
Hierarchical Path-Finding for Navigation Meshes (HNA*)

Nuria Pelechano, Carlos Fuentes

Universitat Politècnica de Catalunya

Abstract

Path-finding can become an important bottleneck as both the size of the virtual environments and the number of agents navigating
them increase. It is important to develop techniques that can be efficiently applied to any environment independently of its abstract
representation. In this paper we present a hierarchical NavMesh representation to speed up path-finding. Hierarchical path-finding
(HPA*) has been successfully applied to regular grids, but there is a need to extend the benefits of this method to polygonal navi-
gation meshes. As opposed to regular grids, navigation meshes offer representations with higher accuracy regarding the underlying
geometry, while containing a smaller number of cells. Therefore, we present a bottom-up method to create a hierarchical rep-
resentation based on a multilevel k-way partitioning algorithm (MLkP), annotated with sub-paths that can be accessed online by
our Hierarchical NavMesh Path-finding algorithm (HNA*). The algorithm benefits from searching in graphs with a much smaller
number of cells, thus performing up to 7.7 times faster than traditional A* over the initial NavMesh. We present results of HNA*
over a variety of scenarios and discuss the benefits of the algorithm together with areas for improvement.

Keywords: path-finding, hierarchical representations, navigation meshes

1. Introduction1

Most video games are required to simulate thousands or2

millions of agents who interact and navigate in a 3D world and3

show capabilities such as chasing, seeking or intercepting other4

agents. Path-finding provides characters with the ability to nav-5

igate autonomously in a virtual environment. The most well6

known path-finding algorithm is A*, which explores the nodes7

of a graph while balancing the accumulated cost with a heuris-8

tic to find an optimal path quickly. Throughout the years many9

algorithms have been proposed to further speed up the basic10

A* algorithm, but the cost of these algorithms is still strongly11

dependent on the size of the graph. Hierarchical path-finding12

aims to reduce the number of nodes that need to be explored13

when computing paths in large terrains. The reduction in the14

number of nodes for higher levels of the hierarchy significantly15

decreases the execution time and memory footprint when cal-16

culating paths.17

Current hierarchical techniques may result in unbalanced18

abstractions. For example, top-down hierarchies are created by19

splitting the environment into large square clusters, where all20

the clusters contain the exact same number of lower level grid21

cells. The main disadvantages of such constructions are that22

the resulting higher level of the hierarchy may have an uneven23

number of edges between nodes and also an uneven number of24

walkable cells (since there may be some clusters with a large25

percentage of the grid cells being occupied by obstacles).26

Navigation meshes represented by polygons provide closer27

representation of the geometry with a lower number of cells28

than regular grids. Since having a smaller number of cells can29

greatly accelerate path-finding, it is therefore necessary to ex-30

tend the concept of hierarchical path-finding to a more general31

representation of navigation meshes with polygon based cells.32

Moreover it would also be beneficial to have a hierarchical rep-33

resentation with a balanced number of polygons per node and34

portals between nodes.35

In this paper we present a new hierarchical path-finding so-36

lution for large 3D environments represented with polygonal37

navigation meshes. The presented solution works with nav-38

igation meshes where cells are convex polygons, and thus it39

also includes triangular representations. Our hierarchical graph40

representation is based on a multilevel k-way partitioning algo-41

rithm annotated with sub-path information. Our method presents42

a flexible approach in terms of both the number of levels used43

in the hierarchy and the number of polygons to merge between44

levels of the hierarchy. We evaluate the gains in performance45

when using our hierarchical path-finding, and discuss the trade-46

offs between the number of merged polygons and the number47

of levels employed for the search. We present a number of48

benchmarks that can help during the parameter fitting process49

to achieve the best speedups, as well as a quantitative analysis50

of the bounds on sub-optimality of the paths found with HNA*.51

We also present an evaluation of the bottleneck that appears for52

certain configurations when inserting the start and goal posi-53

tions in the hierarchical representation.54

2. Related Work55

A large amount of work to speed up path-finding focuses on56

enhancing the A* algorithm to reduce the computational time57

needed to calculate a path. This comes at the cost of finding58

sub-optimal paths or allowing a certain degree of error when59

searching for the optimal path and then allows the algorithm to60

Preprint submitted to Computers & Graphics May 23, 2016

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: Hierarchical partition of a polygonal navigation mesh of over 5000 nodes at level 0 (each color identifies a node in the graph), 316 at level 2 and 17 at
level 4, and the final path calculated with HNA*.

