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Abstract

We develop a comprehensive statistical framework for analyzing shapes of 3D faces. In particular, we adapt a recent elastic

shape analysis framework to the case of hemispherical surfaces, and explore its use in a number of processing applications. This

framework provides a parameterization-invariant, elastic Riemannian metric, which allows the development of mathematically

rigorous tools for statistical analysis. Specifically, this paper describes methods for registration, comparison and deformation,

averaging, computation of covariance and summarization of variability using principal component analysis, random sampling from

generative shape models, symmetry analysis, and expression and identity classification. An important aspect of this work is that all

tasks are preformed under a unified metric, which has a natural interpretation in terms of bending and stretching of one 3D face to

align it with another. We use a subset of the BU-3DFE face dataset, which contains varying magnitudes of expression.
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1. Introduction1

In recent years, there has been an exponential growth of ac-2

cessible 3D face datasets due to increasing technological progress3

in development of acquisition and storage sensors. The 3D face4

represents important cues for many applications such as human-5

machine interaction, medical surgery, surveillance, etc., and6

thus, studying the shape of facial surfaces has become a fun-7

damental problem in computer vision and graphics [1, 2]. Any8

appropriate shape analysis framework applied to the face prob-9

lem should be able to automatically find optimal correspon-10

dences between facial surfaces (one-to-one nonlinear matching11

of points across surfaces), produce natural deformations that12

align one 3D face to another, and provide tools for statistical13

analysis such as computation of an average or template face,14

exploration of variability in different expression classes, ran-15

dom sampling of 3D faces from statistical models, and even16

reflection symmetry analysis. These tools, if developed prop-17

erly, allow for principled and efficient modeling of complex 3D18

face data. The 3D face registration, deformation and statisti-19

cal modeling problems are closely related, and thus, should be20

solved simultaneously under a unified Riemannian shape analy-21

sis framework. The 3D facial surfaces are assumed to be genus-22

0 and are allowed to undergo complex isometric and elastic de-23

formations, and may contain missing parts. Below, we summa-24

rize some of the state-of-the-art methods for 3D face modeling25

that are relevant to our paper; most of these methods focus on26

face recognition rather than the general statistical analysis task.27

Many approaches are based on markers to model the 3D28

face. Marker-based systems are widely used for face anima-29

tion [3, 1]. Explicit face markers significantly simplify track-30

ing, but also limit the amount of spatial detail that can be cap-31

tured. There have been several approaches in recent years that32

rely on deforming facial surfaces into one another, under some33

chosen criterion, and use quantifications of these deformations34

as metrics for face recognition. Among these, the ones using35

nonlinear deformations facilitate local stretching, compression,36

and bending of surfaces to match each other and are referred to37

as elastic methods. For instance, Kakadiaris et al. [4] utilize38

an annotated face model to study geometrical variability across39

faces. The annotated face model is deformed elastically to fit40

each face, thus matching different anatomical areas such as the41

nose and eyes. In affective computing, the markers correspond42

to action units and allow one to model the 3D face for expres-43

sion understanding [5]. A strong limitation of all marker-based44

approaches is the need for manual segmentation and/or anno-45

tation of a 3D face. In other approaches, the 3D face is rep-46

resented by a markerless morphable model, which can be used47

for identity recognition [6] and face animation [7, 8]. In [6],48

a hierarchical geodesic-based resampling approach is applied49

to extract landmarks for modeling facial surface deformations.50

The deformations learned from a small group of subjects (con-51

trol group) are then synthesized onto a 3D neutral model (not in52

the control group), resulting in a deformed template. The pro-53

posed approach is able to handle expressions and pose changes54

simultaneously by fitting a generative deformable model. In [8],55

facial expressions are represented as a weighted sum of blend-56

shape meshes and the non-rigid iterative closest point (ICP) al-57

gorithm is applied together with face tracking to generate 3D58

face animations. This class of approaches is automatic and can59

be performed in real time. However, in all of these methods60

there is no definition of a proper metric, which is needed for61

statistical analysis. On the other hand, the proposed method62

provides a proper metric in the shape space of 3D faces allow-63

ing the definition of statistics such as an average and covariance.64

Majority of previous approaches to 3D face analysis are65
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based on extracting local cues leading to discriminant features66

