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Abstract

There are two frequent artifacts in crowd simulation caused by navigation mesh design. The first appears when all agents attempt
to traverse the navigation mesh and share the same way points through portals, thus increasing the probability of collisions with
other agents or queues forming around portals. The second is caused by way points being assigned at locations where clearance
is not guaranteed, which causes the agents to either walk too close to the static geometry, slide along walls or get stuck. To
overcome this we use the full length of the portal and propose a novel method for dynamically calculating way points based on
current trajectory, destination, and clearance, therefore guaranteeing that agents in a crowd will have different way points assigned.
To achieve collision free paths we propose two novel techniques: the first provides the computation of paths with clearance for
cells of any shape (even with concavities) and the second presents a new method for calculating portals with clearance, so that the
dynamically assigned way points will always guarantee collision free paths relative to the static geometry. In this paper, we extend
our previous work by describing a new version of the algorithm that is suitable for a larger number of navigation meshes, while
further improving performance. Our results show how the combination of portals with exact clearance and dynamic way points
improve local movement by reducing the number of collision between agents and the static geometry. We evaluate our algorithm
with a variety of scenarios and compare our results with traditional way points to show that our technique also offers better use of

the space by the agents.
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1 1. Introduction

2 Applications such as video games require characters within
s a crowd to follow visually convincing paths in real time. Char-
s acters should move towards their destination along a realistic
s path, and at the same time maintain an appropriate amount of
s clearance with respect to the obstacles and avoid collisions with
7 other agents as smoothly as possible.

8 Navigation meshes (NavMeshes) are commonly used to carry
s out navigation of autonomous characters. NavMeshes consist
10 of a data structure that encodes the free space of the scene by
1 splitting it into convex polygons, known as cells. A Cell-and-
12 Portal Graph (CPG) is obtained where a node represents a cell
13 of the partition and a portal is an edge of the graph that con-
12 nects two adjacent cells. Then, given a start and a goal posi-
15 tion, paths can be calculated through a variant of the classic A*
16 algorithm. Finally, at every step of the simulation, a local move-
17 ment algorithm is applied in order to guide the agent through the
1s obtained path by computing intermediate goal positions (com-
19 monly known as way points) that connect the different nodes of
20 the path.

21 When simulating a variety of characters, it is convenient to
22 be able to calculate the shortest route for the characters based on
23 their size. If we think of applications such as video games, this
2« would allow a skinny character to escape from a large monster
25 by running through a narrow passage. The algorithm imple-
2s mented must also be efficient, as for a large scenario the paths
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27 for all characters need to be calculated within a small fraction
2s of a second.

29 The method used to compute the way points is also critical
% in order to produce visually convincing routes. Most proposed
a1 solutions are based on computing a single point over the portal
a2 (usually at the center, or at the endpoints of the portal), so most
as agents share the same way point. This results in agents that
as tend to line up when approaching the portal from the same side,
ss or form bottlenecks when attempting to cross the portal from
ss different directions. These perceptually unpleasant artifacts ar-
3 tificially reduce the flow rates through portals and the overall
as time for agents to reach their destination. An algorithm that can
s run in real time by assigning different way points to different
a0 characters can mitigate these issues.

at Previous work is either bounded to a specific amount of
s clearance, only works with a specific type of navigation mesh
s (e.g. triangular meshes, medial axis), or calculates portal clear-
44 ance on a per cell basis ignoring neighboring cells [1]. In con-
ss trast, our method is able to deal with an arbitrary amount of
ss clearance and can work with any type of NavMesh. This ap-
47 plies even if cells are not strictly convex, or are too narrow.

P Main Contributions. This paper presents a novel system
49 to guarantee character trajectories with clearance that make the
so most of the available free space in the NavMesh. We present
st three contributions. Firstly, a novel technique to dynamically
s2 use the whole collision free space of portals to assign way points.
ss Secondly, a novel method for calculating clearance in naviga-
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s« tion meshes consisting of cells of any shape. Finally, a general
ss new technique to compute clearance over portals considering
ss edges of neighboring cells. The algorithm is both straight for-
s7 ward and computationally efficient to allow the simulation of
ss large crowds.

s 2. Related Work

60 Path planning of autonomous characters in virtual environ-
¢t ments is a central problem in the fields of robotics, videogames,
ez and crowd simulation. The most popular solutions are based on
es 2 combination of global and local movement techniques.

64 The target of global navigation techniques is to provide a
es representation of the free space of the scene that is usually ob-
es tained by either constructing a roadmap or a navigation mesh.
¢z The main objective of both approaches is to generate a graph
es that can be used by a search algorithm (usually A* [2]) to find
6o a path free of obstacles between two points in the scene.

70 The roadmap approach [3][4][5][6] captures the connectiv-
n ity of the free space by using a network of standardized paths
72 (lines, curves). The main limitation of this representation is
73 that it does not describe the geometry of the scene, nor where
74 the obstacles are. Consequently, avoidance of dynamic obsta-
75 cles is usually a hard task and not always possible, as exposed
76 in [5]

e The navigation mesh approach [7][8][9][10][11][12] con-
78 sists of the partition of the navigable space of the scene into con-
79 VeX regions, guaranteeing that a character can move between
s two points of the same cell following a straight line, without
a1 getting stuck in local minima. NavMeshes have become more
s popular than roadmaps as the representation of the free space is
s more intuitive, clean, and provides a better description of loca-
s+ tion of the obstacles. We therefore focus on this environmental
&5 decomposition technique.

