
27/04/2024 09:42

3DHOP: 3D heritage online presenter / Potenziani, Marco; Callieri, Marco; Dellepiane, Matteo; Corsini, M;
Ponchio, Federico; Scopigno, Roberto. - In: COMPUTERS & GRAPHICS. - ISSN 0097-8493. - 52:(2015), pp.
129-141. [10.1016/j.cag.2015.07.001]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

3DHOP: 3D Heritage Online Presenter

Marco Potenziania, Marco Callieria, Matteo Dellepianea, Massimiliano Corsinia, Federico Ponchioa, Roberto Scopignoa

aVisual Computing Lab, ISTI CNR, Pisa, Italy

Abstract

3D Heritage Online Presenter (3DHOP) is a framework for the creation of advanced web-based visual presentations of high-
resolution 3D content. 3DHOP has been designed to cope with the specific needs of the Cultural Heritage (CH) field. By using
multiresolution encoding, it is able to efficiently stream high-resolution 3D models (such as the sampled models usually employed
in CH applications); it provides a series of ready-to-use templates and examples tailored for the presentation of CH artifacts; it
interconnects the 3D visualization with the rest of the webpage DOM, making it possible to create integrated presentations schemes
(3D + multimedia). In its design and development, we paid particular attention to three factors: easiness of use, smooth learning
curve and performances. Thanks to its modular nature and a declarative-like setup, it is easy to learn, configure, and customize at
different levels, depending on the programming skills of the user. This allows people with different background to always obtain
the required power and flexibility from the framework. 3DHOP is written in JavaScript and it is based on the SpiderGL library,
which employs the WebGL subset of HTML5, implementing plugin-free 3D rendering on many web browsers. In this paper we
present the capabilities and characteristics of the 3DHOP framework, using different examples based on concrete projects.

Keywords: online presentation, WebGL, 3D Web, web based 3D rendering, online 3D content deployment, Cultural Heritage

1. Introduction1

It is becoming much easier to deal with 3D content on the2

web. Due to recent hardware and software advancements, the3

3D web is moving away from the “swamp” of proprietary, heavy-4

weight plugins. Nevertheless, specific niches in the world of5

potential users of the 3D web media, which are somehow far6

from the mainstream use of 3D data, are still uncovered. One7

of these peculiar user groups is the one focusing on Cultural8

Heritage (CH) and using high resolution 3D models of real-9

world artifacts. Digital 3D models of CH artifacts are nowadays10

widespread and, beside their more “technical” uses (documen-11

tation, restoration support, study and measurement) they are be-12

coming very valuable in dissemination, teaching and presenta-13

tion to the public. Even if there are applications where lower-14

resolution hand-modeled 3D models may suffice, in many other15

cases high-resolution digitized geometries are essential to con-16

vey correct information.17

This paper presents a software framework, 3DHOP (3D Her-18

itage Online Presenter), designed to cope with the needs of this19

specific user group. The use of 3DHOP simplifies the creation20

of interactive visualization webpages, able to display high-reso-21

lution 3D models, with intuitive user interaction/manipulation;22

moreover, these resources can be deeply connected with the rest23

of the webpage elements (Figure 1).24

Please note that CH is not the only application domain deal-25

ing with very high-resolution models and requiring a dense in-26

terconnection between those models and other data or media. In27

this sense, CH is a major domain of inspiration and assessment28

for our activity, but not the only application context for 3DHOP29

technology.30

The most interesting characteristics of the 3DHOP frame-31

work are:32

• The ability to work with extremely complex 3D meshes33

or point clouds (tens of million triangles/vertices), using34

a streaming-friendly multiresolution scheme.35

• The ease of use for developers, especially those with back-36

ground in web programming, thanks to the use of declarative-37

style scene creation and exposed JavaScript functions used38

to control the interaction.39

• The availability of a number of basic building blocks for40

creating interactive visualizations, each one configurable,41

but at the same time providing sensible defaults and com-42

prehensive documentation.43

3DHOP is based on the WebGL subset of HTML5, and44

on SpiderGL [1], a JavaScript support library oriented to ad-45

vanced Computer Graphics (CG) programming. Thanks to this,46

3DHOP works without the need of plugins on most modern47

browsers (Google Chrome, Mozilla Firefox, Internet Explorer,48

Safari and Opera) on all platforms. On mobile devices the sup-49

port is still ongoing in some cases, but this situation will im-50

prove in the near future. 3DHOP has been released as open51

source (GPL licence) in April 2014, and it is available to be52

tested and used. The downloadable package, with documenta-53

tion, a series of tutorials (How-Tos) and a Gallery of examples54

is available at the website: http://3dhop.net.55

Figure 1: The Tutankhamun viewer: using 3DHOP to publish on the Web a
high resolution 3D model explorable in a simple, intuitive and interactive way
(the artifact is linked to additional multimedia information through hotspots).
This example is available in the Gallery section of the 3DHOP website.

