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Abstract

Context has proven to be one of the most important fac-
tors in object layout reasoning for 3D scene understand-
ing. Existing deep contextual models either learn holistic
features for context encoding or rely on pre-defined scene
templates for context modeling. We argue that scene under-
standing benefits from object relation reasoning, which is
capable of mitigating the ambiguity of 3D object detections
and thus helps locate and classify the 3D objects more accu-
rately and robustly. To achieve this, we propose a novel 3D
relation module (3DRM) which reasons about object rela-
tions at pair-wise levels. The 3DRM predicts the semantic
and spatial relationships between objects and extracts the
object-wise relation features. We demonstrate the effects of
3DRM by plugging it into proposal-based and voting-based
3D object detection pipelines, respectively. Extensive eval-
uations show the effectiveness and generalization of 3DRM
on 3D object detection. Our source code is available at
https://github.com/lanlan96/3DRM .

1. Introduction
3D scene understanding involves the detection of 3D ob-

jects and the inference of their spatial layouts. It is one
of the most fundamental problems in graphics, vision and
robotics. Recently, the fast development of 3D data acqui-
sition and reconstruction techniques has made the collec-
tion of large-scale 3D real-world scene data more accessible
than ever. Nowadays, the reconstructed real-world 3D scene
datasets (e.g. S3DIS [2] and ScanNet [9]) usually contain a
lot of various objects distributing in multiple areas or rooms.
This makes 3D object detection quite challenging.

Context in 3D scenes refers to the spatial or semantic re-
lations between different objects, which is critical to scene
understanding (see Figure 1). It has proven to be extremely
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Figure 1. We propose 3DRM which reasons about object relations
in 3D object detection. For example, a single object can usually
not be correctly identified without knowing the context around it.
The proposed 3DRM is able to boost 3D object detection by rea-
soning the relations between the surrounding objects.

useful in 3D object detection [41,45,58]. In the era of deep
learning, contextual modeling continues to play an impor-
tant role in scene analysis [12, 35, 44, 57]. Existing context-
based deep learning approaches either extract a holistic fea-
ture encoding contextual information via 3D or graph con-
volutional networks [15,28,40] or learn contextual informa-
tion from pre-defined templates of object layout [59]. How-
ever, these approaches require large amount of training data
with complete scene geometry or object layout, which lim-
its their flexibility.

Qi el al. [39] propose PointNet for learning 3D rep-
resentations directly from point cloud data to perform
classification and segmentation, yielding many follow-up
works. These 3D geometric features have so far been the
mainstream in scene understanding. However, a powerful
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method calls for more diverse features, inspired by the suc-
cess of multi-modal object detection in 2D images [14]. In
fact, objects in a particular scene are functionally related or
have correlation in structure. Such inherent relations can
supply a new type of high-level 3D features which may fill
in the gap in 3D object detection.

In this paper, we propose to model object context
through reasoning about their relations. The proposed 3D
Relation Module, or 3DRM for short, operates directly on
features of 3D point cloud and outputs the relational fea-
tures which can be used to boost the performance of various
object detection frameworks for 3D scenes (see Figure 2).
The core of our method is a pair-wise relation reasoning
module which is not only capable of predicting relational
attributes of object pairs, but also mitigates the ambiguity
of 3D objects that are hard to detect. Different from previ-
ous works, our method does not rely on pre-defined scene
templates for contextual features extraction.

3DRM adapts the Relation Network [42] to reasoning
about relations between object pairs in 3D representations.
Objects in indoor scenes are typically semantically and spa-
tially related. Given integrated features extracted by dif-
ferent backbones with scene point cloud as input, 3DRM
performs pair-wise object relation reasoning with a relation
module. Objects in the same scene are paired using specific
matching strategies. Pair-wise object features are then pro-
cessed by the proposed 3DRM and prediction of relations
is performed with extracted relation features which will be
leveraged to help the task of detection.

3DRM is a plug-and-play module which can be applied
to different 3D detection frameworks to detect 3D objects
more accurately and robustly. We apply 3DRM to two 3D
object detection backbones, and evaluate its performance on
three challenging datasets. Extensive experiments demon-
strate the effectiveness of 3DRM. Specifically, applying
3DRM to different detection backbones achieves 30% im-
provement on S3DIS [2], 3.8% on ScanNetV2 [9] and 1.4%
on SUN RGB-D dataset [48].

In summary, we make the following contributions:

• We propose a 3D relation module which reasons about
the relations between 3D objects. Different from other
methods which only extract geometry or location fea-
tures for individual objects, our method is able to
capture relation features. This diversifies the feature
palette of 3D point cloud and can be combined with
other features to boost the performance of object de-
tection.

• We design four dedicated relationships of semantic and
spatial properties between objects which can be com-
puted in real time instead of manual annotation.

• Extensive experiments demonstrate the benefits of re-
lation information. We plug our relation module into

two popular detection backbones. The results show
substantial improvements on the S3DIS, ScanNetV2
and SUN RGB-D datasets which demonstrates that our
design is effective and can be widely applicable.

2. Related Work
3D object detection. 3D object detection in point cloud

is now common in indoor scene understanding [5, 15, 16,
19,28,30,36,39,40,44,52,53,61,62] and autonomous driv-
ing [7, 24, 29, 38, 43, 55].

