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Abstract

We present a novel method for the modeling and optimization of the material distribution inside 3D shapes, such that their 3D printed
replicas satisfy prescribed constraints regarding mass properties. In particular, we introduce an extension of ray-representation to
shape interior modeling, and prove this parametrization covers the optimal interior regarding static and rotational stability criteria.
This compact formulation thoroughly reduces the number of design variables compared to the general volumetric element-wise
formulation. We demonstrate the effectiveness of our reduced formulation for optimizing shapes that stably float in liquids or spin

around a prescribed axis.
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1. Introduction

Given the boundary surface representing the exterior of a
3D shape, we are interested in computing a material distribu-
tion in its interior, such that the resultant mass properties (i.e.,
the center of mass and the moment of inertia) satisfy a set of
stability criteria. This design problem becomes very relevant in
the era of 3D printing for fabricating customized shapes which
stand [1, 2], spin [3], or float [4, 5] in a prescribed orientation.

A general formulation to this design problem is shape op-
timization on a volumetric basis [1, 5]. To this end, the shape
interior is discretized by hexahedral elements known as voxels,
and each voxel is assigned a design variable. This parametriza-
tion results in a large number of design variables for accurately
representing complex shapes.

To reduce the number of design variables, Bicher et al. [3]
employ an adaptive octree grid where the cells split or merge on
the fly during the optimization process. Musialski et al. [4] pro-
pose shape optimization by treating the thickness of the surface
shell as design variables. Together with a reduced parametriza-
tion of offset surfaces, this formulation was demonstrated for
static and rotational stability. However, the shell representation
restricts the solution space, and thus an optimal solution that
lies outside of this space cannot be reached.

In this paper, we present a reduced yet complete parametriza-
tion of shape interior, specifically designed for optimizing mass
properties. Based on an analysis of mass properties and stabil-
ity criteria, we prove that the optimal solution lies in a subspace
represented compactly by an extension of ray-representations
(ray-reps), which represent the shape by its intersections with
parallel rays. In particular, we extend the concept of ray-reps
by enhancing each ray with intervals distinguishing solid and
void phases along this ray. The exact values of these intervals
are automatically determined by an optimizer for controlling
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mass properties.
The specific contributions of our paper include:

e A compact parametrization of shape interior, which sig-
nificantly reduces the number of design variables in shape
interior optimization, and

o Insights into the optimal solution of mass properties un-
der static and rotational stability criteria, which prove
completeness of the reduced formulation, i.e., the opti-
mal solution lies in the reduced space.

2. Ray-reps for Shape Interior Modeling

We start by briefly introducing ray-reps for solid modeling,
and then go on to the extended version for modeling the shape
interior which can be partially void.

Ray-reps for Solids. Ray-rep is a compact boundary represen-
tation, and it was introduced to the solid modeling commu-
nity by Ellis et al. [6]. Similar approaches using the intersec-
tions between the surface mesh and parallel rays have been pro-
posed, e.g., marching intersections [7], layered depth-normal
images [8, 9]. Ray-rep is based on the parametrization of an
object’s surface using a set of parallel rays starting at a 2D grid.
The solid is then represented by the sequence of intersections
between its boundary surface and the rays. We assume rays start
from a uniform grid on the xy-plane, and pierce along the z-axis
which is aligned with the intended upright direction of the solid.
As illustrated in Fig. 1 (left) on a 2D R-shaped solid, each ray
has an even number of intersections with the watertight bound-
ary surface. For each pair of intersections, we denote Zp;, to
indicate the ray enters the solid, and z;, the ray exits the solid.
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Figure 1: Left: A solid of letter 'R’ is represented by the intersections be-
tween its boundary (black) and the rays (red), i.e., Zmin and zmax for each pair
of intersections. Right: Two design variables zp and z; between each pair of in-

tersections are introduced for modeling shape interior which is not necessarily
fully solid.

We then collect all pairs of intersections by

Raywlld {x y Zmln’ Zmax} (1 )

where x' and y' are the xy-coordinates of the ray origin.