2. Related work56

Here, we focus on three main aspects of the 3DHOP frame-57

work. First, we review the technologies to handle the 3D con-58

tent on the Web, than we present some solutions about how to59

transmit the 3D content efficiently. For completeness we re-60

port also some works related to the offline visualization of huge61

models, by focusing mainly on papers related to our framework.62

2.1. 3D content on the Web63

As soon as three-dimensional content became a consoli-64

dated type of multimedia material, its visualization in the con-65

text of web pages became an issue, since 3D models were not66

considered as a “native” type of data. Initially, visualization67

of 3D components was devoted to embedded software compo-68

nents, such as Java applets or ActiveX controls [2].This led to a69

lack of standardization and to a quite limited use of 3D content70

on the web.71

A first step to find at least a common format for 3D data72

were the efforts converging towards the Virtual Reality Mod-73

elling Language (VRML) [3], started in 1994, and the more74

recent X3D [4] (2004). However, 3D scene visualization was75

still delegated to external software components.76

The advent of the WebGL standard [5], promoted by the77

Khronos Group [6], brought to a remarkable change. WebGL,78

which is a mapping of OpenGL|ES 2.0 [7] specifications in79

JavaScript, allows web browsers to directly access the graph-80

ics hardware. WebGL has been the starting point for a number81

of actions for having advanced 3D Graphics on the web. An82

interesting and up-to-date overview of the current status is pro-83

vided by the survey from Evans et al. [8].84

From a general point of view, the solutions proposed in lit-85

erature can be divided in two groups:86

• The first class of systems extended the effort of X3D by87

structuring the description of the 3D content in a declara-88

tive fashion [9], essentially based on the scenegraph con-89

cept. Two interesting examples of declarative program-90

ming solutions are X3DOM [10] and XML3D [11].91

• Alternatively, the imperative approach considers the com-92

putation as “a series of statements which change a pro-93

gramme state”. A number of high-level libraries have94

been developed to help non-expert users using WebGL.95

Most of them are based on the use of JavaScript as a basic96

language. They range from scene-graph-based interfaces,97

such as Scene.js [12], GLGE [13] and Three.js [14], to98

more programmer-friendly paradigms, such as SpiderGL [1]99

and WebGLU [15]. The most successful of these libraries100

is Three.js which has been used in several small and medium101

size projects.102

The comparison between the declarative and imperative ap-103

proaches is not trivial, since none of them is able to perform bet-104

ter in all the possible applications. The performance is mainly105

related to the complexity and goal of the 3D graphics applica-106

tion, as it will be also discussed in the next sections. Evans107

et al. [8] point out also that declarative approaches had a major108

impact in the research community, while imperative approaches109

were mainly used in the programming community.110

From a more general point of view, the system presented111

in this paper deals also with the issue of integrating 3D models112

with other types of data, such as text or images. This has been113

recently taken into account by a few recent works that explored114

the integration of text and 3D models on the web [16, 17, 18].115

The Smithsonian X3D explorer [19], developed as a “branch”116

application of the Autodesk Memento engine [20], is an alter-117

native example where 3D models are associated/linked to addi-118

tional content, but we miss detailed information on the structure119

and flexibility of the Smithsonian system.120

121

2.2. 3D online streaming122

The plugin-free solutions together with the availability of123

high-level libraries have pushed the development of rich 3D124

web applications, thus increasing the demand to transmit effi-125

ciently sophisticated (and often huge) 3D scenes.126

As pointed out in many works [21, 22, 23], the transmis-127

sion of 3D content should follow precise requirements in order128

to be efficient for web applications. First, the latency before vi-129

sualization should be minimized. Second the model representa-130

tion should permit different level of details (LoD) to account for131

the rendering capabilities of different devices. Having different132

LoD at disposal allows also to reduce the latency time before133

the first visualization. Compression is also another important134

aspect, to make it possible to provide large 3D datasets on con-135

nections with average bandwidth. For compressed streaming,136

decompression time becomes crucial in order to avoid bottle-137

necks.138

Some recent works focused on a better organization of ge-139

neric streamable formats [24, 25], but when the 3D structures140

become very big, it is necessary to think about ad-hoc solutions.141

For the above reason, progressive compression methods are142

good candidates for streaming 3D content. Despite this, many143

methods based on progressive meshes (originally developed by144

Hoppe [26]) cannot be directly adapted for the Web because145

the research efforts in this direction have focused on obtaining146

2

high compression ratios and not, for example, to improve de-147

compression time or to allow the progressive compression of148

attributes like color or texture.149

Only in the last three years, some ad hoc compression meth-150

ods for 3D streaming have been developed. Gobbetti et al. [27]151

proposed to transmit 3D models for which it is possible to com-152

pute a parametrization, so that they can be converted into a153

quad-based multi-resolution format. Behr et al. [22] used dif-154

ferent quantization levels for the model vertices and transmit155

them using a set of nested GPU-friendly buffers (called POP156

buffer). This completely avoids the problem of decompression,157

making them suitable also for low-end devices, such as smart-158

phones. Lavouè et al. [21] proposed an adaptation for the Web159

(reduced decompression time at the cost of a low compression160

ratio) of the progressive algorithm of Lee et al. [28] which is161

based on the valence-driven progressive connectivity encoding162

proposed by Alliez and Desbrun [29]. During the encoding the163

mesh is iteratively simplified (decimation+cleaning). At each164

simplification step the connectivity, the geometry and the color165

information of each removed vertex are encoded and written in166

the compressed stream. At the end, typically a triangle requires167

only 2.9 bytes to be represented (without color information).168

Other research has been also conducted to handle other types of169

data, like point clouds [30], which may present different types170

of issues to contend with.171

The 3DHOP solution is based on a multi-resolution data172

structure which allows the client to efficiently perform view-173

dependent visualization. Together with the low granularity of174

the multi-resolution this approach allows interactive visualiza-175

tion of large 3D models with no high bandwidth requirements176

(a 8 Mbit/s is sufficient for good interaction with huge models).177

For further details see Section 4.1.178

2.3. Offline visualization of huge 3D models179

The visualization of complex geometries has been an issue180

in computer graphics well before the possibility to have web-181

based solutions.182

Some of the issues related to 3D streaming had to be faced183

also in this context, and different approaches have been pro-184

posed, like LOD based [31, 32] methods, but one of the most in-185

teresting solutions was proposed by the seminal paper by Hoppe186

[26], which proposed a progressive refinement of the geome-187

try during visualization. Following this work, a number of so-188

called multi-resolution and multi-triangulation solutions have189

been proposed. They mainly differ on the multiresolution rep-190

resentation [33, 34], on the support of color encoding [35], or191

on other aspects (a survey on these method was provided by192

Zhang [36]). Alternative research tracks are devoted to other193

types of data, like point clouds [37].194

More recent work on this topic was devoted to the issue195

of data compression [28] or to overcome the fact that multi-196

resolution was mainly created for visualization and not for pro-197

cessing [38].198

More in general, the data structures used for offline visual-199

ization may be adapted to web rendering, provided that they are200

compliant with its requirements (i.e. latency, decompression201

time). An alternative proposed solution was to still devote the202

rendering effort to a powerful server, and send to the user only203

a rendered image of the high resolution mesh [39].204

3. Design choices of the 3DHOP framework205

3DHOP has been designed with the aim of being easy to206

use, especially for people having a background in Web develop-207

ment, thus without requiring solid knowledge in CG program-208

ming.209

Our core idea was to mimic the philosophy of those pre-210

made html/javascript components available online, for example211

for image slideshow, date or color picker, charts and graphs.212

These components can be simply plugged inside a webpage in-213

cluding some scripts and adding few lines of HTML, and used214

by just changing some variables; they interact with the rest of215

the webpage with a series of exposed javascript functions and216

events. Most web developers have experience with similar com-217

ponents, and they are indeed extremely useful, given their quick218

startup, different level of configurability (from a simple param-219

eter change to advanced modding) and integration with the rest220

of the webpage. It is clear that directly using WebGL, or (bet-221

ter) relying on one of the higher level libraries, frameworks and222

paradigms like XML3D, X3DOM, Three.js, Scene.js, it could223

be possible to create interactive presentation like the ones made224

with 3DHOP (or the entire 3DHOP tool) from scratch, but this225

would still be an ”ad-hoc” effort. 3DHOP may be somehow226

restricting, with respect to a project-specific custom viewer,227

but we believe the ready-made components and behaviours and228

their reusable nature make it a valuable tool.229

Most of the design choices address specific needs of the230

CH domain, providing a series of features that are extremely231

relevant to this sector.232

3.1. Background: situating 3DHOP w.r.t to the state-of-the-art233

3DHOP is not a “silver bullet”, able to support any possible234

application or visual communication project, but a framework235

designed to deal with specific needs.236

It is an ideal tool to visualize high-resolution single objects237

(especially with dense models coming from 3D scanning, see238

Figure 2) or, more in general, a simple static scene composed239

of complex models. Conversely, 3DHOP is not suited to man-240

age complex scenes made of low-poly objects (this is a common241

case when working with CAD, procedural or hand-modeled ge-242

ometries).243

3DHOP makes possible a fast deployment process when244

dealing with simple interaction mechanisms, making it a good245

choice for quickly creating interactive visualizations for a large246

collection of models. Additionally, 3DHOP integrates extremely247

well with the rest of the webpage, thanks to its exposed Java-248

Script functions. The ideal situation is having the logic of the249

visualization scheme in the page scripts, and using 3DHOP for250

the 3D visualization. Trying to build an interface directly in the251

3D space using its components (i.e. clickable geometries used252

as buttons) is certainly possible, but the results do not scale well253

3

Figure 2: The simplest 3DHOP incarnation, featuring a simple viewer for a sin-
gle 3D model. This example is available in the How-To section of the 3DHOP
website.

