
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

THOMAS VAITSES FONTANARI

Simultaneous Magnification of Subtle
Motions and Color Variations in Videos

using Riesz Pyramids

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Engineering

Advisor: Prof. Dr. Manuel Menezes de Oliveira
Neto

Porto Alegre
June 2021

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Diretora da Escola de Engenharia: Profa. Carla Schwengber Ten Caten
Coordenador do Curso de Engenharia de Computação: Prof. Walter Fetter Lages
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro
Bibliotecária-chefe da Escola de Engenharia: Rosane Beatriz Allegretti Borges

ABSTRACT

Videos often contain subtle motions and color variations that cannot be easily observed.

Examples include, for instance, head motion and changes in skin face color due to blood

flow controlled by the heart pumping rhythm. A few techniques have been developed to

magnify these subtle signals. However, they are not easily applied to many applications.

First of all, previous techniques were targeted specifically towards magnification of either

motion or color variations. Trying to magnify both aspects applying two of these tech-

niques in sequence does not produce good results. We present a method for magnifying

subtle motions and color variations in videos simultaneously. Our approach is based on

the Riesz pyramid, which was previously used only for motion magnification. Besides

modifying the local phases of the coefficients of this pyramid, we show how altering its

local amplitudes and its residue can be used to produce intensity (color) magnification.

We demonstrate the effectiveness of our technique in multiple videos by revealing both

subtle signals simultaneously. Finally, we also developed an Android application as a

proof-of-concept that can be used for magnifying either motion or color changes.

Keywords: Eulerian video magnification. riesz pyramids.

LIST OF ABBREVIATIONS AND ACRONYMS

GUI Graphical User Interface

NDK Native Development Kit

JNI Java Native Interface

EVM Eulerian Video Magnification

DVMAG Dynamic Video Magnification

LIST OF FIGURES

Figure 1.1 Magnification of subtle motion and color variations produced by our
technique. (a) Three non-consecutive frames from a video of a baby. (b)
Motion and color magnification applied to the head of the baby for the cor-
responding frames on top. (c) Comparison of the colors along a small strip
of pixels (shown in green in (a) left) across the original (left) and magnified
(right) video frames. The variations in width (motion) and colors of the por-
tion of the segment corresponding to the baby skin result from magnification......11

Figure 1.2 Our simultaneous amplification of subtle motion and intensity/color
variation pipeline. (a) The first stage decomposes each frame of the input
video into a Riesz pyramid: phase, amplitude, and residue. (b) Per-pixel
temporal filter applied to the phase, amplitude, and residue of the pyramid
selects the frequencies bands to be magnified: φBM (for motion), and ABC
and IR,BC (for intensity/color). (c) The magnified video frames are recov-
ered after scaling the selected frequency bands by factors αM (motion) and
αC (intensity/color) and recombining them with the original Riesz pyramid
elements. ...12

Figure 2.1 Linear Eulerian Video Magnification ..16
Figure 2.2 Higher spatial frequencies are more distorted by the magnification pro-

cess. The images to the left have lower spatial frequencies and the magnifica-
tion process produces less distortion for the same magnification factor α then
when higher spatial frequencies (right) are magnified..18

Figure 2.3 Amplification factor as a function of the wavelength....................................18
Figure 2.4 The difference between filtering only the phase and filtering the quan-

tities in Equations 2.22 and 2.23. The differences are computed between the
input (a) and the same image shifted by half a pixel to the left. Middle gray
corresponds to no phase difference and the regions with low amplitude are
masked in yellow. ..24

Figure 3.1 Sub-band of 1-D video at time steps t = 0 and t = 1. The first frame is
both shifted to the right by 10 pixels and scaled up 0.05 times.26

Figure 3.2 The difference between the absolute values of the analytic representa-
tions of times 0 and 1 is shown by the red line. Since this is an ideal scenario,
the magnitudes of the sub-bands capture perfectly only its intensity scaling,
while the more straightforward linear difference approach, shown in green, is
also influenced by the motion. ..26

Figure 3.3 The magnification of the color changes between time steps using the
difference of the magnitudes of the quadrature pair is shown in red. Since in
this case motion and scaling can be separated perfectly, the process using the
magnitudes is not affected by the motion of the band, while the magnification
based on the the direct computation of the differences of the pixels (in green)
also magnifies motion. ..27

Figure 3.4 The first frame is shown in the first picture with a green strip. The
evolution over time of this green strip is shown in the other images. As can
be seen, the amplitude-based method also magnifies the color changes in the
video. Moreover, because of the split of identity property, the amplitude-
based method more closely magnifies only the intensity changes, while di-
rectly taking the differences of the intensity of the pixels also magnifies motion..29

Figure 3.5 The value in the center of the video (Figure 3.4) is shown for the source
and magnified videos. Both methods magnify the intensity changes. The
original video has a step-like form because it is quantized when saved as a file....30

Figure 3.6 Simultaneous color-change and motion magnification applied to a syn-
thetic video. The first frame of the original video is shown in (a) the time slice
in (b). The synthetically generated version undergoing a translation and scal-
ing 10 times greater then the original version is shown in (c), while (d) shows
the magnified version using the Riesz pyramids. The results are significantly
similar, serving as evidence for the validity of the technique.31

Figure 3.7 Applying magnification methods to the whole video leads to artifacts
in regions where there is no signal of interest. In (a), we apply color-change
magnification without using any mask, which ends up creating artifacts such
as those in the black cardboard. In (b), we use our chrominance-based mask
to select only the face of the baby. ..32

Figure 3.8 The chrominance-similarity mask allows the selection of regions of in-
terest for magnification. In (a), the chrominance distances between a user-
selected pixel in the face of the baby and the other pixels in the image are
shown by the heat map, where the darker colors represent smaller distances.
In (b), the same process is shown but for a pixel selected in the blanket. (c)
and (d) show the masks resulting from (a) and (b), while (e) and (f) show the
resulting magnification using the masks. ..32

Figure 3.9 Comparison between two ways of applying the chrominance-based mask.
In (a), the first frame of a video of a face is shown, where the motion arising
from the man’s heartbeats is magnified. The result of applying the mask only
to the magnified frame is shown in (b) and the result of applying a mask at
each layer is shown in (c). Notice that in (b) white marks are visible at the
borders which are not visible in (c)...33

Figure 4.1 GUI implementing the simultaneous color-change and motion magnifi-
cation with the Riesz pyramids. The current mask selected by the user is also
shown to the right..34