Yang et al. [56] directly predict object bounding boxes
from a learned global feature vector and obtain instance
masks by segmentation points inside a bounding box.
VoteNet [37] highlights the challenge of directly predict-
ing bounding box centers in sparse 3D data as most surface
points are far away from object centers. Shi et al. [44] also
generate the objects proposals by graph cuts for an over-
segmentation of the point cloud based on point normal dif-
ferences to create the initial set of segments and leverages
the features from PointCNN [28] to explore the hierarchy
structure of objects and context. 3D-MPA [11] adapts the
object-center approach, extends it with a branch for instance
mask prediction and replaces NMS with a grouping mech-
anism of jointly-learned proposal features. However, all
these methods take PointNet, PointNet++ or PointCNN as
their backbone to extract geometry features which is insuf-
ficient. Relationships between objects provide abundant in-
formation for scene understanding which is usually ignored.
Huang et al. [18] also emphasize the importance of context
relations among objects for 3D box estimation.

Relation reasoning in 3D. Since the Relation Net-
work [42] has been proposed, there has been an explo-
sion of methods that apply the Relation Network [42] in
various tasks on 2D image, such as object detection [13,
17, 34, 54, 64], semantic segmentation [27], object recogni-
tion [6,60], action recognition [8,22,46], object relationship
detection [23, 31, 33], VQA [1, 4, 26, 42], few-shot learn-
ing [49], scene graph generation [51] etc. [17] uses a re-
lation module to reason object relations and improves the
recognition accuracy. [34] applies relation modules on fea-
tures extracted from VGG-16 for semantic segmentation in
Aerial Scenes. All these work demonstrate the importance
of relation reasoning in visual tasks.

As the result of the great success of relation reasoning in
the 2D domain, some work has already explored the rela-
tionships in 3D data. [10] equips the PointNet++ [40] with
relation network to reason about the structural dependencies
of local regions in 3D point clouds and get a big boost on
the tasks of 3D point cloud classification and part segmen-
tation. Liu et al. [32] propose a convolution operator which
encodes geometric relations of points by reasoning about
the spatial layout of points for point cloud analysis. [56]
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Figure 2. The network architecture of 3DRM. Input of Relation Module comes from features of object candidates extracted by different
backbones. Integrated features of different objects are matched by pairs and go through MLP called gθ . Pair-wise Features corresponding
to the same object like the green one will be added together and go through another MLP called fφ to obtain relation feature ri. Features
extracted by gθ are fed into different MLPs to reason different relations of object pairs. In summary, the Relation Module outputs predictions
of semantic and spatial relations as well as relation features ri.

improves the performance on both 3D object recognition
and retrieval tasks, which reinforces the information for in-
dividual view by modeling the relationships between its in-
side regions and the corresponding regions in other views,
and then integrates the information from multiple views
by modeling the inter-relationships together. [25] reasons
about the relative pose between each pair of objects to im-
prove 3D pose prediction. [21, 63] use relation graphs or
specific relations like support to perform relation reasoning
towards different components of an object. [47] leverages
case-based reasoning to measure similarity between differ-
ent furniture layouts. [20] designs five types of relations,
which however are dependent on handcrafted labeling as
well as time-consuming for relations like facing, to build
structure graphs of furniture in different scenes respectively,
and performs scene matching for novel scene synthesis.

However, there are few work reasoning about the rela-
tionships between 3D objects pairs in the indoor scenes by
automatic computation and taking advantage of the relation-
ships to capture the relation feature for improving the 3D
object detection performance.

3. Method
3.1. Overview

Traditional networks for 3D object detection mainly
leverage geometric features of objects to regress the bound-
ing box and conduct classification. Different from that, our
Relation Module is aimed for learning the pair-wise objects
relationships to extract relation features, which fills a gap in
features of 3D data representations. The goal of this paper
is to apply the proposed 3DRM to the existing popular de-
tection pipelines with point clouds as input and improve the

final performance.
In our method, we leverage two detection frameworks

to generate object candidates and extract their features:
proposal-based methods and voting-based methods. With
features of objects extracted by the backbones as input, our
3DRM can build up pair-wise object relations and extract
the comprehensive relation features. As a result, the relation
feature will be concatenated with input feature to help the
task of detection (Section 3.2). Strategies about application
of our Relation Module on different backbones are demon-
strated in Section 3.3. Designs for loss function about dif-
ferent backbones are illustrated in Section 3.4.

3.2. Relation module

Different from existing work on 3D object detection
which extract contextual information by taking the entire
scene as input, our method learns the object-level relational
context features and infers attributes between object pairs.
We argue that the relation between object pairs is benefi-
cial to object reasoning for 3D scene understanding. Moti-
vated by the Relation Networks proposed in [17], we adapt
the relation module to 3D object detection task. Unlike the
strategy that applies relation prediction on the cells of fea-
ture map, we perform the relation prediction on individual
objects, so object relations are explicitly obtained. On the
other hand, our goal of relation reasoning is not to aggre-
gate the global context feature for predicting the attributes
of the entire scene. Since we aim to detect individual ob-
jects, our relation reasoning module is essentially learning
the relation-related feature for individual objects.

The architecture of 3DRM is shown in Figure 2. The
input of our relation module is the object candidates with
their features oi ∈ Rd generated by backbone methods. We
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Figure 3. The 3D detection pipeline utilizing our 3DRM. Input point clouds go through the backbone feature extraction networks to gain
integrated features which are then sent into Relation Module to get the relation features. Both of integrated features and relation features
are used to perform classification and regression. 3D non-maximum suppression (NMS) is followed to output the final 3D bounding box.

propose to use a deep network to extract relational features
and predict the relations of a pair of objects. Specifically,
for each object oi, we randomly choose k objects oj in the
same scene, which then compose several pairs. In Eq. (1),
the pairwise function gθ aims to exploit the semantic or spa-
tial relations between oi and oj , and then fφ fuses the re-
lations followed by an element-wise sum for all oj . As a
result, ri is the learned relational feature of oi.

ri = fφ(
∑
∀j

gθ(oi, oj)), j ∈ {1, . . . , k} (1)

where both i and j are the indexes of the objects in the same
scene; gθ and fφ are the functions implemented by MLPs.