repair those errors in future searches that are interleaved with61

the execution.62

The well known A* algorithm [1] is a robust and simple63

to implement method with strict guarantees on optimality and64

completeness of solution. The A* algorithm uses a heuristic65

to restrict the number of states that must be evaluated before66

finding the true optimal path and it guarantees to expand an67

equal number or fewer states than any other algorithm using68

the same heuristic. However A* can be very time consuming69

for large scenarios. Anytime Planning algorithms find the best70

suboptimal plan and iteratively improve this plan while reusing71

previous plan efforts. One of the most popular A∗ is called72

Anytime Repairing A* (ARA*) [2]. It performs a series of73

repeated weighted A* searches while iteratively decreasing a74

loose bound (ε). It iteratively improves the solution by reduc-75

ing ε and reusing previous plan efforts to accelerate subsequent76

searches. However ARA* solutions are no longer guaranteed77

to be optimal.78

D* Lite [3] performs A* to generate an initial solution and79

repairs its previous solution to accommodate world changes by80

reusing as much of its previous search efforts as possible. D*81

can correct ”mistakes” without re-planning from scratch, but82

requires more memory. Anytime Dynamic A* (AD*) [4] com-83

bines the properties of D* and ARA* to provide a planning84

solution that meets strict time constraints. It efficiently updates85

its solutions to accommodate dynamic changes in the environ-86

ment.87

DBA* algorithm [5] combines the memory-efficient sector88

abstraction developed for [6] and the path database used by [7]89

in order to improve space complexity and optimality. Huang [8]90

presented a path planning method for coherent and persistent91

groups in arbitrarily complex navigation mesh environments.92

The group is modeled as a deformable and splittable area pre-93

serving shape. The efficiency of the group search is determined94

by three factors: path length, deformation minimization, and95

spitting minimization.96

Hierarchical graph representations have also been used for97

visualization purposes of large data sets [9] [10]. The goal in98

these applications is to offer an overview first, and then be able99

to zoom and filter to offer details on demand.100

Planning via hierarchical representation has been used to101

improve performance in problem solving for a long time [11].102

Holte et. al. [12] introduced hierachical A* to search in an103

abstract space and use the solution to guide search in the orig-104

inal space. There has also been work on abstraction based on105

bottom-up approaches for general graphs [13][14] but without106

considering balancing the number of nodes or minimizing the107

edge-cut. Sturtevant and Jansen [15] extended the theoretical108

work slightly and provided examples of a number of different109

abstraction types over graphs. In this work graphs are created110

from 2D grid-like structures by setting a node for each walkable111

cell . Bulitko et al [16] showed that the quality of paths can de-112

crease exponentially with each level of abstraction. Sturtevant113

and Geisberger [17] studied the combination of abstraction and114

contraction hierarchies to speed up path-finding. Abstraction115

uses a top-down approach creating a 16x16 overlay across the116

lower level regular grid. Contraction builds a higher level graph117

using the concept of importance of nodes, which requires pri-118

orities for the nodes to be set correctly as they will affect the119

contraction algorithm.120

Hierarchical representations have been used over 2D grid121

representations [18]. In [19] an adaptive subdivision of the en-122

vironment is proposed with efficient indexing, updating, and123

neighbor-finding operations on the GPU which reduces the mem-124

ory requirements. Another similar method based on HPA*, but125

taking into account the size of the agents and terrain traver-126

sal capabilities, is Hierarchical Annotated A* (HAA*) [20]. It127

presents an extension of HPA* which allow multi-size agents128

to efficiently plan high quality paths in heterogeneous-terrain129

environments. Another interesting implementation is DT-HPA*130

[21] which uses a decision tree to create a hierarchical subdivi-131

sion.132

Jorgensen presented an automatic structuring method based133

on a hierarchy that separated buildings into floors linked by134

stairs and represents floors as rooms linked by doorsteps [22].135

This method has a strict hierarchy and does not scale to large136

outdoors environments such as the ones often presented in video137

games. Zlatanova [23] presented a framework of space subdi-138

vision exclusively for indoor navigation, by identifying rooms139

and corridors and including semantical information.140

There are other approaches that focus on allowing agents141

to be more environment-aware [24]. In this work planning is142

based on an Anytime Dynamic A*, and it is carried out sat-143

isfying multiple special constraints imposed on the path, such144

as: stay behind a building, walk along walls or avoid the line145

of sight of other agents. In [25] a multi-domain anytime dy-146

namic planning framework is presented which can efficiently147

work across multiple domains by using plans in one domain to148

2

accelerate and focus searches in more complex domains. It ex-149

plores different domain relationships including the use of way-150

points and tunnels. The different domains use only two rep-151

resentations in terms of spacial subdivision, a 2D grid, and a152

triangular mesh.153

Hierarchical representations have been used to calculate agents154

moving between two points at different levels of complexity155

[26] [27]; from finding a route to animating 3D characters.156

They have also been used to combine high level path-finding157

with low level local motion [28]. When using triangular rep-158

resentations, it is possible to optimize the data structures and159

built in features such as clearance that can greatly improve per-160

formance during path-finding [29] [30]. But it is not straight161

forward to extend this implementation to polygonal meshes (i.e.162

it would not be enough with a simple triangulation of the poly-163

gons). There has been a recent technical report extending HPA*164

to triangular representations [31].165

As most of the abstract representations for large 3D com-166

plex environments employ polygon based representations (e.g:167

NEOGEN [32], Recast [33], or navmeshes built from the me-168

dial axis [34]), it is thus necessary to extend the concept of hi-169

erarchical path-finding for general representations of navigation170

meshes. Polygonal meshes have certain features and character-171

istics that must be taken into account when evaluating the most172

suitable hierarchical abstraction to be used.173

3. Framework174

Our framework consists of a pre-processing phase where175

the hierarchy is created, and an adapted version of the basic A*176

algorithm to perform searches online in this hierarchical repre-177

sentation.178

The pre-process phase starts with a polygonal navigation179

mesh that represents an abstract partition of the 3D world. This180

first navigation mesh is considered to be the lowest level in a181

hierarchical tree. The rest of the levels in the hierarchy are182

created by recursively partitioning a lower level graph into a183

specific number of nodes. The partition is performed until the184

graph of the highest level cannot be further subdivided. Thus, a185

particular path planning search can be executed in any level of186

this hierarchical tree. The higher the level of the hierarchy, the187

fewer the number of nodes to search in. This approach allows188

faster path-finding calculations than using a common A* with-189

out any hierarchy. Although we have tested our results using the190

basic A* algorithm, the method presented is general enough to191

be used with improved versions of A* such as AD*, DBA*,192

ARA* or D*.193

The classic hierarchical path-finding algorithm (HPA* [18])194