Figure 4.2 Selecting a video for magnification with the Android application. In (a),
the main interface of the app is shown. The user can then fills the magnifica-
tion parameters and select the magnification method (b). By pressing Open
Video, an interface for selecting a video opens (c). After video is chosen, it
processed (d) and the result is stored in the device storage (e). The magnified
video can then be seen use a video player in Android (f).38

Figure 5.1 In (a), the frames from the input video face are shown. Their motion
and color-change magnified version showing the pulse of the man are shown
in (b). (c) and (d) show the time slices over his neck in the original and
magnified videos, revealing the color-changes and motion associated with the
pulse in his coronary artery. ..41

Figure 5.2 In (a), a reference frame from the source video face2 is shown. The
time slice from the original frame is shown in (b) and the time slice of the
magnified video is shown in (c). Here what is shown is the color-changes and
the head movement which is associated with the pulse rate of the man.................42

Figure 5.3 In (a), a reference frame from the source video face is shown. The
time slice from the original video is shown in (b) and the time slice from the
magnified version is shown in (c), where motion associated to the respiration
was magnified together with color changes associated with the pulse.43

Figure 5.4 In (a), the frames from the input video baby2 are shown. Their motion
and color-change magnified version is shown in (b). Figure (c) shows the
time slices from his head, revealing both the motion associated with the the
respiration of the baby and the color changes associated with the pulse................44

Figure 5.5 In (a), a reference frame from the source video eye is shown. Figures
(b) and (c) show the time slices from the border of the eye in the original
and magnified videos, where it is possible to see both the intensity change
associated with the heart rate and the microsaccades. ..44

Figure 5.6 In (a), a reference frame from the source video violin is shown. Figures
(b) and (c) show original and magnified time slices of the bow playing the violin.44

Figure 5.7 In (a), a reference frame from the source video drum is shown. Figures
(b) and (c) show original and magnified time slices of the skin of the drum.45

Figure 5.8 In (a), a reference frame from the source video drum is shown. Figures
(b) and (c) show original and magnified time slices of the vibrating string.45

Figure 5.9 In (a), a reference frame from the source video baby is shown. Figures
(b) and (c) show original and magnified time slices of the chest of the baby.45

Figure 5.10 In (a), a reference frame from the source video plants is shown. Fig-
ures (b) and (c) show original and magnified time slices of a leaf of the plant.
...45

Figure 5.11 Comparison between magnifying only the residues versus magnifying
the amplitudes as well. The frame from the original video is shown in (a). In
(b), the result of magnifying only the amplitudes from levels 5 to 7 is shown.
The result of magnifying only the residue is shown in (c) and the result of
magnifying both is shown in (d). ..46

Figure 5.12 Color-change magnfication applied to a homogeneous disk undergoing
translation. The first frame of the video is shown in (a). In (b) and (c) the time
slices of the original and magnified videos are shown. Notice that the color-
change magnification process magnifies color variations that were actually
caused by motion. ...47

Figure 5.13 Color-change magnification of the face video in the Android applica-
tion. In (a), the frames from the input video face are shown. Their motion
and color-change magnified version showing the pulse of the man are shown
in (b). (c) shows the evolution of the video over time from a slice in the
middle of the face of the man, going from the top to the bottom of the image.48

Figure 5.14 Motion magnification of the baby video in the Android application. In
(a), the frames from the input video face are shown. Their motion and color-
change magnified version showing the pulse of the man are shown in (b). (c)
shows the evolution of the video over time from a slice in the middle of the
face of the man, going from the top to the bottom of the image.............................48

Figure B.1 Phase-based Video Motion processing with Steerable Pyramids54

LIST OF TABLES

Table 5.1 Summary of the magnification parameters used for each video. Kernel
sigma is the Gaussian blur sigma used for the amplitude-weighted blur..................41

CONTENTS

1 INTRODUCTION...10
2 RELATED WORK ...14
2.1 Linear Eulerian Motion and Color-change Magnification15
2.2 Phase-based Video Motion Processing ..19
2.2.1 Motion Magnification Using Riesz Pyramids..20
3 INTENSITY AND MOTION MAGNIFICATION WITH THE RIESZ PYRA-

MIDS ..25
3.1 Simultaneous Motion and Intensity Magnification..28
3.2 Selection of Regions for Magnification ...29
4 IMPLEMENTATIONS...34
4.1 Python Simultaneous Color-change and Motion Magnification.........................34
4.2 Android Application ...37
5 RESULTS...40
5.1 Simultaneous Color-change and Motion Magnification with Riesz Pyramids..40
5.1.1 Amplitudes and Residue Magnification...43
5.1.2 Discussion and Limitations..43
5.2 Android Implementation Results ..47
5.2.1 Discussion and Limitations..48
6 CONCLUSION AND FURTHER WORK ...50
APPENDIX A — TEMPORAL FILTERS ..51
A.1 Bilinear Transform...51
A.2 Butterworth Filters ..52
APPENDIX B — OTHER EULERIAN VIDEO MAGNIFICATION METHODS.54
B.1 Motion Magnification with the Steerable Pyramids ...54
B.1.1 More Details on the Meaning of the Local Phases..57
B.2 Quaternionic Representation of the Riesz Pyramid for Video Magnification ..58
B.2.1 Quaternions ...58
B.2.2 Riesz Motion Magnification with Quaternions ...60
B.3 Subtle Motion Magnification in the Presence of Large Motions........................61
B.3.1 Dynamic Video Magnification (DVMAG)..61
B.3.2 Acceleration Magnification ...62
B.4 Deep Learning Approaches ...63
APPENDIX C — IMPLEMENTATIONS ...65
C.1 Android Implementations ...65
C.2 Android Temporal Filters..68
C.3 Android Color-change Magnification ..69
C.3.1 Gaussian Pyramid..71
C.4 Android Riesz Motion Magnification...73
C.4.1 Riesz Pyramids..76
C.4.2 Computation of the Quaternionic Phase Difference..78
C.4.3 Amplitude-weighted Blur..81
C.4.4 Shifting the Quaternionic Phase..82
APPENDIX D — DIFFERENCE OF QUATERNIONIC PHASES AND SHIFT-

ING THE QUATERNIONIC PHASE ...85
APPENDIX E — DERIVATION OF THE NORMALIZATION FACTOR FOR

THE DIFFERENCE OF BUTTERWORTHS..86
APPENDIX — REFERENCES..87

10

1 INTRODUCTION

The world is full of subtle motions and color variations in time that tend to be

invisible to the naked eye, but nevertheless carry useful information in a wide range of

areas. For instance, the cardiac cycle causes almost imperceptible skin color variations in

human faces and, the pattern of our respiration causes our shoulders and chest to move

slightly, and small motions of the eye may be symptomatic of a neural disease. Structures

undergoing pressure or bearing heavy weights may also deform causing subtle motions

and a drone will move slightly in order to maintain its stability during a stationary flight.