Rap-reps for Shape Interior. To extend ray-reps to shape inte-
rior modeling, we need intervals distinguishing solid and void
regions along each ray. As will be proven in the next section,
between each pair of intersections, there exists at most one solid
region in the optimal solution under static and rotational stabil—
ity criteria. Therefore we mtroduce two design variables Zo and
zl, with 72, < Zo < Z1 <z to represent the inner solid

min — max ?

region. The ray-rep for shape interior is

i SO A A | i i
Rayinlerior - {X Y Zmin’ ZmaX’ ZO’ Z1 } (2)

Here z{,z) is solid while both P zé and 2 zh,y are void. In the
extreme case of Zo = zl, this ray 1s fully void; while in the ex-
treme case of me =z, and z1 = 7! . the Tay is fully solid. The
values of Zo and z1 are to be determined by the optimizer. We
note that a similar extension of ray-reps for modeling heteroge-
neous materials has been presented by Wang [10].

This representation inherits the compactness and simplicity
of original ray-reps, and thus provides a reduced parametriza-
tion for shape optimization as we will explore.

3. Optimizing Mass Properties on Ray-reps

3.1. Mass properties

The stability of an object is determined by its mass prop-
erties, which include the total mass m, the center of mass ¢ =
(cx,c),cZ)T, and the 3 X 3 symmetric moment of inertia / =
Uiy Ly Is Ly Ly LIy Iy IZZ)T. The mass properties are
given by volume 1ntegrals over the domain of the object. With
the ray-reps for shape interior, and assuming a constant material
density p for the solid parts, the volume integrals are expressed

as summation of line integrals over all rays:
- 4

m=pAY,; Lg dz,
A z

Cr = p_z[ f;l tdz, te {x7y7Z}7
m <0

I = pAY; [[ @2 +VA)dz, {t,u,v) =

o

= —pAY,; fzz‘ uvdz, {u, v} C

{x, 5,2},

L, =1, {X,y,Z},

where A is the area represented by a ray in the xy-plane. A
is constant since the rays are sampled uniformly, and its value
depends on the sampling resolution.

3.2. Static stability

The static status of standing and floating of an object is re-
lated to its center of mass. Here we explain our formulation
and prove its completeness on floating, while an extension to
standing can be easily derived accordingly.

The object floats if its buoyancy bal-
ances the gravity, and its center of mass
should be at its lowest possible posi-
tion, in order to maximize floating sta-
bility. For simplicity, we choose a co-
ordinate frame such that the z-axis co-
incides with the intended upright direc-
tion. The design problem is formulated

as
minimize Cz, 3
20,21
subject to (cx,¢y) = (Choxs Chry), “)
m = my, (5)
Zinln = Z0 le1 < anax’ VI, (6)

where (cj x, ¢p,y) is the xy-coordinates of the buoyant center, i.e.,
the centroid of the displaced volume of fluid, and 1, is the mass
of the displaced fluid. We postpone the calculation of ¢, my,
and the verification of floating stability to Sec. 3.4.

This reduced formulation is said to be complete in the sense
that the optimal solution in the general volumetric element-wise
formulation lies within the space defined by the above con-
straints on ray-reps.

Proof of Completeness. Suppose in the volumetric element-
wise formulation, the optimal solution contains two separated

solid | segments between a pair of intersections, denoted by zazb
and z.z),, with the order 2. < 7, < 7, < z. < 2} < Zhae
see Fig. 2 (left). We can easily find a replacement of these two
solid segments by one solid segment z)zi, with zj = z/, and
=2+t 2,— 2t~ Zl“’. see Fig. 2 (right). This replacement
does not alter the constraint Eq. 4 -5, i.e., ¢, ¢y, nor m, but
reduces the objective Eq. 3, i.e., ¢,. This basically means that
the optimal solution should contain at most one solid segment
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Figure 2: Illustration of material distribution along a ray in a 2D ellipse object.

Replacing the.solid. segments ZL;L anq z’czé, (left) by.a single solid segment z{ 7|
(right), with 7 = 2z, and 7} = z, + gj, — 7, + 2, — % does not move the center
of mass along the x-axis, but brings it down along the z-axis.

along each ray, since otherwise it can be further optimized by
this replacement.