for 2D grids consists of having the 2D grid as low level, and195

builds a higher level by dividing the environment into squared196

clusters connected by entrances, where all clusters have the197

same number of low level grid cells. Clusters are connected198

with inter-edges with cost 1.0 and the cost of intra-edges are199

calculated with A* [1] algorithm searches inside each cluster,200

for all pairs of abstract nodes that shared the same cluster.201

Gravot et. at. [35] presented a top-down approach to com-202

bine a 2D grid partition of large tiles, with a lower level nav-203

igation mesh per tile. So each tile of 32x32 meters has its204

own navigation mesh, which forces the number of cells to be205

larger than when the polygon decomposition is generated di-206

rectly from the original map. This 2-level representation im-207

proves performance, but the misalignment between axis aligned208

tiles and geometry causes inconsistencies in the pre-stored ta-209

bles that force farther subsplitting of tiles.210

In this work we propose a bottom-up approach that starts211

with the initial navigation and it merges cells to obtain a higher212

level of abstraction respecting the advantages of polygonal nav-213

igation meshes. Grouping low level cells in a general navigation214

mesh is not as straight forward as deciding to group squares of215

n×n cells. The goal is to have a good graph partition with a bal-216

anced size of components and a small number of edges running217

between components, as this will reduce the costs of the hierar-218

chical path-finding algorithm. We use a polygon mesh provided219

by Recast [33] as our initial navigation graph and the multilevel220

k-way partitioning algorithm (MLkP) [36] to create our hier-221

archical representation. MLkP reduces the size of graph Gi to222

create Gi+1 by collapsing vertices and edges. This algorithm223

has been proven to be faster than other multilevel recursive bi-224

section algorithms, and produces high quality graphs.225

3.1. Hierarchical representation226

The first step is to build the framework for hierarchical searches227

that is defined as a tree of graphs. We start to compute the228

lowest graph of the hierarchy (G0 = (V0, E0)) by searching the229

polygons in the original navigation mesh. Each polygon be-230

comes a node in the G0 graph and edges are created between231

polygons that share a border in the original mesh.232

We define Lmax as the maximum number of levels for the233

hierarchical representation, and η as the number of nodes that234

will be merged between levels of the hierarchy. Once the low-235

est level graph G0 is created, the upper levels of the hierarchy236

{G1,G2, ...,Gm} are recursively built by partitioning each level237

until it reaches the minimum number of the nodes in a graph or238

m = Lmax.239

The MLkP algorithm starts with a coarsening phase, which240

consists of creating a series of successively smaller graphs de-241

rived from the input graph. Each graph is constructed from the242

previous graph by collapsing together a maximal size set of ad-243

jacent pairs of nodes. After the coarsening phase, a k-way par-244

titioning of the smallest graph is computed (initial partitioning245

phase). Next the uncoarsening phase begins by projecting the246

partitioning of the smallest graph into the successively larger247

graphs, refining the partitioning at each intermediate level. The248

different phases of the multilevel paradigm are illustrated in Fig.249

2.250

In order to have a good partition the weight of a new node251

should be equal to the sum of its previous nodes. In our case we252

are interested in having a balanced number of polygons, there-253

fore nodes in G0 are initialized with weight=1. The new edges254

created are the union of the edges from the previous nodes to255

preserve the connectivity information in the coarser graph. The256

coarsening phase ends either when the coarsest graph has a257

small number of nodes or when the reduction in the size of suc-258

3

cessively coarser graphs becomes smaller than a given thresh-259

old.260

The initial partitioning phase is performed using a multi-261

level bisection algorithm [36]. Each partition contains roughly262

|V0|/k nodes’ weight of the original graph. The division is done263

by KernighanLin (KL) partitioning algorithm [37] which finds264

a partition of a node into two disjoint subsets of equal size such265

that the sum of the weights of the edges between those subsets266

is minimized.267

The uncorseaning phase initially projects the partition by268

assigning the same partition to the collapsed nodes. After each269

projection step, the partitioning is refined using various heuris-270

tic methods to iteratively move nodes between partitions as long271

as such movements improve the quality of the partitioning so-272

lution. The uncoarsening phase ends when the partitioning so-273

lution has been projected all the way to the original graph.274

This multilevel partitioning process provides a hierarchy of275

graphs, where the lowest graph G0 = (V0, E0) corresponds to276

the original NavMesh of the environment, V0 is the set v1
0, v

2
0, ..., v

n
0,277

where each v j
0 is a node representing a polygon of the NavMesh,278

and E0 is the set of edges that correspond to portals between279

nodes of the original NavMesh. Therefore each graph Gi =280

(Vi, Ei) consists of a set of nodes Vi where each node v j
i repre-281

sents a multinode collapsing several adjacent nodes of the lower282

graph Gi−1, i.e: v j
i = {v1

i−1, v
2
i−1, ..., v

γ
i−1}.283

Figure 2: Multilevel k-way partitioning scheme [36].

The procedure allows us to have partitions which ensure284

high quality edge-cuts, where an edge-cut is defined as the num-285

ber of edges whose incident nodes belong to different partitions.286

The partition is carried out using the METIS software pack-287

age [38], and after the first partition done from G0 to G1 all non288

accessible nodes returned from the NavMesh creation in Recast289

are eliminated from the hierarchy.290

The iteration is done until either it reaches the maximum291

number of levels in the hierarchy or the graph cannot be further292

subdivided. The number of merged nodes per level to create293

a new partition is given by the user defined variable η, where294

η ≈ |V0|/k .295

Once we have the partitions P, the new nodes and edges296

between partitions are created. Edges between partitions are297

the inter-edges of the graph and contain the edges of the lower298

graph that join different partitions in the higher graph. There-299

fore, each partition Pi has a set of inter-edges Ei which depends300

on the edges of Ei−1 that connect nodes of Vi−1 which fall in dif-301

ferent partitions of Pi. For each pair of inter-edges in a node vi302

of the given partition Pi, A* is applied between them to calcu-303

late the cost of the shortest path and store it as an intra-edge304

for the given node. For all the graphs of the hierarchy, start-305

ing from G1 and moving up to the highest level (note that G0306

does not contain intra-edges), the Hierarchical NavMesh Graph307

(HNG) is created as indicated in the following algorithm:308

Algorithm 1 . Build HNG
procedure buildGraph(Gi)

2: for j← 1, |Pi| do
for n← v1

i , |V
j

i | do
4: for e← 1, numEdges(n) do

m = neighbour(n, e)
6: if p[n] , p[m] then

Gi+1.addInterEdge(Vi+1(n),Vi+1(m))
8: for k ← 1, v j

i+1.numEdges() do
for l← k + 1, vi+1.numEdges() do

10: cost ← f indPath(k, l)
Gi.addIntraEdge(k, l, cost)

Partitions will contain the intra-edges for each pair of edges309

within a node. Figure 3 shows a simple example with the par-310

titions, inter-edges and intra-edges created. Figure 1 represents311

levels = 0, 2, 4 of the hierarchical partition for a map with 5,515312

polygons, with µ = 5 and Lmax = 5.313

Figure 3: Hierarchical subdivision of a simple map, with µ = 5 and levels = 5.
Red lines in (c) represent inter-edges and yellow lines in (b) and (c) represent
intra-edges. Partitions are shown with black (a), blue (b) and red (c) separation
lines respectively. Level 0=76 nodes (a), Level 1=12 nodes (b), Level 2=3
nodes (c).