The ability to extract and visualize subtle signals in videos, therefore, has many practical

applications, ranging from the development of tools for supporting medical diagnostic

to the inspection of industry equipment. Given this potential, a variety of applications

have been developed (ARANGO et al., 2018; LAURIDSEN et al., 2019; WADHWA,

2016; Le Ngo et al., 2018; CHEN; PICARD, 2017; PERROT et al., 2018; DAVIS et al.,

2015; BALAKRISHNAN; DURAND; GUTTAG, 2013; BELAID et al., 2010) as well as

a number of algorithms for video motion and color magnification and analysis have been

recently proposed. (LIU et al., 2005; WU et al., 2012; WADHWA et al., 2013; WADHWA

et al., 2014b; ELGHARIB et al., 2015; WU et al., 2018b; LIU et al., 2014).

This motion microscope and the signals they reveal, however, are not so easily

accessible in our everyday use. One of the reason for this is that, while these previous

solutions have achieved considerable success in magnifying either subtle motions or color

variations, none of them was designed for joint magnification of both motions and color

variations. In order to obtain both effects on a video, one needs to apply the methods

sequentially, which in general produces deformed results since the first signal which is

magnified will influence the next magnification step. This is also problematic if one

wishes to create a real time application. Another reason for the difficult in using these

methods is that, while in general one records videos with a smartphone, there is no mobile

application for video magnification in real-time. Our work therefore aims at providing a

solution for these problems and we focus primarily in developing a technique for both

motion and color-change magnification simultaneously. Nevertheless, we also develop an

Android application which is able to magnify either color changes or motion.

Having a unified framework capable of handling both color-change and motion

magnification as the one we propose here can be useful in cases where both signals are

of interest, such as is the case when visualizing the blood flow caused by the pulse of a

11

Figure 1.1 – Magnification of subtle motion and color variations produced by our technique. (a)
Three non-consecutive frames from a video of a baby. (b) Motion and color magnification

applied to the head of the baby for the corresponding frames on top. (c) Comparison of the colors
along a small strip of pixels (shown in green in (a) left) across the original (left) and magnified
(right) video frames. The variations in width (motion) and colors of the portion of the segment

corresponding to the baby skin result from magnification.

x

0

50

100

150

200

250

T
im

e

x

0

50

100

150

200

250

T
im

e

(a) Input

(b) Motion and Color-change Magnified

(c) Original and
Magnified Slices

Source video is from Wu et al. (2012).

person. In this case, the motion is synchronized with the blood flow. The two signals

of interest, however, might have different frequencies, not needing to be synchronous.

Consider, for instance, head and chest motion due to breathing, and skin color variations

due to cardiac rhythm.

Figure 1.1 illustrates the use of our technique to perform joint motion and color

magnification to the frames of a video. Figure 1.1 (a) shows three (non-consecutive)

frames from a video of a baby. Figure 1.1 (b) shows the results produced by our technique

for motion and color magnification applied to the head of the baby for the corresponding

frames shown on top. The variation in color is more easily noticeable. Figure 1.1 (c)

compares the colors of a small strip of pixels along the original (left) and magnified (right)

video frames. The strips of pixels are indicated by the green line segment ranging from

the baby’s head to the crib bedspread, shown in Figure 1.1 (a) (left). Note the variations

in width (motion) and color of the portion of the segment corresponding to the baby skin

in Figure 1.1 (c) (right).

Our technique uses the Riesz pyramids introduced for subtle motion magnifica-

tion in (WADHWA et al., 2014b). The Riesz pyramids are based on the Riesz trans-

form (FELSBERG; SOMMER, 2001; UNSER; SAGE; VILLE, 2009) which provides an

image representation in which local phase and local amplitude are separated from each

other. We then use the local phases for motion magnification, as also done by Wadhwa

et al. (2014b), and use the local amplitudes, together with the low-pass residue of the

12

Figure 1.2 – Our simultaneous amplification of subtle motion and intensity/color variation
pipeline. (a) The first stage decomposes each frame of the input video into a Riesz pyramid:

phase, amplitude, and residue. (b) Per-pixel temporal filter applied to the phase, amplitude, and
residue of the pyramid selects the frequencies bands to be magnified: φBM (for motion), and

ABC and IR,BC (for intensity/color). (c) The magnified video frames are recovered after scaling
the selected frequency bands by factors αM (motion) and αC (intensity/color) and recombining

them with the original Riesz pyramid elements.

Source: The authors.

pyramid, for magnifying color changes. Figure 1.2 summarizes this process. The first

stage (Figure 1.2 (a)) performs a per-frame input video decomposition into Riesz pyra-

mids, resulting in a phase pyramid, an amplitude pyramid, and a residue term. The second

stage (Figure 1.2 (b)) applies a per-pixel temporal filter to the phase pyramid to select the

(phase) frequency band φBM for which motion should be magnified. An independent per-

pixel temporal filter is applied to both the amplitude pyramid and to the Riesz pyramid

residual. These select the (amplitude) frequency band ABC , and (residue) frequency band

IR,BC for which color variations should be magnified. The final stage (Figure 1.2 (c))

recovers the resulting magnified video frames. For this, it scales the selected phase by

αM , and amplitude and residue frequency bands by αC , recombines them to the original

phase φ, amplitude A, and residue IR values, producing the magnified video frames.

Our Android application, on the other hand, implements separately motion and

color-change magnification using the techniques previously described in the literature.

More specifically, we implement the linear Eulerian approach (WU et al., 2012) for color-

change magnification and the Riesz pyramids technique for motion magnification. The

application allows the user to select the magnification factors and the temporal frequencies

13

which should be magnified.

The contributions of this work include:

• A technique for simultaneous magnification of subtle motions and color variations

in videos (Section 3);

• A demonstration of how the Riesz Pyramids can be used to magnify color variations

(Section 3);

• A chrominance-based mask technique for modifying only regions of interest (Sec-

tion 3.2);

• A Python application for using our Riesz-based motion and color-change magnifi-

cation technique (Section 4);

• A proof-of-concept Android application for magnifying either motion or color changes

(Section 4) .