8 Local movement techniques aim to provide a mechanism
o7 for the autonomous characters to move from one location to the
ss NEeXt in a path in a smooth and natural manner, while avoiding
a0 collisions with dynamic obstacles. These methods are generally
90 driven by setting way points within the portals of the NavMesh
ot that work as attractors to steer the agents in the right direc-
o tion [13][14][15][16][17][18]. The main problem of this ap-
s proach is that characters tend to line up as they share the same
o attractor point over the portal. Some methods for achieving va-
o5 riety in characters’ routes have been proposed. For example
9 Pettre et. al. [19] presented a solution for roadmaps based on
o7 having a denser sampling of nodes, which allows for a better
s use of the free space at the expense of longer computational
o time. Other approaches using skeletons [20] allow for larger
100 or smaller distances to the skeleton depending on crowd den-
101 sity. The problem with this later approach is that characters are
102 spread as the density increases, but when densities are low they
103 all tend to follow the same trajectories.

An improvement to traditional way points was introduced
105 in [21] by using way portals where the whole length of the por-
106 tal can be used to attract the local movement of the agents, thus
107 resulting in more natural looking paths. However, this method

104

108 does not properly address the problem of clearance, as it as-
100 sumes that a cell is accessible by a character if the length of the
1o portal that needs to be crossed is greater than or equal to the
11 diameter of the character, which is not always the case as we
112 will show in this paper.

In order to carry out path planning and guarantee that the re-
14 sulting paths will have an arbitrary amount of clearance, a com-
11s mon solution consists of enlarging the obstacles by a specific
11 amount of clearance known as the Minkowski sum. An exam-
17 ple of an application using this method is Recast [22]. The main
11s advantage of this approach is that every calculated path has the
119 desired amount of clearance and as it is calculated offline, it
120 does not have an impact on the performance of the path finding
121 algorithm being used. However, its major drawback is that it is
122 bounded to a specific value of clearance, so all characters must
123 have either this size or smaller.

In [23], Kallman introduced a new type of triangulation
125 called Local Clearance Triangulation (LCT) that allows paths
126 to be computed free of obstacles with arbitrary clearance. Such
127 triangulation is obtained by a process that iteratively refines the
128 Constrained Delaunay Triangulation (CDT) resulting from the
129 starting set of obstacles. The resulting structure determines if
130 there exists a path free of obstacles for a given clearance value.
131 However, it introduces more cells in the partition of the scene,
132 thus dropping the performance of the path finding algorithm.
133 Another limitation of the method is that it only works for the de-
134 scribed LCT but cannot be generalized to any navigation mesh.
In [24], the Medial Axis of the set of obstacles is extracted
136 to create a new data structure called the Explicit Corridor Map
137 (ECM). The ECM computes the shortest path, the path that has
138 the largest amount of clearance, or any path in between. This
139 work has been further extended to calculate a finer set of at-
140 tractors to obtain smoother paths [25][26]. Straight skeletons
141 have also been used to calculate roadmaps for path finding of
122 multiple characters [20].

143 In [1] an algorithm to calculate paths with clearance for any
144 type of NavMesh was introduced. However the algorithm cal-
s culated clearance on a per cell basis, ignoring the fact that in
146 some navigation meshes with narrow cells, clearance may be
147 defined by edges of neighboring cells. In this work, we extend
18 the previous algorithm to make it suitable for a larger number of
149 navigation meshes by introducing a recursive step, and we also
1s0 present new techniques to improve efficiency for several steps
151 of the algorithm.
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152 3. Clearance Value of a Cell

Given a cell C, we define a cell cross as the pair ( Py, P»)
15« of C, where P is the entry portal and P, is the exit portal.
155 We classify the obstacle edges of the cell into edges to the left
156 (stringLeft) and edges to the right (stringRight) in respect to the
1s7 path that crosses the cell from the entry portal to the exit portal
158 (see Figure 1). Note that it is not necessary to have strictly con-
159 vex cells, as cells generated by NEOGEN [12] are allowed to
10 have certain concavities depending on the convexity relaxation
161 threshold chosen when creating the mesh.
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162 The algorithm examines every portal endpoint and notch
163 (i.e., a vertex such that its internal angle is greater than ) present
164 in stringLeft and determines the closest edge in stringRight.
1s The distance between the notch and the closest edge is the clear-
166 ance value of this notch. Note that in this case, the endpoints of
167 each string must be treated as if they were notches. If the clos-
168 est edge to the notch is a portal edge, the algorithm recursively
1es checks the distance between the notch and the edges lying in
170 the adjacent cell through the portal. The clearance value of the
171 left string cl;, is the minimum of those distances. To compute
172 the clearance value of the right string clg, we proceed in the
173 same way. Finally, the clearance value of the described path is
17+ computed as follows:

cl(P1,P>) = min(cly, clg) (D
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Figure 1: Clearance calculation for a given cell.