At the same time, we also predict the relationships of
each pairs of objects. The output of the pairwise function
gθ will be sent to the classification MLPs to predict the re-
lation label lrn. Note that hϕ is the function implemented
by MLPs.

lrn = hϕ(gθ(oi, oj)), j ∈ {1, . . . , k} (2)

We design different classifiers for different relations.
There are four types of relations which include semantic
and spatial information: group, same as, support and hang
on. Relations of different components within an object are
omitted since we argue that pair-wise object relations are
more significant to indoor object detection. The reason why
we choose these four types of relations is that these relations
are typical in indoor scenes and sufficient for attaining use-
ful relation features for detection intuitively. For the sake
of efficiency and practicability, relations like facing or con-
tain are not under consideration in this paper because indoor
3D object detection is usually aimed for representative ob-
jects like chairs and tables instead of bottles of wine in the
cabinet. In what follows, we describe how to compute the
relation labels of each pair.

Semantic relations. Generally, there are many objects
belonging to the same category in the same scene. For ex-

Algorithm 1: Pseudo code for spatial relation for-
mulation.

for all object pairs (pi, pj) do
compute axis-distance Ψx,Ψy,Ψz .
compute plane-wise IoU Ωxy,Ωxz,Ωyz .
labelrn ← 0
if Ψz ≤ τz and Ωxy > τxy then

relation← support, labelrn ← 1
end
else if Ψy ≤ τy,Ωxz > τxz or
Ψx ≤ τx,Ωyz > τyz then

relation← hang on, labelrn ← 1
end

end

ample, in most cases, couples of chairs often simultaneously
exist in a conference room. We argue that semantic infor-
mation is beneficial to detection tasks. In this paper, seman-
tic information covers two relations: group and same as.

Group relations learn the potential connection between
objects that have the same categorical class label and learn
the diversity of the different types of objects. We try to
capture the relations between objects in terms of the se-
mantic class-specific properties. Distinguishing semantic
class relations from various objects benefits the classifica-
tion, which is equal to answer the question that whether two
objects have the same categorical label or not.

Same as relations indicate that a pair of objects may be-
long to the same instance even if they cover different parts
of the object. This type of relation gets the candidate objects
belonging to same instance closer while keeps other objects
away. Actually this is an exploration of the instance’s in-
trinsic property.

Spatial relations. Objects in the same scene are poten-
tially connected in the field of space, especially for those
with 3D representations. Spatial information indeed implies



abundant and useful information, which is helpful for better
understanding of the scene with our relation network. We
divide spatial relations into two canonical relations: support
and hang on. The algorithm for spatial relation computation
is illustrated in Algorithm 1.

Support relations describe the spatially adjacent relations
between the objects. In other words, it emphasizes that ob-
jects are functionally close and connected with this relation.
Automatically extracting relations of support is quite chal-
lenging due to the noisy and partial occlusion of real 3D
scans. We define that two objects have relations of sup-
port only when they are close enough on the z-axis and
IoU between their projection in the horizontal plane is large
enough. Furthermore, if object A is on top of object B and
ground projection of object A against the one of object B is
higher than a certain threshold, we argue that object A and
object B have support relations. For example, a flower vase
standing on the table describes the relation of support.

Specifically, when deciding the support relations of
two proposals, we first check if 1) their relative height
Ψz(pi, pj) between the lower surface of one object and the
upper surface of the other object is smaller than the thresh-
old τz , and 2) the overlapping ratio in xy-plane Ωxy(pi, pj)
surpasses the threshold τxy . If so, they will have relations
of support.

ψz(pi, pj) =| νzmax(pi)− νzmin(pj) | (3)

Ψz(pi, pj) = min(ψz(pi, pj), ψz(pj , pi)) (4)

where pi and pj are two objects, νz(pi) and νz(pj) denote
their position on z-axis for points of them. Ψz(pi, pj) is
their minimum distance on the z-axis.

Ωxy(pi, pj) = max(
δxy(pi, pj)

βxy(pi)
,
δxy(pi, pj)

βxy(pj)
) (5)

where δxy(·) computes the intersection area of projection
for two objects. βxy(·) denotes the size of projection area.
Ωxy(pi, pj) indicates the larger overlapping ratio of the IoU
towards these two projection areas.

Hang on relations imply that two proposals are horizon-
tally adjacent and one hangs on the other. Similar to re-
lations of support, if object A is horizontally close to ob-
ject B and perpendicular projection (parallel to xz-plane or
yz-plane) of object A against the object B is higher than a
certain threshold, we argue that object A and object B have
hang on relations. For example, one is classified as wall and
the other is an object that can hang on the wall, like board,
lamp, curtain, etc. The relations of these kinds of object
pairs can be regulated as hang on. Such compact spatial
relations are helpful for detection and understanding of the
scene.

3.3. Application of 3DRM

In order to apply our 3DRM to existing popular de-
tection pipelines and verify its effectiveness and general-
ization, we design specific strategies to plug our 3DRM
into two mainstream methods: proposal-based method and
voting-based method. The detection pipeline including our
Relation Module is shown in Figure 3. It is composed of
two main parts, backbones for processing raw point cloud,
and Relation Module for reasoning pair-wise object rela-
tions. Both the integrated and relation features are concate-
nated together to perform the classification and regression
towards numerous candidate bounding boxes. Followed by
3D non-maximum suppression (NMS), the pipeline outputs
classified and qualified 3D bounding box. We introduce
how we apply 3DRM to different 3D detection frameworks
as following.