In the next section, we given an overview about the previous work developed on

Eulerian video magnification and describe how they relate to ours. We also dive deeper

in the techniques which are more closely related to the method we introduce and our

implementations. In Section 4, we briefly describe our implementations and Section 5

shows the results that were obtained using our magnification method. Finally, Section 6

concludes the work. We have also added multiple Appendices with more details about our

Android implementations (Appendix C) and the other methods for motion magnification

(Appendix B) which in the main text are only mentioned briefly.

14

2 RELATED WORK

The first method for motion magnification in videos was a layer-based technique

that relied on computing the trajectories of feature points obtained from a reference

frame (LIU et al., 2005). This algorithm is computationally intensive, requiring hours

for processing even short video sequences with just a few seconds long. Because of its

dependence on tracking features, the technique was later described as a Lagrangian ap-

proach. The technique is restricted to motion and cannot be used for magnification of

intensity/color variations.

Later on, Wu et al. (2012) introduced an approach that relied only on local spatial

and temporal filtering. As such, the solution was referred to as an Eulerian method.

The technique was based on computing the Laplacian pyramid for each frame of the

video and manipulating the intensities of each pixel in the pyramid. Specifically, each

pixel of the pyramid was temporally filtered (across the various frames), selecting only

motions whose temporal spectrum was contained in a temporal sub-band of interest. The

resulting temporally-filtered signals could then be multiplied by a magnification factor

and added back to the original pyramid. Collapsing this modified pyramid produced a

magnified version of the frame. Furthermore, applying this process to the residue of

the Laplacian pyramid would magnify the color changes in the image. This technique,

however, produced low-quality and limited motion magnification, resulting from clipping

artifacts which distorted the frames. The technique also significantly increased the noise

levels when motion was magnified.

To improve the quality of the earlier linear Eulerian method and increase the

amount of motion magnification, Wadhwa et al. introduced phase-based motion mag-

nification techniques (WADHWA et al., 2013; WADHWA et al., 2014b). Those methods

were inspired by previous works that had already demonstrated the relation between local

phases of frames and movement (FREEMAN; ADELSON; HEEGER, 1991; Gautama;

Van Hulle, 2002). Furthermore, the phase-based approaches still have an Eulerian char-

acter, since they rely on local spatial and temporal filtering. Their basic idea is to obtain a

measure of local phase, which is related to the local motion of a region in the video. Ma-

nipulating these phases is then equivalent to manipulating the local motion. The results

obtained using these techniques were a significant improvement over the linear Eulerian

method of Wu et al. (2012), allowing for larger magnification factors and introducing

much lower noise levels. Furthermore, Wadhwa et al. (2013) suggested (they have not

15

demonstrated it) that the image representation which they used for motion magnification,

the steerable pyramid (SIMONCELLI; FREEMAN, 1995; FREEMAN; ADELSON et

al., 1991; SIMONCELLI et al., 1992), could also be used for magnifying color changes

in videos. In our work, we show how the Riesz pyramids, introduced by Wadhwa et al.

(2014b), where they were only used for motion magnification, can also be used to mag-

nify intensity/color variations. Unlike Wu et al. (2012) who proposed to perform color

magnification by scaling the Laplacian pyramid residue, we show that high-quality inten-

sity/color amplification can be achieve by scaling both the amplitude coefficients of the

Riesz pyramid and the pyramid’s residue. As such, our work is the first to demonstrate

simultaneous high-quality magnification of subtle motions using a phase-based approach

and intensity/color variations in videos.

Additional techniques were designed to specifically overcome the problems that

larger motions or color changes cause to the Eulerian methods, as the large variations also

get modified by the algorithm (ZHANG; PINTEA; GEMERT, 2017; ELGHARIB et al.,

2015; WU et al., 2018a). The large motions, however, do not fit the Eulerian frameworks,

as they rely on the premise that motions are local. Moreover, large color variations are

generally not the ones of interest, as they are already visible, and magnifying them leads

to clipping artifacts as their magnified values might get too big when trying to amplify

the subtle signals. These methods, however, handle either motion or color-change ampli-

fication, but not both simultaneously. Sharing this same limitation, some deep-learning

techniques have been recently proposed (CHEN; MCDUFF, 2018; OH et al., 2018). Oh

et al. (2018) presented a technique for magnifying small motions, and Chen and McDuff

(2018) used of separate models for motion and color-change magnification.

In the next sections, we describe the main methods which more closely relate to

our work. For completeness, we have also described other methods for magnification of

subtle signals in Appendix B.

2.1 Linear Eulerian Motion and Color-change Magnification

The Linear Eulerian Video Magnification (WU et al., 2012) is an algorithm based

solely on spatial and temporal filtering that is able to amplify subtle motion and color

changes in a video. The key idea of their work was the realization that amplifying the

intensity variations of a pixel, besides magnifying color changes, also magnified small

motions involving the pixel. Moreover, temporal filtering of the intensities of a pixel

16

Figure 2.1 – Linear Eulerian Video Magnification

Source: (WU et al., 2012)

corresponded to selecting motions or signals containing only a desired frequency band,

thus allowing frequency-based motion selection. For instance, a band-pass filter around

60 bpm could be used to magnify motion related to the heartbeats of a person.

The first step of the algorithm is to decompose each frame into sub-bands by build-

ing its Laplacian Pyramid. Then, each level of the pyramid is filtered temporally such that

only pixel variations with the appropriate temporal frequency bands are retained. Each

temporally filtered sub-band is multiplied by an appropriated magnification parameter α

and added back to the pyramid, which is finally collapsed to generate the magnified frame.

The algorithm is illustrated in Figure 2.1. As will be seen, this same framework is capable

of magnifying both small color changes and motions that vary within a frequency range

determined by the temporal filter.