used for many applications such as identity, expression and gen-67

der classification [9, 10]. The advantage of these approaches is68

high classification accuracy along with low computational cost69

for computer vision applications. However, these approaches70

are less significant in the computer graphics context. This is71

due to the fact that statistical analysis of facial surfaces in the72

feature space is generally not easily mapped back to the orig-73

inal surface space. Thus, the obtained results, while compu-74

tationally inexpensive, are very difficult to interpret and use in75

practice.76

In several approaches, the 3D face is embedded into a par-77

ticular space of interest, and the faces are compared in that78

space. Tsalakanidou et al. [11] apply principal component anal-79

ysis to build eigenfaces, where each face image in the database80

can be represented as a vector of weights; the weights of an im-81

age are obtained by its projection onto the subspace spanned by82

the eigenface directions. Then, identification of the test image83

is done by locating the image in the database whose weights84

have the smallest Euclidean distance from the weights of the85

test image. The main limitation of this method is that it is not86

invariant to pose changes. Furthermore, the model is image-87

based where, in addition to the face of interest, one must ac-88

count for the image background. Bronstein et al. [12] construct89

a computationally efficient, invariant representation of surfaces90

undergoing isometric deformations by embedding them into a91

low-dimensional space with a convenient geometry. These ap-92

proaches allow deformation-robust metrics that are useful for93

several applications including biometrics. However, computa-94

tion of statistics is not possible under this model.95

Drira et al. [13] represent the 3D face as a collection of ra-96

dial curves that are analyzed under a Riemannian framework for97

elastic shape analysis of curves [14]. This framework provides98

tools for computation of deformations between facial surfaces,99

mean calculation of 3D faces via the curve representation, and100

3D face recognition. Along similar lines, [15, 16] used facial101

curves to model facial surfaces for several other applications.102

The main limitation of these works is that they utilize a curve103

representation of 3D faces. Thus, registrations between the sur-104

faces are curve-based, and the correspondence between the ra-105

dial curves must be known a priori (very difficult in practice).106

As a result, the computed correspondences and any subsequent107

computations tend to be suboptimal. Furthermore, to the best108

of our knowledge, these approaches did not thoroughly inves-109

tigate the use of the Riemannian framework for more complex110

statistical modeling such as random sampling of facial surfaces111

from a generative model.112

There is also a number of methods in the graphics liter-113

ature, which provide tools for various shape modeling tasks114

[17, 18, 19]. While these methods are very general and provide115

good results on complex shapes, they require the surface regis-116

tration problem to be solved either manually or via some other117

unrelated method. Thus, these methods do not provide proper118

metrics for shape comparison and statistical modeling in the119

presence of different surface parameterizations. The main ben-120

efit of the proposed approach is that the registration and com-121

parison/modeling problems are solved simultaneously under a122

unified Riemannian metric.123

In this paper, we adapt a recent elastic shape analysis frame-124

work [20, 21] to the case of hemispherical surfaces, and ex-125

plore its use in a number of 3D face processing applications.126