Proposal-based methods. Lots of detection methods
establish a baseline system by introducing region propos-
als as object candidates and classifying the objects as well
as regressing the bounding box which we called proposal-
based methods. These methods have achieved promising
results but ignore the relation information between object
candidates, so we aim to equip these methods with our
3DRM to improve the performance. Since there is no
widely used framework for proposal-based methods, we de-
sign the whole backbone by ourselves. We choose over-
segmentation method described in [44] for raw proposal
generation, object hypothesis generation module for filter-
ing low quality proposals, PointCNN [28] as feature extrac-
tor for point clouds and contextual features for enriching
features of objects. Above all is the baseline for proposal-
based methods in this paper.

With 3D point clouds as input, we first perform an over-
segmentation on the input point cloud as described in [44].
The over-segmented patches are then merged recursively by
a bottom-up fashion. The output is a binary hierarchy in
which each node is a potential object (segment). We take
the node segments as the initial proposals. To improve the
quality of raw proposals, we first start from an object hy-
pothesis generation module by filtering proposals with low
objectness. This is achieved by using a deep neural network
based on PointCNN and MLPs, predicting the objectness
labels of the proposals.

With selected and reliable proposals, each proposal can
be recognized as a candidate object. Moreover, for improv-
ing the baseline performance of detection, like many of the
previous works on object detection [12,35], we add the con-
text information by exploring the points around the object
candidate with radius R to extract enriched contextual fea-
ture.

Both of the original geometry features and enriched fea-
tures, which extract corresponding information from the ob-
ject itself and its surroundings, consist of the integrated fea-



ture for each object candidate. After that, we apply our
3DRM to predict the pair-wise object relations and extract
relation features.

Then we perform concatenation of multiple features
learning from different aspects including geometric fea-
tures, context features and relation features. After the con-
catenation, we feed the concatenated features into MLPs
to predict the categorical label and regress the bounding
of detection box. Finally, a 3D non-maximum suppression
(NMS) is used to remove the redundant proposal candidates
and obtain the final 3D objects with their bounding boxes.

Voting-based methods. VoteNet [37] is an end-to-end
3D object detection network based on a synergy of deep
point set networks and Hough voting. Similar to classical
Hough voting, VoteNet generates votes that lie close to ob-
jects centers, and then these votes are grouped and aggre-
gated as clusters to generate box proposals. Each cluster
can be regarded as an object candicate which can also be
utilized to capture the relation information by our 3DRM.

Specifically, with N × 3 point cloud as input, VoteNet
first subsamples M × (3 + C) seed points by a backbone
network. Note that C is the extended feature dimensions
and M is the sample number. Each seed point then goes
through a voting module, predicts the offset to its object
center and thus becomes a vote point for potential clusters.
Furthermore, all the votes will be grouped into K clusters
each with dimension (3 + C).

At this stage, clusters with their features are sent to our
3DRM to extract the enriched Cr-dimensinal relation fea-
ture vector. Similar to proposal-based methods, we take the
concated featuresK× (3+C+Cr) as the input for the fol-
lowing detection modules. In this way, the inference of the
final 3D bounding boxes and the object classes will consider
the compatibility with the relations, which makes the final
prediction more reliable. In the following steps, We keep
the same proposal and classify module as VoteNet to gener-
ate final 3D bounding boxes. More details will be described
in the Section3.4.

3.4. Loss function

The loss for our 3DRM is simply formulated as Lrn us-
ing the binary cross entropy. In this way, it is judged in-
dependently whether an object pair should have a certain
relation. As for the detection pipeline, different backbones
lead to diverse designs for the final loss function.

Proposal-based methods. The network can be trained
in an end-to-end manner with a multi-task loss including
a semantic classification loss of the object candicate, a 3D
bounding box regression loss and a classification loss of re-
lations. We weigh the losses with the parameter λ1, λ2, λ3
to make sure they are in similar scales. In our experiments,

we set λ1 = 1.0, λ2 = 10, λ3 = 0.5.

Ltotal = λ1Lcls + λ2Lreg + λ3Lrn (6)

Voting-based methods. The network is trained in an
end-to-end manner with a multi-task loss including a vot-
ing loss, an objectness loss, a 3D bounding box estimation
loss, a semantic classification loss and a relation loss. It
is worthy to note that the objectness loss is designed to
help the proposal module to generate good enough pro-
posals. The component losses except the voting loss are
weighted by λ1, λ2, λ3, λ4. In our experiments, we set
λ1 = 0.5, λ2 = 1.0, λ3 = 0.1, λ4 = 0.1,.

Ltotal = Lvote+λ1Lobjectness+λ2Lbox+λ3Lcls+λ4Lrn
(7)

4. Implementation Details
In this section, we describe some implementation details

of the network architectures of our 3DRM, the relevant pa-
rameters in previous methods and strategies for the appli-
cation of our 3DRM to different backbones in training and
testing.

Details in 3DRM. As mentioned in Section 3.2, there
are some differences in Relation Module between [42] and
our architecture. We process a pair of objects’ features at a
time instead of the whole features of all objects. There are
thousands of objects and the number of object pairs’ per-
mutation is too large to train. In order to obtain a stable
relation feature and a faster convergence speed, we sample
fixed number k = 8 object pairs for each object in the same
scene by two ways. One is random sampling, and the other
is nearest sampling. Different sampling of object pairs re-
sults in slightly different performance (see Section 5.3 and
Section 5.4). For relation label computation, we set the
axis-wise threshold of distance τx = τy = τz = 0.1 and
τxy = τxz = τyz = 0.5 for IoU threshold of bounding
boxes projection onto planes. The function gθ and fφ in Re-
lation Module are different for two backbones and detailed
in the following paragraphs.

