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Abstract

This paper proposes LinkNet, a 2D-3D linked multi-modal network served for online semantic segmentation of RGB-

D videos, which is essential for real-time applications such as robot navigation. Existing methods for RGB-D semantic

segmentation usually work in the regular image domain, which allows efficient processing using convolutional neural

networks (CNNs). However, RGB-D videos are captured from a 3D scene, and different frames can contain useful

information of the same local region from different views. Working solely in the image domain fails to utilize such

crucial information. Our novel approach is based on joint 2D and 3D analysis. The online process is realized si-

multaneously with 3D scene reconstruction, from which we set up 2D-3D links between continuous RGB-D frames

and 3D point cloud. We combine image color and view-insensitive geometric features generated from the 3D point

cloud for multi-modal semantic feature learning. Our LinkNet further uses a recurrent neural network (RNN) module

to dynamically maintain the hidden semantic states during 3D fusion, and refines the voxel-based labeling results.

The experimental results on SceneNet [1] and ScanNet [2] demonstrate that the semantic segmentation results of our

framework are stable and effective.

Keywords: scene understanding, RGB-D image segmentation, online semantic segmentation, multi-modal learning

1. Introduction1

Online scene understanding of RGB-D videos, i.e., rec-2

ognizing semantic objects when RGB-D frames are being3

received, is essential for intelligent robot and autonomous4

driving. At present, most works regard the online seman-5

tic understanding task as the semantic segmentation of in-6

dividual image frames. There have been many semantic7

segmentation methods designed for 2D images based on8

deep convolutional neural networks (DCNNs) [3, 4, 5, 6].9

However, recognition on single frame would be easily af-10

fected by environment changes, such as distance, texture11

and lighting, resulting in unstable semantic segmentation12

results during the movement. As shown in Fig. 1, directly13

fusing semantic segmentation results of RGB-D images14

into the 3D point cloud results in significant ambiguities15

and inconsistencies, leading to poor segmentation perfor-16

mance. This is because the color input keep changing 17

during the movement of camera, resulting in inconsistent 18

global features across frames. 19

In recent years, depth has become a common addi- 20

tional input for RGB images with the development of 21

range sensors. This additional modality provides geomet- 22

ric details, which are beneficial to supplement the color 23

information [7]. Directly regarding the depth as an ex- 24

tra input channel for the deep neural network in addition 25

to the RGB has been proved to be less effective [8, 3]. 26

Besides, various visual SLAM (Simultaneous Localiza- 27

tion and Mapping) works [9, 10, 11] have been proposed 28

for dense 3D reconstruction. Semantic segmentation di- 29

rectly for 3D scenes can satisfy spatial consistency. How- 30

ever, most semantic segmentation frameworks for point 31

cloud [12, 13, 14, 15, 16, 17] are designed for offline use 32

taking a complete reconstructed 3D point cloud as input, 33
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(a) Fused by single-frames (b) Ground-truth

Figure 1: An example showing the instability of single-frame semantic

segmentation. (a): fused output of frame-based semantic segmentation

results generated by DeepLabV3+ [18] with voting strategy, (b): ground

truth semantic segmentation. Semantic labels are indicated by different

colors.