176 It is only necessary to check the distance of the notches of
177 the string against the edges of the opposite string, as in the case
178 of a convex vertex, the distance to the opposite string must be
179 greater than or equal to the clearance value of the cell. This pro-
180 cess is done off-line once the NavMesh of the virtual scenario
11 has been generated and, for each cell, we store in a table the
182 clearance value of every possible cell cross. This is because it
183 is possible to have a cell with three or more portals, where an
184 agent with a large radius can walk for example from portal P,

185 t0 P, but not from portal P; to P3 (see Figure 2).

cl(P1, P2)

cl(P1, P3)

cross(P1, P2)

eross(P1, P3)

®

Figure 2: Example of different clearance depending on the crossing path
through a cell.

18s 4. Finding Portals with Enough Clearance

187 In order to avoid artifacts such as characters bouncing, slid-
188 ing or getting stuck on the edges of the geometry, we should
19 only assign way points that have enough clearance (i.e. that
10 they have the required distance from the static geometry for
191 the character to traverse the portal without collision). Note that

Figure 3: Examples of fixed way points that cause collisions. On the left, the
way point is fixed at the center of a cell which causes a collision with the geom-
etry. On the right the way point is assigned at a distance r of the portal endpoint
also causing collision.

192 fixing way points to the center of the cell does not always guar-
193 antee collision free traversals, as shown in Figure 3.

Let C4 be the cell where the character is currently located,
155 Cp be the next cell in the path and P the portal that joins both
196 cells. We want to calculate the sub-segment #’ of # such that
1¢7 all points in $” have enough clearance.

198 The algorithm for finding portals with enough clearance
19 proceeds by reducing the size of the original portals based on
200 the following three cases:

194

200 1. Limitations given by the endpoints of the current portal.
2. Limitations given by the endpoints of the portals that must
be crossed to go from the current cell to the target cell in
the path (usually portals in either C4, Cp or their neigbor-
ing cells).

Limitation given by obstacle edges of the adjacent cells
(or neighbors).

202
203
204
205

206 3 .

207

208 Cases 1 and 2 assume that the endpoints of portals are lo-
200 cated over obstacles as occurs in most navigation meshes. In
210 the case of grid based navigation meshes or when T-joints exist
211 between portals, this would not be the case for certain portals
212 and thus the algorithm should only consider those endpoints
213 that are located over obstacles.

Case 1: The algorithm starts by displacing each endpoint
215 of P a distance of r units towards the center of the portal as we
216 can see in Figure 4. The resulting sub-segment $” has enough
217 clearance only if the other edges in C4 and Cp are at a distance
218 greater than or equal to r from #”. If not , this sub-segment must
219 be further refined to guarantee collision-free traversability.

214

Figure 4: Example portal # that connects C4 and Cp. The shrunk portal $’
is initialized by displacing the endpoints of the original portal # a distance r
towards its center.

In order to further shrink portal #’ based on cases 2 and 3,
221 we need to consider portals and edges as if they were defined

220
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222 for each cell in counter-clock wise order (Figure 5 depicts this
223 situation). C4 and Cp are thus two polygons with vertices given
224 in counter-clockwise order. P can then be treated as two iden-
225 tical overlapping segments given in opposite order depending
226 on which cell they belong to. We refer to them as P45 for the
227 oriented edge that belongs to C4, and Pp4 for the oriented edge
228 that belongs to Cp.

Figure 5: C4 and Cp separated by P are in fact two independent polygons with
their vertices oriented in counter-clockwise order, so # is the overlapping of
PA B and PBA-

Case 2: Let Cp be an intermediate cell on the character’s
220 path (i.e., a cell that is neither the starting cell of the path nor
231 the final one). In this case we have to cross the cell by crossing
232 two portals, an entry portal # and an exit portal Ppc (portal that
233 connects cell Cp with the next cell in the path C¢). In such a sit-
234 Uation, it is possible that the endpoints of #’ are determined by
23 the endpoints of any exit portals in Pgy, ..., Pen, where Pg; indi-
236 cates a portal in the sequence of portals that needs to be crossed
257 to go from Cp to the final cell in the path Cg,y. This occurs
2:s when one (or both) endpoint of a portal P; is at a distance less
230 than or equal to the desired clearance value from the entry por-
200 tal . To handle this situation, we check if a circumference (of
21 radius=agent’s clearance) centered on the endpoints of the first
222 eXxit portal Ppc intersects with #’. If this intersection exists, we
213 update P’ accordingly and the process continues iteratively by
224 checking the next exit portal. The algorithm stops when we find
2s5 the first exit portal Pg; that fails the test (none of its endpoints
246 determines the endpoints of $”) or when Cg,,y is reached.

We take the polygons with oriented edges from Figure 5,
208 and define Pp4 [0] as the origin of the oriented portal P4, and
29 Ppa [1] as the end. As the portals are also given in counter-
2s0 clockwise order, we can state that the origin of any portal can
251 only limit the clearance of the end of the portal for which we
252 are calculating clearance, so Ppc [0] can only shorten g4 [1],
2ss and Ppe [1] can only shorten #’ g4 [0]. The algorithm to further
254 shorten $’ g4 continues through the following two cases:

229

247

255 e If the circumference centered on Ppc [0] intersects P’ pa
at a single point, then ' g4 [1] is set to be this intersection

point.

256

257

258 e If the circumference centered on Ppc [0] intersects P’ ga
at two points, then $'4 [1] is set to be the intersection

point that is furthest from Ppg4 [1].