This framework was previously defined for quadrilateral, spher-127

ical and cylindrical surfaces. All of the considered tasks are128

performed under an elastic Riemannian metric allowing princi-129

pled definition of various tools including registration via surface130

re-parameterization, deformation and symmetry analysis using131

geodesic paths, intrinsic shape averaging, principal component132

analysis, and definition of generative shape models. Thus, the133

main contributions of this work are:134

(1) We extend the framework of Jermyn et al. [20] for statistical135

shape analysis of quadrilateral and spherical surfaces to the case136

of hemispherical surfaces.137

(2) We consider the task of 3D face morphing using a param-138

eterized surface representation and a proper, parameterization-139

invariant elastic Riemannian metric. This provides the formal-140

ism for defining optimal correspondences and deformations be-141

tween facial surfaces via geodesic paths.142

(3) We define a comprehensive statistical framework for model-143

ing of 3D faces. The definition of a proper Riemannian metric144

allows us to compute intrinsic facial shape averages as well as145

covariances to study facial shape variability in different expres-146

sion classes. Using these estimates one can form a generative147

3D face model that can be used for random sampling.148

(4) We provide tools for symmetry analysis of 3D faces, which149

allows quantification of asymmetry of a given face and identifi-150

cation of the nearest (approximately) symmetric face.151

(5) We study expression and identity classification under this152

framework using the defined metric. We compare our perfor-153

mance to the state-of-the-art method in [13]. The main idea154

behind presenting this application is to showcase the benefits of155

an elastic framework in the recognition task. We leave a more156

thorough study of classification performance and comparisons157

to other state-of-the-art methods as future work.158

The rest of this paper is organized as follows. Section 2 de-159

fines the mathematical framework. Section 3 presents the appli-160

cability of the proposed method to various 3D face processing161

tasks. We close the paper with a brief summary in Section 4.162

2. Mathematical Framework163

In this section, we describe the main ingredients in defining164

a comprehensive, elastic shape analysis framework for facial165

surfaces. We note that these methods have been previously de-166

scribed for the case of quadrilateral, spherical and cylindrical167

surfaces in [20, 21]. We extend these methods to hemispheri-168

cal surfaces and apply them to statistical shape analysis of 3D169

faces. Let F be the space of all smooth embeddings of a closed170

unit disk in R
3, where each such embedding defines a parame-171

terized surface f : D̄ ! R
3. Let Γ be the set of all boundary-172

preserving diffeomorphisms of D̄. For a facial surface f 2 F ,173

f ◦ γ represents its re-parameterization. In other words, γ is a174

warping of the coordinate system on f . As previously shown175

in [20], it is inappropriate to use the L
2 metric for analyzing176
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shapes of parameterized surfaces, because Γ does not act on177

F by isometries. Thus, we utilize the square-root normal field178

(SRNF) representation of surfaces and the corresponding Rie-179

mannian metric proposed in [20]. We summarize these methods180

next and refer the reader to those papers for more details.181

Let s = (u, v) 2 D̄ define a polar coordinate system on the182

closed unit disk. The SRNF representation of facial surfaces is183

then defined using a mapping Q : F ! L
2 as Q( f )(s) =

n(s)