Actually, in static stability, this formulation can be further
simplified by zf) = zﬁmn, i.e., the solid segment, if exists, starts
always from the lowest position. This is in line with the objec-
tive to minimize c,. This fact is employed to further reduce the

number of design variables by one half.

3.3. Rotational stability

Stable spinning around an axis is
achieved if the axis is the smallest or
largest principle axis of inertia. Addi-
tionally, the center of mass should also
be kept lower to maintain a better sta-
bility. We align the spinning axis with
the z-axis of the coordinate frame. Fol-
lowing the literature [3, 4], we formu-
late the design problem as

T

X

1
f=ac+ @+ +2L), (D)

minimize ety

subject to (cx,cy) =(0,0), ®)
(e, Iy) = (0,0), ©)
2 <7 <7< s Vi (10)

2

where A is a weighting factor, I, =1, - %,t € {x,y}, with

s, = pAY; fz [Zl' zdz. The correction term —;7 is introduced by
0
applying the parallel axis theorem, since the origin of the cho-

sen coordinate frame is in general not the same as the resultant
center of mass [3].

Proof of Completeness. In a similar manner to the proof in
static stability, we suppose in the volumetric element-wise for-
mulation, the optimal solution contains two separated solid seg-

ments in the same ray, denoted by z,z, and z.z/,, with Z, < 2} <

z. < Z!,. Enforcing the replacement z,z| does not change c, and
¢y, whose integrands have a degree of 0 wrt. z, nor I,; and I,
whose integrands have a degree of 1, i.e.,

fzj‘ dz = fzzgdz+ff/dz

ﬁ:‘ zdz = fj’zdz+f£2zdz

we arrive at

B

1 o
% = 5(§ —@andz =S +a),

with @ = 2, — 2, + 2~z and B = (z,)” = (2)° + (z)° — @)™

It can be proven that the replacement zf)z’i indeed reduces the
objective function f. In fact, since the integrands of degree 0
and 1 vanish, the components c;, m, s;, I, and I, in the object
function remain unchanged. Thus the comparison is concerned
only with the I, and I,, whose integrands have a degree of 2,
leading to

[i@ 2,22 = 1@, 2)
20A i Z i
= IL(f;” Z2dz+ [ Pdz - [ 2do)
z ¢ -0
_ 20A(z, — )z, — 2@ — 2~ 7))
Lz -7, + 20— 2) '

Since zl, < 2} < z. < Z/,, the above form is always positive. This
confirms that the replacement of two separated solid segments
by one solid segment leads to a more optimal solution. There-
fore, the optimal solution for rotational stability also contains
at most one solid segment in each ray, and thus lies within the
space defined on the extended ray-reps.

3.4. Implementation

The input to our algorithm is the exterior boundary sur-
face which is conventionally represented by a triangle mesh M.
The user prescribes the intended orientation of the model, the
density of solid material, for floating the intended submerged
height and the density of fluid, and for spinning the intended
spinning axis. The output is a mesh composited of two parts,
the input surface mesh and the boundary surface of the carved
interior.

Discretization. To retain the given surface mesh, we apply ray-
reps to a sub-domain which is completely inside the mesh. The
surface mesh is first discretized into a uniform hexahedral model
with a user-defined resolution in a conservative voxelization
process, keeping voxels the centroid of which is inside the mesh.
We then build a distance field and prescribe voxels whose dis-
tance value is smaller than a thickness value as boundary vox-
els. The sub-domain composed of remaining voxels is con-
verted to ray-reps as the design domain. The contribution of
the boundary layer to the mass properties is calculated by do-
ing surface integrals, and added to the overall mass properties.
After the optimization process, the continuous design variables
are rounded to the closest voxel height, and then the interior
surface is constructed from the faces between solid and void
voxels.

Buoyancy Properties. Besides the center of buoyancy ¢, and
the mass of displaced liquid m;,,, the metacentre c,, is an impor-
tant attribute determining the stability of floating. As illustrated
in Fig. 3, metacentre c,, is the intersection point between an
imaginary vertical line passing through the center of buoyancy



Figure 3: Illustration of stable (left) and unstable (right) floating configuration
of a rectangular shape. On the left, the center of mass c is located below the
metacentre ¢,,, and thus creates a correction torque around c,, to restore stabil-
ity, while on the right, the torque aggravates the turn-over.