As explained in their work, this process is able to magnify motion in videos

because temporally filtering a video pixel-wise isolates the displacements, as long as

the image can be locally linearly approximated. In order to see this, we consider a

1D video characterized only by translation over time I(x, t) = f(x + δ(t)), where

f(x) = I(x, 0) is the video at t = 0. The goal of motion magnification is then to produce

Î(x, t) = f(x + (1 + α)δ(t)). If f(x + δ(t)) can be linearly approximated at x, then we

can write its first order Taylor series at x

I(x, t) = f(x) + δ(t)
df(x)

dx
. (2.1)

Applying a band-pass temporal filter to this signal, one can remove the constant term

f(x). Moreover, each frequency component of the displacement signal δ(t) will also be

modified according to the filter used. For instance, if an ideal band-pass filter that allows

17

only frequencies ranging from 0.8Hz to 1.1Hz to pass is used, then only the frequency

components from the displacement δ(t) that fall into this frequency range remain. One can

represent this mathematically by saying that the filter T scales each frequency component

δk(t) of δ(t) by a parameter γk. Hence, we can write

T {δ(t)} =
∑
k

T {δk(t)} =
∑
k

γkδk(t). (2.2)

Filtering each pixel of the video I then results in the quantity

B(x, t) =
df(x)

dx

∑
k

γkδk(t). (2.3)

Multiplying this signal by a magnification factor α and adding it back to the original video

will result in a video where the selected frequency components of the displacement were

magnified, as long as the linear approximation still holds locally. That is,

I(x, t) + αB(x, t) = f(x) + δ(t)
df(x)

dx
+ α

df(x)

dx

∑
k

γkδk(t)

= f(x) +
df(x)

dx

∑
k

(1 + αγk)δk(t)

≈ f(x+
∑
k

(1 + αk)δk(t))

= Î(x, t),

(2.4)

where αk = αγk. In the last step, it was also assumed that the linear approximation holds

for Î(x, t). In that case, the motion magnified signal Î(x, t) has been produced, with the

additional possibility of selecting which motions should be magnified by choosing the

temporal filter. If the signal with all motions magnified is targeted, then one can choose a

temporal filter that only removes the constant term f(x) and do not alter the other temporal

frequencies.

It is possible to draw constraints on how much motion magnification can be achieved

for specific spatial frequencies from the fact that the linear approximations must hold. Wu

et al. (2012) consider the case of a sinusoidal wave under translation to deduce the guide-

line (1+α)δ(t) < λ
8
, where λ is the wavelength of the sinusoid. Qualitatively, this means

that the magnification factor needs to be smaller for higher spatial frequencies. This is il-

lustrated in Figure 2.2. Therefore, spatially decomposing each frame before applying the

temporal filter is necessary in order to allow for lower amplification in higher frequencies.

18

Figure 2.2 – Higher spatial frequencies are more distorted by the magnification process. The
images to the left have lower spatial frequencies and the magnification process produces less
distortion for the same magnification factor α then when higher spatial frequencies (right) are

magnified.

0

x (space)

In
te
ns
it
y

0

x (space)

In
te
ns
it
y

(a) True motion amplification: Î (x, t) = f (x + (1+ α)δ(t)).
α=0.2 α=0.5 α=1.0 α=1.5 α=2.0 α=2.5 α=3.0

0

x (space)

In
te
ns
it
y

0

x (space)

In
te
ns
it
y

(b) Motion amplification via temporal filtering:
Ĩ (x, t) = I (x, t) + αB (x, t).

Source: (WU et al., 2012)

Figure 2.3 – Amplification factor as a function of the wavelength

Source: (WU et al., 2012)

The authors use a parameter λc to account for this, below which the attenuation factor α

decreases linearly towards 0 (Figure 2.3).

The same framework can also be used for color amplification. In this case, the

finest levels of the pyramid are not amplified – that is, only the lowest spatial frequency

components are modified. The result of this is analogous to using a low-pass filter in

order to increase the Signal-to-Noise Ratio of the color changes. A temporal filter is

used as well in order to select the desired frequencies. This process also amplifies subtle

motions as artifacts. However, since, the sub-bands containing higher frequencies are not

modified, motion will not be so much altered.

It is important to take the noise in the input video into account when applying this

method. Because it is based on directly scaling the values of pixels, it generally increases

the noise level in the video. Moreover, when color-change magnification is targeted, the

19

subtle signals related to it are likely weaker than noise. For that reason, it is imperative

to use only the higher (more coarse) levels of the Laplacian pyramid, since in the other

levels the subtle signal will not have emerged from noise.

The Eulerian Video magnification technique constituted a significant step forward

in this area. Its simplicity allowed real-time magnification of subtle motions. Neverthe-

less, the technique was able only to magnify motions by a small amount without incurring

in significant artifacts and noise amplification.

2.2 Phase-based Video Motion Processing

Phase-based motion magnification techniques were later proposed by Wadhwa et

al. (2013) in order to reduce the noise levels of the previous linear Eulerian approach and

to increase the possible magnification factors. The main intuition behind phase-based mo-

tion magnification is the fact that shifting the phase of waves can be perceived as motion

(WADHWA et al., 2013). The relation between phase shifting and motion magnification

can be understood by considering the relation between a global phase, obtained through

Fourier decomposition, and the displacement. For simplicity, we present the concept in

1D and later extend it to 2D. Thus, consider a single video scanline from a video I(x, y, t),

where x and y are respectively the pixel column and row coordinates, and t is time repre-

senting the individual video frames. We further simplify the scanline notation by dropping

the y coordinate. Thus, a scanline can be described by a function f : I(x, t) = f(x+δ(t)),

where δ(t) is the displacement and δ(0) = 0. The targeted motion magnified version can

be written as Î(x, t) = f(x+(1+α)δ(t)). Decomposing each “frame" of this video using

the complex representation of the Fourier series gives

f(x+ δ(t)) =
∞∑

ω=−∞

Aωe
jω(x+δ(t)), (2.5)

where Aω is the contribution of the frequency ω to the displaced image and ω(x + δ(t))

is its phase (notice that Equation 2.5 is in the spatial domain and not in the frequency

domain). An arbitrary spatial frequency ω of such a 1D frame of the video can therefore

be written as

Iω(x, t) = Aωe
jω(x+δ(t)). (2.6)

20

Removing the constant term ωx from the phase ω(x + δ(t)), which can be done by sub-

tracting from it the phase of the frame at t = 0, one obtains ωδ(t). This term can then be

multiplied by a (magnification) factor α and added back to the phase shift by multiplying

Equation 2.6 by the complex exponential eαωδ(t), producing

Îω(x, t) = Aωe
jω(x+(1+α)δ(t)). (2.7)

If one applies this same phase shifting process to all frequencies ω and sum over them as

in Equation 2.5, one obtains the targeted motion magnified version of the video

Î(x, t) = f(x+ (1 + α)δ(t)). (2.8)

Hence, by shifting the phases of each pixel x, one also obtains a motion magnified version

of the video. However, using the global phases obtained through a Fourier decomposition

would not work in general, since each wave covers the whole space. Motion, on the

other hand, is generally local. Therefore, in order to magnify motions, it’s necessary to

obtain a local phase. One of the ways to obtain a measure of a local phase for motion

magnification is to use complex Steerable pyramids (WADHWA et al., 2013) and the other

one is to use Riesz pyramids (WADHWA et al., 2014b). In the next section, we describe

the method using the Riesz pyramids, as it is the base of what we have developed in this

work. More information about motion magnification using the Steerable pyramids can be

found in Appendix B.1.