|n(s)|1/2
.184

Here, n(s) =
∂ f

∂u
(s) ⇥

∂ f

∂v
(s) denotes a normal vector to the sur-185

face f at the point f (s). The space of all SRNFs is a subset186

of L
2(D̄,R3), henceforth referred to simply as L

2, and it is187

endowed with the natural L2 metric. The differential of Q is188

a smooth mapping between tangent spaces, Q⇤, f : T f (F ) !189

TQ( f )(L
2), and is used to define the corresponding Riemannian190

metric on F as hhw1,w2ii f = hQ⇤, f (w1),Q⇤, f (w2)iL2 , where191

w1, w2 2 T f (F ), nw(s) =
∂ f

∂u
(s) ⇥ ∂w

∂v
(s) + ∂w

∂u
(s) ⇥

∂ f

∂v
(s), | · |192

denotes the 2-norm in R
3, and ds is the Lebesgue measure193

on D̄ [21]. Using this expression, one can verify that the re-194

parameterization group Γ acts on F by isometries, i.e.195

hhw1 ◦ γ,w2 ◦ γii f◦γ = hhw1,w2ii f . Another advantage of this196

metric is that it has a natural interpretation in terms of the amount197

of stretching and bending needed to deform one surface into198

another. For this reason, it has been referred to as the partial199

elastic metric [20]. Furthermore, this metric is automatically200

invariant to translation. Scaling variability can be removed by201

rescaling all surfaces to have unit area. We let C denote the202

space of all unit area surfaces. This defines the pre-shape space203

in our analysis.204

Rotation and re-parameterization variability is removed from205

the representation space using equivalence classes. Let q =206

Q( f ) denote the SRNF of a facial surface f . A rotation of f207

by O 2 S O(3), O f , results in a rotation of its SRNF repre-208

sentation, Oq. A re-parameterization of f by γ 2 Γ, f ◦ γ,209

results in the following transformation of its SRNF: (q, γ) =210

(q ◦ γ)
p

Jγ, where Jγ is the determinant of the Jacobian of γ.211

Now, one can define two types of equivalence classes, [ f ] =212

{O( f ◦γ)|O 2 S O(3), γ 2 Γ} in C endowed with the metric hh·, ·ii213

or [q] = {O(q, γ)|O 2 S O(3), γ 2 Γ} in L
2 endowed with the L

2
214

metric; each equivalence class represents a shape uniquely in215

its respective representation space. This results in two strate-216

gies to account for the rotation and re-parameterization vari-217

abilities in 3D face data. Given two surfaces f1, f2 2 C, the218

exact solution comes from the following optimization prob-219

lem: (O⇤, γ⇤) = arginf(O,γ)2S O(3)⇥Γ dC( f1,O( f2 ◦ γ)). Unfortu-220

nately, there is no closed form expression for the geodesic dis-221

tance dC because of the complex structure of the Riemannian222

metric hh·, ·ii. There is a numerical approach, termed path-223

straightening, which can be used to compute this geodesic dis-224

tance, but it is computationally expensive. Thus, we use an225

approximate solution to the registration problem in our analy-226

sis, which can be computed using the SRNF representation as227

(O⇤, γ⇤) = arginf(O,γ)2S O(3)⇥Γ kq1 − (Oq2, γ)k. This problem is228

much easier to solve and provides a very close approximation229

to the original problem, because the partial elastic metric on C230

is the pullback of the L
2 metric from the SRNF space.231

The optimization problem over S O(3) ⇥ Γ is solved itera-232

tively using the general procedure presented in [20, 21]. First,233

one fixes γ and searches for an optimal rotation over S O(3)234

using Procrustes analysis; this is performed in one step using235

singular value decomposition. Then, given the computed rota-236

tion, one searches for an optimal re-parameterization in Γ using237

a gradient descent algorithm, which requires the specification238

of an orthonormal basis for Tγid