with the needed configuration work. In the following, three ex-254

isting alternative solutions are analyzed, in order to better stress255

similarities and differences.256

Unity [40] is one of the most common tools for displaying257

interactive 3D content on the web for CH applications, a de-258

facto standard in this specific field. It is natural, then, to com-259

pare 3DHOP with Unity. Unity is a full-fledged game engine,260

extremely powerful and complete, providing advanced render-261

ing, sound, physics and a lot of pre-defined components and262

helpers. Unity supports the implementation of interactive vi-263

sualizations holding the same level of graphics and interaction264

complexity as a modern videogame. It has a rapid develop-265

ment time when creating a simple visualization, but the com-266

plexity of use/development ramps up if it is necessary to em-267

ploy the more complex interaction features. Moreover, Unity268

is not well suited to manage high-resolution sampled geometry269

(except for terrains), while it is really good with hand-modeled270

geometry. Its streaming capabilities requires to pay a fee and271

also requires server-side computations. Finally, even if there272

are different ways to interconnect the 3D visualization with the273

webpage, this is one of the more complex features to set up274

in Unity, conversely to the otherwise user-friendliness of the275

tool. All these features make Unity somehow complementary276

to 3DHOP: the web-integrated visualization of single, high-res277

artifacts finds in 3DHOP a better support, while the exploration278

of complex modelled scenes or even immersive environments279

are better managed in Unity.280

Another popular solution for fast online deployment of 3D281

models is Sketchfab [41]. Widely used, even by the CH com-282

munity, it is indeed extremely simple to use and offers data stor-283

age support. On the downside, Sketchfab has a limit on the284

geometrical complexity of the input models, making it difficult285

or impossible to upload 3D scanned models at full resolution.286

Moreover, the interaction with the 3D models is only partially287

configurable, making it difficult to tailor the interaction to the288

specific shape and characteristics of the model. Additionally,289

models are stored on a remote server, raising issues of data pri-290

vacy and data property. Finally, being the result of a commer-291

cial initiative, the more advanced features (including the han-292

dling of more complex geometries) are available only in the293

Pro version.294

X3DOM [10] is another development platform that gained295

a quite broad range of applications. As already introduced,296

the X3DOM structure derives from a declarative approach and297

the definition of the scene is obtained through a scenegraph298

concept and related commands. While X3DOM has several299

points in common with 3DHOP, it is misleading to compare300

them directly, since X3DOM is more akin to programming lan-301

guage (based on the declarative paradigm), while 3DHOP is302

a set of configurable components (built using a different para-303

digm). X3DOM does implement default field values (following304

the specifications of X3D), and it provides most of the basic305

components of 3DHOP. Nevertheless, even creating a simple306

visualization requires dealing with the complete setup of the307

rendering and interaction. No code for simple examples is di-308

rectly available from the official website, making it difficult for309

those with limited programming skills to obtain a step-by-step310

understanding. Finally, X3DOM has a ready-to-use solution to311

handle high-resolution geometries [22], but its performances is312

worse than what can be obtained with 3DHOP (see the results313

of the comparison in Section 4.1.1).314

3.2. Declarative-style setup315

Two main development paradigms support the development316

of 3D web applications: the declarative approach for the man-317

agement of 3D content, e.g. endorsed by X3DOM; and the im-318

perative approach, supported by the introduction of WebGL in319

HTML5. The use of declarative 3D mimics the way the rest of320

the webpage is composed and managed: 3D entities (geome-321

tries, transformations, camera, animations...) are declared and322

controlled as they are part of the DOM structure (like, for ex-323

ample, a DIV or an image). This approach makes things much324

simpler for people coming from the web development side.325

Conversely, the imperative approach works in a way that326

is more similar to the implementation of stand-alone visualiza-327

tion software, by tapping into the capabilities of the graphics328

card using a more low-level programming. In most cases, it is329

like having the browser running an extremely powerful, stand-330

alone software, disconnected from the rest of the information331

available on the website.332

If we apply a strong simplification of the current status, we333

may argue that the declarative approach is much easier for web334

developers, not requiring specific knowledge on 3D program-335

ming, and provides seamless integration with the webpage, sim-336

plifying the development of interactive presentations of mixed337

data (3D/text/images/videos). On the other hand, the impera-338

tive approach enables the user to fully exploit the power of the339

graphic cards, at the cost of requiring much more effort in ap-340

plication implementation. Of course, things are never so sim-341

ple, and lot of effort has been spent on both sides to reduce342

the separation of these two development paradigms. However,343

this dichotomy is still holding and, depending on the personal344

background, it is quite easy to approach 3D Web applications345

design only considering one of the two paradigms, ignoring or346

misjudging the possibility offered by the other.347

Our goal was to bridge the gap between these two worlds,348

by providing a framework that aims to combine the ease of use349

4

of the declarative style (to define the elements of the visualiza-350

tion and their properties), with the rendering power provided by351

low-level programming. We will describe in Section 4.2 how352

the creation of the scene follows a declarative style in 3DHOP,353

enabling a quick and intuitive (yet, highly customisable) de-354

ployment. At the same time, the core of the rendering exploits355

the experience matured in the field of CG programming (see356

Section 4.1).357

3.3. DOM interconnection358

A quite common situation, especially when using impera-359

tive 3D systems, is the strong separation between the 3D visu-360

alization and the rest of the webpage. In most cases, the visu-361

alization tool is completely self-contained, not interacting with362

the elements of the page. This creates difficulties in creating363

multimedia presentations, where an action on the webpage ele-364

ments does affect the 3D visualization and vice-versa.365

The system presented by Callieri at al. [17] was aimed at366

establishing a strong connection between what happens in the367

3D viewer and the DOM elements, thus creating an integrated368

presentation context for different media. While succeeding in369

effectively connecting the imperative 3D to the DOM, the sys-370

tem was still limited by its specialisation. It is possible, by371

changing some configuration files, to display a different dataset,372

but the new object should be quite similar in terms of structure373

and semantics (the tool was tailored to CH artifacts with scenes374

carved on their surface, like, for example the Trajan column).375

Conversely, 3DHOP was designed to support the intercon-376

nection with the elements of the DOM in a more extended and377

configurable way. 3DHOP can work just as a blind viewer (if378

the user does not configure any DOM interaction), but it of-379

fers many ways to interconnect the visualization to the rest of380

the webpage. It is possible to change the visibility of the dif-381

ferent models; select, read and animate the trackball position;382

activate hotspots and detect clicks on the 3D models/hotspots.383

Most of these features can be controlled just by invoking or by384

registering event-handling JavaScript functions provided in the385

framework. In this way, the web developer has the complete386

freedom to integrate 3DHOP with the specific website logic.387

Figure 3: The Luni Statues viewer: in this example, four figures of the frieze of
the Great Temple of Luni (Italy) are shown. Each statue has an original part and
an integration (eight models for a total of 14 millions triangles); by using the
visibility control, it is possible to control which subset of the pieces is shown.
This example is available in the Gallery section of the 3DHOP website.