and cannot be directly adapted to online semantic segmen-1

tation.2

In this paper, we introduce LinkNet, a 2D-3D linked3

multi-modal neural network framework for effective on-4

line semantic segmentation that tightly connects the fused5

3D geometric information and RGB streams during online6

3D reconstruction. The key observation is that, as the pro-7

jection of the 3D world, although the information sensed8

in the image space can change due to the conditions of9

lighting, views, etc., these multi-view images should al-10

ways be consistent with the same underlying 3D geome-11

try. The main two issues are how to extract an effective12

feature from the reconstructing 3D scene and how to es-13

tablish connections among consecutive frames to facili-14

tate a temporally consistent feature representation.15

According to the online 3D fusion, we can establish16

2D-3D links between 2D images and the fused 3D point17

cloud to exchange information between the two domains.18

The benefits of linking 2D and 3D information are two-19

fold. On the one hand, it allows to download the geomet-20

ric features on the 3D point cloud and map them to the21

image domain, such that the multi-modal convolutional22

neural network (CNN) can be applied to improve the per-23

formance of image semantic segmentation. On the other24

hand, the point cloud reconstruction process will be ac-25

companied by a large number of voxel fusion, allowing26

image domain information corresponding to the same 3D27

location to be effectively aggregated, which can provide28

features from different views to strengthen temporal con-29

sistency of the semantic segmentation.30

More specifically, we convert the segmentation prob-31

lem of multi-frame images into a multi-voxel classifica-32

tion problem, where each voxel receives continuous ob- 33

servations (i.e., features) from the live RGB-D streams. 34

We thus exploit a recurrent neural network (RNN) to dy- 35

namically process such sequential information. We main- 36

tain the hidden semantic state of each voxel in the point 37

cloud, and continue to download and upload with the sup- 38

port of 2D-3D links. RNN has certain memory ability, and 39

can make the semantic segmentation results more stable 40

and accurate. For 3D information input in LinkNet, we 41

designed DHAC geometry descriptors, including distance 42

from wall, height from ground, angle between normal and 43

gravity, and curvature. These definitions all have seman- 44

tic relevance or context relevance. The reason why we 45

did not directly adopt the 3D coordinates as input is that 46

the coordinate values are highly related to the starting po- 47

sition, and it is difficult to apply normalization in online 48

system. 49

It is worth mentioning that LinkNet refines the seman- 50

tic segmentation results through 3D reconstruction. At the 51

same time, there are some works [19, 20, 21] that target 52

at improving the quality of scene reconstruction with the 53

help of semantics. These works can also output online 54

semantic segmentation, but they essentially perform the 55

semantic segmentation in the image domain, and do not 56

take 3D information into account. The main contributions 57

of this paper are as follows: 58

• We propose an online multi-modal semantic segmen- 59

tation network, named LinkNet, for RGB-D streams, 60

which combines the appearance information of the 61

2D image domain and the geometric descriptors ex- 62

tracted from the partially reconstructed 3D point 63

cloud. 64

• We design a lightweight geometric feature, called 65

DHAC (distance, height, angle and curvature), 66

which is invariant to lighting and views, and can be 67

calculated in real-time. This feature is demonstrated 68

to be effective in our online semantic segmentation, 69

and can also be useful for other applications. 70

• We establish a mechanism for pixel-level / voxel- 71

level 2D-3D links that provides multi-view sequen- 72

tial features for voxels. We demonstrate its useful- 73

ness when feeding them to an RNN for stable and 74

accurate online semantic segmentation.1
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2. Related Work2