259

Similarly, a circumference centered on Pp¢ [1] is checked
262 for intersections against ' g4 to determine if ' g4 [0] needs to

261

263 be updated. Figure 6 shows the result of the algorithm using
2s« an example cell. Figure 7 illustrates the importance of respect-
2ss ing the ordering of the portals when calculating portals with
26s clearance. Even though in both cases the characters can walk
27 through the portals, in the first case (Figure 7 top) the way
268 points assigned over the portals would continuously push the
269 Characters to collide with the static geometry.

O
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Figure 6: The endpoint £’ g4 [1] of the entry portal is determined by the end-
point Ppc [0] of the exit portal, as the circumference centered on Ppc [0] in-
tersects P’ g4. The other end of P’ g4 is not modified, as the circumference
centered on Ppc [1] does not intersect P’ ga.

Figure 7: On the top we can see an example of what the character’s trajectory
would be if £’ was not shrunk respecting the direction of the portals. The
trajectory leads to a collision with the static geometry. On the bottom we can
see the trajectory when clearance is calculated correctly.

270 Case 3: The final case to consider takes into account whether
271 any obstacle edge limits the clearance of the portal. This can
272 happen when an edge or portal of the current cell is at a dis-
273 tance smaller than the clearance value of the portal that we are
274 shrinking. In the case of portals, the process must be repeated
275 recursively.

Given a cell Cy, with a set of vertices in counter-clockwise
277 order {vg, v, ..., vV, }, where each consecutive pair of vertices in
2z the sequence defines an oriented edge of the cell, i.e: €.y is
279 the edge starting in vertex v; and ending in vertex v;, for i =
280 [0, n — 1]. We define the shrinking direction of an edge, 5 +1)s
281 as the unit vector perpendicular to the edge with its direction
22 pointing towards the interior of the cell (Figure 8).

The algorithm proceeds by displacing each edge &;;.1) a
28 distance of r units along its shrinking direction, §; 1), if the
2ss shrinking direction points towards the portal (otherwise there is
256 N0 chance of intersection). After displacement we obtain V' (i)

4
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257 and V' (i + 1) as the results of displacing vertices v; and vy .
28 For each displaced edge e (ii+1)» we calculate its intersection
280 against ' g4, and if such an intersection exists, the correspond-
290 ing endpoint of #’ 54 is updated depending on the direction of
291 e_;(,;m)as follows:

1. if the edge is an obstacle edge:
(a) If in) is on the side of Cp and in " is on the side of
Ca, then Pp4 [0] is set to be the intersection point.
(b) If vED is on the side of C4 and VEi ) is on the side of
Cpg, then ' g4 [1] is set to be the intersection point.
2. if the edge is a portal leading to Cp:
(a) If in) is on the side of Cp and vzi " is on the side of
Cj4, then repeat the algorithm for the edges in Cp to
update Ppy [0] if necessary.
(b) If in) is on the side of C4 and vzm) is on the side of
Cp, then repeat the algorithm for the edges in Cp to

update P’ g4 [1] if necessary.

292
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304 Figure 8 shows this process over the example scenario with
as @ magnified view of the area of interest. The same process is
s performed for P’ 4p and finally, $’ is computed as the resulting
a7 sub-segment of the intersection between 45 and #’ 4. Every
a0s point in #”’ is guaranteed to have enough clearance. Figure 9

as shows the result of the algorithm.

P10

!
VU (i+1) 'sa

Figure 8: Close up of the top left of Figure 6 with the shrinking process due to
displacing edges.
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Figure 9: Final result #’ after calculating the merging of the intermediate solu-
tions P’ op and ' p4. The resulting shrunk portal before merging illustrates the
application of the three cases: Case 1 can be seen in ¢, Case 2 results in b and
case 3 in a and d. P’ is given in this example by the most limiting endpoints
which are @ and b.

To accelerate the computation of the shrunk portal, we store
art the result of the transformation for a particular value of clear-
a2 ance in a table. The next time that the portal needs to be shrunk,

310

a1s the table is checked for that particular clearance value so it does
a2 not need to be computed again.

In general, Case 3 will always be the most restrictive and
as thus the key calculation, however there can be exceptions such
a7 as illustrated in Figure 10 where case 3 does not limit the clear-
ais ance of the portal. Therefore all three cases are necessary, as if
a1s we simply use distance from endpoints we would fail to gener-
a20 ate natural paths in certain scenarios.

315

Figure 10: These examples show different situations where portal clearance is
not defined simply by Case 3, and thus Cases 1 and 2 are necessary.

In Figure 11 we show an example where the recursive step
a2 would be necessary to compute exact clearance over the portal.
a2s Without recursivity the clearance on the left extreme of the por-
a2« tal would be given by the end point on the left hand side of the
a5 neighbouring portal, but with recursivity it is further reduced to
a2s the new intersection point a.

321

Figure 11: Example where the recursive step is necessary to compute clearance
correctly.