3.4. Exhaustive defaults and level of access388

Another essential design choice of 3DHOP is to provide389

a default behavior, consistent with the common needs of our390

focus community. Each component of the viewer is config-391

urable, but it is never mandatory to modify/update each param-392

eter. The developer may just change a single needed parameter,393

and rely on defaults for the rest of them. In a wide sense, we394

follow the batteries included philosophy of Python, since we395

aim to simplify the life of the developer providing ready-to-use396

visualization components for online CH applications. In this397

way, our framework is much more accessible, and can be easily398

learned step by step (using the provided examples and How-To399

resources). This also provides a fast startup when deploying400

new content (in many cases it is only necessary to do minor401

changes to the provided examples) and it is ideal to automate402

the creation of “3D galleries” when a large number of objects403

have to be presented, since the basic visualization can be eas-404

ily created by a script. A completely unskilled developer may405

readily start using 3DHOP to visualize his own dataset by sim-406

ply downloading one of the examples and changing the name407

of the 3D model file. Then, it will be easy to modify the pa-408

rameters of existing elements to achieve more advanced results.409

A web developer could approach the tool from another direc-410

tion, by modifying the CSS/HTML to customize the graphic411

of the visualization. By using JavaScript, it will be then pos-412

sible to connect the behavior of 3DHOP to the active elements413

of the webpage. A programmer with some skills in Javascript414

and computer graphics may modify the trackball or try to add415

a new trackball to obtain a different interaction, or to customise416

the rendering by changing the shaders or the rendering of the417

scene. More expert developers can add new elements in the418

scene, setup new event hooks and heavily modify the viewer.419

3.5. Online and offline deployment420

While the 3DHOP framework has been designed for online421

applications, we also made possible its use on a local machine.422

Given its minimal interface, compatible with touchscreens, and423

the ability to work without a dedicated server, 3DHOP is a good424

candidate for the creation of multimedia kiosks and interactive425

displays running on local machines inside a museum or an ex-426

position. When deployed on the web, 3DHOP does not require427

a dedicated server or server-side computation; some space on a428

web-accessible server is enough to publish visualization web-429

pages. This makes deployment easier also for institutions with-430

out complex IT infrastructure (like most museums); moreover,431

this self-publishing also avoids property and copyright issues432

(extremely important in the CH domain) related to the storage433

of restricted-access data to remote servers.434

4. Inside the 3DHOP framework435

3DHOP is based on the WebGL component of HTML5, and436

on the SpiderGL [1] library. This makes the framework ex-437

tremely lightweight in terms of dependencies, and able to run438

on most modern browsers and platforms. 3DHOP does not need439

5

plugins or additional components installed in the client, nor spe-440

cialized servers. The tool works on all major browsers: Firefox,441

Chrome, Internet Explorer, Safari, Opera on Windows, MacOS442

and Linux. Mobile support is still not complete, mainly due to443

the mobile browsers’ support of WebGL not yet being as sta-444

ble as in the PC market; on some Android platforms, the tool445

is working perfectly, but on other platforms and browsers the446

debugging is still ongoing. Touch- and multitouch-based input447

is supported.448

4.1. Large models management449

One of the key features of 3DHOP is the ability to manage450

very high resolution 3D meshes and point-clouds, by using a451

multiresolution approach. Displaying high resolution models452

on a web browser is not just a matter of optimizing the render-453

ing speed, but it also involves considering the loading time and454

network traffic caused by transferring a considerable amount of455

data over the network. While WebGL gives direct access to the456

GPU resources, how data is transferred from a remote server457

to the local GPU is up to the programmer. Loading a high-458

resolution model in its entirety through the web requires trans-459

ferring a single chunk of data on the order of tens of megabytes:460

this is definitely impractical, especially if the user has to wait461

for this file transmission to end before seeing any visual result.462

The multiresolution approach ensures efficiency of both data463

transfer and rendering. Multiresolution schemes generally split464

the geometry into smaller chunks. For each chunk, multiple lev-465

els of detail are available. Transmission is on demand, requiring466

only to load and render the portions of the model strictly needed467

for the generation of the current view. While this approach is468

key to being able to render very large models at an interac-469

tive frame rate, it is also highly helpful with respect to the data470

transfer over a possibly slow network, since the data transferred471

will be divided into small chunks and only transferred when472

needed. The advantages of using this types of methods are the473

fast startup time and the reduced network load. The model is474

immediately available for the user to browse it, even though at475

a low resolution, and it is constantly improving its appearance476

as new data are progressively loaded. On the other hand, since477

refinement is driven by view-dependent criteria (observer posi-478

tion, orientation and distance from the 3D model), only the data479

really needed for the required navigation are transferred to the480

remote user.481

We implemented one of those multiresolution schemes, called482

Nexus [34] (http://vcg.isti.cnr.it/nexus/), on top of the SpiderGL483

library [1] (http://vcg.isti.cnr.it/spidergl/), obtaining very good484

performance. Nexus is a multiresolution visualization library485

supporting interactive rendering of very large surface models.486

It belongs to the family of cluster based, view-dependent visu-487

alization algorithms. It employs a patch-based approach: the488

3D model is split (according to a specific spatial strategy based489

on KD-trees) into patches; these initial patches represent the490

highest level of detail of the multiresolution representation. The491

number of triangles in each patch is halved, and adjacent patches492

are joined, in order to keep the number of triangles more or less493

uniform per patch. The different levels of detail are generated494

by iterating this process (bottom-up). The result is a tree struc-495

ture containing each portion of the input object at multiple res-496

olutions and, more importantly, the patches are organized and497

built to always match on common borders. This allows them498

to be assembled on-the-fly to build view-dependent representa-499

tions at variable resolution.500

At rendering time and based on the current view, the system501

decides which patches are better suited to represent the object502

given a target rendering speed and the maximum geometric er-503

ror. Moreover, the batched structure allows for aggressive GPU504

optimization of the triangle patches, since the latter are encoded505

with triangle strips thus boosting GPU rendering performance.506

At initial loading time, the “map” of the patch tree is down-507

loaded, together with the lower-resolution patches. Then, de-508

pending on the view position, orientation and distance, the ren-509

dering algorithm decides which patches have to be fetched from510

the server to improve the current visualization, and queues a511

request. When each selected patch has been downloaded, the512

rendering is updated. The system continues this process of513

rendering-deciding-fetching-updating, trying to balance the amount514

of memory/data needed, the quality and speed of rendering and515

the network load.516

All the data is contained in a single file. 3DHOP exploits517

the HTTP protocol capability to randomly access binary files518

to get specific data chunks inside each file, thus transferring519

only the needed portion of data. In this way, the viewer is able520

in a very short time to display a low-resolution version of the521

object, which is then progressively refined according to the user522

interaction, since the updates are view-dependent.523

To give a practical demonstration of the capabilities of the524

multiresolution component, we provide some practical exam-525

ples. The Luni Statues setup (Figure 3) provides visual inspec-526

tion over eight 3D models, each one representing the original527

part and one or multiple integrations of each statue belonging528

to a Roman Temple in Luni (Italy), for a total of 14 million tri-529

angles. Another example is the Helm viewer (Figure 6) which530

shows a 3D model representing the actual state of an Etruscan531

helm and a second 3D model depicting the virtually restored532

version, each composed by 5 million triangles. Finally, the533

Capsella Samagher example (Figure 7) uses a 10 million tri-534

angles model and the Pompei viewer (Figure 8) is displaying a535

20 million triangles mesh.536

The conversion from a single-resolution 3D model to our537

multi resolution format is a one-time operation, done in a pre-538

processing phase. The 3DHOP user will convert its 3D as-539

sets using an executable (also open source, and included in the540

3DHOP distribution). The obtained file is ready to be deployed541

on the Web server. It is important to note that our streamable542

multiresolution encoding does not require server-side computa-543

tion and resident data-streaming daemons. It is the client that544

automatically fetches data from the inside of the file, jumping545

from one location to another in the data structure.546

Finally, multiresolution allows also some degree of data547

protection. Most institutions do not want their 3D data to be548

downloaded without permission. When using a multiresolution549

encoding, the high-resolution 3D model is never transmitted to550

the remote user in a single file but in a set of pieces encoded551

6

Figure 4: Comparative screenshots illustrating the web rendering of a 1M triangle mesh on a 5 Mbit/s Internet access, using the 3DHOP framework (first row),
WebGL-loader (central row) and X3DOM binary POP Buffer Geometry (last row). All these test have been run on the same web server to ensure equal conditions.
From the left screenshots are taken respectively at 500ms, 1s, 1.5s, 2s, 4s and 6s after loading the web page.

with a proprietary data structure. In this way, the malicious552

copy of the 3D data becomes quite complex and requires the553

design of ad-hoc procedures for downloading the whole geo-554

metric data and recombing them in the original model.555

Smaller 3D models can also be managed using a single-556

resolution representation; currently, 3DHOP supports single-557

resolution models in PLY format [42] (but more importers will558

be added as future work). In this case, the model file is fetched559

from the server as a whole and parsed by 3DHOP. This solution560

is ideal for small geometries (less than 1MB), generally used561

to give a context to higher-resolution entities or small modelled562

3D meshes. The management of geometries, may they be multi-563

resolution or single-resolution, is completely transparent to the564

user.565

4.1.1. Web-based 3D rendering: comparison of existing solu-566

tions567

We tested our rendering framework comparing it with the568

current state of art, in order to have tangible feedback about the569

effectiveness of our technical solution.570

We chose to stream online the multiresolution version of571

a relatively simple mesh, the Happy Buddha model (1M tri-572

angles, vertex color, 22MBytes as binary .PLY file, previously573

used in similar comparison works [21]), with some of the ap-574

proaches previously mentioned (see Section 2 and 3). In these575

test we used a limited bandwidth internet access and, of course,576

the same hardware and software equipment (desktop PC equip-577

ped with Intel Dual Core i3-3220 CPU at 3.30 GHz, 8 GB578

RAM, NVidia GeForce GT 620 1 GB RAM, OS Windows 8.1579

and Google Chrome Browser ver. 43.0.2357.124m). Since our580

framework uses a view dependent algorithm, for the sake of ac-581

curacy, it must be said that all the test have been run at Full HD582

screen resolution (1920x1080 pixels, aspect ratio 16:9), how-583

ever, when handling around 1M triangles per model (as in the584

Happy Buddha case) our rendering system is indifferent to this585

parameter.586

We compared the 3DHOP framework results against the587

Google WebGL-loader [43], the X3DOM binary POP Buffer588

Geometry [22] approach, the Sketchfab [41] platform, and the589

Unity [40] graphics engine, in order to have a wide selection of590

competitors, ranging from complete system solutions (X3DOM,591

Sketchfab and Unity) to stand-alone streaming services (WebGL-592

loader), from progressive mesh techniques (POP Buffer Geom-593

etry) to hybrid systems (WebGL-loader) and to standard data594

streaming procedures (Sketchfab and Unity), from completely595

free projects (WebGL-loader and X3DOM) to mixed solutions596

(Sketchfab and Unity).597

The results of this comparison can be easily understood by598

observing the screenshots in Figure 4, representing the time-599

lapse visualization of the aforementioned approaches, respec-600

tively caught after 500ms, 1s, 1,5s, 2s, 4s and 6s from launch-601

ing the loading of the Web pages. Under these conditions, with602

limited bandwidth (5 Mbit/s, typical 3G+ connection speed)603

and meshes with millions of triangles, it can be easily seen that604

3DHOP (first row in Figure 4) is performing better with respect605

to the WebGL-loader algorithm (central row in Figure 4) and to606

the X3DOM POP Buffers system (last row in Figure 4). Read-607

ily after the webpage loading (500 ms), a rough version of the608

geometry is already visible, and can be used for user interac-609

tion.610

It should be noted that the Sketchfab and Unity results do611

not appear in Figure 4; this because both Sketchfab and Unity612

viewers do not use a progressive loading engine, and the model613

has to be fully downloaded before it is visible. In both cases,614

7

3DHOP WebGL-loader X3DOM
3,0 Mbit/s 0,3 / 9,5 2,0 / 19,4 0,6 / 44,5
5,0 Mbit/s 0,2 / 4,8 1,1 / 10,8 0,6 / 24,8
8,0 Mbit/s 0,2 / 3,9 0,7 / 6,8 0,6 / 15,2
20,0 Mbit/s 0,2 / 3,7 0,3 / 2,7 0,5 / 6,0
50,0 Mbit/s 0,2 / 3,6 0,2 / 1,1 0,5 / 2,4

Table 1: Web rendering statistics for the Happy Buddha mesh (1M triangles) at
different bandwidths (3, 5, 8, 20 and 50 Mbit/s), using 3DHOP framework,
WebGL-loader and X3DOM binary POP Buffer Geometry. Each table cell
shows two average time (values in seconds): the first one concerning the start of
the rendering (time that the user will wait before seeing anything), the second
one related to the end of the rendering (whole 3D model drawn time). All these
test have been run on the same Web server to ensure equal conditions (bold
values represent the best performance in each individual case).