2.1. Image Semantic Segmentation3

Semantic segmentation of images based on deep neu-4

ral networks has made significant achievements. The5

iconic end-to-end work is the Fully Convolutional Net-6

work (FCN) proposed by Long et al. [3]. The design7

of FCN uses a well-known encoder-decoder architecture,8

which is also the basic architecture of most current image9

segmentation networks. Noh et al. [22] optimized seman-10

tic segmentation by designing a deconvolutional neural11

network. Oliveira et al. [23] applied the fully convolu-12

tional neural network to the field of human body part de-13

tection and achieved significant results. Following these,14

U-Net [24], SegNet [25], PSPNet [26] and the DeepLab15

series [4, 27, 6, 18] have continuously enriched the design16

of fully convolutional neural networks for image semantic17

segmentation.18

Among them, ERFNet [28], AdapNet++ [29] and19

DeeplabV3+ [18] are the most advanced network frame-20

works. In addition to the image pyramid network men-21

tioned above, HRNet [30] maintains high resolution rep-22

resentation during feature learning. The above methods23

only use the image color information that is easily af-24

fected by environment. Recently, Kundu et al. [31] pro-25

posed virtual MVFusion that has made progress in 2D26

image segmentation through smarter view selection and27

virtual rendering of reconstructed point clouds. However,28

this method is only suitable for offline environment and29

requires complete scene information. In this paper, we30

perform online multi-modal learning with extra geometric31

features to break through the limitations of color domain.32

2.2. Multi-modal Network with Depth33

Depth input is more resistant to interference caused by34

environment changes, which is an important feature in35

the study of semantic segmentation. With the increas-36

ing popularity of range sensors, some multi-modal net-37

works have been proposed to improve semantic segmen-38

tation. Early works such as Couprie et al.’s [8] and Long39

et al.’s [3] directly treated the depth value as a new in-40

formation channel and aligned with the color information41

for synchronous training, but the improvements were lim-42

ited. Most of the recent works [7, 32, 33, 34] instead43

used multiple independent encoders for RGB and depth 44

input to learn multi-modal features. Hazirbas et al. [35] 45

designed FuseNet and Jiang et al. [36] proposed RedNet 46

to integrate the features of the depth encoder into the color 47

encoder from bottom up to achieve multi-modal training. 48

Park et al. [37] designed RDFnet with top-down multi- 49

level feature fusion through multi-scale and multi-modal 50

feature blocks. Xiang and Fox [38] proposed DA-RNN 51

that makes frame association through depth and Kinect- 52

Fusion [9]. The SSMA framework designed by Valada et 53

al. [29] is an adaptive method based on self-supervision. 54

In this paper, we propose a better geometric feature de- 55

scriptor, i.e., DHAC, which is generated from the point 56

cloud and invariant to lighting and views. Moreover, our 57

multi-modal fusion can take advantage of different modal- 58

ities. 59

2.3. Deep learning on 3D point cloud 60

3D point cloud learning is a research hotspot in re- 61

cent years. As the pioneer of point cloud learning, 62

PointNet [12] uses global feature aggregation to real- 63

ize point-wise point cloud feature learning. Then Point- 64

Net++ [39] uses spatial neighborhood information to en- 65

hance local features. DGCNN [40] uses the embedding 66

feature domain to construct a dynamic graph, and pro- 67

poses EdgeConv to implement an order-independent con- 68

volution. There are also many work to define the con- 69

volution operation for point clouds. PCNN [41] per- 70

forms 3D convolution by constructing a local voxel do- 71

main. Cai et al. [42] used local depth mapping to project 72

the point cloud onto the tangent plane to perform 2D 73

convolution. PointCNN [13] specifies the input order 74

of point cloud subsets by learning the arrangement ma- 75

trix and uses 1D convolution for feature extraction. In 76

addition, MCCNN [43] and PointConv [14] use Monte 77

Carlo estimation to simulate the convolution operation. 78

Recently, the Transformer [44], which is widely popu- 79

lar in the field of natural language learning, has begun 80

to be extended to point cloud learning, thanks to the in- 81

put order independence of the self-attention mechanism. 82

PCT [45] is a classic migration work of Transformer. It 83

directly applies the attention mechanism to global feature 84

learning, and uses neighborhood embedding and Lapla- 85

cian matrix-based offset-attention to optimize the per- 86

formance. PointASNL [46] uses the attention mecha- 87

nism to extract local features. PointGMM [47] proposes 88

MLP splits and attentional splits to achieve shape comple-1

tion. The above methods are all run in an offline manner,2
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and special segmentation and resampling are required for3

large-scale 3D scenes. More comprehensive surveys on4

this topic can be found in [48, 49].5

2.4. Online Semantic Segmentation6

RGB-D videos have similar regular structure as ordi-7

nary videos. However, there is not much research on8

video-oriented deep neural networks for semantic seg-9

mentation, because multi-frame input will cause a burden10

to the design of the network. Zhang et al. [50] stacked the11

video frame data, then divided it into supervoxels, and fi-12

nally trained to process the video with a 3D convolutional13

neural network in units of voxels. Shelhamer et al. [51]14

proposed the Clockwork network. This work assumes that15

the changes in the pixel domain caused by time changes16

are drastic, while the semantic changes are slight. Luc17

et al. [52] proposed the SegmPred model to predict the18

semantics of the upcoming frame through an adversarial19

network. These methods are based on the adaptation of20

improvement on 2D images, and no 3D geometric infor-21

mation is considered.22

Another common way is 3D semantic reconstruction.23

SemanticFusion designed by McCormac et al. [20] uses24

semantic information as an aid to achieve more accurate25

scene reconstruction. Rünz et al. [21] proposed MaskFu-26

sion, in which instance segmentation results were used to27

track and reconstruct moving objects. Yang et al. [19] also28

used the semantic distribution of pixels to optimize the29

pose estimation. Zhang et al. [53] combined SSMA [29]30

on images and PointConv [14] on point clouds to opti-31

mize the voxel-wise semantic labeling. These methods32

can output scene semantic information online, but the se-33

mantic segmentation results are generated by related net-34

works designed for the RGB image and the voxel in the re-35

construction process. Their semantic segmentation results36

thus do not fully consider the 3D geometric and multi-37

view information. Our work aims to optimize semantic38

segmentation using 3D reconstruction.39

3. Method40

Fig. 2 shows the pipeline of our 2D-3D LinkNet.41

LinkNet takes live RGB-D video frames and camera42

poses as input, and outputs pixel-wise semantic pre-43

dictions and semantic segmentation results of 3D point 44

RGB

(2D Image)

Depth
registration

Point Cloud

DHAC

(3D Feature)

download

Encoder Decoder

Feature

State

RNN

Semantic

Upload/download

Figure 2: Pipeline of LinkNet. The red dashed box represents the multi-

modal CNN, which takes 2D channels (RGB) and 3D channels (DHAC)

as input and generates semantic features. The black dashed box repre-

sents an RNN module, which downloads/uploads hidden states through

2D-3D links between 2D pixels of RGB-D images and 3D voxels of the

reconstructed point cloud.