¢p and the imaginary vertical line through a new center of buoy-
ancy c;, when the object is slightly tipped [11]. If the center of
mass is below the metacentre (i.e., c; < ¢y ;), gravity restores
stability when the object is tipped (cf. Fig. 3 left). Otherwise
gravity tends to aggravate the turn-over (cf. Fig. 3 right).

Since the outer surface mesh remain unchanged, the buoy-
ancy properties are calculated directly on the triangle mesh.
In particular, we first find the intersection between the surface
mesh and the waterplane. Then the properties are calculated by
using the surface integrals over the submerged surface and the
waterplane.

my = pwVp

=c¢, + (0,0 i)
Cm = Cp [Rg) Vb
where V}, is the volume of displaced liquid, p,, the density of
liquid, 7,, the smallest second moment of the intersection plane.
Note that these calculations are independent of the interior of

the shape, since the void interior also effectively displaces lig-
uid.

Numerical Optimization. We solve the optimization problems
(Eq. 3-6 and Eq. 7-10) by using the interior point method. In
particular, we employ the open source package Ipopt [12], which
handles nonlinear, nonconvex, but twice continuously differen-
tiable functions. It iteratively searches for a (local) optimal so-
lution by evaluating the objective function, the constraint func-
tions, and the derivatives of these functions with respect to the
design variables (i.e., zf) and z’i ). Since these functions are com-
posed of polynomials, derivatives can be derived analytically,
e.g., 27”,-1‘ = pA and 37"? = —pA.

Due to the large number of rays, many constraints of the
form anin < Zf) < zi < 2, have to be considered in the opti-
mization process. On the other hand, from the analysis of static
stability it is known that solid parts start from the bottom. Thus,
the per-ray constraints are physically equivalent to fixed lower
and upper bounds on z’i as

(1D

Zfnin = Zli = anax’
with enforced zf) = zfn .- As opposed to general constraints,
lower and upper bounds on design variables can be handled
very efficiently by optimization algorithms, so that the opti-
mization process can be accelerated considerably. Furthermore,

——

Figure 4: Shapes optimized for stable floating. On the left of each group, the
fully solid shape does not satisfy the floating stability criteria. The middle one
shows the optimized shape where the center of mass and the center of buoyancy
are vertically aligned, and the center of mass is located in its lowest possible
position. The right one reveals the interior cavity. The waterplane is indicated
by a horizontal line in the left and middle images.

with this reduction, the static stability problem becomes con-
vex: The objective in Eq. 3 is a convex quadratic function

PA i i
e = 5 5 (@) = @) (12)
and the constraints in Eq. 4 and 5 are linear functions of z’i.
For rotational stability, we convert the per-ray constraints to
the following lower and upper bounds,

max): (13)

+Z

E(Zinin + Zinax) < le < Zinax' (14)
This approximation implicitly enforces the condition zf) < zi.
Due to the complexity of the rotational stability problem, the
optimized solution is not guaranteed to be globally optimal.
However, we have performed various optimizations starting from
different initial values (e.g., zo and z; start from their lower
bounds, upper bounds, or middle points), all of them showing
the objective converges to the same minimum.

4. Results

The proposed formulation has been implemented and tested
on a number of floating and spinning shapes.

Examples. Our first example is a set of models optimized for
floating in water, as shown in Fig. 4. After optimization, the



Figure 5: Shapes optimized for stable spinning. On the left of each group, the
fully solid shape does not satisfy the spinning stability criteria. The middle
one shows the optimized version where the principle axis is aligned with the
predefined spinning axis. The right version reveals the interior cavity.

center of mass is aligned vertically with the center of buoyancy,
and the magnitude of the buoyant force and the magnitude of
the gravity force are the same. Not surprisingly, the cavity is
located in the top of each model. This agrees with the objective
to bring down the center of mass.