3.2. Hierarchical path-finding314

Path-finding can be performed at any level of the hierar-315

chy. For given starting and goal positions S and G we need to316

link this position to the HNG and then perform HNA* in the317

temporally created graph (note that S and G are linked to the318

HNG and removed once the path is calculated). Note that the319

algorithm for hierarchical path-finding is conceptually similar320

to HPA* [18] but has been adapted to the HNG introduced in321

the previous section. The algorithm proceeds through the fol-322

lowing steps:323

1. Insert the starting S and goal G positions at the desired324

level of the hierarchy and connect them to the higher level325

graph.326

2. Search path between S and G at the highest level.327

3. Extract intra-edges (optimal sub-paths).328

4

4. Delete temporal nodes.329

Algorithm 2 indicates the details of each step of the HNA*330

algorithm. Note that currently the function findPath() simply331

calculates A* over the given graph at the level of the hierarchy332

indicated by the last parameter and heuristic based on Euclidean333

distance.334

Algorithm 2 . Online HNA*
procedure findPathHNA∗(S, G, l)
//step 1. Insert and connect nodes S and G at level l

3: ns
l ← getNode(S , l)

ng
l ← getNode(G, l)

if l = 0 then
6: path← f indPath(ns

l , S , n
g
l ,G, 0)

return path
ns

aux ← linkS tartToGraph(S , ns
l)

9: ng
aux ← linkGoalToGraph(G, ng

l)
//step 2. Path-finding between S and G at level l:
tempPath← f indPath(ns

aux, S , n
g
aux,G, l)

12: //step 3. Extract sub-paths:
for subpath ∈ temPath do

path← getIntraEdges(subpath, l − 1)
15: //step 4. Delete S and G:

deleteTempNode(ns
aux)

deleteTempNode(ng
aux)

18: return path

3.2.1. Inserting S and G and connecting to the graph335

The starting S and goal G positions are inserted in the ge-336

ometry at level 0 and then recursively looked up the hierarchy337

for the corresponding nodes at the highest level, L of the hier-338

archy. S and G are then temporally inserted in the higher level339

graph GL as temporal nodes ns
aux and ng

aux respectively.340

To connect the temporal node ns
aux with the graph GL we341

need to calculate the path from S to each of the inter-edges of342

higher level node ns
L containing S . Inter-edges are the union343

of those edges from G0 that connect a node ni
0 with a node n j

0344

where pL[ni
0] , pL[n j

0], (i.e nodes of level 0 that are neighbors345

but belong to different partitions of GL).346

The paths between S and each inter-edge, e j
L, of ns

L are cal-347

culated to create a temporal intra-edge linking ns
aux to the higher348

level graph GL. Similarly, temporal intra-edges are calculated349

linking the goal position G to the graph GL (see figure 4a for an350

example of the temporal intra-edges used to connect S and G351

with the graph at the higher level).352

The performance of this step depends on the computational353

cost of calculating each intra-edge for S and G. In the case of354

the starting position, it requires calculating paths between S and355

each edge e j
L of the node ns

L. The same applies to connecting356

the goal position G within its node.357

The path-finding algorithm used to connect S and G is in-358

dependent of the algorithm used at the higher level, since the359

problem is quite different. In this case we are not finding a path360

between two points, but finding all the shortest paths between361

one point (S or G) and many (all edges within the node). We362

have tested two algorithms, A* and Dijkstra [39].363

A* is a faster algorithm than Dijkstra since it uses heuris-364

tics to expand less nodes. However in this particular scenario365

where several A* have to be performed, there will be a number366

of nodes explored multiple times for each search. Therefore,367

even though Dijkstra is meant to be slower in finding a single368

solution, when it comes to finding paths to multiple goals we369

may benefit from the fact that we only need to run the search370

once and stop as soon as it finds the last edge of the node.371

Figure 4: Path-finding computation: S and G are inserted and linked to their
partitions at level 2 by calculating shortest paths to each portal in their respec-
tive node(a). Paths are calculated at level 2 (b), and then intra-edges are ex-
tracted from lower level 1 (c) and the final path is obtained for level 0 (d).

3.2.2. Search path between S and G at the highest level372

Once the S and G are temporally connected to the higher373

level graph, path-finding is computed with the A* algorithm374

in the hierarchical navigation graph (HNG) formed by all the375

nodes in the higher level of the hierarchy and the connection to376

ns
aux and ng

aux. This path-finding at level i results in the following377

sequence:378

ie(ns
aux − v1

i), v1
i , v

2
i , ..., v

m
i , ie(vm

i − ng
aux)379

Note that ie(ns
aux − v1

i) contains the sequence of nodes at level 0380

that belong to one of the temporal intra-edges added during the381

connection of S with the first high level node of the path v1
i , and382

similarly ie(vm
i − ng

aux) contains the sequence of nodes at level383

0 between the last high level node of the path vm
i and the goal384

position G (see figure 4b where the yellow lines indicate the385

temporal intra-edges created for S and G, and the white dotted386

lines the intra-edges to go through the highest level nodes of the387

graph).388

The time execution of this path-finding at level i is signif-389

icantly faster than finding the path at level 0 due to the large390

reduction in the number of nodes.391

3.2.3. Extract intra-edges392

For the given sequence of high level nodes {v1
i , v

2
i , ..., v

m
i }393

belonging to the optimal solution for level i, the algorithm re-394

5

Figure 5: Example of HNG with two levels and µ = 4. The orange links and
circles represent the edges and nodes that belong the the temporal graph created
after linking S and G to the HNG. This temporal graph is where the HNA* is
calculated.

cursively extracts the intra-edges for each lower node. The final395

sequence of intra-edges once level 0 has been reached is the ac-396

tual path (sequence of polygons in the NavMesh) that the agents397

need to follow to move from S to G.398

3.2.4. Delete temporal nodes399

The final and simplest step consists of deleting the temporal400

nodes ns
aux and ng

aux from the graph, and all their temporal intra-401

edges. After this step, we recover the original HNG to perform402

future searches.403

4. Results404

For the evaluation of our method we have used several mul-405

tilayer 3D scenarios as shown in figure 6 with increasing num-406

bers of cells in the original NavMesh (see table 1 for details on407

the number of nodes in the map).408

Table 1: For each map in figure 6, we show the number of triangles in the orig-
inal geometry, and the number of nodes in the NavMesh depending on whether
we use triangles or polygons.