clouds online. First, we use point cloud fusion to es- 45

tablish the 2D-3D links between the 2D image and the 46

3D point cloud. Secondly, the geometric features gen- 47

erated from the 3D point cloud are downloaded to each 48

frame, which are then used to output the semantic fea- 49

tures via multi-modal learning. Finally, we refine the se- 50

mantic features and achieve stable semantic segmentation 51

predictions through a RNN module with the help of 2D- 52

3D links. 53

3.1. Mapping between the RGB-D Image and Point Cloud 54

Before going deeper into the point cloud fusion, we

briefly introduce the transformation between the image

coordinates and camera coordinates. Given an aligned

RGB-D image with the color channels C and depth chan-

nel D defined in domain I ⊂ R
2. Suppose the camera

intrinsic matrix is K ∈ R
3×3, we can transform a pixel

i: I(i) = (ui, vi) in the image space into a 3D point

pi = (xi, yi, zi) ∈ R
3 in the camera space using homo-

geneous coordinates as follows:

pT
i = fK(i) · (ui, vi, 1)T ,

fK(i) = D(i) ·K−1. (1)

Fig. 3 (a-b) show an example of converting an RGB-D 55

image into a 3D point cloud.1
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（a）RGB-D

（c）Point cloud (20 frames)

（b）Point cloud (1 frame)

（d）Point cloud (100 frames)

Figure 3: Point cloud fusion of depth images using camera poses. The

scale of the scene and the density of the point cloud will increase as the

number of registered frames increases.

3.2. Point Cloud Fusion2

By processing multi-frame data {It}, where t is the3

frame (time) index, we can obtain the voxel set {Vt} corre-4

sponding to each RGB-D frame. However, the coordinate5

system of each frame is independent to each other. Here6

we need to use point cloud registration to estimate the rel-7

ative pose between frames and fuse voxels from different8

views.9

Assuming that the global camera pose of the frame data

at time t is Tt ∈ SE3, the converted point cloud data isVt.

The specific relationship is as follows:

Vt
= {Vi = (xi, yi, zi, t, fi, si, li), i ∈ I

t},

(xi, yi, zi, 1)T
= Tt · (pi, 1)T , (2)

where Vi represents the stored information for the voxel10

corresponding to the pixel i, (xi, yi, zi) is the position of11

the voxel in the global space, t is the latest timestamp of12

the voxel, pi is the 3D position in the camera space cor-13

responding to pixel i, fi is a geometric feature descriptors14

that will be introduced in Sec. 3.3, and si refers to the15

hidden semantic state stored on the point cloud to memo-16

rize the point cloud semantic label li at the voxel. There17

is no need to store colors in voxels, because each frame18

has its own color information, which will change due to19

different camera views or lighting conditions. Besides,20

the voxel already contains more reliable semantic infor-21

mation in si. It is worth noting that the camera pose can 22

View 1 View 2

View 3 View 4

Point cloud

Figure 4: Example of 2D-3D Links. The colors of dotted arrows repre-

sent different categories of objects.

be solved by various SLAM or 3D reconstruction meth- 23

ods (as a byproduct of these algorithms), which is not the 24

main focus of this paper. In most cases, we directly use 25

the pose information provided by the 3D benchmark. 26

Assuming that the registered point cloud set before t

is St−1, the current frame point cloud is Vt. We need to

design fusion rules St
= f use(St−1,Vt) to produce the

fused point cloud. Specifically, voxels Va and Vb are to

be fused into a single voxel Vc if the following conditions

are satisfied:

Va ∈ S
t−1

Vb ∈ V
t

Grid(xa, ya, za) = Grid(xb, yb, zb)

Grid(x, y, z) = (⌊
x

ǫ
⌋, ⌊

y

ǫ
⌋, ⌊

z

ǫ
⌋) (3)

where ǫ is the size of the voxel unit, and it is set to ǫ = 2cm

in this work. We update the fused voxel Vc as follows:

Vc = f use(Va,Vb) = (xb, yb, zb, tc, fc, sa, la)

(tc, fc) =











(ta, fa), (tb − ta) < 1sec.

(tb, fb), otherwise
. (4)

As above, during the voxel fusion process, we limit the 27

update frequency of feature generation to improve effi- 28

ciency (i.e., only recalculating geometric features when 29

the time elapsed is over 1 second). Fig. 3 shows an exam- 30

ple of the point cloud fusion. Obviously, the more frames1
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we fuse, the more reliable and accurate geometric shape2

information and richer context are to be obtained.3

Through point cloud fusion, we can obtain a series of4

2D-3D links. These links specify a unique corresponding5

3D voxel for each pixel. As shown in Fig. 4, we can estab-6

lish the association among pixels of multi-views through7

the point cloud, and provide sequential data input for se-8

mantic prediction of voxels.9

3.3. DHAC Geometric Descriptor10

Color information is easily affected by the environ-

ment, such as lighting, weather or view-point, which in-

duces instability for semantic segmentation. Besides, ex-

isting work [7] shows that encoding depth information

through HHA features can improve performance. We thus

propose DHAC, a 3D geometric descriptor satisfying spa-

tial consistency. As an upgraded version of HHA, DHAC

is more capable of describing scenes. Given a point

pi = (xi, yi, zi) in a point cloud P, its DHAC descriptor

fi is calculated as:

fi = (di, hi, ai, ci)

di = min{‖pi − p j‖, p j ∈ BB(P)}

hi = zi · ~g

ai = ‖ arccos(~ni · ~g)‖ (5)

where di refers to the distance between pi and walls, com-11

puted as the shortest distance between pi and the bound-12

ing box (BB) of the 3D point cloud, hi is the height along13

the direction of gravity ~g, ai is the angle between the nor-14

mal ~ni and gravity ~g, and ci is the curvature.15

Normal ~ni and curvature ci can be estimated by the16

Principal Component Analysis (PCA) algorithm. Note17

that PCA normal estimation requires neighborhoods of a18

certain size that can be retrieved by a KD-tree. However,19

the KD-tree data structure is hard to build online, and its20

K-Nearest Neighbor (KNN) search algorithm is also time-21

consuming. Instead of maintaining a global KD-tree, we22

dynamically maintain the KNN for each voxel during the23

3D reconstruction process, which is initialized and up-24

dated according to the 2D neighbors of the corresponding25

pixel. Specifically, we choose the 5 × 5 neighbors around26

each pixel as the candidates for voxel KNN. In this work,27

all the K value of KNN is set to 16.28

Strictly speaking, in the start-up phase, di and hi will29

gradually change with the update of the scene, so they do 30

（a）RGB （b）Depth （c）DHAC

Figure 5: Examples of DHAC images. (a) (b) are the raw color and

depth images. (c) DHAC images (distance, height, angle and curvature

are mapped to RGBA channels).

not hold the view invariance completely. Nevertheless, 31

they still have very good consistency. In the multi-modal 32

learning process, we map fi back into the 2D image do- 33

main to generate the DHAC images. As shown in Fig. 5, 34

the DHAC descriptors can characterize the geometric fea- 35

tures well and are almost consistent among different view- 36

points. All these descriptors are highly semantic related 37

or context related. Therefore, DHAC can effectively im- 38

prove network performance. 39

3.4. LinkNet 40

The detailed architecture design of our LinkNet is 41

shown in Fig. 6. Our LinkNet consists of two main mod- 42

ules: a multi-modal network and an RNN module. 43

The multi-modal network is intended to generate the 44

multi-modal feature for the input color and depth data, 45

which is developed from FuseNet [35]. Although any 46

suitable multi-mode network can be used as the backbone 47

of LinkNet, we adopt the FuseNet here by considering 48

the trade-off between the performance and the efficiency. 49

We extend the input channel of its depth encoder to sup- 50

port multi-modal learning of RGB and DHAC images 51

via ‘RGB Encoder’ and ‘DHAC Encoder’, respectively. 52

The 5-layer convolution design of the encoders is refer- 53

enced from VGG16 [54]. Each output of ‘DHAC Encoder 54

layer’ will be added to the output of the corresponding 55

layer of ‘RGB Encoder’ to achieve multi-modal feature1

6
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Dropout
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Figure 6: The architecture of LinkNet. The input RGB-D streams together with the proposed DHAC feature are fed into the RGB Encoder and

DHAC Encoder, followed by a multi-modal decoder to generate the multi-modal feature. Before being sent to a Score layer for a temporally

consistent semantic prediction, this multi-modal feature is refined by an RNN module with the help of the “voxel state” of the 3D point cloud that

can be downloaded and uploaded via 2D-3D links (blue dotted arrows).

fusion (as illustrated by the red dotted arrow in Fig. 6).2

The final multi-modal feature Fm is decoded through a 5-3

layer ‘Multi-Modal Decoder’. For more detailed network4

framework, please refer to [35]. 5

Another core module of LinkNet is a 2D-3D linked

RNN module. This module is designed to learn a tem-

porally consistent feature representation for stable seman-

tic prediction through the 2D-3D link between 2D images

and the underlying 3D geometry. Specifically, for each

pixel i of frame It, we first find its linked voxel V j us-

ing the method introduced in Sec. 3.2. We then feed the

output feature of that pixel, Fmt
i
, from the previous multi-

modal feature network and the voxel state st−1
j

(including

the hidden state and cell state), which is stored in the cor-

responding 3D voxel, into an RNN. The RNN generates

the output feature ot
i
for pixel i and updates the voxel state

as follows:

(ot
i, s

t
j) = RNN(Fmt

i, s
t−1
j ). (6)

If there is no pixels in frame t linked to voxel Vx, then 6

st
x will be equal to st−1

x . Our RNN module is formed by 7

two stacked standard Long Short-Term Memory(LSTM) 8

modules [55] with the dimension of their hidden state and 9

cell state set to 64. Their initial value is set to 0 and up- 10

dated over time through valid 2D-3D links. The output 11

feature from the RNN is further fed into a Score layer to1

7



predict the semantic label lt
i

online:2

Labels = {lti} = argmax{Score({ot
i})} (7)