Details in proposal-based detection. We pre-train the
object hypothesis generation module to get the object can-
didates. Then, we train the object relation module and de-
tection module for final classification and regression end-
to-end. For this backbone, we use 4 fully connected layers
for MLP gθ, and 2 fully connected layers for MLP fφ in
Relation Module to extract relation features and four fully
convolutional (FC) layers to predict the four types of rela-
tions. The context points around object candidates are ob-
tained by KDTree [3] with R = 0.5m. Finally, the geo-
metric features, context feature and relation feature of the
object are leveraged to perform the final prediction. Fur-
thermore, there are also some differences of using data in
training and test. We leverage train data whose IoU ≥ 0.5



against ground truth. At test time, we use all object candi-
dates filtered by the object hypothesis generation module.

Note that it is hard to train object hypotheses generation
module with the unbalanced training data. We use Cross
Entropy Loss and two training strategies in our method: one
is data balancing and the other is hard negative mining. In
data balancing, we randomly choose negative samples with
the same number of positive samples to form the training
data. In hard negative mining, we keep the same procedure
as original paper.

We implement our approach using TensorFlow. The
Adam optimizer is leveraged in our experiments with a base
learning rate of 0.001. We train the model with the maxi-
mum training epoch number as 50 and batchsize as 8 on one
NVIDIA TITIAN V GPU.

Details in voting-based detection. The Relation Mod-
ule for VoteNet backbone is slightly different from the mod-
ule for proposal-based backbone. The inputs for our Re-
lation Module are features of clusters with 128-dim. The
gθ layer is realized through a multi-layer perceptron with
FC and the output channel size is 256. The features are
further processed by the MLP fφ to get the 128-dim rela-
tion features after the channel-wise mean operation. At the
same time, the outputs of gθ are sent to classifiers to pre-
dict the relation labels. Note that we combine four types of
relations into semantic and spatial relations in voting-based
detection. Each classifier predicts one type of relation and
is implemented with two FCs, output of which is 128 and
2 respectively. As a result, the combined features of input
features and relation features with dimension 128+128 will
be sent to the following modules.

We train the entire network end-to-end and use the same
optimizer, batch size, initial learning and learning rate de-
cay steps as VoteNet. It takes around 180 epochs for the
model to converge on one NVIDIA TITAN V GPU while
training.

5. Experiments
In this section, we evaluate the proposed 3DRM applied

on proposal-based methods and voting-based methods re-
spectively, in the field of 3D object detections with point
cloud of indoor scenes as input. Experiments are performed
on three large 3D indoor scene datasets and evaluated on the
detection benchmarks. (Section 5.1). The evaluation met-
ric is described in Section 5.2. We analyze the improved
performance after applying our Relation Module on the two
mentioned detection pipelines (OSegNet in Section 5.3 and
VoteNet in Section 5.4). Note that since we plan to ver-
ify the effectiveness and generalization of 3DRM on de-
tection pipelines with low or relatively high performance,
we choose to evaluate our 3DRM on OSegNet and VoteNet
respectively. Experiments settings including evaluation on
detection and ablation studies are the same for these two

pipelines. Further discussion is illustrated in Section 5.5.
Both of the quantitative and qualitative results demonstrate
the effectiveness and generalization of the proposed Rela-
tion Module.

5.1. Dataset and benchmarks

We leverage a widely used dataset that provides 3D
point clouds of indoor scenes: Stanford large-scale 3D In-
door Spaces Dataset S3DIS [2] for proposal-based pipeline.
S3DIS is from real scans of indoor environments which
contains 3D scans from Matterport scanners in 6 areas in-
cluding 271 rooms. The objects in this dataset are divided
into 13 categories. We perform a k-fold cross validation
across areas [50].

Both of ScanNetV2 [9] and SUN RGB-D [48] are lever-
aged to evaluate the voting-based pipeline. ScanNetV2 is
an RGB-D video indoor scene dataset with richly anno-
tated 3D reconstructed meshes. It contains about 1.5K scans
annotated with both semantic segmentation and object in-
stance labels for 18 categories. Since it doesn’t provide re-
constructed point clouds and oriented bounding boxes, we
sample the reconstructed meshes and predict axis-aligned
bounding boxes in the same way as VoteNet.

SUN RGB-D is a large single-view RGB-D dataset for
scene understanding. It contains about 10K RGB-D images
captured by four different sensors with accurately annotated
oriented bounding boxes for 37 object categories. Note that
since it doesn’t provide point cloud data, we first convert the
depth images to point clouds using known camera parame-
ters.

5.2. Evaluation metric

We use average precision as our evaluation metric of the
detected object bounding boxes against the ground truth
bounding boxes. We use two IoU thresholds as 0.5 and
0.25 respectively in our experiments. The mean average
precision (mAP) is the macro-average on average precision
across all test categories.

5.3. Evaluation on proposal-based framkwork

In this section, we denote the detection framework pro-
posed in Section 3.3 as baseline named OSegNet which
utilizes proposals generated by over-segmentation and
PointCNN [28] as backbones. Applying our 3DRM to OS-
egNet is denoted as OSegNet+RM. We first compare our
method with OSegNet on 3D object detection. We also
compare our method to state-of-the-art methods and ana-
lyze the difference and gap. After that, we conduct the ab-
lation studies to evaluate the impact of each component in
our approach. Last, we demonstrate the qualitative results
of our method.