Map Name Geometry NavMesh NavMesh
Triangles # Triangles # Poly

Serpentine City (a) 135.1K 10,152 3,908
City Islands (b) 110.3K 14,551 5,515

Tropical Islands (c) 239.1K 29,499 12,666

We have calculated a large number of paths over each of409

these scenarios with increasing values of µ on increasing num-410

bers of levels in the hierarchy to determine which are the best411

configurations for hierarchical path-finding. Results show that412

we can achieve significant speedups for certain configurations,413

while we may get even worse results than A* for other con-414

figurations. Therefore in this section we evaluate the overall415

performance of the algorithm, looking closely at the computa-416

tional time taken by each step of the HNA* algorithm (see alg.417

2) to determine areas for improvement.418

Figure 7 shows the reduction in the number of nodes as we419

increase the value of µ and the number of levels in the hierar-420

chy. The reduction for the first level is the largest one since421

we also remove unconnected polygons during the first step of422

the algorithm. From then on the reduction is due to collapsing423

nodes based on the value of µ. As we will see when we compute424

the overall performance of the algorithm, our experimental re-425

sults show that the most suitable configurations tend to happen426

when the number of polygons has been reduced around 12% for427

level 1 (with µ ≈ 20), and the second best configuration tends428

to happen when the number of polygons has been reduced to429

approximately 2.5% for level 2 (with µ ≈ 6).430

Figure 7: The table shows the percentage of nodes of the original NavMesh for
different values of µ and different levels of the hierarchy.

To calculate the overall computational time of HNA* and431

compare results, we have computed the average cost of calcu-432

lating a large number of paths as shown in figures 8, 9 and 10433

with an intel core i7-4770 CPU@3.5Gz, 16GB RAM.434

For the City island scenario consisting of a NavMesh with435

5,515 polygons, we have tested up to 3 levels and increasing436

values of µ = {2, 4, 6, 8, 10, 15, 20}. As we can see in figure 8a,437

the average cost of performing A* in this scenario is 2.02ms.438

Using HNA* we can improve performance with L1 and all the439

values of µ tested (µ ∈ {2, 20}) with the fastest search being440

0.51ms for µ = 15 . A hierarchy of two levels also improves441

the computational times for µ ∈ {2, 20}. However for the case442

of having a hierarchy consisting of 3 levels, we only obtain443

speedups for µ < 7, since once we collapse 8 or more nodes444

between levels the total cost is actually worse than simply com-445

puting A* at L0. To better understand why the computational446

cost can increase for certain values of µ and levels in the hierar-447

chy, we have displayed the cost of HNA* at L1 and L2 in figure448

8 (b) and (c) using different colors for each of the significant449

steps of the algorithm.450

The significant steps of the algorithm are: (1) calculating451

A* at the higher level, (2) extracting intra-edges and (3) con-452

necting S and G within the higher node (Note that the other453

steps of the algorithm have an insignificant cost below 0.007ms).454

As we can see in this figure, the cost of computing A* at the455

highest level decreases since the number of nodes becomes smaller456

by increasing levels and µ. However the cost of connecting S457

and G can escalate as the higher level nodes increase in size.458

This is mainly because as their size gets bigger, the number of459

inter-edges also becomes bigger, and thus it requires a higher460

6

Figure 6: Scenarios used for evaluation (obtained from http://tf3dm.com/). (a) Serpentine city, (b) City island, (c) Tropical islands

Figure 8: Performance results for the city island scenario (3 levels and µ = 2, 4, 6, 8, 10, 15, 20). (a) show the cost of A* at L0, and HNA* at L1, L2 and L3 as µ
increases. (b) and (c) show the cost of the different steps of HNA* for L1 and L2 respectively.

Figure 9: Performance results for the serpentine island scenario (3 levels and µ = 2, 4, 6, 8, 10, 15, 20). (a) show the cost of A* at L0, and HNA* at L1, L2 and L3 as
µ increases. (b) and (c) show the cost of the different steps of HNA* for L1 and L2 respectively.

number of A* searches to compute temporal intra-edges to con-461

nect S and G with the HNG.462

From our experimental results, we observed that replacing463

A* by Dijkstra to perform the connection step can improve464

performance. However the difference is only significant for465

very large nodes with many inter-edges, while it is almost the466

same for the configurations where HNA* outperforms A* at L0.467

Therefore there is still room for improvement in this connection468

step.469

In the serpentine city scenario consisting of a NavMesh470

with 3,908 polygons, we have tested up to 3 levels and µ =471

{2, 4, 6, 8, 10, 15, 20}. As we can see in figure 9a, the average472

cost of performing A* in this scenario is 1.5ms. By using HNA*473

we can improve performance in L1 and L2 for all the µ values474

tested, with the fastest search observed for µ ∈ [15, 20] and L1475

when it takes 0.19ms on average to compute a path. This repre-476

sents a 7.7x speedup over basic A*. As in the previous scenario,477

for L3 we only observe faster searches for small values of µ. In478

7

Figure 10: Performance results for the tropical island scenario (3 levels and µ = 2, 4, 6, 8, 10, 15, 20). (a) show the cost of A* at L0, and HNA* at L1, L2 and L3 as
µ increases. (b) and (c) show the cost of the different steps of HNA* for L1 and L2 respectively.