(Γ). The definition of this basis239

depends on the domain of the surface. In the present case, we240

seek a basis of smooth vector fields that map the closed unit241

disk to itself. In order to define this basis, we make a small242

simplification. Because all of the initial, facial surface parame-243

terizations were obtained by defining the point s = (0, 0) at the244

tip of the nose, we treat this point as a landmark, i.e. it is fixed245

throughout the registration process. Given this simplification,246

we first construct a basis for [0, 1] as B[0,1] = {sin(2πn1u), 1 −247

cos(2πn1u), u, 1 − u|n1 = 1, . . . ,N1, u 2 [0, 1]} and a basis for248

S
1 as BS1 = {sin(n2v), 1− cos(n2v), v, 2π− v|n2 = 1, . . . ,N2, v 2249

[0, 2π]}. We take all products of these two bases while en-250

suring that the boundary of the unit disk is preserved. Then,251

to define an orthonormal basis of Tγid
(Γ) we use the Gram-252

Schmidt procedure. This results in a finite, orthonormal basis253

BD̄ = {b1, . . . , bN} for Tγid
(Γ). In the following sections, we254

let f ⇤
2
= O⇤( f2 ◦ γ

⇤), where O⇤ 2 S O(3) is the optimal rota-255

tion and γ⇤ 2 Γ is the optimal re-parameterization. Then, the256

geodesic distance in the shape space S = C/(S O(3)⇥Γ) is com-257

puted using d([ f1], [ f2]) = inf(O,γ)2S O(3)⇥Γ dC( f1,O( f2 ◦ γ)) ⇡258

dC( f1,O
⇤( f2 ◦γ

⇤)). This allows us to compute the geodesic only259

once, after the two facial surfaces have been optimally regis-260

tered.261

As a next step, we are interested in comparing facial surface262

shapes using geodesic paths and distances. As mentioned ear-263

lier, there is no closed form expression for the geodesic in C,264

and thus, we utilize a numerical technique termed path-265

straightening. In short, this approach first initializes a path be-266

tween the two given surfaces, and then “straightens” it accord-267

ing to an appropriate path energy gradient until it becomes a268

geodesic. We refer the reader to [22, 21] for more details. In269

the following sections, we use F⇤,pre to denote the geodesic path270

between two facial surfaces f1 and f2 in the pre-shape space (no271

optimization over S O(3) ⇥ Γ) and F⇤,sh to denote the geodesic272

path in the shape space between f1 and f ⇤
2

. The length of the273

geodesic path is given by L(F⇤) =
R 1

0

p

⌦

hF⇤t , F
⇤
t

↵

iFdt, where274

F⇤t =
dF⇤

dt
. All derivatives and integrals in our framework are275

computed numerically. The computational cost of the proposed276

method is similar to that reported in [22].277

3. Applications278

In this section, we describe the utility of the presented math-279

ematical tools in various 3D face processing tasks including280

deformation, template estimation, summarization of variabil-281

ity, random sampling and symmetry analysis. We also present282

two classification tasks concerned with (1) classifying expres-283

sions, and (2) classifying person identities. The 3D faces used284

in this paper are a subset of the BU-3DFE dataset. BU-3DFE285

is a database of annotated 3D facial expressions, collected by286
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C S γ⇤

1

L(F⇤,pre) = 0.3989 L(F⇤,sh) = 0.2592

2

L(F⇤,pre) = 0.4932 L(F⇤,sh) = 0.3149

4

L(F⇤,pre) = 0.4455 L(F⇤,sh) = 0.3613

Figure 1: Top: Comparison of geodesic paths and distances in C and S for different persons and expressions (1 neutral to anger, 2 happiness to disgust, and 3 sadness

to happiness) as well as optimal re-parameterizations (allow elastic deformations between 3D faces). Bottom: Geodesics (1)-(3) computed using [13].