This Score layer is composed of two convolution layers3

sandwiching a dropout layer. The kernel sizes of convolu-4

tion layers are set as [3×3] and the probability of dropout5

is 0.2. Please note that the convolution layer here is not6

equivalent to the fully connected layer, because its kernel7

size is not [1 × 1].8

4. Experiments and Results9

Implementation Details. We trained the backbone10

network (composed of the RGB encoder, DHAC encoder11

and the Multi-Modal decoder), and the RNN module (i.e,12

the two stacked LSTMs and the Score layer), separately.13

Cross-entropy loss function is adopted during the train-14

ing of both backbone network and the RNN. The initial15

learning rates of the backbone network and RNN module16

training are set to 2e − 3 and 5e − 5, respectively. They17

will decrease by 10% for every 500,000 iterations. The18

training batch size of the backbone network is set to 12,19

and of course, the batch size of RNN module is 1. For all20

input data, we resize it to a resolution of 320× 240 pixels.21

This is because it is the resolution of depth maps for most22

range sensors, and a low resolution input can also speed23

up the inference. The number of epochs for training will24

be introduced later.25

We evaluate LinkNet through both a synthetic dataset,26

i.e., SceneNet RGB-D [1], and a real scan dataset, i.e,27

ScanNet v2 [2]. Although our work can predict voxel-28

wise semantic labels, the quality of 3D reconstructed29

point cloud will be affected by the selected fusion algo-30

rithm. Therefore, we mainly evaluate the semantic seg-31

mentation of 2D images.32

4.1. Timings33

All experiments are performed on a computer with an34

Intel i7-8700K CPU, 64GB RAM and an Nvidia GeForce35

GTX 1080 Ti GPU (11GB on-board memory). Code writ-36

ten with Jittor [56] implementation will be available at:37

https://github.com/archershot/linkNet.38

In the case of a single GPU, the average runtime per39

frame of our work is about 56ms (i.e., 18FPS), of which40

the LinkNet inference time is about 45ms per frame and 41

the DHAC descriptor computation (including 2D-3D link 42

generation) is about 11ms per frame. The system effi- 43

ciency can be further increased to 23FPS using multi- 44

GPU with streaming optimization. This efficiency is at the 45

same level as most online 3D reconstruction algorithms 46

and meets the requirements of online applications. 47

4.2. Results on the SceneNet RGB-D dataset 48

SceneNet RGB-D [1] is a synthetic dataset containing 49

16,865 indoor scans, and each scan contains 300 anno- 50

tated RGB-D frames that are selected every 25 frames. 51

The layout, texture and lighting of the objects in this 52

dataset are all randomly generated. SceneNet RGB- 53

D contains 258 instance labels that are divided into 54

14 semantic categories according to the NYU Depth 55

V2 [57] standard.The experiment follows standard train- 56

ing/validation split reported in [1]. The number of train- 57

ing epoch for the backbone network is set to 20 with about 58

1 × 108 iterations and the one for the RNN module is set 59

to 1 with about 5 × 106 iterations. 60

To demonstrate the advantages of our linked multi- 61

modal network, we conduct extensive ablation studies: 62

without the RNN module, and using single or combined 63

modalities as inputs. Fig. 7 shows examples of single- 64

modal semantic segmentation results. Among these 65

modalities, HHA is a feature coding method based on 66

depth and gravity estimation proposed by Gupta et al. [7]. 67

This modality is more friendly to semantic segmentation 68

than depth. It can be seen that the DHAC feature, ben- 69

efiting from its good geometric properties, can resist the 70

interference of lighting, texture and view-point, making it 71

a suitable presentation for semantic segmentation in chal- 72

lenging conditions. It contains richer information than 73

other modalities, leading to better performance. Fig. 8 74

shows examples of multi-modal experiments. It can be 75

found that multi-modal input can be complementary to 76

each other in the semantic segmentation. Especially in a 77

dark lighting condition, modalities other than color are 78

essential for prediction, and the DHAC feature clearly 79

shows the best effect. 80

Table 1 lists the class-wise semantic segmentation re- 81

sults of different modal combinations. The results are 82

evaluated with OA, mAcc and mIoU metrics. OA is the 83

overall accuracy, mAcc is class-wise averaged recall, and 84

mIoU is class-wise averaged IoU, which is defined as the1
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Table 1: Detailed comparison of various input modalities on the SceneNet RGB-D dataset [1].