figure 9 (b) and (c) we can differentiate the cost for each of the479

significant steps of the HNA* algorithm.480

In the tropical island scenario with an initial NavMesh of481

12.666 polygons, we have also tested 3 levels of the hierarchy482

and µ = {2, 4, 6, 8, 10, 15, 20}. The time taken by each configu-483

ration is shown in figure 10. For the combination of levels and484

values of µ tested in this scenario, the best speedup obtained is485

4.0x for L2 and µ = 6.486

Therefore, the best speedups achieved by HNA* have been487

7.7x for the serpentine city, 3.9x for the city island, and 4.0x for488

the tropical city. At L1 the cost of the step connecting S and G489

is almost insignificant compared to the total cost of HNA*, how-490

ever from L2 onwards this step can become an important bottle-491

neck for larger values of µ. This bottleneck depends largely on492

the differences in shape and connectivity of the original graph.493

For example the long structure of the serpentine city makes the494

edge-cut smaller on average, as merging a larger number of495

nodes does not increase the number of inter-edges as much as in496

the city or the tropical island scenarios. Therefore the speedup497

that can be achieved depends strongly on the configuration of498

the space and connectivity of the graph G0.499

Figure 11 shows the average number of inter-edges per multin-500

ode at levels L2 and L3 in the hierarchy as the value of µ in-501

creases. In general the number of inter-edges (i.e. the edge-cut)502

increases with the value of µ. However we can observe how for503

the serpentine scenario the number of inter-edges can actually504

drop significantly above a certain value of µ, as opposed to the505

other tested scenarios where it increases with µ.506

The multilevel k-way partitioning algorithm used to create507

the HNG attempts to reduce the edge-cut while balancing the508

number of nodes per partition. Reducing the edge-cut will re-509

duce the cost of connecting S and G, but in order to improve the510

results achieved by our algorithm, it would be necessary to find511

an alternative method for the step connecting S and G. As we512

can clearly see in the different results (figures 8-10), increasing513

both µ and levels always reduces the A* search at the higher514

level as the search is performed over smaller graphs.515

Figure 12 illustrates an example of a worst case scenario for516

HNA* where the highest level contains excessively large nodes517

with many inter-edges. This drastically increases the compu-518

tational time of inserting and connecting S and G. In this ex-519

Figure 11: Average number of inter-edges per multinode for levels L2 and L3
of the hierarchy as the value of µ increases.

ample, the cost of HNA* would be much higher than simply520

performing A* in the original NavMesh, since we are now com-521

puting 18 paths to connect S , and 10 paths to connect G. One522

advantage of having a multilevel hierarchy could be to perform523

the search dynamically at different levels when S and G belong524

to neighboring nodes of the highest level.525

In terms of path quality, there are some differences between526

the paths found with A* over the NavMesh, and the ones ob-527

tained when applying HNA*. These small deviations are due528

to the fact that intra-edges compute distances between the cen-529

ter points of edges, as opposed to A* that takes into account530

8

Figure 13: Example of paths calculated at different levels of the hierarchy for the Tropical Island scenario.

Figure 14: On the left, we show a comparison of path lengths obtained with A* against HNA* for different values of µ and level of search in the hierarchy. On the
bottom row we show the percentage of error introduced as the length of the path increases.

Figure 12: Example of a worst case scenario for connecting S and G. Edges
shown as red dots for the cell containing S and blue dots for the cell containing
G.