Comparison to baseline and State-of-the-art meth-
ods. We evaluate our method against several prior works



Table 1. Comparison of our approach against prior works and the
framework OSegNet on 3D object detection. We denote OSeg-
Net+RM as OSegNet equipped with our 3DRM. Values report av-
erage precision at mAP@0.5 on S3DIS dataset evaluated with 6-
fold cross-validation on Area1∼Area6.

chair board table sofa mAP
Sliding PointCNN 0.36 0.07 0.39 0.23 0.26
PointNet 0.34 0.12 0.47 0.05 0.25
SGPN 0.41 0.13 0.50 0.07 0.28
VDREA 0.41 0.14 0.53 0.43 0.39
OSegNet 0.20 0.01 0.11 0.25 0.14
OSegNet+RM 0.74 0.01 0.47 0.51 0.43

and our baseline OSegNet which detects 3D object in in-
door scenes with point cloud as input:

• Sliding PointCNN [28]: A baseline which contains a
PointCNN backbone and detect objects in a 3D sliding
window fashion.

• PointNet [39]: A method that first predicts the cate-
gory of all points and then uses a breadth-first search
to group nearby points with the same category.

• SGPN [52]: A semantic instance segmentation ap-
proach for point clouds by using an embedding learn-
ing network for point pairs.

• VDRAE [44]: A variational auto-encoder that detects
3D objects in indoor scene by using a hierarchical
structure.

Table 1 reports the average precision on the S3DIS
dataset using 6-fold cross validation across six areas with
mAP@0.5. Compared to the baseline OSegNet, our method
OSegNet+RM obtains 54%, 36%, 26% and 29% increase
on chair, table, sofa and mAP respectively, which proves
the efficiency of our Relation Module. Note that, limited to
the performance of over-segmentation method for proposal
generation, there are very few proposals with good quality
for board objects, resulting in low performance on this cat-
egory. While all methods are learning-based methods and
there is a lack of valid proposals on board category, our
method still achieves the best performance. Especially, our
method get a huge improvement (33% increase) compared
to the state-of-the-art on chair category and 4% increase
on mAP, thanks to our 3DRM proposed in Section 3.2 and
illustrated in Figure 1. Moreover, without relation predic-
tion and using only the relation features, OSegNet+RM-
still surpasses OSegNet by a large margin, proving the ef-
fectiveness of the relation features extracted by our method.

Ablation study. We evaluate the impact of each com-
ponent of our approach to investigate the efficiency of dif-

Table 2. Comparison of different relations of our 3DRM ap-
plied on OSegNet framework on S3DIS dataset. Experiments
are trained on Area2∼Area6 and tested on Area1. We de-
note OSegNet+RM as OSegNet equipped with our 3DRM and
OSegNet+RM- as OSegNet+RM without relation prediction. Note
that board category is eliminated from comparison due to poor
quality of proposals.

chair table sofa mAP
OSegNet 0.21 0.07 0.28 0.19
OSegNet+RM(group) 0.72 0.36 0.60 0.56
OSegNet+RM(same as) 0.69 0.34 0.71 0.58
OSegNet+RM(support) 0.69 0.34 0.72 0.58
OSegNet+RM(hang on) 0.70 0.29 0.69 0.56
OSegNet+RM(all) 0.69 0.39 0.77 0.62
OSegNet+RM- 0.70 0.32 0.67 0.56

Table 3. Comparison of different selection modes of object pairs
on S3DIS dataset. Experiments are trained on Area2∼Area6 and
tested on Area1.

chair table sofa mAP
OSegNet+RM(random) 0.69 0.39 0.77 0.62
OSegNet+RM(nearest) 0.69 0.37 0.66 0.57

ferent relations and relation features. Note that, all experi-
ments for the ablation studies are trained on Area2∼Area6
and tested on Area1. Board category is eliminated from
comparison due to poor quality of proposals generated by
OSegNet.

Specifically, we first analyze the contribution of differ-
ent relations to our 3DRM. The ablation results are shown
in Table 2. While our method OSegNet+RM(all) which
predicts all relations at one time achieves the best perfor-
mance on table and sofa with mAP of 0.62 on three cate-
gories. OSegNet+RM using only group relations achieves
the highest AP 0.72 on category of chair. We argue that, on
S3DIS dataset, spatial structures of objects like table and
sofa are various and complex to distinguish, leading to the
dependence of both semantic and spatial relations. Shapes
of chairs are relatively fixed, which relies more on semantic
relations like group.

As for the selection mode of object pairs, we also con-
duct the ablation study about random mode and nearest
mode. Experiments are trained on Area2∼Area6 and tested
on Area1. Table 3 illustrates that random selection out-
performs selecting object pairs according to the nearest eu-
clidean distance on all terms. Specifically, random selection
surpasses the nearest selection by 5% on mAP. The im-
provement shows that object pairs randomly selected pro-
vide more information for the network to learn, while the
pairs selected nearestly can be regarded as a kind of local
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Figure 4. Visualization of the objects with semantic and spatial relationships. The first row shows the two objects with group relation. The
rest rows are for same as, support and hang on relations respectively.

Table 4. Comparison of our approach against VoteNet on 3D ob-
ject detection on ScanNetV2 val set and SUN RGB-D val set. We
denote VoteNet+RM as our approach with applying our 3DRM on
VoteNet.

mAP@0.25 mAP@0.5
ScanNet SUN RGB-D ScanNet SUN RGB-D

VoteNet 58.6 57.7 33.5 33.7
VoteNet+RM 59.7 59.1 37.3 35.1

information.
Visualization of relation prediction. Figure 4 visual-

izes the relations between objects in the same room. Both
of semantic and spatial relations provide rich context in-
formation to help detection. Different objects belonging to
the same categories implies that they should have similar
shapes. If objects belonging to the same instance have over-
lapping bounding boxes, this helps the network to regress
the box correctly. For spatial relations, such explicit infor-
mation provides extra knowledge to accomplish the task of
detection.