Methods Beds Books Ceiling Chair Floor Furniture Objects Picture

RGB 22.0 - 77.8 29.6 77.2 36.0 35.8 69.4

Depth 53.7 - 72.8 40.2 67.9 24.4 54.6 24.6

HHA 47.1 - 67.8 35.2 66.6 14.3 55.9 17.5

DHAC 56.9 - 75.0 46.9 70.9 33.8 60.6 26.8

RGB+Depth (FuseNet) 46.2 - 79.3 53.7 75.1 36.9 54.5 51.0

RGB+Depth (SSMA) 19.3 - 74.5 21.5 69.3 17.1 35.5 29.4

RGB+HHA (FuseNet) 47.4 - 82.9 38.1 78.5 41.4 47.6 49.5

RGB+DHAC (FuseNet) 53.9 - 83.1 49.1 84.8 52.1 55.9 55.5

RGB+Depth (LinkNet) 51.3 - 83.3 50.6 82.2 38.0 56.2 51.2

RGB+DHAC (LinkNet) 60.9 - 83.4 63.2 83.2 59.2 68.0 66.8

Methods Sofa Table TV Wall Window OA mAcc mIoU

RGB 08.5 30.2 14.1 78.2 30.8 77.8 60.2 39.2

Depth 06.6 44.7 09.9 69.9 23.1 76.4 56.3 37.9

HHA 18.4 47.0 15.9 64.7 21.6 72.6 56.7 36.3

DHAC 21.0 57.0 25.6 70.2 24.6 78.0 65.3 43.8

RGB+Depth (FuseNet) 22.6 45.6 28.3 80.5 25.7 82.1 63.4 46.1

RGB+Depth (SSMA) 01.2 30.3 02.1 73.6 13.1 75.6 41.5 29.8

RGB+HHA (FuseNet) 18.0 54.3 41.9 81.4 31.9 82.5 66.3 47.1

RGB+DHAC (FuseNet) 18.8 58.0 49.1 82.1 29.1 84.4 69.8 51.7

RGB+Depth (LinkNet) 12.8 49.0 35.4 83.2 29.9 84.2 64.2 47.9

RGB+DHAC (LinkNet) 29.7 66.5 61.5 83.3 31.7 86.6 73.3 58.3

ratio of the intersection and union between the predic-2

tion and ground-truth. Although the occurrences of books3

are too low to be reliably classified, in most other cate-4

gories, our LinkNet achieves a comprehensive improve-5

ment, which has a significant improvement of 12% in6

mIoU compared to the base model FuseNet. This shows7

that both the DHAC feature and our RNN module con-8

tribute to the improvement of semantic segmentation.9

4.3. Comparisons on the ScanNet v2 dataset10

The ScanNet v2 dataset [2] contains 1,513 scans of real11

indoor scenes with various object categories. The 2D se-12

mantic segmentation training/test set (ScanNet25k) pro-13

vided by the benchmark contains 19,466 images for train-14

ing, 5436 images for validation and 2,135 images for test-15

ing. The training epoch of the backbone network is set to 16

200 with about 4 × 106 iterations. And the training epoch 17

of the RNN module is set to 10 with about 2 × 105 itera- 18

tions. 19

Table 2 shows the semantic segmentation results on 20

the ScanNet v2 test set. All the results of selected 21 21

classes are drawn from the ScanNet leaderboard 1. We 22

make comparisons with the representative works includ- 23

ing Enet [58], PSPNet [59], MSeg [60], FuseNet [35], 24

AdapNet++ [29] and SSMA [29]. Obviously, multi- 25

modal methods have clear advantages, among which our 26

LinkNet performs quite well. Compared with FuseNet, 27

LinkNet improves IoU by 3.1%. The improvement of1

1http://kaldir.vc.in.tum.de/scannet_

benchmark/semantic_label_2d
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Table 2: Comparisons of LinkNet with bechmarking results on the ScanNet v2 test set.