the Happy Buddha model loaded after nearly 6 seconds from615

the web page launch. It is clear that this gap with respect to616

progressive multiresolution approaches is emphasized when the617

mesh size grows or the bandwidth decreases; on the other hand,618

it is also true that progressive multiresolution systems may con-619

tinue updating and streaming data also after the other systems620

will have transferred the whole model.621

This eventuality can also be found by observing the data in622

Table 1. In this case the same Happy Buddha test seen pre-623

viously was performed at different bandwidths (ranging from624

3 to 50 Mbit/s), this time taking into account the latency of625

the rendering (i.e. the time that the user will wait before see-626

ing anything after running the web page) and the end of the627

data streaming process (i.e. the time taken to render the whole628

model). Under the aforementioned conditions the table clearly629

shows indeed that on fast networks (20 or 50 Mbit/s) progres-630

sive multiresolution approaches can employ a small amount of631

extra time to load the entire 3D model compared to the other ap-632

proaches (an event that for our multiresolution algorithm does633

not occur with lower bandwidths, when 3DHOP performs better634

than any other). However it should be stressed once again that635

our framework is able to provide to the final user a draft (but il-636

lustrative and ready to use) version of the whole 3D model prac-637

tically with no waiting times (300ms in the worst case, with 3638

Mbit/s Internet access), consistently out-performing other com-639

petitors in any situation (regarding this feature).640

It is worth remembering that, to ensure equal conditions, all641

the tests in this section have been run on the same Web server,642

and, with respect to the data in Table 1, they have been obtained643

by averaging five different measurements per cell data. Finally,644

it is right to clarify that, in order to obtain results less dependent645

on external network interferences, during these tests the server646

and client ran on the same network infrastructure, but that the647

acquired results are comparable with those obtained with the648

client and server placed on two different network subsystems.649

Currently, no quantitative test was performed on mobile de-650

vices (since the mobile compatibility of 3DHOP is still not651

complete), but first results show that the performance of our652

framework will be good also on these systems (although the653

POP Buffer approach is extremely efficient on mobile devices654

due to the lack of decompression times).655

Furthermore, the solutions introduced with the last software656

release (mesh compression, multi-thread JavaScript structure,657

frame-rate bounded streaming), suggest a further improvement658

of the performance. A more detailed description and evaluation659

of the current version of the view-dependent multiresolution en-660

gine can be found in [44].661

4.2. Declarative-like scene setup662

3DHOP has been designed to work with a few high-resolution663

geometries, and not with really complex scenes made of hun-664

dreds of entities. Anyway, it is necessary to define a scene665

to initialize the viewer. The definition of the scene has been666

implemented in a declarative fashion. All the scene elements667

are declared as JavaScript JSON structures, with properties and668

values, and assembled into a comprehensive scene structure.669

This structure is then parsed by 3DHOP at initialisation time670

to create the scene. We chose to use JSON because it is fairly671

easy to write and parse, it is human readable and easy to un-672

derstand; XML would have been a good choice too, possibly a673

bit more verbose. With respect to a completely DOM-integrated674

approach, like XML3D, we are still somehow disconnected; the675

declarative approach is used to define the scene, which is an en-676

tity directly managed by the 3DHOP component, and all the677

interaction with the DOM passes through the 3DHOP viewer678

object, following the idea to create a self-contained component.679

We know this somehow offers a lower level of integration and680

less freedom, but also ensures a more immediate approach (just681

add the basic component to the webpage and it is ready-to-go)682

and a higher reusability (thanks to being self-contained).683

The 3DHOP scene is composed of different elements: the684

mesh and the instance are the most basic. A mesh is simply a685

3D model (single or multi-resolution). An instance is an occur-686

rence of the mesh in the scene. This separation seems an un-687

necessary complication, given that the tool aims to be simple,688

but it is nevertheless the simplest way to have multiple objects689

sharing the same geometry.690

Meshes and instances may have an attached transformation,691

specified either as a matrix (a 16-number vector) or by using692

the predefined SpiderGL functions. The most obvious use is to693

exploit the mesh transformation to bring the 3D model into a694

basic position/orientation (e.g. to put a 3D model originally not695

perfectly aligned to its axis into a “straight” position) and then696

to locate each instance, to set its specific position/orientation/s-697

cale.698

An example of declaration of meshes and instances is the699

following:700

meshes: {701

"Laurana": {702

url: "singleres/laurana.ply" },703

"Gargoyle": {704

url: "multires/gargo.nxs" },705

"Box": {706

url: "singleres/cube.ply",707

transform: {708

matrix:709

SglMat4.scaling ([13.0 , 0.5, 10.0])710

}711

}712

},713

8

modelInstances: {714

"Lady": {715

mesh: "Laurana",716

transform: {717

matrix: [1.0, 0.0, 0.0, 0.0,718

0.0, 1.0, 0.0, 0.0,719

0.0, 0.0, 1.0, 0.0,720

0.0, 235.0, -50.0 , 1.0]721

}722

},723

"GargoRight": {724

mesh: "Gargoyle",725

transform: {726

matrix:727

SglMat4.mul(728

SglMat4.translation(729

[120.0 , 0.0, 150.0]) ,730

SglMat4.rotationAngleAxis(731

sglDegToRad (-90.0),732

[0.0, 1.0, 0.0]))733

}734

},735

"GargoLeft": {736

mesh: "Gargoyle",737

transform: {738

matrix:739

SglMat4.translation(740

[-120.0, 0.0, 120.0])741

}742

},743

"Base": {744

mesh: "Box",745

transform: {746

matrix:747

SglMat4.translation(748

[0.0, -12.5, 0.0])749

}750

}751

},752

Figure 5: A simple scene in 3DHOP created by instancing geometries and ap-
plying transformations. This example is available in the How-To section of the
3DHOP website.