Qualitative examples. Figure 5 shows several quali-
tative results of object detection on S3DIS dataset. The
proposed Relation Module leverages multiple features from

relations to help detection module classify the objects in
3D bounding boxes. We visualize the result of OSeg-
Net (first column and fourth column), our method OSeg-
Net+RM (second column and fifth column) and ground
truth (third column and last column). It is demonstrated
that our method is capable of detecting objects in cluttered
scenes and regressed bounding boxes are more accurate and
distinct than OSegNet.

5.4. Evaluation on voting-based framework

We first compare our method with the baseline VoteNet
on 3D object detection in 3D point clouds. Results justify
the effectiveness and practicality of the proposed 3DRM.
After that, we conduct extensive ablation studies to evaluate
the impact of each component in our approach. Lastly, we
demonstrate the qualitative results of our method.

Comparison to VoteNet. We evaluate our method
against VoteNet in 3D object detection. Quantitative results
on ScanNet and SUN RGB-D are summarized in Table 4.
We apply the proposed Relation Module to the representa-
tive VoteNet and denote the network as VoteNet+RM as our
method. Note that we take the performance VoteNet+RM
with semantic relations only as the final results since it per-
forms the best on these two datasets. Our method signifi-
cantly outperforms VoteNet by not only 1.1% and 3.8% on
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OSegNet OSegNet

Figure 5. 3D detection using our 3DRM with OSegNet on the S3DIS test set. The first/fifth column shows the bounding boxes for the
OSegNet. The second/fourth column shows the qualitative detections with our 3DRM called OSegNet+RM and the third/sixth column
shows the ground truth of that. Our method is capable of detecting objects in cluttered scenes and regressed bounding boxes are more
accurate and distinct than OSegNet.

Table 5. Comparison to VoteNet with mAP@0.5 on ScanNetV2 val set for our method with different relations. We denote VoteNet+RM
as VoteNet equipped with our 3DRM and VoteNet+RM- as VoteNet+RM without relation prediction.

wind bed cntr sofa tabl showr ofurn sink pic chair desk curt fridge door toil bkshf bath cab mAP
VoteNet 7.89 76.70 20.11 69.04 41.80 7.75 14.05 21.06 0.76 67.30 32.52 10.58 28.89 14.68 82.07 27.86 79.31 9.36 33.99
VoteNet+RM(semantic) 12.29 80.63 14.59 71.79 41.28 10.41 13.35 29.46 0.14 67.73 34.74 16.95 37.79 15.70 89.96 44.22 82.95 8.03 37.33
VoteNet+RM(spatial) 10.48 81.17 22.07 68.95 42.02 4.20 16.56 26.08 1.57 68.83 36.49 13.30 33.02 17.67 84.37 39.66 89.43 10.79 37.04
VoteNet+RM(all) 9.68 77.97 21.72 67.65 41.89 15.11 14.56 26.58 0.22 69.20 40.30 26.30 30.37 13.67 89.89 32.41 78.94 9.63 37.01
VoteNet+RM- 10.33 81.40 18.97 66.57 42.94 9.33 15.45 25.55 0.42 69.13 37.72 18.83 29.75 15.20 87.40 40.66 82.26 6.61 36.58

Table 6. Comparison of different selection modes of object pairs
on ScanNetV2 val set. We denote VoteNet+RM as our approach
with applying our 3DRM on VoteNet.

mAP@0.25 mAP@0.5
VoteNet 58.6 33.5
VoteNet+RM(random) 59.73 37.33
VoteNet+RM(nearest) 58.44 36.79

ScanNet, but also 1.4% and 1.4% on SUN RGB-D in terms
of mAP with IoU=0.25 and IoU=0.5 respectively. Note
that, our method increase the performance of VoteNet by
3.8% on mAP@0.5 which illustrates that our 3DRM can
not only mitigate ambiguity but also increase accuracy of
the detection. Furthermore, we argue that this benefits from

the enriched relation features from our 3DRM, which pro-
vides comprehensive understanding to the object and its sur-
rounding environment. More quantitative results are shown
in appendix.

Ablation study. Extensive ablation studies are per-
formed to verify the increased accuracy of our approach.
Note that we combine group and same as relations as se-
mantic relations and support and hang on as spatial rela-
tions. To prove the efficiency of the proposed 3DRM, we
first study how the semantic and spatial relations help the
task of 3D object detection for different categories. Apply-
ing our 3DRM to VoteNet without predicting relation la-
bels denoted as VoteNet+RM- is also considered. Results
on ScanNet are shown in Table 5.

The results show that VoteNet+RM with only semantic
relations achieves the best performance with an increase of



Figure 6. Qualitative comparison results of 3D object detection on ScanNetV2 val set. Left: VoteNet, Right: Ours. The detailed comparison
demonstrates that our 3DRM enables more accurate and reasonable detection. Color is for depiction, not used for detection.

3.34% in terms of mAP@0.5. The reason is that objects of
most categories are sensitive to semantic relations, and can
obtain more context information from semantic relations.
For example, objects, such as windows, sofas, fridges, toi-
lets and so on, have simple and clear spatial structure, and
thus need various objects and context to help understanding.
Objects, such as counters, pictures, doors, baths and cabs,
are usually placed in a complex environment where seman-
tic information is rich enough and spatial information are
critical to them since their structures are more complicated.
Moreover, some categories of objects benefit from both se-
mantic and spatial relations like shower, chair, desk, etc.
Note that applying our 3DRM to VoteNet without predict-
ing relation labels and only use the relation features also
outperforms VoteNet, which proves that relation features
extracted by our 3DRM do help detect 3D objects better.