Yin et al. [23] at Binghamton University in Binghamton, NY,287

USA, which was designed for research on 3D human faces and288

expressions and to develop a general understanding of human289

behavior. There are a total of 100 subjects in the database, 56 fe-290

males and 44 males. A neutral scan was first captured for each291

subject. Then, each person was asked to perform six expres-292

sions reflecting the following emotions: anger, happiness, fear,293

disgust, sadness and surprise. The expressions varied accord-294

ing to four levels of intensity (low, middle, high and highest).295

Thus, there were 25 3D facial expression models per subject296

in the entire database. We use a subset of this data with high-297

est expression intensities (most challenging case) to assess the298

proposed method.299

Each facial surface is represented by an indexed collection300

of radial curves that are defined and extracted as follows. The301

reference curve on a facial surface f is chosen to be the verti-302

cal curve after the face has been rotated to the upright position.303

Then, each radial curve βα is obtained by slicing the facial sur-304

face by a plane Pα that has the nose tip as its origin and makes305

an angle α with the plane containing the reference curve. We306

repeat this step to extract radial curves at equally-separated an-307

gles, resulting in a set of curves that are indexed by the angle α.308

Thus, the facial surface is represented in a polar (radius-angle)309

coordinate system. We use 50 radial curves sampled with 50310

points in our surface representation (50 ⇥ 50 grid).311

Face Deformation: We generate facial shape deformations us-312

ing geodesic paths. While linear interpolations could also be313

used here, the geodesic provides the optimal deformation under314

the defined Riemannian metric. Since we only have to com-315

pute the geodesic once per deformation, after the surfaces have316

been optimally registered, this does not result in a prohibitive317

computational cost. We compare the results obtained in C to318

those in S in Figure 1. We consider three different examples319

for various persons and expressions. There is a large decrease320

in the geodesic distance in each case due to the additional opti-321

mization over S O(3) ⇥ Γ. It is clear from this figure that elastic322

matching of 3D faces is very important when the main goal is to323

generate natural deformations between them. This is especially324

evident in the areas of the lips and eyes. Take, for instance,325

Example 1. In the pre-shape space, the lips are averaged out326

along the geodesic path and are pretty much non-existent close327

to the midpoint. But, due to a better matching of geometric fea-328

tures along the geodesic path in the shape space, the lips are329

clearly defined. The same can be observed in the eye region.330

As will be seen in the next section, these distortions become331

even more severe when one considers computing averages and332

variability within a set of 3D faces. In the right panel of the fig-333

ure we display the optimal re-parameterizations that achieve the334

correspondence between these surfaces; these are clearly non-335

linear and depict natural transformations. We also generated336

geodesics for the same examples using the curve-based method337

in [13] (bottom panel of Figure 1). These results suggest that338

considering the radial curves independently can generate severe339

distortions in the geodesic paths and produce unnatural defor-340

mations between 3D faces.341

Face Template: We generate 3D face templates using the no-342

tion of the Karcher mean. Tools and results for computing343

shape statistics for cylindrical surfaces under the SRNF rep-344
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(a) (b) (c) (d) (e)

1 10 20 30 40

0.23

0.24

0.25

0.26

2 10 20 30 40

0.26

0.28

0.3

0.32

3 10 20 30 40

0.3

0.32

0.34

4 10 20 30

0.26

0.28

0.3

0.32

0.34

5 10 20 30

0.2

0.21

0.22

6 10 20 30 40

0.24

0.25

0.26

0.27

0.28

7 10 20 30 40

0.23

0.24

0.25

0.26

8 All Pooled Together 10 20 30 40

2.6

2.7

2.8

2.9

3

Figure 2: (a) Sample of surfaces used to compute the face template for each expression: (1) anger, (2) disgust, (3) fear, (4) happiness, (5) neutral, (6) surprise, (7)

sadness, and (8) all samples pooled together. (b) Sample average computed in C. (c) Karcher mean computed in S. (d) Karcher mean computed using [13]. (e)

Optimization energy in S (sum of squared distances of each shape from the current average) at each iteration.

resentation have been previously described in [24]; we review345

some of the concepts relevant to current analysis in the fol-346

lowing sections. Let { f1, . . . , fn} 2 C denote a sample of fa-347

cial surfaces. Then, the Karcher mean is defined as [ f̄ ] =348

argmin[ f ]2S

Pn
i=1 L(F⇤,sh

i
)2, where F

⇤,sh
i

is a geodesic path be-349

tween a surface F
⇤,sh
i

(0) = f and a surface in the given sample350

F
⇤,sh
i

(1) = f ⇤
i

that was optimally registered to f . A gradient-351

based approach for finding the Karcher mean is given in [24].352

The Karcher mean is actually an equivalence class of surfaces353

and we select one element as a representative f̄ 2 [ f̄ ]. As one354

can see from this formulation, the computation of the Karcher355

mean requires n geodesic calculations per iteration. This can356

be very computationally expensive, and thus, we approximate357

the geodesic using a linear interpolation when computing the358

facial surface templates. We present all results in Figure 2. We359
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C PD1 C PD2 S PD1 S PD2

1

2

3

4

5

6

7

8

Figure 3: The first two principal directions of variation (PD1 and PD2) computed in the pre-shape (C) and shape (S) spaces for expressions (1)-(8) in Figure 2.