crossing portals through the closest point. In any case, since531

the paths for intra-edges are always computed using A* over532

the NavMesh, the impact does not propagate up the hierarchy533

(i.e. the cost of an intra-edge at level i calculated off-line is not534

the sum of the costs of the intra-edges at level i−1 but it is com-535

puted from scratch and stored). Figure 13 shows an example of536

path quality and cost in meters of the computed path for differ-537

ent levels of the hierarchy. We have chosen an example with538

a high error to show how as we increase the number of layers539

we can observe more deviation from the optimal route. In this540

particular example we observe that for levels 1 and 2 we get a541

path with an extra cost of around 10% and for level 3 it can add542

an extra cost of 20%. Note that the path differences happens543

between nodes of the higher level, or because paths are forced544

through the selected higher level node, when the optimal may545

be between two high level nodes.546

Figure 14 shows a quantitative evaluation of the path length547

and percentage of error as the length of the path increases. The548

four graphs have on the X axis the length of the path between549

start and goal as computed by A*. The top row shows on the Y550

axis the length of the path given by the HNA* for searches per-551

formed at level 1 (left) and level 2 (right), with µ = {5, 10, 15, 20}.552

All points close to the line x = y indicate that both paths have553

similar lengths. To highlight the error, we show on the bottom554

row the percentage of error (Y axis) for different path lengths.555

As we can observe, the results are on average very similar.556

The maximum error found for L2 was 18.6% (µ = 20), 15.4%557

9

(µ = 15), 13.8% (µ = 10) and 11.0% (µ = 5), and average558

errors of 0.39%, 0.17%, 0.11% and 0.05% respectively. The559

maximum error for L1 was 14% for µ = 20, and approximately560

6% for other values of µ.561

Navigation meshes can represent a very large number of en-562

vironments each with its own unique features that will make563

one configuration better than others. Nevertheless, we wanted564

to evaluate whether our decision of having a balanced number565

of cells and minimum edge-cut was in fact the best option to-566

wards achieving better speedups. We ran a comparison study567

using MLkP but assigning different weights to either the initial568

edges or the nodes of G0. By doing so we obtained a graph569

partition where the number of nodes of Gi−1 merged in a node570

of Gi would be different, and/or the number of inter-edges be-571

tween nodes of the partition could vary significantly. Note that572

MLkP balances the weight given to the nodes of the G0 graph.573

Therefore by randomly assigning different weights, we achieve574

an unbalanced partition in terms of the number of nodes per575

cluster. Similarly MLkP minimizes the weight of the edge-cut,576

so if the weights are randomly assigned to the original edges,577

then the final number of edges contained in each inter-edge will578

not be minimized. Figure 15 shows the results of this evalua-579

tion. We noticed that for small scenarios the differences were580

not very significant, but as the environment got bigger we could581

observe that in fact the balanced partition would provide on av-582

erage slightly better results and also worst case scenarios closer583

to the average. This can easily be explained by the fact that an584

unbalanced number of nodes creates higher level graphs with585

more nodes, which increases the path finding at the higher level.586

When the smallest edge-cut is not guaranteed, the result may587

end up with some nodes having a large number of inter-edges588

which drastically increases the step connecting S or G to the589

graph. Since this step is the current bottleneck of the algorithm,590

we can observe in the figure how worst case scenarios can al-591

most triple the total cost of the search.592

5. Conclusions and Future Work593

In this paper we have presented a novel algorithm to per-594

form hierarchical path-finding over NavMeshes based on a bottom-595

up approach. Using a multilevel k-way partitioning algorithm,596

we can create a hierarchy of several levels of complexity with597

a decreasing number of nodes per level based on a user input598

variable µ that determines the approximate number of nodes to599

collapse between consecutive levels of the hierarchy. An ad-600

vantage of our bottom-up approach as opposed to top-down601

approaches is that our technique provides a balanced number602

of both walkable cells and inter-edges between partitions. We603

have shown how our HNA* algorithm can obtain paths in this604

representation faster than when applying the basic path-finding605

directly over the navigation mesh.606

A quantitative comparison between HNA* and HPA* would607

be interesting. However the main difficulty for such compari-608

son is that HPA* is highly sensitive to the granularity of the grid,609

whereas HNA* does not suffer from this limitation. Therefore it610

would be hard to find the right parameters for a fair comparison.611

Nevertheless we expect the benefits of HNA* to become more612

Figure 15: Time taken (in milliseconds) to compute paths with HNA* as the
length of the paths increases. Results from the city island scenario, with two
levels of hierarchy and µ = 6

.

noticeable as the environment complexity increases, because613

our bottom-up approach using MLkP partitioning provides a614

good balance of nodes and a minimal edge-cut, whereas this615

cannot be achieved with an axis aligned regular grid partition.616

Therefore as the environment increases in size and complexity,617

we expect HPA* to start suffering from this lack of balance.618

We have demonstrated results with the A* algorithm, but619

the architecture presented in this paper could also be used with620

other variants of A*.621

We have shown improvements over a variety of scenarios622

to demonstrate the potential of the method, but have also eval-623

uated its limitations. Currently the main limitation of this tech-624

nique is the step that connects the starting and goal position625

into the hierarchical representation, since its performance drops626

as the number of level 0 nodes contained in the higher level627

node (multinode) increases. We have tested and compared two628

variants for this step, one consisting of calculating A* from S629

and G to each inter-edge in their respective higher level node,630

and the second by performing one single Dijkstra search for the631

node containing S and the node containing G. Despite Dijkstra632

presenting improvements over A*, it is not fast enough for the633

critical cases, therefore future work will focus on testing alter-634

natives for this step such as parallel searches, or pre-computing635

and storing additional data structures to further improve perfor-636

mance. Pre-computing information on a per-cell basis would637

be more challenging than when working with regular 2D grids638

since there can be a large variation in shape and size of the639

initial cells, thus making it difficult to estimate the possible po-640

sition for S and G.641

We have observed that the best speedups can be achieved642

by having a one level hierarchy with G1 containing around 85%643

less nodes than G0, or when having a two level hierarchy where644

G1 has around 70% less nodes than G0, and G2 has approxi-645

10

mately 95% less nodes than G0. Even though it may seem that646

the fastest and simplest option would be to have a one level hi-647

erarchy, it is important to emphasize that the comparisons have648

been done with average costs for a variety of paths in the graph.649

Therefore, it would be possible to further extend HNA* to im-650

prove performance based on the location of S and G. For in-651

stance, the current algorithm checks whether S and G are in652

the same multinode, and if so it simply performs A* (mean-653

ing that this case does not benefit from having a hierarchical654

representation, but it is also not penalized). Moreover we have655

also shown that when S and G are in neighbouring nodes of the656

highest level, then the cost can be high since it is necessary to657

calculate multiple A* searches to connect S and G, and a neg-658

ligible cost in finding the high level path. We believe that these659

two scenarios could benefit from calculating HNA* in the next660

level of the multilevel representation. As future work we would661

also like to consider dynamic updates of the NavMesh and how662

they could affect the hierarchical representation.663

Acknowledgements664

This work has been partially by the Spanish Ministry of Sci-665

ence and Innovation and FEDER under grant TIN2014-52211-666

C2-1-R.667

Anonymous.668

References669

[1] P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic670

determination of minimum cost paths, IEEE Transactions on Systems,671

Science, and Cybernetics SSC-4 (2) (1968) 100–107.672

[2] M. Likhachev, G. J. Gordon, S. Thrun, Ara* : Anytime a* with provable673

bounds on sub-optimality, Advances in Neural Information Processing674

Systems 16 (2004) 767–774.675

[3] S. Koenig, M. Likhachev, D*lite, Eighteenth National Conference on Ar-676

tificial Intelligence (2002) 476–483.677

[4] M. Likhachev, D. Ferguson , G. Gordon, A. T. Stentz, S. Thrun, Anytime678

dynamic a*: An anytime, replanning algorithm, Proceedings of the In-679

ternational Conference on Automated Planning and Scheduling (ICAPS)680

(2005) 262–271.681

[5] W. Lee, R. Lawrence, Trading space for time in grid-based path finding.,682

AAAI.683

[6] N. R. Sturtevant, Memory-efficient abstractions for pathfinding, AIIDE684

(2007) 31–36.685

[7] R. Lawrence, V. Bulitko, Database-driven real-time heuristic search in686

video-game pathfinding., IEEE Trans. Comput. Intellig. and AI in Games687

5 (3) (2013) 227–241.688

[8] T. Huang, M. Kapadia, N. I. Badler, M. Kallmann, Path planning for co-689

herent and persistent groups, Proceedings of the IEEE International Con-690

ference on Robotics and Automation (2014) 1652–1659.691

[9] J. Abello, Hierarchical graph maps, Computers & Graphics 28 (3) (2004)692

345 – 359.693

[10] C. Tominski, J. Abello, H. Schumann, Cgv-an interactive graph visual-694

ization system, Computers & Graphics 33 (6) (2009) 660–678.695

[11] E. D. Sacerdoti, Planning in a hierarchy of abstraction spaces, Artificial696