2.2.1 Motion Magnification Using Riesz Pyramids

Wadhwa et al. (2014b) introduced an efficient approach for phase-based motion

magnification which uses the local phases obtained from a Riesz pyramid. The Riesz

pyramid is based on the two-dimensional extension of the Hilbert transform. The transfer

function HH(ω) of the Hilbert transformH is given by

HH(ω) = −j sign(ω) = −j ω

‖ω‖
, (2.9)

where sign(ω) is the sign function. The Hilbert transform phase shifts each component

(i.e., each sin and cos function associated to each frequency ω) of the input signal by 90◦.

Thus, each cos becomes a sin and each sin becomes a− cos. This allows the computation

21

of the quadrature pair

f(x) + j H{f(x)} = A(x)ejφ(x), (2.10)

where f(x) is the input signal being transformed, and A(x) and φ(x) are respectively the

local amplitude and local phase of f(x).

As an example, we can consider the quadrature pair obtained when f(x) = cos (ωx).

Its transform is simply sin (ωx), which results in the quadrature pair cos (ωx)+j sin (ωx) =

ejωx. In general, however, a function will not be defined by a single component. Hence,

when analysing more complex signals, it is necessary to use a multi-scale approach by

first decomposing the original signal into multiple sub-bands and treat them indepen-

dently. The local amplitude and phase for each sub-band can then be obtained from the

quadrature pair corresponding to the sub-band. The obtained local phases can be used to

estimate and magnify the motion at each pixel x. However, before one can apply this to

videos, it is necessary to have a generalization of the Hilbert transform to 2D.

The Riesz transform R generalizes the Hilbert transform to two or more dimen-

sions, and in 2D can be defined by the pair of transfer functions

HR(~ω) =

(
−jωx
‖~ω‖

,
−jωy
‖~ω‖

)
, (2.11)

where ωx and ωy are the frequency coordinates in the frequency domain and ~ω = (ωx, ωy),

and || · || is the L2-norm operator. As was done with the one-dimensional case, one can

write this pair together with the original function. Since this results in a three component

entity, we cannot write it as a complex number an instead write the vector

(I(x, y), R1(x, y), R2(x, y)), (2.12)

where I(x, y) is the two-dimensional original function (e.g., an input video frame or a sub-

band of a frame), andR1(x, y) andR2(x, y) are the results of applying the first and second

components of the Riesz transform to I(x, y). This vector can be written in spherical

coordinates as

I(x, y) = A(x, y) cos (φ(x, y)), (2.13)

R1(x, y) = A(x, y) sin (φ(x, y)) cos (θ(x, y)), (2.14)

R2(x, y) = A(x, y) sin (φ(x, y)) sin (θ(x, y)), (2.15)

22

where A(x, y), φ(x, y) and θ(x, y) are respectively the local amplitude, local phase and

local orientation of the pixel at position (x, y). The local phase in this equation has a

similar meaning to that of the phase obtained for the one-dimensional case with the Hilbert

transform. Furthermore, the local phase is associated to the wave that points towards the

local orientation θ, which is in fact the dominant orientation (i.e., the gradient) at pixel

(x, y). The value of the local phase (φ) can be obtained from the following quadrature

pair, which is analogous to the one produced by the Hilbert transform:

I + jQ = Aejφ, (2.16)

where

A =
√
I2 +R2

1 +R2
2, (2.17)

and

Q =
√
R2

1 +R2
2 = A sinφ. (2.18)

The reason why this local phase can be used for motion magnification is illus-

trated by Wadhwa et al. (2014b) using a 2D sinusoidal wave being translated horizontally.

This is described by the equation I(x, y, t) = cos (ωx(x− δ(t)) + ωyy), where δ(t) cor-

responds to the displacement over time. The Riesz transform of this signal is

R{I(x, y, t)} = (ωx, ωy)√
ω2
y + ω2

y

sin (ωx(x− δ(t)) + ωyy), (2.19)

where R is the Riesz transform operator as defined by its transfer function in Equation

2.11. The quadrature pair I + jQ can then be computed usingQ = sin (ωx(x− δ(t)) + ωyy).

The local phase at each pixel is therefore

φ(x, y) = ωxx+ ωyy − ωxδ(t). (2.20)

Subtracting from Equation 2.20 the phase of the first frame (where δ(t) = 0), the factor

−ωxδ(t) can be isolated and amplified by multiplication with a constant αM to obtain the

value−αMωxδ(t). Finally, the phase of the quadrature pair I + jQ is updated accordingly

by multiplication by the complex exponential e−jαMωxδ(t). The real part of the resulting

pair corresponds to the motion amplified video

Î(x, y, t) = cos (ωx(x− (1 + α)δ(t)) + ωyy). (2.21)

23

As in the one-dimensional case, the image needs to be decomposed into multiple

non-oriented sub-bands before a phase analysis can be performed. This can be done

using a Laplacian pyramid. The Riesz transform is then applied to each of the levels of

the Laplacian pyramid, resulting in the Riesz pyramid. The local phases of each level of

the Riesz pyramid can then be modified through the process just described, and the real

parts of each level is treated as a level of a Laplacian pyramid, which is then collapsed in

order to produce the magnified frame.

Furthermore, the local phases can also be temporally and spatially filtered before

being used to modify the pyramid. Similarly to Wu et al. (2012), Wadhwa et al. (2014b)

temporally filter the spatial local phases (i.e., the local phases in each video frame) in

order to select only the motions whose temporal frequencies fall in the band of interest.

However, as they show, filtering directly the local phases leads to discontinuity problems.

For instance, if the local orientation θ is limited to the interval [0, π] while the local phase

goes from [−π, π], a small change in the orientation between two adjacent pixels (spatially

or temporally) can lead to a brusque phase change from φ to −φ. Therefore, they choose

to instead filter the quantities

φ cos θ (2.22)

and

φ sin θ (2.23)

independently, which do not suffer from these discontinuities. These quantities together

are called the quaternionic phase since they can be naturally derived from a quaternionic

representation of the Riesz pyramid (see Appendix B.2). This is illustrated in Figure 2.4.

