17 Doll R 0.0 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0 R 0.31 G 0.13 B 0.0

18 Paull R 0.0 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0 R 0.0 G 0.0 B 0.0 R 0.11 G 0.0 B 0.0
AVERAGE R 0.028 G 0.97 B 0.0 R 0.19 G 2.38 B 0.041 R 0.053 G 2.2 B 0.0 R 0.09 G 0.89 B 0.0

Table 1: DRIM results over the set of images presented in Figure 9. We show the percentage of pixels with probability of 95% that
present the distortion of reverse (R), loss (G), or amplification (B) of contrast.

The visual analysis of the results shows that in the431

case of probability 75% the state-of-the-art methods432

show a consistent number of distorted pixels localized433

in large areas, when compared with the present HOR.434

On the other hand, when the probability increases to435

95%, the size of these areas are either reduced or are436

almost not a↵ected by any distortion. However, in some437

cases the state-of-the-art methods are still showing large438

areas of lost of contrast (green) and reversal of contrast439

(red).440

Figures 13 and 14 are showing other results with the441

distortion maps with probability at 95%, where the all442

methods are showing similar behavior..443

Comparison with Simpler TMO’s444

One can observe that the global operators are faster445

and convey an overall better appearance (Artusi et446

al. [28]). For this purpose, we have computed the447

DRIM maps for a well known global version of two448

TMOs published by by Reinhard et al. [27] and Drago449

et al. [27]. The comparison is limited to the global op-450

erator showing that the quality of the results is not com-451

parable with the state-of-the-art edge aware techniques.452

The results are shown in Figure 12 for the distortion453

maps at probability of 95%.454

The results reveal that the DRIM obtained for the455

Reinhard et al. [27] and the Drago et al. [27] opera-456

tors often show larger areas of amplification of contrast;457

see the window area in Figure 12, in comparison with458

the results obtained by the majority of the edge-aware459

techniques employed in this experiment.460

Figure 12 (2nd row shows reversal of contrast, in461

large areas of the window, for both global operators.462

On the other hand, the edge-aware techniques have very463

tiny areas a↵ected by reversal of contrast. Moreover,464

we emphasize in general that global operators are not465

designed for edge-awareness and do not encapsulate466

mechanisms for retaining the fine details at di↵erent467

spatial scale, as in the case of the present HOR and468

edge-aware techniques.469

6.2. Computational Analysis470

Another aspect that needs to be taken into account471

is the computational cost associated with the di↵erent472

algorithms. Here, we have performed a computational473

cost analysis for the proposed technique versus other474

state-of-the-art techniques.475

Our approach presents computational complexity and476

associated cost comparable to the one presented in [11,477

10] and outperforming the method of [9] .478

Specifically, the method presented by Paris et al. [9]479

requires 1738 sec to process an image size of 800x525,480

420 sec for an image size of 400x262 and 190 sec. for481

an image size of 267x174. When compared with the482

computational cost of our method and the approaches483

of [11, 10], the computational cost is significantly re-484

duced: 14 sec to process an image size of 800x525, 3485

sec for an image size of 400x262, and 1 sec for an im-486

age size of 267x174.487
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Image Farbman [10] Fattal [11]. Paris [9] HOR
1 AhwahneeGL R 1.0 G 15.0 B 0.17 R 0.91 G 12.6 B 0.15 R 1.96 G 21 B 0.2 R 1.33 G 18.5 B 0.11

2 Belgium R 0.13 G 0.0 B 0.0 R 0.9 G 2.73 B 0.0 R 0.27 G 0.18 B 0.15 R 0.14 G 0.0 B 0.4
3 Cadik1 R 0.4 G 9.2 B 0.0 R 1.1 G 16.6 B 0.0 R 0.31 G 17.4 B 0.12 R 0.13 G 1.72 B 0.14

4 smallO�ce R 0.43 G 0.58 B 0.0 R 0.57 G 0.67 B 1.63 R 0.78 G 1.77 B 0.45 R 0.24 G 0.0 B 0.24
5 Cadik2 R 0.4 G 16.7 B 0.0 R 0.44 G 12.8 B 0.0 R 0.45 G 25 B 0.18 R 0.12 G 6.7 B 0.0

6 Kitchen R 0.0 G 0.0 B 0.0 R 0.92 G 4.9 B 0.0 R 0.3 G 0.11 B 0.16 R 0.0 G 0.59 B 0.0
7 GroveD R 0.15 G 0.0 B 0.13 R 5.9 G 0.42 B 0.67 R 0.5 G 0.0 B 0.32 R 0.79 G 0.0 B 0.4