Critical Radius:

All our calculations are required to perform in real time and
a2s We have already described an approach to speed up the sys-
a0 tem by storing information about clearance for agents of dif-
aan ferent radii. Other agents with radius similar to those already
aa2 stored can then look up the information from a table instead of
aws re-calculating. An additional technique implemented to speed
aa Up the process consists of pre-calculating a critical radius, p.
as The critical radius is defined as the maximum radius for which
xs clearance depends exclusively on keeping a distance p from the
a7 portal endpoints. It is calculated by computing the minimum
xs distance to an obstacle edge with its shrinking direction point-
s ing towards the current portal. During run time, only agents
ao Of radius larger than p need to compute the portal clearance

327
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aar algorithm described in this section. Agents with radius r be-
a2 low p only need to keep a distance of r from the portal end-
ass points. As the critical radius is calculated off-line, this provides
ass a speed up of 1.15 times faster on average during the real-time
ass calculations. This speed up has been calculated over a variety
as of scenarios, most of them handmade to fully test the method.
a7 However in most of the scenarios obtained with NEOGEN, por-
s tal clearance is influenced exclusively by the portal endpoints,
a9 and thus the number of portals for which the full clearance al-
aso gorithm needs to be executed will be minimal.

st 5. Dynamic Way Points

352 The method used to steer the character from one cell to
ass another is a key aspect to create natural routes in navigation
as« meshes. When way points are assigned at a fixed position, usu-
ass ally the center of the portals, animation artifacts arise (Figure
ass 12). The most common artifacts are line formation among char-
357 acters that move in the same direction, and bottlenecks caused
ass by characters crossing cells in opposite directions and being
ase forced to pass through the same point. A typical approach in
a0 video games consists of setting the way points at a distance r
st from the closest endpoint of the portal (where r is the radius
a2 of the character). This solution provides slightly more natural
sss paths since paths are apparently shorter and at least two way
as4 points are available for each portal, but it does not completely
ass solve the problem. Our work focuses on dynamically calculat-
a6 ing way points over the shrunk portal (Figure 13).

Figure 12: Typical lining up artifacts and bottlenecks when way points are set
at either the center (left) or the closest endpoint of the portal (right).

367 Our dynamic way point assignation is based on the position
ses Of the character within the cell. First of all, we check if the
ase goal position of the character is visible from its current position
ano (i.e., the segment joining the current and the goal position of the
a7 character only produces an intersection with portal edges). In
a72 that case, the attractor point is simply the goal position. If the
a7s segment does intersect with at least one obstacle edge, we need
a7+ to compute a way point over the next portal in the path to steer
ars the character towards the next cell of the path. Our target is to
a7e avoid characters having the same attractor point, so we compute
a77 the orthogonal projection point ¢ of the current position of the
a7e character p over #’, where #” is the shrunk portal after applying
a7e the algorithm described in section 4 over the portal . If q lies
aso outside the limits of #’, then the furthest endpoint of " with
as1 respect to the current position of the character is selected as a
a2 temporal attractor, until q is valid.

383 The position of the characters is given by the local move-
as« ment algorithm used to steer them. This algorithm will natu-
ass rally move characters away from each other to avoid collision.
ass Each character’s position approaching a portal will be different,
a7 SO their projection over the portal will also be different making
ass it virtually impossible for two different characters to share the
ass Same attractor point over the portal if the characters are at risk

aso Of colliding.

O Way points
£3goals

Portal end points
@ = =®Portal with clearance

Figure 13: The attractor point of the red character is its own goal since it is
visible from its current location. The green character has its orthogonal pro-
jection, q,, over the portal as its way point, whereas the blue character has the
farthest away endpoint of the portal assigned as its way point, since its current
orthogonal projection lies outside the portal with clearance #’.

391 We have determined empirically that in the case of q being
aez invalid, the furthest endpoint of #’ is a better candidate as a
ass temporal attractor than the closest one. This is because when
a4 the steering attractor is the closest endpoint, the character tends
ass to move too close to the walls, producing a bad quality route.

36 6. Local Movement

The local movement algorithm is based on a simple steer-
ass ing behavior with some extension to include physical forces as
ase described in HiDAC [15]. Collision detection and repulsion
a0 forces between agents are calculated using the Bullet Physics
st Engine [27]. We have also used this library to perform cal-
a0z culations to speed up the detection of agents crossing portals.
w03 Agents move towards their next assigned dynamic way point
a0« While avoiding the static geometry and other moving obstacles.
a0s In order to keep track of the cell in which the character is lo-
a0s cated we have taken advantage of some of the features that the
a7 Bullet Physics Engine offers. By assigning a rigid body to the
a0s floor of each cell, we can efficiently compute the intersection
a0 between the character and the cells using Bullet’s space parti-
410 tioning.

This solves artifacts that usually appear when agents ap-
a1z proach their assigned way point, and end up moving back and
a3 forth trying to reach the threshold distance to the target point.
a2 With our technique, a portal can be crossed at any point inde-
15 pendently of the distance to their next assigned way point.

ss  Note that with the method described above to detect when
a17 agents cross portals, we improve the local movement of both
a1s centered and dynamic way points. Traditional center way points
a9 require the agents to be a certain distance from the way point
s20 in order to assign the next portal. In many cases this leads to

6
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s21 agents moving back and forth around portals as they attempt to
s22 reach a specific distance from an attractor. In our implemen-
a2 tation this is not strictly necessary, as agents may cross portals
«24 despite not having reached their next way point. When this hap-
425 pens, they are immediately assigned to a new way point in the
426 next portal without losing track of their current cell information.
s27 This avoids a common problem that arises in many simulations
a2s Where the agents only update their current cell when they have
s20 reached their assigned way point, and thus agents may end up
430 “lost”.