Intelligence 5 (2) (1974) 115 – 135.697

[12] R. Holte, R. C. Holte, M. Perez, M. B. Perez, R. M. Zimmer, R. M. Zim-698

mer, A. MacDonald, A. J. Macdonald, Hierarchical a*: Searching ab-699

straction hierarchies efficiently, in: In Proceedings of the National Con-700

ference on Artificial Intelligence, 1996, pp. 530–535.701

[13] R. C. Holte, C. Drummond, M. B. Perez, R. M. Zimmer, A. J. Mac-702

Donald, Searching with abstractions: A unifying framework and new703

high-performance algorithm, in: Proceedings of the biennial conference-704

Canadian society for computational studies of intelligence, 1994, pp.705

263–270.706

[14] R. C. Holte, T. Mkadmi, R. M. Zimmer, A. J. MacDonald, Speeding up707

problem solving by abstraction: A graph oriented approach, Artificial In-708

telligence 85 (1) (1996) 321–361.709

[15] N. Sturtevant, R. Jansen, An analysis of map-based abstraction and refine-710

ment, in: I. Miguel, W. Ruml (Eds.), Abstraction, Reformulation, and Ap-711

proximation, Vol. 4612 of Lecture Notes in Computer Science, Springer712

Berlin Heidelberg, 2007, pp. 344–358.713

[16] V. Bulitko, Y. Björnsson, R. Lawrence, Case-Based Subgoaling in Real-714

Time Heuristic Search for Video Game Pathfinding, Journal of Artificial715

Intelligence Research (JAIR) 39 (2010) 269–300.716

[17] N. R. Sturtevant, R. Geisberger, A Comparison of High-Level Ap-717

proaches for Speeding Up Pathfinding., in: G. M. Youngblood, V. Bulitko718

(Eds.), AIIDE, The AAAI Press, 2010.719

[18] A. Botea, M. Müller, J. Schaeffer, Near optimal hierarchical path-finding,720

Journal of Game Development 1 (2004) 7–28.721

[19] F. Garcia, M. Kapadia, N. I. Badler, Gpu-based dynamic search on adap-722

tive resolution grids, Proceedings of the IEEE International Conference723

on Robtics and Automation (2014) 1631–1638.724

[20] D. Harabor, A. Botea, Hierarchical path planning for multi-size agents in725

heterogeneous environments., CIG (2008) 258–265.726

[21] Y. Li, L.-M. Su, W.-L. Li, Hierarchical path-finding based on decision727

tree., RSKT 7414 (2012) 248–256.728

[22] C.-J. Jorgensen, F. Lamarche, From geometry to spatial reasoning : auto-729

matic structuring of 3D virtual environments, Proceedings of Motion In730

Games (2011) 353–364.731

[23] S. Zlatanova, L. Liu, G. Sithole, A conceptual framework of space732

subdivision for indoor navigation, in: Proceedings of the Fifth733

ACM SIGSPATIAL International Workshop on Indoor Spatial Aware-734

ness, ISA ’13, ACM, New York, NY, USA, 2013, pp. 37–41.735

doi:10.1145/2533810.2533819.736

[24] K. Ninomiya, M. Kapadia, A. Shoulson, F. Garcia, N. Badler, Plan-737

ning approaches to constraint-aware navigation in dynamic environments,738

Computer Animation and Virtual Worlds 26 (2) (2015) 119–139.739

[25] M. Kapadia, F. Garcia, C. D. Boatright, N. I. Badler, Dynamic search740

on the gpu, Proceedings of the IEEE/RSJ International Conference on741

Intelligent Robots and Systems (2013) 3332–3337.742

[26] W. van Toll, N. Jaklin, R. Geraerts, Towards believable crowds: A generic743

multi-level framework for agent navigation, in: ASCI.OPEN, 2015.744

[27] M. Kallmann, M. Kapadia, Geometric and Discrete Path Planning for745

Interactive Virtual Worlds, Vol. 8, Morgan & Claypool Publishers, 2016.746

[28] N. Pelechano, J. M. Allbeck, N. I. Badler, Controlling individual agents747

in high-density crowd simulation, in: Proceedings of the 2007 ACM SIG-748

GRAPH/Eurographics Symposium on Computer Animation, SCA ’07,749

Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 2007,750

pp. 99–108.751

[29] M. Kallmann, Dynamic and robust local clearance triangulations, ACM752

Trans. Graph. 33 (5) (2014) 161:1–161:17.753

[30] D. J. Demyen, M. Buro, Efficient triangulation-based pathfinding, in:754

AAAI, Vol. 6, 2006, pp. 942–947.755

[31] Z. Bhathena, A. Gheith, D. Fussell, Near optimal hierarchical pathfinding756

using triangulations (2014).757

[32] R. Oliva, N. Pelechano, Neogen: Near optimal generator of navigation758

meshes for 3d multi-layered environments, Computers & Graphics 37 (5)759

(2013) 403–412.760

[33] M. Mononen, Navigation-mesh toolset for games, GitHub Recast and De-761

tour.762

URL https://github.com/memononen/recastnavigation763

[34] W. van Toll, A. Cook, R. Geraerts, Navigation meshes for realistic multi-764

layered environments, in: Intelligent Robots and Systems (IROS), 2011765

IEEE/RSJ International Conference on, 2011, pp. 3526–3532.766

[35] F. Gravot, T. Yokoyama, Y. Miyake, Precomputed pathfinding for large767

and detailed worlds on mmo servers. (2014) 269–286.768

[36] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular769

graphs, journal of Parallel and Distributed Computing 48 (1998) 96–129.770

[37] B. W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning771

graphs, Bell system technical journal 49 (2) (1970) 291–307.772

[38] Karypis, Metis - serial graph partitioning and fill-reducing matrix773

orderings, METIS Software Package.774

URL http://glaros.dtc.umn.edu/gkhome/metis/metis/overview775

[39] E. Dijkstra, A note on two problems in connexion with graphs, Nu-776

merische Mathematik 1 (1959) 269–271.777

11