8 Synagouge R 0.18 G 0.1 B 0.15 R 2.4 G 3.8 B 0.1 R 0.1 G 0.0 B 0.3 R 0.3 G 0.38 B 0.81
9 Cathedral R 0.0 G 0.0 B 0.15 R 2.29 G 1.14 B 0.57 R 0.64 G 0.0 B 0.0 R 1.66 G 0.76 B 2.0

10 Clockbui R 0.29 G 0.0 B 0.0 R 0.61 G 0.0 B 0.20 R 1.12 G 0.0 B 0.6 R 0.6 G 0.18 B 0.24
11 Desk R 0.4 G 3.9 B 0.12 R 2.28 G 10.2 B 0.18 R 1.9 G 8.6 B 0.54 R 3.03 G 5.11 B 0.73

12 FogMap R 0.34 G 0.73 B 0.0 R 0.0 G 2.15 B 0.03 R 1.1 G 19 B 0.0 R2.45 G 18.6 B 0.0
13 Memorial R 0.6 G 14.8 B 0.0 R 1.55 G 23.5 B 0.0 R 1.9 G 26.9 B 0.0 R 0.97 G 18.7 B 0.0

14 DesignCenter R 0.31 G21.7 B 0.0 R 3.8 G 30.5 B 0.0 R 0.55 G28.7 B 0.0 R 1.35 G 22.0 B 0.0
15 Tinterna R 0.5 G 0.0 B 0.6 R 3.7 G 0.63 B 0.55 R 0.18 G 0.11 B 0.57 R 0.17 G 0.0 B 4.36

16 Yosemite R 0.23 G 0.0 B 0.0 R 4.1 G 0.49 B 0.21 R 0.38 G 0.0 B 0.48 R 0.15 G 0.0 B 0.45
17 Doll R 0.13 G 0.0 B 0.35 R 0.82 G 3.6 B 0.14 R 0.35 G 0.31 B 0.2 R 1.7 G 1.5 B 0.53

18 Paull R 0.18 G 0.0 B 0.1 R 1.8 G 0.36 B 0.25 R 0.24 G 0.1 B 0.4 R 2.5 G 1.22 B 0.4
AVERAGE R 0.32 G 4.81 B 0.098 R 1.89 G 7.06 B 0.26 R 0.72 G 8.29 B 0.26 R 0.98 G 5.33 B 0.59

Table 2: DRIM results over the set of images presented in Figure 9. We show the percentage of pixels with probability of 75% that
present the distortion of reverse (R), loss (G), or amplification (B) of contrast.

Recently, Aubry et al. [14] presented a fast im-488

plementation of Paris et al. [9] technique that signif-489

icantly improves its computational performances (50490

times faster). However, our comparison is done on the491

Matlab implementation of the all techniques used in the492

evaluation, as provided by the authors, without includ-493

ing any optimization. Even if we apply the 50-fold im-494

provement in the measured time of the Matlab imple-495

mentation of Paris et al. [9], the present HOR delivers496

an excellent overall performance.497

7. Concluding remarks498

We have introduced a new edge preserving tech-499

nique that makes use of a HOR method, which is able500

to preserve edges without introducing artifacts and re-501

ducing any changes in the image structure when com-502

pared to the state-of-the-art edge preserving operators.503

The present method does not require an extra stop-edge504

function, thus o↵ering simplicity. Futhermore, its com-505

putational cost increases linearly in time. We have506

demonstrated the accuracy of the present technique on a507

variety of images and parameter settings. The use of the508

HOR technique in other applications such as details en-509

hancement and image colorisation is also possible and510

will be part of future work. The proposed HOR tech-511

nique will be further implemented in graphics hardware512

with reference to video applications, allowing substan-513

tial improvements in computational performance.514
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Figure 13: Output and DRIM comparison with state-of-the-art edge aware approaches. 1st and 3rd - rows output of the edge aware techniques; 2nd

and 4th rows - DRIM metric [12] with probability of 95%. Parameters used - Farbmann et al. [10] multiscale approach balanced - Fattal’s [11] ↵ =
0.8, � = 0.19 and � = 0.9; - Paris et al. [9] �r = log(2.5), ↵ = 0.5 and � = 0.0 (for conveying the local e↵ect) - The Present HOR 1st row: � = 0.4, �
= 0.8; 3rd row: � = 0.6, � = 0.8.
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Figure 14: Output and DRIM comparison with state-of-the-art edge aware approaches. 1st and 3rd - rows output of the edge aware techniques; 2nd

and 4th rows - DRIM metric [12] with probability of 95%. Parameters used - Farbmann et al. [10] multiscale approach balanced - Fattal’s [11] ↵ =
0.8, � = 0.19 and � = 0.9; - Paris et al. [9] �r = log(2.5), ↵ = 0.5 and � = 0.0 (for conveying the local e↵ect) - The Present HOR 1st row: � = 0.6, �
= 0.9; 3rd row: � = 0.7, � = 0.9.
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