431 7. Results

432 In order to evaluate the results obtained with our algorithm,
s we have carried out both qualitative and quantitative analysis.
w4 We have examined whether our clearance method combined
«s with dynamic way points achieves a better use of space, and
ss whether the performance of our algorithm is sufficient to work
a7 with large groups of agents in real time whilst computing paths
s With clearance and collision free way points.

Figure 14 (and the accompanying videos') shows a com-
o parison between using traditional way points (WP) at the center
aar of portals and our method with dynamic way points (DWP) for
a2 two example scenarios. The first scenario is shaped as a donut
a3 and the second is shaped as a cross with static obstacles ran-
s domly located. The local movement algorithm is the same for
s all scenarios, and it is based on a simple rule based model with
s collision avoidance, steering towards attractors (way points) and
a7 collision response. For each character, a random cell of the en-
s vironment is selected as its destination cell. A path finding al-
ae gorithm based on A* calculates the sequence of cells that the
ss0 character needs to walk through to go from its current cell to
«s1 the destination. Way points are assigned over portals connect-
ss2 ing consecutive cells. Once a character reaches its destination
ss3 cell, a new one is randomly assigned. Characters are consid-
sss ered to cross a portal as soon as the Bullet Physics Engine [27]
sss detects that the character has arrived in the next cell of the path.
sss Dynamic way points make better use of the space, use straight
«57 trajectories whenever possible and offer more natural looking
sss trajectories for the characters, even when using a very simple
aso rule based model for their local movement. When way points
a0 are fixed at the center of portals, we can observe that not only do
ss1 the paths not make use of the available space but also that they
a2 are more chaotic as characters bounce around portals trying to
a3 get close to the way point while avoiding each other.

Dynamic way points offer a better distribution of agents
ass over portals which allows more agents to cross portals simul-
ass taneously. This increases flow rates through portals since it
467 avoids artificial line formation. For example, in the donut sce-
s nario with 200 agents walking in the same direction, we observe
ass 22% higher flow rates.
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Figure 14: Comparison between having way points at the center of portals (on
the left) and dynamic way points (on the right) for the donut scenario with 25
agents (top row), large cross scenario with 50 agents (middle row) and close up
of the paths crossing a portal (bottom row).

an 7.1. Performance

an The following results have been obtained in an Intel Core
42 17-3770 CPU @ 3.40GHz, 16GB of RAM, NVIDIA GeForce
473 680GTX . Figure 15 compares the time spent per query (mi-
a7+ croseconds) of different versions of the portal shrinking method:

e SimpleShrink(-/+): A fast and simple method, commonly
used on videogames and other virtual applications, that
simply displaces the endpoints of the portal r units to-
wards its center. The (+) version uses a lookup table to
store previously computed shrunk portals, and the (-) cal-
culates it at every simulation step.

475
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480

ExactShrink(-/+): Our exact clearance solution described
in section 4. The (+) version uses a lookup table to store
previously computed shrunk portals while the (-) calcu-
lates it at every simulation step.

481 °
482
483

484

Each test case consists of a set of queries where, for each
sss query, we randomly chose a cell of the NavMesh, a trajectory
se7 to cross this cell (i.e. an entry portal and an exit portal) and a
a8 clearance value (0.5, 1 or 1.5).

The results of this experiment highlight the efficiency of
a0 our exact clearance method (ExactShrink(+)). The efficiency
s01 Of the algorithm increases with the number of queries as the
a2 chance of producing a redundant query is higher, and even-
ses tually, every query will be redundant. Results show that for
a4 the case of 1000 random queries, the cost of ExactShrink(+)
ass 18 just 1.41 times the cost of the most efficient version (in this
ass case SimpleShrink(-)) and 1.2 times for 2000 random queries.
a7 This means that the algorithm for calculating portals with ex-
ses act clearance presented in this paper (ExactShrink(+)) is around
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Figure 15: Comparison of the time taken per query (in microseconds) as the
number of queries increases for the different shrinking techniques.

a0 20% more time consuming for 2000 queries than simpler im-
so0 plementations, but it also guarantees that every computed path
sor Will have enough clearance with the static geometry. As the
s,z number of queries increases, this percentage is further reduced.
ses For the given example, we get a probability of hit of 50% for
ss 1000 queries, which means that one in two queries does not
sos need to be computed since it is already stored in the lookup ta-
sos ble, and 90% probability of hit when it reaches 6000. The time
so7 taken by the ExactShrink(+) algorithm converges towards the
sos SimpleShrink(+) method.

It is also important to emphasize that this increment in time
st0 does not have a big impact on the overall simulation since it is
s11 insignificant compared to the cost of Al rendering or physics.

509

512
s13 our method more robust without introducing a noticeable im-
s14 pact on the computational time.

515 The memory requirements to store the lookup table are min-
s16 imal, since for each radius size we only need two 3D point coor-
si7 dinates for the corresponding shrunk portal. For example, in the
s1s cross scenario with 208 portals, 3 character sizes and 12Bytes
s19 per 3D point, the total memory required is less than 15K.