Methods Mode mIoU Bathtub Bed
Book

Shelf
Cabinet Chair Counter Curtain Desk Door

Enet single 37.6 26.4 45.2 45.2 36.5 18.1 14.3 45.6 40.9 34.6

PSPNet single 47.5 49.0 58.1 28.9 50.7 06.7 37.9 61.0 41.7 43.5

MSeg single 48.5 50.5 70.9 09.2 42.7 24.1 41.1 65.4 38.5 45.7

AdapNet++ single 50.3 61.3 72.2 41.8 35.8 33.7 37.0 47.9 44.3 36.8

FuseNet multi 53.5 57.0 68.1 18.2 51.2 29.0 43.1 65.9 50.4 49.5

SSMA multi 57.7 69.5 71.6 43.9 56.3 31.4 44.4 71.9 55.1 50.3

LinkNet multi 56.6 65.6 73.4 18.0 54.4 29.4 51.5 67.7 51.4 53.2

Methods Floor
Other

Furniture
Picture

Refrig-

erator

Shower

Curtain
Sink Sofa Table Toilet Wall Window

Enet 76.9 16.4 21.8 35.9 12.3 40.3 38.1 31.3 57.1 68.5 47.2

PSPNet 82.2 27.8 26.7 50.3 22.8 61.6 53.3 37.5 82.0 72.9 56.0

MSeg 86.1 05.3 27.9 50.3 48.1 64.5 62.6 36.5 74.8 72.5 52.9

AdapNet++ 90.7 20.7 21.3 46.4 52.5 61.8 65.7 45.0 78.8 72.1 40.8

FuseNet 90.3 30.8 42.8 52.3 36.5 67.6 62.1 47.0 76.2 77.9 54.1

SSMA 88.7 34.6 34.8 60.3 35.3 70.9 60.0 45.7 90.1 78.6 59.9

LinkNet 91.6 33.0 47.2 56.3 32.0 71.3 62.8 47.6 84.4 80.4 59.8

LinkNet on ScanNet v2 is relatively limited. This is2

mainly because the ScanNet v2 test set just selects 1 frame3

every 100 frames. This reduces the number of available4

2D-3D links, making it difficult to take full advantage of5

the RNN module of our LinkNet. At present, LinkNet6

outperforms SSMA [29] in about half of the categories,7

but the mIoU is slightly lower than that of SSMA, mainly8

because of the gap in the backbone network (i.e., FuseNet9

vs. SSMA, especially for the category of book-shelf ). Al-10

though we can further improve the performance by choos-11

ing SSMA as the backbone network of LinkNet, it is diffi-12

cult to meet the requirement of online 3D reconstruction,13

since the running time of each frame of SSMA is about14

100ms.15

4.4. Stability Analysis16

To quantitatively evaluate how our LinkNet improves17

the temporal consistency of semantic segmentation for18

online streams, we compute the average semantic change19

ratio of pixels projected from the underlying 3D voxels 20

among all consecutive frames on the SceneNet RGB-D 21

validation set. We regard this metric as the stability of the 22

online semantic segmentation: the lower the ratio is, the 23

more stable the semantic segmentation is. 24

Table 3: Stability comparison on SceneNet RGB-D validation set.

Method Stability

RGB+Depth (FuseNet) 8.73%

RGB+DHAC 7.12%

LinkNet 3.89%

We compare our LinkNet with FuseNet [35] as well 25

as FuseNet with DHAC feature. As shown in Table 3, 26

8.73% of pixel labels are changed with FuseNet, while 27

our LinkNet achieves more consistent semantic segmen- 28

tation result with only 3.89% of label changes. In addi- 29

tion, DHAC also contributes to stable segmentation due 30

to its insensitivity to the change of views.1
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4.5. Limitation2

Our method also has some limitations. First, the fea-3

ture refinement of LinkNet is preformed at the pixel level4

or voxel level, instead of the instance level. This may cor-5

rupt the semantic labeling results of the same instance,6

resulting in discontinuity in semantic segmentation. A7

progressive clustering [61] on voxels can be applied to8

alleviate this problem. Second, the RNN module would9

accumulate errors when a voxel is frequently linked to10

pixels with noise feature representation. A view selection11

strategy [31] would help to improve the quality of input12

frames.13

5. Conclusion14

In this paper, we propose LinkNet to perform stable and15

effective online semantic segmentation of RGB-D video.16

On the one hand, LinkNet incorporates the geometric fea-17

tures extracted from the fused 3D geometry into multi-18

modal learning in the image domain to improve feature19

robustness by taking advantage of the 2D-3D links offered20

by 3D reconstruction. On the other hand, LinkNet ap-21

plies an RNN on the sequential features observed by each22

voxel to maintain the stability of semantic segmentation.23

Experiments on both synthetic and real scanned datasets24

demonstrate the effectiveness of our method.25

In the future, we would like to consider more complex26

3D features that are more suitable for semantic segmen-27

tation, such as voxel-based deep learning features. In ad-28

dition, the backbone network can also be upgraded for29

2D-3D multi-modal application.30
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Figure 7: Examples of semantic segmentation on SceneNet RGB-D dataset with single modalities including RGB, Depth, HHA and DHAC. For

each modality, the first row shows the input, the second row presents the semantic segmentation results, and the third row shows the error maps,

where blue represents the correct predictions and red represents the wrong ones.
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Figure 8: Examples of semantic segmentation on SceneNet RGB-D dataset with multi-modal inputs. The first block containing four rows

shows different modalities, and remaining blocks are multi-modal comparisons, where within each block the first row is the result shows semantic

segmentation results, and the second row gives the error maps (blue represents the correct predictions and red represents the wrong ones).
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