In this example a few simple elements are instantiated and753

arrayed in space, with the corresponding scene visible in Fig-754

ure 5. A mesh element having the shape of a cube is scaled to755

become the base of the example in Figure 5, and positioned at756

the instance level. The other models are arranged (translated or757

rotated and translated) onto the base at instance level; the two758

gargoyles share the same mesh geometry.759

A 3DHOP scene includes many other elements, which are760

presented in the following sections, e.g. the trackball (used to761

drive the interaction) or the hotspot elements used for picking.762

General scene parameters (e.g. the field of view and the custom763

scene centering) are also declared in the same way.764

The declarative approach also has the advantage of more765

easily managing content retrieved from a database. The scene766

description is a JavaScript structure which can be easily filled767

with data retrieved by a query to a database; this would be less768

straightforward using an imperative-like setup.769

4.3. Interaction components770

A 3D viewer is not just a rendering engine, but also in-771

cludes the components required to implement the user interac-772

tion. 3DHOP mostly uses the object-in-hand metaphor, where773

the camera is fixed and the object is manipulated by the user in774

front of it, generally using a trackball.775

It is difficult, if not impossible, to create a single all-purpose776

trackball, able to cope with the specific geometric characteris-777

tics of every possible object. For this reason, we decided to im-778

plement a series of basic trackballs, letting the user to choose779

the more appropriate one. At the moment, the 3DHOP distribu-780

tion includes three different trackballs (others will be added in781

the future):782

• Full-Sphere: it is the trackball providing the more free783

interaction, enabling the user to rotate the object around784

all axes at the same time.785

• TurnTable: this is the most flexible one, providing rota-786

tion around the vertical axis and tilting around the hor-787

izontal axis. With this trackball it is possible to reach788

almost all view positions around an object in a simple789

way, maintaining its verticality (e.g. preventing to rotate790

a statue head-down, feet-up).791

• Pan-Tilt: this trackball is tailored to present bas-reliefs or792

objects whose detail is mostly located on a single plane.793

Having a series of basic trackballs, implemented with sim-794

ple, open and documented code, will allow developers to add795

new interaction modes coping with specific visualization needs.796

For this reason, each trackball in the distribution is a separate797

file, making it easier to use them as a codebase.798

Trackballs can be configured with limits on their axes, to re-799

strict the position reachable by the user. This is useful to avoid800

the user going, for example, below ground level in buildings, or801

behind objects with only a frontal part (like bas-reliefs). Track-802

balls can be also animated (we present an example in the next803

section).804

In each 3DHOP viewer/installation there is only one track-805

ball selected (TurnTable trackball is the default). To explicitly806

choose and configure a trackball, the developer has to specify807

the trackball element of the scene:808

trackball: {809

type: TurnTableTrackball ,810

trackOptions: {811

startPhi : 0.0,812

startTheta : 0.0,813

startDistance : 2.5,814

9

minMaxPhi : [-90, 120],815

minMaxTheta : [-10.0, 75.0],816

minMaxDist : [0.5, 3.0]817

}818

}819

In the example above, the developer has chosen a TurnTable,820

starting exactly in front of the object (phi is rotation around ver-821

tical axis, theta the elevation angle) but a bit far from the object822

(distance 2.5 means that the camera distance is 2.5 times the823

size of the object bounding box). The trackball is limited both824

in the horizontal rotation (a bit to left, more to the right) and in825

the vertical one (not much below, a lot above); it is also impos-826

sible to go nearer than 0.5 and farther than 3.0 units from the827

object (again, expressed in multiples of the object size). Like828

in all configurations of 3DHOP components, it is not needed to829

specify all the parameters, since the unspecified ones will retain830

their default; it is sufficient to specify only the ones that need to831

be changed.832

This approach, based on the trackball metaphor, is perfect to833

manipulate “objects”, but it makes it much more difficult to nav-834

igate more complex scenes (such as buildings and terrains). We835

are currently working on interaction components more suited836

for exploring other types of geometries such as terrain models837

(with a Google earth-like approach), or the interior of a building838

(using a waypoint-based path).839

4.4. Interconnection with the DOM840

As introduced before, we wanted to create a framework of-841

fering basic viewers (if no other functions are configured), but842

also visualization components able to interact with the rest of843

the webpage. To this aim, we added a series of exposed func-844

tions and events, usable by a developer to allow 3DHOP com-845

ponents to interact with the rest of the web page logic. Our idea846

was to implement multiple, self-contained functions, with no847

high-level semantics attached, in order to provide the developer848

with a toolbox.849

4.4.1. Trackball automation850

The most basic interaction between a web page and the 3D851

visualization component is the control of the trackball. 3DHOP852

trackballs are able to give feedback on their current position:853

an exposed JavaScript function (getTrackballPosition) returns a854

structure containing the current state of the trackball. Another855

provided JavaScript function (setTrackballPosition) can be used856

to instantly move the trackball to a specific position by feeding857

it with a new state description. Additionally, it is possible to858

animate the trackballs to reach a certain position: instead of859

instantly changing its state, the camera follows a smooth ani-860

mation path linking the current position with the specified one.861

These functions allow the developer to build, for example, a862

bookmarking mechanism for pre-selected views, a “share this863

view” button or an guided animated tour around the object. An864

example is shown in the Helm viewer (Figure 6), where the but-865

tons on the right side of the window move the trackball to the866

views represented visually by the small icons.867

4.4.2. Visibility control868

Most visual presentation tools implement the control of the869

visibility of the different models. Model instances in 3DHOP870

can be configured in order to be visible or invisible at startup871

(visible is the default), and their visibility status can be changed872

at runtime using specific JavaScript functions exposed by the873

tool. An interesting trick is the tag-based selection of groups:874

in order to select the visibility status over groups of objects,875

the visibility functions do not work on a single instance, but876

on all instances thati have a specific tag. Model instances have877

a tags property, which is basically a series of strings. We can878

assign to each instance the tag of each “group” it belongs to or,879

if necessary, a unique tag. Using this simple mechanism, it is880

possible to address single entities as well as groups.881

3DHOP exposes a function to set visibility and another one882

to toggle the visibility of a set of instances. For example, the883

Luni Statues viewer (Figure 3) presents four statues, each one884

composed of an original part and an integration; it is possible to885

make visible/invisible each statues either as a whole, or all the886

original parts or all the integrations of the entire set or, finally,887

the original/integration parts of a specific statue. In this exam-888

ple there are four statues, and for each statue there is one model889

for the original part and one for the integration. The original890

part of statue #1 has tags [“figure1”, “original”]; the integra-891

tion part of statue #1 has tags [“figure1”,“integration”], and892

so on for the other figures. Therefore, in order to make visible893

only the whole statue #1, the developer will use these calls:894

setInstanceVisibility(HOP_ALL , false , false);895

setInstanceVisibility("figure1", true , true);896

Conversely, to show only original parts for statue #1 and #3:897

setInstanceVisibility(HOP_ALL , false , false);898

setInstanceVisibility("figure1", true , false);899

setInstanceVisibility("figure3", true , false);900

toggleInstanceVisibility("integration", true);901

where HOP ALL is a constant used to select all of the instances;902

the first parameter of setInstanceVisibility is the new visibility903

state; and the last parameter of both functions is used to force a904

redraw.905

Visibility control is also used in the Helm viewer (Figure 6)906

to switch between the helm before and after restoration; there907

are two instances of different meshes in the same positions,908

and to switch between the two, one is hidden while the other909

is shown.910

4.4.3. Hotspots and picking911

Another widely available feature in web pages is the pres-912

ence of clickable hotspots. This feature is often connected to913

something happening in the 3D visualization or elsewhere in914

the webpage. Depending on the visualization scheme, it may915

be interesting to have a picking component able to detect a pick916

on a hotspot, but also to detect a pick on an instance of a 3D917

model. 3DHOP does support both levels of interaction. In or-918

der to use this feature, the developer shall use two JavaScript919

functions to handle the picking (of hotspots and instances) and920

register these two functions to the handles exposed by 3DHOP.921

10

Figure 6: The Helm viewer allows to inspect an Etruscan helm either in its current state (image on the left) or in its virtual restoration version (image on the right),
each represented by a 5 million triangle model. The user may switch between the two versions (using the ViewRestored/ViewActualState button), explore the model
(it adopts the TurnTable trackball), and use the links on the right side of the window to go to interesting views of the model (these buttons will animate the trackball
to reach the selected view position). This example is available in the Gallery section of the 3DHOP website.

The first function (hooked to onPickedInstance) is invoked ev-922

ery time a model instance has been clicked, and returns the923

name of the picked instance. The second one (hooked to on-924

PickedSpot) is invoked every time a hotspot is clicked, again925

returning its name. A third function, which returns the exact926

XYZ coordinate of the clicked point under development and927

will be included in the next 3DHOP release.928

In order to be more flexible, instead of just a single point,929

a hotspot may have an arbitrary shape and geometry. This is930

obtained by associating a mesh to the hotspot, similarly to the931

way a 3D model is specified when declaring an instance (a ge-932

ometry is declared as a mesh, and then used in the declaration933

of the hotspot). In the simpler cases, a hotspot can be defined934

using a sphere or a cube model, moved to the correct position935

and appropriately scaled. In more complex situations, the user936

can provide a specific geometry, for example created using a937

3D modeling tool. Picking is implemented using a basic CG938

method: when picking, the scene is rendered in an off-screen939

buffer, with each pickable object rendered as a solid unique940

color, which encodes its ID, while non-pickable objects are ren-941

dered solid black. The picked pixel is retrieved from this buffer:942

if black, nothing has been picked; if non-black, the color is943

transformed back into the ID of the picked object. This method944

does not require too many resources, and works pretty well945

also on complex scenes. The picking mechanism also works946

in realtime when the user moves the mouse, thus obtaining an947

“onOver” hook, and enables the hotspot geometry to light up.948

This feature may be deactivated when the scene is too complex,949

to speed up the rendering.950

Hotspots may be made active or inactive using a tag-based951

mechanism similar to the one used in the visibility control,952

making it possible to define “hotspot groups” which can be in-953

dependently activated/deactivated (e.g. to show different layers954

of information or linking). Each hotspot may have a specific955

color and an associated cursor.956

An example of this kind of interaction is provided in the957

Capsella Samagher viewer (Figure 7): in this example, when a958

hotspot is picked some related presentation material (an image959

and a descriptive text) is shown in the left-most portion of the960

web page, and the view over the 3D model is moved to better961

frame the detail (using the trackball animation feature).962

Figure 7: The Capsella Samagher viewer: in this example, the antique reliquary
is presented with hotspots (light-blue regions). The hotspots, when picked,
centers the view over the hotspot area and show the corresponding descriptive
content (images and text) in the left-most part of the webpage. The Capsella
model contains 10 million triangles. This example is available in the Gallery
section of the 3DHOP website.