After the temporal filtering, Wadhwa et al. (2014a) have also filtered the phases

spatially through the use of an amplitude weighted blur. That is, the phases are convoluted

with a Gaussian kernel and weighted by the value of the amplitude of the Riesz pyramid

coefficients. This spatial filtering is important in order to reduce noise from the computa-

tion of the phases and also to reduce errors from approximations used when constructing

the Riesz pyramid. Finally, the filtered quantities are recombined. The equation below

summarizes these steps

cos θ
A cos (θ) φ ∗Kp

A ∗Kp

+ sin θ
A sin (θ) φ ∗Kp

A ∗Kp

. (2.24)

The rest of the process proceeds as described earlier, that is, by multiplying the

filtered phases (Eq. 2.24) by a magnification factor α and shifting the phases of the pixels

24

Figure 2.4 – The difference between filtering only the phase and filtering the quantities in
Equations 2.22 and 2.23. The differences are computed between the input (a) and the same image
shifted by half a pixel to the left. Middle gray corresponds to no phase difference and the regions

with low amplitude are masked in yellow.

(a) Input (b) Phase difference (c) Amplified with (b)

(d) φcos(θ) difference (e) φsin(θ) difference (f) Amplified with (d,e)

Source: (WADHWA et al., 2014b)

of the Riesz pyramid by multiplication with a complex exponential. Further details on

motion magnification with the Riesz pyramids are referred to their work (WADHWA et

al., 2014b) and to Appendix B.2.

25

3 INTENSITY AND MOTION MAGNIFICATION WITH THE RIESZ PYRAMIDS

Intensity/color variations can be magnified by modifying the residue and the local

amplitudes given by the coefficients of the Riesz pyramids. The simplest way to do it is

to magnify only the residue. In this case, if the Riesz pyramid is constructed based on the

Laplacian pyramid, the result produced is similar to the color-change magnification in the

linear Eulerian method developed by Wu et al. (2012). In order to magnify the residue, we

temporally filter directly the intensities of its pixels in order to select the color variations

of interest. The resulting band is then multiplied by a magnification factor and added back

to the residue (see the bottom-most part of Figure 1.2 (c)). When the Riesz pyramid of

the frame is collapsed at the end of the process, the result is a frame with intensity/color

variations magnified.

Besides its residue, the amplitude of the Riesz pyramid coefficients also contains

information on the intensity/color variations. Furthermore, since the amplitude is sepa-

rated from the local phase, it is less affected by the motion of the pixel. This is in contrast

to altering the intensity of the pixels or of the coefficients of a Laplacian pyramid directly.

This process can be better understood by first considering its one-dimensional version,

which uses the quadrature pair obtained through the Hilbert transform. Thus, consider a

video given by a sinusoid undergoing a small amount of translation (phase shift, δM(t))

and amplitude scaling (δC(t)):

I(x, t) = δC(t)A cosω0(x− δM(t)), (3.1)

for which one wishes to construct its amplitude-only magnified version

Î(x, t) = (1 + α)δC(t)A cosω0(x− δM(t)). (3.2)

Figure 3.1 illustrates this situation, where the blue line represents the signal at time t = 0

and the orange line represents the signal at time t = 1.

The quadrature pair of I(x, t) is given by

IQP (x, t) = δA(t)Ae
jω0(x−δM (t)), (3.3)

where δA(t) and δM(t) correspond respectively to the scaling and motion over time. Iso-

lating the magnitude (Figure 3.2), one obtains δA(t)A. This quantity can be multiplied by

26

Figure 3.1 – Sub-band of 1-D video at time steps t = 0 and t = 1. The first frame is both shifted
to the right by 10 pixels and scaled up 0.05 times.

0 100 200 300 400 500
x (pixels)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

In
te

ns
ity

I(x, 0)
I(x, 1)

Source: the authors.

Figure 3.2 – The difference between the absolute values of the analytic representations of times 0
and 1 is shown by the red line. Since this is an ideal scenario, the magnitudes of the sub-bands

capture perfectly only its intensity scaling, while the more straightforward linear difference
approach, shown in green, is also influenced by the motion.

0 100 200 300 400 500
x (pixels)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

In
te

ns
ity

IQP(x, 0)
IQP(x, 1)

I(x, 1) I(x, 0)
IQP(x, 1) IQP(x, 0)

Source: the authors

a magnification factor αA and the resulting value is added back to the original sub-band

by adding to the sub-band the complex number number (see the mid portion of Figure 1.2

(c))

αAδ(t)Ae
jω0(x−δM (t)). (3.4)

That is, the variation in magnitude is isolated and modified while the phase is kept un-

27

altered. The real part of the resulting complex number is the intensity-magnified video:

Î(x, t) = Re{(1 + α)δA(t)Ae
jω0(x−δM (t))}, (3.5)

while the imaginary part is the intensity-magnified version of the Hilbert transform of the

input video I(x, t). This is illustrated in Figure 3.3. As is done for the phases (in the case

of motion amplification), one can also use a band-pass filter to select only the temporal

frequencies of the amplitude signal which relate to the intensity/color variations that one

wishes to magnify.

Figure 3.3 – The magnification of the color changes between time steps using the difference of
the magnitudes of the quadrature pair is shown in red. Since in this case motion and scaling can

be separated perfectly, the process using the magnitudes is not affected by the motion of the band,
while the magnification based on the the direct computation of the differences of the pixels (in

green) also magnifies motion.

0 100 200 300 400 500
x (pixels)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

In
te

ns
ity

I(x, 1)
Pixel-difference based
Amplitude-based

Source: the authors

A similar process can also be performed with two-dimensional images and the

Riesz transform. In that case, one writes

IQP (t) = I(t) + jQ(t) = A(t)ejφ(t) (3.6)

where the quantities I(t) and Q(t) refer to an arbitrary coefficient of the Riesz pyramids

at coordinates (x, y). The amplitude is then given by

A =
√
I2 +Q2 =

√
I2 +R2

1 +R2
2 (3.7)

Temporally filtering it and multiplying by the magnification factor α, we find similarly

28

as before A(t) =
∑

k αkAk(t), where Ak are the frequency components of A(t). This

can be added back to the original image by first multiplying it with eφ(t), resulting in the

magnified signal

ÎA(t) =
∑
k

(1 + αk)Ak(t)e
jφ(t) (3.8)

The magnified frame is then given by the real part of Equation 3.8. As mentioned previ-

ously, images in general are composed of multiple spatial frequency components. In order

to perform the previously described process, then, it’s necessary to first decompose the

image into multiple non-oriented sub-bands, such as by using a Laplacian pyramid. The

magnification can then then applied to each of the levels of the pyramid. It is important to

notice, however, that color variations are usually very weak and can be indistinguishable

from noise in the lower (more detailed) levels of the pyramids. For that reason, we have in

general only magnified the amplitudes of the highest levels of the Riesz pyramid, besides

the residue, when magnifying color changes.