Two spinning models are shown in Fig. 5. After optimiza-
tion, one of the principal axes of inertia is aligned with the pre-
scribed spinning axis. On the vertical cross-section as shown on
the right, it can be observed that the optimized spinning models
have a ’V’-shaped cavity to the top and a ’A’-shaped cavity to
the bottom. It is intuitive that on a horizontal cross-section, the
material tends to spread far away from the center, in order to
maximize the inertia around the spinning axis. In the vertical
line, the material tends to be close (vertically) to the center of
mass, and thus to reduce the inertia around the other two prin-
ciple axes.

We take the bird model as an example to analyze the nu-
merical results. The moment of inertia (Iyx, Iyy, Iz, Ly, Iyz, 1)
before and after optimization is

(110.0,138.5,143.2,-10.7,-1.9,19.5)

and
(64.0,78.7,98.4,-7.9,0.0,0.0),

respectively. It can be seen that after optimization I, and /,;
vanish, making the z-axis as one of the principle axes. Trans-
forming the inertia tensor to principle values, we get (1}, I, I3) =
(60.5,82.2,98.4), with Iy = I,. It satisfies the stability con-
dition that the spinning z—axis is the largest principle axis of
inertia.

Prints. We have fabricated some of the optimized models by
3D printing, with metallic plastic materials (o = 1.36g/cm?).
The models are cut into two pieces to reveal the cavities (see
Fig. 6), and are glued together upon printed. The number of
isolated cavities is rather small, since as analyzed in our for-
mulation no more than two void segments exist in each ray.

Figure 7: A collection of printed shapes in their designed function. The first
row: Shapes which stably float in water. The second row: Shapes which can
stably spin.

The fact that the number of cavities is small has been reported
earlier in [3]. For models to be floating in water, since the ma-
terial absorbs water and changes its density, we coat the shapes
by waterproof spray. The 3D printed shapes in their designed
function are collectively shown in Fig. 7.

Performance. The models shown in this paper are discretized
on a volumetric resolution close to 100°. The number of re-
sultant design variables using the ray-reps is between 4k to 9k.
The optimization converges within a few seconds using the op-
timization package Ipopt [12] with its default setting. The de-
tailed model information and timings are given in Table 1. The
tests are performed on a standard desktop PC with an Intel Xeon
E5-1620 processor and 8GB of RAM.

Comparison. We compare our reduced formulation with the
standard volumetric element-wise formulation for spinning op-
timization. Table 2 lists the timings for solving the reduced
problem and the timings for solving the standard problem on
different resolutions. We can observe a speed-up factor of 4 to
20, varying on the resolution of the volumetric discretization.



Model Resolution  # Variables Time (s)
3-spheres 51 x 101 x 101 4236 0.499
Kitten 101 x 92 x 154 8176 0.919 (3]
Duck 89 x 105 x 101 8 087 0.799
Ellipsoid 100 x 65 x 63 8 682 3.870
Bird 100 X 75 x 75 8776  3.975 (4]

Table 1: Performance for shape interior optimization using ray-reps. The first
three models are optimized for floating, while the last two are optimized for
spinning.

(3]
(6]

Ray-reps Voxels Speed-
Resolution  # Var. T. (s) #Var. T.(s) up
80x52x51 5882 1.79 94975 34.74 19.41
64 x42x41 3706 0.71 46314 1148 16.11
54x35%x34 2536 048 26783 348 7.25 (7]
40x26x26 1390 0.31 10 764 1.37 442
80x60x60 6184 224 100224 17.94 8.00
54x40x40 2646 0.72 28261 443 6.15 (8]
40x30x30 1414 0.29 11306 2.20 7.59

Table 2: Performance comparison between optimization using ray-reps and
voxels. The first four rows give timings for the ellipsoid model, while the last
three refer to the bird model.

[9]

5. Conclusion
[10]

We have presented shape interior optimization based on ex-
tended ray-reps. Our formulation significantly reduces the num-
ber of design variables, at the same time it covers the optimal
solution space regarding static and rotational stability criteria.

Our reduced formulation is designed for optimizing mass
properties, and specifically for static and rotational stability prob-
lems. In a general volumetric optimization, e.g., structural op-
timization [13], the optimal shape is not contained in the space
defined by the fixed number of rays. It would be interesting to
duplicate rays during the optimization process in order to ac-
commodate more complex topologies.

[11]

[12]

[13]
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