11

5. Using 3DHOP963

The tradeoff between ease of use and flexibility is a major964

issue when creating a tool for non-expert developers. If the fea-965

tures are too simple or restricted, users with particular needs966

may not find proper support; on the other hand, an increase in967

flexibility could reduce simplicity of use. For this reason, the968

3DHOP tool has been designed with different levels of entry,969

to be as straightforward as possible for the more simple cases970

but, at the same time, able to provide enough configurable fea-971

tures to support the huge variability of Cultural Heritage art-972

works and applications. Users with knowledge of JavaScript973

programming and web design will have no problem in using the974

framework, since its basic paradigm mimics the one normally975

employed in standard Web development.976

5.1. 3DHOP for unskilled developers977

Developers with limited programming skills may still use978

the framework using one of the following strategies:979

980

• Zero configuration: since all the components have a set981

of safe defaults, it is possible to create a visualization982

page without configuring anything. This ”minimal” vi-983

sualization page is contained in a folder of the distribu-984

tion, and can be readily used by the most inexperienced of985

users, since it is only necessary to change the 3D model986

file.987

• How-Tos: in addition to plain documentation, we opted988

to present the different features with How-To descriptions,989

detailing the parameter-based configuration of the visu-990

alization component. These pages contain reusable ex-991

amples that can be modified following the content of the992

How-To. New How-To resources will be added as soon as993

new features and components are introduced in 3DHOP.994

• Templates: in the Gallery page of the 3DHOP website,995

it is possible to find various examples (with different lev-996

els of complexity) which cover typical cases of usage in997

the CH field. The idea is to provide the developers with998

non-trivial usable templates, which can be used or cus-999

tomised with just minimal changes. After changing just1000

the 3D model file (and the graphic elements, if needed),1001

a completely unskilled developer may create their own1002

visualization page without even modifying the HTML1003

code. We are now working on better documentation for1004

the templates, and on cleaning-up their HTML code for1005

simpler use.1006

5.2. 3DHOP as a codebase1007

3DHOP has been designed to be configurable and flexible,1008

and we are working on developing new components. Neverthe-1009

less, there are many projects where a specific solution is needed1010

to fully exploit the data and to reach the communication goals.1011

In these cases, 3DHOP may be seen as a “codebase”. The mod-1012

ular structure of the tool facilitates the implementation of new,1013

specialized components, or the tuning of existing ones. We be-1014

lieve that a skilled CG programmer and/or web developer may1015

be able to heavily modify 3DHOP to cope with the particular1016

needs of a project.1017

An example of this strategy is a modification of 3DHOP that1018

we have designed for the web-based exploration of an entire1019

insula (an area surrounded by four major streets) in the Pompei1020

archaeological site. The basic version of 3DHOP was used as1021

a starting point to create a customized viewer for the Pompeii1022

model, presented in Figure 8.1023

The added value of this specific modification is the work1024

done to extend the basic trackball to an interaction interface1025

suited to the exploration of terrain-with-structures models. This1026

system offers a double interaction method: a bird-view naviga-1027

tion and a first-person-view navigation. Both navigation meth-1028

ods are able to follow the height of the ground level, and colli-1029

sion detection with walls is available in first-person navigation.1030

This new 3DHOP incarnation features also a new component,1031

the minimap (an HTML5 canvas entity, see the small interactive1032

map on the right-most portion of Figure 8). In each instant of1033

the navigation, the current position of the viewer is shown on1034

the map; clicking on any location in the minimap, the viewer is1035

virtually moved to the desired location. Moreover, the system1036

keeps track of the position of the viewer, not just showing the1037

user location on the minimap, but also showing the name of the1038

specific building/room the user is currently visiting (see the two1039

textual fields on top-right, circled in red in Figure 8), retrieved1040

from an existing web repository.1041

1042

3DHOP is an open source tool, and the extension and mod-1043

ification of the framework is highly encouraged. We believe the1044

3DHOP framework has the potential to sprout an independent1045

community of users, that could share examples, exchange ex-1046

periences, and create connections. Following the first release of1047

3DHOP (April 2014), we have been contacted by several users1048

willing to test and evaluate the framework. The first implemen-1049

tations by third parties are appearing (see Figure 9), and we are1050

gathering suggestions and feedback.1051

6. Ongoing work, perspectives and conclusions1052

3DHOP is an ongoing effort, which already reached a level1053

of consolidation that allowed us to disclose it and share with1054

the community. We are regularly releasing new versions of the1055

tool; one major update was made on October 2014, and the next1056

one is scheduled for June 2015, as there are several features and1057

extensions already on our roadmap. Since we conceive 3DHOP1058

as a framework, there are many new components (or variations1059

of the existing ones) that can be added to support the creation of1060

more flexible and effective interactive visualizations. The main1061

improvements would include:1062

• New navigation and visualization features: new track-1063

ball types and new scene manipulation functions are on1064

the development list. Examples are the trackball used in1065

the Pompeii explorer (Figure 8) that will be documented1066

and added to the Gallery. Moreover, all geometries are1067

12

Figure 8: The Pompeii explorer: it allows to explore the entire Insula V 1 of Pompeii (using a 20 million triangle 3D model). Navigation is controlled by mouse
inputs (using a custom terrain-enabled trackball) or by clicking on the minimap (see on the right of the window). The viewer keeps track of the current location of
the user, showing the name of the room and of the house (text fields circled in red in the image). A test version is available at: http://3dhop.net/demos/insula/

Figure 9: Four examples of independent projects developed by the community using 3DHOP (in clockwise order starting from the upper left): the MuSA viewer:
presenting a collection of 3D artwork models, each one paired with a descriptive text (on the right of the page); the Morpho Museum project: publishing and sharing
3D models of vertebrates (the panel on the right contains specimen infos and links to the related article); the Fattoria Celle example: the Gori artworks collection
opened to the public of the web (the 3D models are accessible by the slide show component in the bottom of the page); the Humanitities Lab experience: a simple
viewer for high-resolution archaeological founding (by Lund University, Sweden).