As there are many elements that affect the resulting frame
s21 rate of an application, such as: rendering engine, physics li-
s22 brary, local movement algorithm, size of the scenario, size of
s23 the crowd, and so on, we are not interested in how many charac-
se4 ters we can simulate in real time, but in comparing our method
s2s for paths with clearance against the standard solution where
s26 characters walk towards way points fixed at the center of por-
s27 tals without checking for any kind of clearance against the static
s2s geometry. Figure 16 shows a comparison of the average frame
s20 rate achieved as the number of characters increases with and
s without our technique, when all the other elements of the simu-
st lation stay the same. This graph compares the standard solution
se2 (in red) against our technique (in blue). The results are practi-
s:s cally the same (less than 5% smaller frame rate on average with
ss our method), meaning that the computational time required to
sss calculate portals with clearance and dynamic way points is in-
sae significant within the overall simulation time. Both simulations
se7 can handle up to 500 characters in real time. Therefore we can
s claim that the computational cost of our technique is insignifi-
ss cant for the overall simulation time and that it provides results
se0 that are perceptually more convincing and make better use of
se1 the space, as shown in Figure 17 and the accompanying videos.
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Figure 16: Average frame rates obtained in the large ”‘cross™ scenario as the
number of characters increase for our method and a standard solution

sa2 7.2. Path ﬁndlng

s To show the results achieved by the path finding algorithm
s« With clearance, we can observe in Figure 17 the different paths
sss used by the characters depending on their size. The larger char-
sss acters only traverse those cells with a clearance larger than their
se7 radius. Another nice outcome of the presented method is the
sss use of space made by the characters depending on their size.
s0 We can observe in the image how as the characters’ size de-
sso creases, the final emerging trajectories of their color are wider,
ss1 since their way points are assigned over larger shrunk portals.

Including the recursive step when calculating clearance makes

ss2 7.3. Comparison of dynamic collisions

sss To demonstrate quantitatively that having dynamic way points
ss« not only provides better visual results independently of the lo-
sss cal movement algorithm used, but also drastically reduces the
sss number of collisions by spreading the crowd over the length
ss7 of the portal, we have run several experiments to compare the
sss average number of collisions for both fixed center way points
sse and dynamic way points. We account for a collision between
sso two rigid bodies at every tick of the physics engine (60x per
se1 second). Collisions are considered when an agent is in contact
ss2 with the geometry (which also accounts for agents being stuck
ses next to a wall due to a badly located way point)

As shown in Figure 18, for up to 100 agents the number of
sss collisions between agents is almost zero, since at low densities
ses there are not many chances of collisions and basic avoidance
se7 behavior can steer agents away from collisions. However once
ses the densities start increasing we can observe how even when
seo all the agents move in the same direction, collisions start ap-
s0 pearing. As the graph shows, the number of collisions for fixed
s71 center WP is much higher than for DWP, since forcing all the
s72 agents to move towards the same point leads to chaotic behavior
s73 with loops in the agents’ trajectories. This occurs for up to 175
s74 agents for the donut scenario, since from this point onwards the
s7s density of agents in the environment is so high that bottlenecks
s76 are almost impossible to avoid.

In Figure 19 we can observe a comparison between the
s7 average number of collisions per clock tick as the number of
s79 agents increases for fixed centered versus dynamic way points.
ss0 Our method to dynamically assign way points achieves a much
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Figure 17: Trajectories followed by characters of different size. From left to right, the larger characters (red, » = 2.0) will not use the narrower portals and thus
they can only walk through 97 of the 130 cells in the Navmesh, the medium characters can already get through most of the portals (yellow, r = 1.5) therefore being
able to walk through 110 cells, and finally the smaller size characters (green, r = 0.5) can walk through all the portals having the largest shrunk portals (walkable

cells=130).
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Figure 18: Comparing the average number of collisions per second between
agents for the donut scenario as the number of agents increases. We compare
dynamic way points against fixed center way points. On the top right we show
the scenario with 100 agents and on the top bottom with 175 agents

ss1 lower number of collisions between agents which not only re-
ss2 duces artificial bottlenecks in the environment, but also results
sea in smoother and more natural trajectories. As in the donut sce-
se4 Nario, once the number of agents increases beyond 125, differ-
sss ences in the number of collisions start emerging between DWP
ses and fixed center WP, until the total number is higher than 225.
se7 At this point, the high density of agents makes collisions in-
ses evitable, independent of the method used.
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Figure 19: Comparing the average number of collisions per clock tick between
agents for the cross scenario as the number of agents increases. We compare
dynamic way points against fixed center way points. On the top right we have
the cross scenario with 125 agents, and on the bottom right the same scenario
with 225 agents.

sso  While the graphs vary depending on the size of the scenario,
se0 length of portals and local navigation method, we observe that

so1 in all of our experiments, dynamic way points achieve better
se2 results than fixed center WP.

ses 7.4. Comparison of collisions against geometry

s« The main advantage of having exact clearance calculations
ses is that we guarantee that way points will only be assigned over
ses portals where collision free paths exist. To evaluate this quan-
so7 titatively, we have run several experiments using different sce-
s narios and compared the following methods: (1) dynamic way
see points (DWP) over portals with exact clearance, (2) DWP over
e00 portals with simple clearance, and (3) fixed center way points.
ot For the three methods, the local movement algorithm is the
ez Same, and the agents’ goal cell is chosen randomly every time
e0s they reach their destination. For each case we have counted the
e« number of collisions against the geometry that results from way
e0s points being badly assigned.