As for the mode of selecting object pairs, we compare
two ways of selection: random mode and nearest mode.
Comparison results are illustrated in Table 6, It is clear
that random selection of object pairs achieves higher per-
formance than selecting several nearest objects to form re-
lation pairs. This is because random selection can provide
various object pairs distributed in the whole scene and thus
enrich the information around objects to improve the detec-
tion quality.

Qualitative results and discussion. The qualitative re-
sults on ScanNet are shown in Figure 6. Ours method de-
tects the objects more accurately and robustly, which is ben-

eficial from our 3DRM. It is noteworthy that detection re-
sults of VoteNet are confused with other objects and am-
biguous in some areas with noisy point cloud, while ours
can classify and locate the objects precisely and clearly
without redundant bounding boxes. We argue that this is
attributed to the pair-wise relation reasoning. Details are
shown in the second row of Figure 6 where red rectangles
on the left refer to the ambiguous and wrong detections on
chairs by VoteNet. Green rectangles on the right demon-
strate the accurate detections by ours.

Figure 7 shows the detection results on ScanNetV2 val
set. From the comparison of Ours and VoteNet, we can
detect the objects accurately and robustly with less ambi-
guity. Specifically, in some cluttered areas, ours can dis-
tinguish different objects and regress the bounding boxes
precisely. There are usually many chairs in scenes like of-
fices and it is quite common to misunderstand the chairs as
other categories due to noise and their various appearance.
Our 3DRM can help alleviate this problem by using relation
reasoning and thus achieve better detection results.

5.5. Further discussion

Complexity and computational efficiency. Our 3DRM
is consisted of semantic relations and spatial relations in-
cluding group, same as, support and hang on. Among these,
relations like group, same as are easy and fast to compute
since we only need to compare semantic or instance labels.
The computational time for semantic relations can be ig-
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Figure 7. 3D detection using our 3DRM with VoteNet on the ScanNetV2 val set. The first/third column shows the bounding boxes for the
VoteNet. The second/fourth column shows the qualitative detections with our 3DRM called VoteNet+RM.

Figure 8. Improved percentage of mAP for different numbers of
object pairs. We denote VoteNet+RM as VoteNet equipped with
our 3DRM. Sampling 8 object pairs for an object achieves the most
improvement taking both mAP@0.25 and mAP@0.5 as well as
computational efficiency into consideration.

nored. As for spatial relations, Algorithm 1 can illustrate
the complexity. Note that although we use loops for simpli-

cation in the algorithm, we actually use matrix multiplica-
tion for further acceleration in experiments. Moreover, the
computational time and complexity grows as the number of
object pairs is larger. Numerically, we test the computa-
tional efficiency of spatial relations for 2048 proposals in
ScanNet dataset. We sample 8 object pairs for each pro-
posal, which means 8 ∗ 2048 object pairs in total. The total
time is around 0.047s and the average time is approximately
3 × 10−6s for each object pair, which proves the high effi-
ciency of our 3DRM.

With regard to the number of object pairs for each ob-
ject which may have influence on the complexity of rela-
tion computation, we perform experiments by comparing
the contributions of different pair numbers to the detection
with VoteNet+RM on ScanNet dataset. Results are shown
in Figure 8. Explicitly, sampling 8 or 14 object pairs for
an object achieves the most improvement considering both
mAP@0.25 and mAP@0.5. Since these contributions of
these two numbers of pairs are almost the same, we build 8
object pairs for each one for the balance of computational
efficiency and performance.

Improvement on different pipelines. We have evalu-



ated the improved performance of detection on mAP for
both OSegNet and VoteNet to justify the generalization
of our 3DRM on detection pipelines with different basic
performance. Explicitly, applying 3DRM to OSegNet ob-
tains 29% improvement on mAP@0.5 on S3DIS while
VoteNet gets 3.8% on ScanNet and 1.4% on SUN RGB-
D. OSegNet is an intuitively simple baseline implemented
mainly with over-segmentation for proposal generation and
PointCNN as backbones. Initial proposals generated by
over-segmentation in OSegNet are relatively less organized
and accurate compared to VoteNet which relies on deep
hough voting. The network architecture of OSegNet is
much simpler than VoteNet. Less organized proposals and
simpler architecture result in lower basic performance for
OSegNet. However, this actually demonstrates the gen-
eralization and effectiveness of our 3DRM by being able
to help attain a huge improvement on detection for simple
pipelines, and comparable improvement even for compre-
hensive pipelines.

6. Conclusions

We presented a Relation Module for 3D object detec-
tion on large-scale scene datasets. With the object candi-
dates generated from backbones, we predict object relations
and capture relation features by our 3DRM, which is capa-
ble of mitigating the ambiguity of 3D object detection, thus
helping locate and classify the 3D objects more accurately
and robustly. We applied our 3DRM to both proposal-based
methods and voting-based methods. Improved detection re-
sults demonstrate the effectiveness and generalization of our
method.

Limitations. Although experiments verify the effective-
ness of our 3DRM, our method can only predict pair-wise
object relations explicitly. High-level relations that may
help scene understanding are not considered.

Future work. There are several directions worth trying
for the future work. First, it is worth trying to add more rela-
tion types to the relation module. Second, we only perform
relation reasoning on object pairs. To explore the possibil-
ity to apply relation networks for analyzing sub-scenes is
an interesting direction. Finally, to perform relation reason-
ing in more complicated 3D task (such as Vision Question
Answering on 3D scenes) is also a promising direction.
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