13

currently rendered using the same basic shader. Our goal1068

in the near future is to provide different, configurable1069

shaders, which should be selectively attached to each in-1070

stance.1071

• Moving to dynamic definition of scenes: at the moment,1072

the scene definition is completely static. Once declared1073

in the initialization, there is no way to modify the pa-1074

rameters of the different entities. We know that, in order1075

to be fully compliant with the declarative paradigm, this1076

feature will have to be added. Our development roadmap1077

aims at reaching this functionality in a progressive way,1078

starting from being able to modify the associated trans-1079

formations, then to move to the other properties, and end-1080

ing with the ability to dynamically add/remove entities.1081

• Other types of media: in the context of web visual-1082

ization, other types of media could be effectively inte-1083

grated into 3DHOP. One example is represented by ter-1084

rain datasets. Terrains are defined in a 2D 1/2 space and1085

can be managed more effectively than a 3D model using1086

specialized strategies. A web-streamable multiresolution1087

representation (based on quadtree) of a terrain will be1088

soon integrated into 3DHOP, making it possible to add1089

terrain geometry to a scene. This will be very useful1090

to better cope with applications that involve landscapes1091

of archeological interest. Moreover, we have available1092

technology for the web-based streaming and visualiza-1093

tion of relightable images, i.e. Reflection Transformation1094

Images (RTI) [45, 46], currently under integration in the1095

framework.1096

• Authoring helpers and automatic services: At the mo-1097

ment, there is not a visual editor or a wizard to set up a1098

visualization scheme. This lack of guided tools may pre-1099

vent some potential users from adopting 3DHOP despite1100

its simplicity. For this reason, in the framework of the1101

EC INFRA ”ARIADNE” project we are implementing1102

an automatic web service able to create presentation web1103

pages, using a layout similar to the one shown in Fig-1104

ure 2. The web server accepts the upload of a 3D model1105

plus some basic metadata provided with a simple web1106

form and, after the unattended processing is completed,1107

returns to the user the URL of the prepared visualization1108

webpage (hosted on the same web server), plus a down-1109

load link (to let the developer use the webpage and data1110

on their own server, in case they want to).1111

To conclude, we have presented 3DHOP, a framework that1112

aims at providing an easy way to create advanced 3D web con-1113

tent, offering the possibility to create and share advanced exam-1114

ples. Its modular structure has been designed to allow different1115

utilisation levels of the framework but also to enable the cre-1116

ation of a community of users, so that examples and new com-1117

ponents may be shared and re-used. We believe that this could1118

be a helpful instrument to help the CH community to create and1119

share advanced contents on the web, and use it not only for dis-1120

semination purposes, but also in the workflow of experts and1121

practitioners.1122

1123

Acknowledgements. The research leading to these results has1124

received funding from the European Union Seventh Framework1125

Programme (FP7/2007-2013) under grant agreement n. 3131931126

(EC INFRA ”ARIADNE” project) and EC ERIC ”DARIAH”1127

project.1128

References1129

[1] Di Benedetto M, Ponchio F, Ganovelli F, Scopigno R. Spidergl: a java-1130

script 3d graphics library for next-generation www. In: Proceedings1131

of the 15th International Conference on Web 3D Technology. Web3D1132

’10; New York, NY, USA: ACM. ISBN 978-1-4503-0209-8; 2010, p.1133

165–74. URL: http://doi.acm.org/10.1145/1836049.1836075.1134

doi:10.1145/1836049.1836075.1135

[2] Microsoft. Microsoft ActiveX Controls. http://msdn.microsoft.1136

com/en-us/library/aa751968(VS.85).aspx; 2013.1137

[3] Raggett D. Extending WWW to support platform independent virtual1138

reality. Technical Report 1995;.1139

[4] Don Brutzmann LD. X3D: Extensible 3D Graphics for Web Authors.1140

Morgan Kaufmann; 2007.1141

[5] Khronos Group . WebGL - OpenGL ES 2.0 for the Web. 2009.1142

[6] Khronos Group . Khronos: Open Standards for Media Authoring and1143

Acceleration. 2009.1144

[7] Khronos Group . OpenGL ES - The Standard for Embedded Accelerated1145

3D Graphics. 2009.1146

[8] Evans A, Romeo M, Bahrehmand A, Agenjo J, Blat J. 3d1147

graphics on the web: A survey. Computers & Graphics1148

2014;41(0):43 – 61. URL: http://www.sciencedirect.com/1149

science/article/pii/S0097849314000260. doi:http://dx.doi.1150

org/10.1016/j.cag.2014.02.002.1151

[9] Jankowski J, Ressler S, Sons K, Jung Y, Behr J, Slusallek P. Declar-1152

ative integration of interactive 3d graphics into the world-wide web:1153

Principles, current approaches, and research agenda. In: Proceedings1154

of the 18th International Conference on 3D Web Technology. Web3D1155

’13; New York, NY, USA: ACM. ISBN 978-1-4503-2133-4; 2013,1156

p. 39–45. URL: http://doi.acm.org/10.1145/2466533.2466547.1157

doi:10.1145/2466533.2466547.1158

[10] Behr J, Eschler P, Jung Y, Zöllner M. X3dom: a dom-based html5/x3d1159

integration model. In: Proceedings of the 14th International Conference1160

on 3D Web Technology. Web3D ’09; New York, NY, USA: ACM. ISBN1161

978-1-60558-432-4; 2009, p. 127–35. URL: http://doi.acm.org/1162

10.1145/1559764.1559784. doi:10.1145/1559764.1559784.1163

[11] Sons K, Klein F, Rubinstein D, Byelozyorov S, Slusallek P. Xml3d: In-1164

teractive 3d graphics for the web. In: Proceedings of the 15th Interna-1165

tional Conference on Web 3D Technology. Web3D ’10; New York, NY,1166

USA: ACM. ISBN 978-1-4503-0209-8; 2010, p. 175–84. URL: http://1167

doi.acm.org/10.1145/1836049.1836076. doi:10.1145/1836049.1168

1836076.1169

[12] Kay L. SceneJS. http://www.scenejs.com; 2009.1170

[13] Brunt P. GLGE: WebGL for the lazy (web site). http://www.glge.1171

org/; 2010.1172

[14] Dirksen J, editor. Learning Three.js: The JavaScript 3D Library for1173

WebGL. Packt Publishing; 2013.1174

[15] DeLillo B. WebGLU: A utility library for working with WebGL . http:1175

//webglu.sourceforge.org/; 2009.1176

[16] Jankowski J, Decker S. A dual-mode user interface for accessing 3d con-1177

tent on the world wide web. In: Proceedings of the 21st international con-1178

ference on World Wide Web. WWW ’12; New York, NY, USA: ACM.1179

ISBN 978-1-4503-1229-5; 2012, p. 1047–56. URL: http://doi.acm.1180

org/10.1145/2187836.2187977. doi:10.1145/2187836.2187977.1181

[17] Callieri M, Leoni C, Dellepiane M, Scopigno R. Artworks narrating1182

a story: a modular framework for the integrated presentation of three-1183

dimensional and textual contents. In: Web3D, 18th International Confer-1184

ence on 3D Web Technology. 2013, p. 167–75.1185

[18] Russell BC, Martin-Brualla R, Butler DJ, Seitz SM, Zettlemoyer L. 3D1186

Wikipedia: Using online text to automatically label and navigate recon-1187

14

structed geometry. ACM Transactions on Graphics (SIGGRAPH Asia1188

2013) 2013;32(6).1189

[19] Smithsonian I. Smithsonian X 3D. http://3d.si.edu/; 2011.1190

[20] Autodesk . Project Memento. http://memento.autodesk.com; 2011.1191

[21] Lavoué G, Chevalier L, Dupont F. Streaming compressed 3d data on the1192

web using javascript and webgl. In: Proceedings of the 18th International1193

Conference on 3D Web Technology. Web3D ’13; New York, NY, USA:1194

ACM. ISBN 978-1-4503-2133-4; 2013, p. 19–27.1195

[22] Limper M, Jung Y, Behr J, Alexa M. The pop buffer: Rapid progres-1196

sive clustering by geometry quantization. Computer Graphics Forum1197

2013;32(7):197–206.1198

[23] Limper M, Wagner S, Stein C, Jung Y, Stork A. Fast delivery of 3d1199

web content: A case study. In: Proceedings of the 18th International1200

Conference on 3D Web Technology. Web3D ’13; New York, NY, USA:1201

ACM. ISBN 978-1-4503-2133-4; 2013, p. 11–7.1202

[24] Limper M, Thöner M, Behr J, Fellner DW. SRC - a streamable format1203

for generalized web-based 3d data transmission. In: Polys NF, Chesnais1204

A, Gobbetti E, Döllner J, editors. The 19th International Conference on1205

Web3D Technology, Web3D ’14, Vancouver, BC, Canada, August 8-10,1206

2014. ACM. ISBN 978-1-4503-3015-2; 2014, p. 35–43. URL: http://1207

doi.acm.org/10.1145/2628588.2628589. doi:10.1145/2628588.1208

2628589.1209

[25] Sutter J, Sons K, Slusallek P. Blast: A binary large structured transmis-1210

sion format for the web. In: Proceedings of the Nineteenth International1211

ACM Conference on 3D Web Technologies. Web3D ’14; New York, NY,1212

USA: ACM. ISBN 978-1-4503-3015-2; 2014, p. 45–52. URL: http://1213

doi.acm.org/10.1145/2628588.2628599. doi:10.1145/2628588.1214

2628599.1215

[26] Hoppe H. Progressive meshes. In: Proceedings of the 23rd Annual Con-1216

ference on Computer Graphics and Interactive Techniques. SIGGRAPH1217

’96; New York, NY, USA: ACM. ISBN 0-89791-746-4; 1996, p. 99–108.1218

[27] Gobbetti E, Marton F, Rodriguez MB, Ganovelli F, Di Benedetto M.1219

Adaptive quad patches: An adaptive regular structure for web distribution1220

and adaptive rendering of 3d models. In: Proceedings of the 17th Interna-1221

tional Conference on 3D Web Technology. Web3D ’12; New York, NY,1222

USA: ACM. ISBN 978-1-4503-1432-9; 2012, p. 9–16.1223

[28] Lee H, Lavou G, Dupont F. Rate-distortion optimization for progres-1224

sive compression of 3d mesh with color attributes. The Visual Computer1225

2012;28(2):137–53.1226

[29] Alliez P, Desbrun M. Progressive compression for lossless transmission1227

of triangle meshes. In: Proceedings of the 28th Annual Conference on1228

Computer Graphics and Interactive Techniques. SIGGRAPH ’01; New1229

York, NY, USA: ACM. ISBN 1-58113-374-X; 2001, p. 195–202.1230

[30] Evans A, Agenjo J, Blat J. Web-based visualisation of on-set point cloud1231

data. In: Proceedings of the 11th European Conference on Visual Me-1232

dia Production. CVMP ’14; New York, NY, USA: ACM. ISBN 978-1-1233

4503-3185-2; 2014,URL: http://doi.acm.org/10.1145/2668904.1234

2668937. doi:10.1145/2668904.2668937.1235

[31] Rossignac J, Borrel P. Multi-resolution 3d approximations for ren-1236

dering complex scenes. In: Falcidieno B, Kunii T, editors. Mod-1237

eling in Computer Graphics. IFIP Series on Computer Graphics;1238

Springer Berlin Heidelberg. ISBN 978-3-642-78116-2; 1993, p. 455–1239

65. URL: http://dx.doi.org/10.1007/978-3-642-78114-8_29.1240

doi:10.1007/978-3-642-78114-8_29.1241

[32] Funkhouser TA, Séquin CH. Adaptive display algorithm for interactive1242

frame rates during visualization of complex virtual environments. In:1243

Proceedings of the 20th Annual Conference on Computer Graphics and1244

Interactive Techniques. SIGGRAPH ’93; New York, NY, USA: ACM.1245

ISBN 0-89791-601-8; 1993, p. 247–54. URL: http://doi.acm.org/1246

10.1145/166117.166149. doi:10.1145/166117.166149.1247

[33] Shaffer E, Garland M. A multiresolution representation for massive1248

meshes. IEEE Transactions on Visualization and Computer Graph-1249

ics 2005;11(2):139–48. URL: http://dx.doi.org/10.1109/TVCG.1250

2005.18. doi:10.1109/TVCG.2005.18.1251

[34] Cignoni P, Ganovelli F, Gobbetti E, Marton F, Ponchio F, Scopigno R.1252

Batched multi triangulation. In: Proceedings IEEE Visualization. Con-1253

ference held in Minneapolis, MI, USA: IEEE Computer Society Press;1254

2005, p. 207–14. URL: http://vcg.isti.cnr.it/Publications/1255

2005/CGGMPS05.1256

[35] Borgeat L, Godin G, Blais F, Massicotte P, Lahanier C. Gold: In-1257

teractive display of huge colored and textured models. ACM Trans1258

Graph 2005;24(3):869–77. URL: http://doi.acm.org/10.1145/1259

1073204.1073276. doi:10.1145/1073204.1073276.1260

[36] Zhang Y, Xiong H, Jiang X, Shi J. A Survey of Simplification and1261

Multiresolution Techniques for Massive Meshes: A Survey of Simpli-1262

fication and Multiresolution Techniques for Massive Meshes. Jour-1263

nal of Computer-aided Design & Computer Graphics 2010;22:559–68.1264

doi:10.3724/SP.J.1089.2010.10617.1265

[37] Wimmer M, Scheiblauer C. Instant points: Fast rendering of unpro-1266

cessed point clouds. In: Proceedings of the 3rd Eurographics / IEEE1267

VGTC Conference on Point-Based Graphics. SPBG’06; Aire-la-Ville,1268

Switzerland, Switzerland: Eurographics Association. ISBN 3-905673-1269

32-0; 2006, p. 129–37. URL: http://dx.doi.org/10.2312/SPBG/1270

SPBG06/129-136. doi:10.2312/SPBG/SPBG06/129-136.1271

[38] Ganovelli F, Scopigno R. Ocme: out-of-core mesh editing made practi-1272

cal. IEEE Computer Graphics and Applications 2012;32(3):46–58. URL:1273

http://vcg.isti.cnr.it/Publications/2012/GS12.1274

[39] Koller D, Turitzin M, Levoy M, Tarini M, Croccia G, Cignoni P, et al.1275

Protected interactive 3d graphics via remote rendering. ACM Trans1276

on Graphics 2004;23(3):695–703. URL: http://vcg.isti.cnr.it/1277

Publications/2004/KTLTCCS04.1278

[40] UnityTechnologies . Unity: Create the games you love with unity. More1279

info on: http://unity3d.com/; 2014.1280

[41] Sketchfab . Publish and find the best 3d content. More info on:1281

https://sketchfab.com/; 2014.1282

[42] GeorgiaTech . The ply file format. More info on:1283

http://www.cc.gatech.edu/projects/large models/ply.html; 2014.1284

[43] Google . Google Code WebGL Loader. https://code.google.com/1285

p/webgl-loader/; 2011.1286

[44] Ponchio F, Dellepiane M. Fast decompression for web-based view-1287

dependent 3d rendering. In: Proceedings of the 20th International Con-1288

ference on 3D Web Technology. Web3D ’15; New York, NY, USA: ACM.1289

ISBN 978-1-4503-3647-5; 2015, p. 199–207.1290

[45] Malzbender T, Gelb D, Wolters H. Polynomial texture maps. In: Proceed-1291

ings of the 28th annual conference on Computer graphics and interactive1292

techniques - ACM Siggraph’01. ACM; 2001, p. 519–28.1293

[46] Mudge M, Malzbender T, Chalmers A, Scopigno R, Davis J, Wang O,1294

et al. Image-Based Empirical Information Acquisition, Scientific Relia-1295

bility, and Long-Term Digital Preservation for the Natural Sciences and1296

Cultural Heritage . In: Roussou M, Leigh J, editors. EG 2008 Tutorials1297

Proceedings. Crete, Greece: Eurographics Association; 2008,.1298

15