606 Obviously the results depend strongly on the quality of the
e07 portals created and the overall geometry. To show the poten-
e0s tial of our method, we have designed scenarios with several ex-
s amples of problematic portals (mostly ill-conditioned portals).
e10 Figure 20 shows the results of each of the methods in terms of
s11 paths followed by agents, and situations where they can easily
etz get stuck trying to walk through a portal that does not guaran-
e13 tee clearance. As shown in Cases 2 and 3, agents may even
e1a get completely stuck against the geometry, whereas with our
e1s exact clearance method, agents are always steered towards way
e16 points that guarantee traversability. This holds even for maps
617 with many ill-conditioned cells, such as the ones created man-
e1s ually for these experiments.

The quantitative results in terms of number of collisions
e20 against the geometry for this particular scenario are shown in
et Figure 21. The three methods use the same local movement
e22 algorithm, therefore the only difference comes from how and
e2s Where way points are assigned. Our method outperforms pre-
62« vious work with regards to reducing the number of collisions
e2s against the geometry. We have performed comparisons for dif-
s2s ferent crowd sizes. We have demonstrated that the differences
sz become less significant as the crowd size increases. This occurs
e2s because there is a point where collisions are due to the high den-
ez Sity of the crowd and not just the location of way points. In all
e cases, exact clearance provides the lowest number of collisions

619



Figure 20: Comparing paths between the three methods. From left to right:
(1) DWP over portals with exact clearance, (2) DWP over portals with simple
clearance, and (3) fixed center way points. The areas where agents get stuck
due to an ill-conditioned cell with a portal too close to the geometry (narrow
cell) are circled.

ea1 against the geometry. If we compare fixed center against dy-
ez Namic way points with simple clearance, fixed center performs
e3s better when it comes to avoiding collisions against the static ge-
e3¢ Ometry, since in most cases the center way point will be located
e at the furthest point from the geometry.
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Figure 21: Average number of collisions against the geometry for each method
tested (collisions counted at each clock tick, which corresponds to 60Hz).

63 Finally, Figure 22 shows the importance of using our exact
ea7 clearance calculation when there are ill-conditioned cells. In
e this example we can see the portal calculated with our exact
e method against the simple method often used in video games.
0 In both cases the segments over the portals that are traversable
e for each method are shown with a thin blue line. The character
ez for which this clearance has been calculated is also circled in
e3 blue. In both examples, a red agent is trying to move from cell
es A to cell B. Our exact clearance algorithm provides the exact
es segment over the portal that can be crossed without collisions
ess OF errors. In the case of simple clearance, we can observe how
e7 the character is being steered towards a position that will lead
ess to the wrong cell and to collisions against the geometry.

ss0 8. Conclusions

650 We have presented a general technique to compute paths
est free of obstacles with an arbitrary value of clearance that can
es2 be easily integrated in any existing navigation mesh system.

Our method can be divided into the following three steps.
ess Firstly, during the construction of the NavMesh, the clearance
ess value of each cell is computed in order to obtain paths that guar-

ess antee clearance when applying the A* algorithm. Secondly,

653

cella D)

-

Figure 22: Clearance calculated with our exact algorithm (left) and with the
simple clearance method (right).

es7 the portals of the path are refined by shrinking them depending
ess on the clearance required for each character and the surround-
eso ing geometry. Finally, way points over the shrunk portals are
eso computed based on the character position and hence, it mostly
es1 avoids two characters sharing the same attractor point.

Bullet Physics Engine [27] has been integrated in order to
ess improve the overall quality of the simulation. Although its main
e purpose is to solve the collisions against moving and static ge-
ess ometry, we have used Bullet to efficiently detect when a portal
ess crossing has been produced and avoided artifacts that arise in
es7 traditional methods as characters approach their target position.
Results show that our method is fast enough compared to
eso sSimplest implementations, but produces paths of higher qual-
e70 ity as it takes into account clearance for both path planning
e71 and way point calculations, and its dynamic assignation of way
e72 points along portals avoids characters lining up when crossing
e73 portals or causing bottlenecks.

674 We have tested our algorithm with NavMeshes of a vari-
e75 ety of scenarios created by NEOGEN [12] which is a NavMesh
e76 generator that provides an almost near-optimal number of cells
77 with very few ill-conditioned cells. To show the potential of our
e7s method even for other kinds of NavMeshes, we have also man-
e79 Ually generated navigation meshes with ill-conditioned cells.
For the qualitative evaluation of this work we have consid-
es1 ered that higher quality paths are those that tend to use most of
es2 the available space, avoid artificial line formation, reduce bot-
ess tlenecks and collisions. In this paper we have also provided a
ess quantitative evaluation of the improvements achieved with our
ess exact clearance method by counting collisions against static and
ess dynamic geometry. Results show how our method provides not
es7 only smoother paths with better usage of space, but also re-
ess duces the average number of collisions that are caused by way
eso points not being correctly assigned. Compared to our previ-
e0 ous work [1], we have made significants improvements in terms
eo1 Of generality as our new algorithm can handle a larger variety
ez Of navigation meshes, while improving performance with the
ess introduction of the critical radius and a revised version of the
e04 code.
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