compare the facial template computed inS to a standard sample360

average computed in C and the curve-based Karcher mean [13].361

First, we note from panel (e) that there is a large decrease in en-362

ergy in each example. The qualitative results also suggest that363

the 3D face templates computed in S are much better represen-364

tatives of the given data than those computed in C or using the365

curve-based method. Again, the biggest differences are notice-366

able around the mouth and eyes. In fact, when looking at panels367

(b) and (d), it is fairly difficult to recognize the expression; this368

distinction is much clearer in panel (c).369

Summary of Variability and Random Sampling: Once the370

sample Karcher mean has been computed, the evaluation of the371

Karcher covariance is performed as follows. First, we optimally372

register all surfaces in the sample to the Karcher mean f̄ , re-373

sulting in { f ⇤
1
, . . . , f ⇤n }, and find the shooting vectors {ν1, . . . , νn}374

from the mean to each of the registered surfaces. The covari-375

ance matrix K is computed using {νi}, and principal directions376

of variation in the given data can be found using standard prin-377

cipal component analysis (singular value decomposition). Note378

that due to computational complexity, we do not use the Rie-379

mannian metric hh·, ·ii to perform PCA; thus, we sacrifice some380

mathematical rigor in order to improve computational efficiency.381

The principal singular vectors of K can then be mapped to a sur-382

face f using the exponential map, which we approximate using383

a linear path; this approximation is reasonable in a neighbor-384

hood of the Karcher mean. The results for all eight samples385

displayed in Figure 2 are presented in Figure 3. For each ex-386

ample, we display the two principal directions of variation in387

C and S. These paths are sampled at −2,−1, 0, 1, 2 standard388

deviations around the mean. The summary of variability in the389

shape space more closely resembles deformations present in the390

original data. This leads to more parsimonious shape models.391

In contrast to the principal directions seen in C, the ones in S392

contain faces with clear facial features.393

Given a principal component basis for the tangent space394

T[ f̄ ](S), one can sample random facial shapes from an approx-395

imate Gaussian model. A random tangent vector is generated396

using v =
Pk

j=1 z j

p

S j ju j, where z j
iid
⇠ N(0, 1), S j j is the vari-397

ance of the jth principal component, and u j is the corresponding398

principal singular vector of K. A sample from the approximate399

Gaussian is then obtained using the exponential map frand =400

exp f̄ (v), which again is approximated using a linear path. The401

results are presented in Figure 4. As expected, the facial sur-402

faces sampled in the shape space are visually preferred to those403

sampled in the pre-shape space; this is due to better matching404

of similar geometric features across 3D faces such as the lips,405

eyes and cheeks.406

Symmetry Analysis: To analyze the level of symmetry of a fa-407

cial surface f we first obtain its reflection f̃ = H(v) f , where408

H(v) = (I − 2 vvT

vT v
) for a v 2 R

3. Let F⇤,sh be the geodesic409

path between f and f̃ ⇤ = O⇤( f̃ ◦ γ⇤). We define the length of410

the path F⇤,sh as a measure of symmetry of f , ρ( f ) = L(F⇤,sh).411

If ρ( f ) = 0 then f is perfectly symmetric. Furthermore, the412

halfway point along the geodesic, i.e. F⇤,sh(0.5), is approx-413

imately symmetric (up to numerical errors in the registration414

and geodesic computation). If the geodesic path is unique, then415

6



1 2 3 4

C

S

5 6 7 8

C

S

Figure 4: Random samples generated from the approximate Gaussian distribution in the pre-shape (C) and shape (S) spaces for expressions (1)-(8) in Figure 2.

(a) f and f̃ (b) Geodesic Path F⇤,sh (c) F⇤,sh(0.5)

1

ρ( f ) = 0.1626, ρ(F⇤,sh(0.5)) = 0.0177

2

ρ( f ) = 0.1041, ρ(F⇤,sh(0.5)) = 0.0100

3

ρ( f ) = 0.1405, ρ(F⇤,sh(0.5)) = 0.0159

Figure 5: (a) Facial surface f in blue and its reflection f̃ in red. (b) Geodesic path in S between f and f̃ and the measure of symmetry ρ( f ). We also compute the

measure of symmetry for the midpoint of the geodesic ρ(F⇤,sh(0.5)), which is expected to be 0 for perfectly symmetric faces. (c) Midpoint of the geodesic.

amongst all symmetric shapes, F⇤,sh(0.5) is the closest to f in416

S. Three different examples are presented in Figure 5. The417

average measure of symmetry for the geodesic midpoints (av-418

eraged over all of the presented examples) is 0.0145, which is419

very close to 0 (perfect symmetry). In the presented exam-420

ples, the faces are already fairly symmetric. Nonetheless, the421

symmetrized faces (right panel) have a natural appearance with422

clearly defined facial features.423

Identity and Expression Classification: In the final applica-424

tion, we explore the use of the proposed framework in two425

different classification tasks. We compare our results to the426

method presented in [13], which reported state-of-the-art recog-427

nition performance in the presence of expressions. We do not428

compare our performance to any other state-of-the-art methods429

7



because many of them are specifically designed for classifica-430

tion experiments (feature based). Our framework is more gen-431

eral as it also allows deformation and statistical modeling of432

faces. The proposed framework can be tuned to maximize clas-433

sification performance by extracting relevant elastic features434

from the computed statistical models, but we believe that this435

is beyond the scope of the current paper.436

Figure 6: Identity recognition in C (blue), S (red), and using [13] (green).

The first task we consider is concerned with classifying ex-437

pressions. We selected 66 total surfaces divided into six expres-438

sion groups (11 persons per group): anger, disgust, fear, happi-439

ness, surprise and sadness. We computed the pairwise distance440

matrices in C, S, and using [13]. We calculated the classifi-441

cation performance in a leave-one-out manner by leaving out442

all six expressions of the test person from the training set. The443

classification accuracy in C was 62.12% while that in S was444

74.24%. The classification accuracy of [13] was 68.18%. This445

result highlights the benefits of elastic shape analysis of hemi-446

spherical surfaces applied to this recognition task. It also sug-447

gests that considering the radial curves independently, as done448

in [13], deteriorates the recognition performance. The second449

task we considered was identity classification irrespective of the450

facial expression. Here, we added 11 neutral expression facial451

surfaces (one per person) to the previously used 66 and com-452

puted 11⇥66 distance matrices in C, S, and using the method in453

[13]. We performed classification by first checking the identity454

of the nearest neighbor. This resulted in a 100% classification455

rate for all methods. Figure 6 shows the classification results456

when accumulating over more and more nearest neighbors (up457

to six since there are six total expressions for each person). It458

is clear from this figure that identity classification in the shape459

space is far superior to that in the pre-shape space. The addi-460

tional search over Γ allows for the expressed faces to be much461

better matched to the neutral faces, and in a way provides “in-462

variance” to facial expressions in this classification task. The463

performance of the proposed method is comparable to [13].464

4. Summary and Future Work465

We defined a Riemannian framework for statistical shape466

analysis of hemispherical surfaces and applied it to various 3D467

face modeling tasks including morphing, averaging, exploring468

variability, defining generative models for random sampling,469

and symmetry analysis. We considered two classification ex-470

periments, one on expressions and one on person identities, to471

showcase the benefits of elastic shape analysis in this applica-472

tion. This leads us to several directions for future work. First,473

we will investigate the use elastic facial shape features, which474

can further improve the reported classification accuracy. Sec-475

ond, we will utilize the proposed 3D face shape models as priors476

in processing corrupted or incomplete raw data obtained from477

3D scanners. Third, we want to study expression transfer via478

parallel transport. These tools have not yet been developed for479

hemispherical surfaces, and to the best of our knowledge, there480

exist very few automatic methods for this task. Finally, we want481

to move toward the difficult problem of modeling 3D dynamic482

faces.483
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