The effects of magnifying the amplitudes of the Riesz Pyramid are shown in Fig-

ures 3.4 and 3.5. In this example, the video is built using only a single period of a cosine

and clipped outside of the center of the image. The function moves periodically a small

amount (±1px) along the x axis and its amplitude is also periodically scaled 0.01 times.

We also show for comparison the result of magnifying the pixels directly instead of the

amplitudes of the quadrature pairs.

3.1 Simultaneous Motion and Intensity Magnification

Since the amplitude and the phase in I + jQ are independent of each other, the

amplitude of the Riesz pyramids can be modified without affecting the motion and vice-

versa. We note that this would not be the case if instead of modifying the amplitudes of

the pyramid we had chosen to amplify the intensity I of the pixels directly, as this would

modify the phases of the quadrature pairs I + jQ. Furthermore, since the residue of the

pyramid constitutes an additional spatial sub-band than those whose phases are modified

when magnifying motion, we can also modify the residue without causing problems to

the phase magnification. Although by modifying the residue some level of motion magni-

fication is unavoidable, the residue contains only lower spatial frequencies and therefore

magnifying its intensities will not produce significant motion of edges. Hence, to perform

simultaneous phase-based motion magnification and intensity magnification, we magnify

29

Figure 3.4 – The first frame is shown in the first picture with a green strip. The evolution over
time of this green strip is shown in the other images. As can be seen, the amplitude-based method
also magnifies the color changes in the video. Moreover, because of the split of identity property,

the amplitude-based method more closely magnifies only the intensity changes, while directly
taking the differences of the intensity of the pixels also magnifies motion.

0 100 200 300 400 500

0

100

200

300

400

500

First frame

x

0

50

100

150

200

250

Ti
m

e

Source

x

0

50

100

150

200

250

Ti
m

e

Pixel-difference based

x

0

50

100

150

200

250

Ti
m

e

Amplitude-based

Source: the authors.

the local phases of the coefficients of the pyramid for motion magnification and use the

residue and/or the amplitudes to magnify the intensity changes. Figure 1.2 illustrates the

method.

An example of simultaneous color-change and motion magnification is shown in

Figure 3.6 for a synthetic video, where the result of magnifying the color changes and

motion of the video using the Riesz pyramids is compared to a magnified version gener-

ated synthetically by increasing the translation and scaling in the generation process. The

original video is composed of a single wave undergoing translation at 1 Hz and scaling

and 2 Hz.

3.2 Selection of Regions for Magnification

The magnification methods are in principle applied to all regions in the frames of

the video. This leads to the creation of artifacts in regions where it was not desired to

modify anything (Figure 3.7 (a)).

Because of the Eulerian character of the magnification methods studied here, one

is able to select regions that are to be magnified and not modify the other ones. Elgharib

et al. (2015), for instance, have used alpha matte to select a region of interest from user

30

Figure 3.5 – The value in the center of the video (Figure 3.4) is shown for the source and
magnified videos. Both methods magnify the intensity changes. The original video has a

step-like form because it is quantized when saved as a file.

0 50 100 150 200 250 300
Time (frames)

170

180

190

200

210

220

230

240
In

te
ns

ity

Original
Linear-based
Riesz-based

Source: the authors.

input. We instead introduce a chrominance-based masking for region selection. The user

can select a pixel from a frame of the video and the algorithm then magnifies only those

regions of the image which have similar chrominance values. The similarity between the

chrominance channels of two pixels is measured using the Euclidean distance between

them and only pixels with a distance from the select pixel smaller then a certain threshold

are magnified. This is illustrated in Figure 3.8.

The mask could be used by first applying the magnification algorithms normally

to produce magnified versions of each frame. Then, a masked frame would be constructed

such that the pixels whose positions are inside of the region of the mask corresponded to

pixels from the magnified frame, while pixels outside the mask corresponded to pixels

from the original frame. This could be obtained by applying the following Equation to

each frame of the video

ÎM(x, y) = m(x, y)Î(x, y) + (1−m(x, y))I(x, y), (3.9)

where I(x, y) and Î(x, y) are the original and magnified frames, m(x, y) ∈ {0, 1} is the

mask and ÎM(x, y) is the masked frame. Instead we have chosen to build a mask that is

applied together with the magnification factors αM and αC . Hence, instead of multiplying

each coefficient in a certain level of the Riesz pyramid by α, we multiply it by αm(x, y).

Therefore, it is necessary to have a mask for each level of ther pyramid, since the levels

31

Figure 3.6 – Simultaneous color-change and motion magnification applied to a synthetic video.
The first frame of the original video is shown in (a) the time slice in (b). The synthetically

generated version undergoing a translation and scaling 10 times greater then the original version
is shown in (c), while (d) shows the magnified version using the Riesz pyramids. The results are

significantly similar, serving as evidence for the validity of the technique.

(a) (b)

(c) (d)

x

0

50

100

150

200

250

T
im

e

x

0

50

100

150

200

250

T
im

e

x

0

50

100

150

200

250

T
im

e

Source: the authors.

have different dimensions. We have thus constructed a Gaussian pyramid of the mask

with the same number of levels as that of the Riesz pyramid. We have found that this

produces slightly softer results in the borders of the mask, as illustrated in Figure 3.9.

32

Figure 3.7 – Applying magnification methods to the whole video leads to artifacts in regions
where there is no signal of interest. In (a), we apply color-change magnification without using
any mask, which ends up creating artifacts such as those in the black cardboard. In (b), we use

our chrominance-based mask to select only the face of the baby.

(a)

(b)

The input video of the baby is from (WU et al., 2012), the figure is ours.

Figure 3.8 – The chrominance-similarity mask allows the selection of regions of interest for
magnification. In (a), the chrominance distances between a user-selected pixel in the face of the

baby and the other pixels in the image are shown by the heat map, where the darker colors
represent smaller distances. In (b), the same process is shown but for a pixel selected in the
blanket. (c) and (d) show the masks resulting from (a) and (b), while (e) and (f) show the

resulting magnification using the masks.

(a) (b)

(c) (d)

(e) (f)

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

The input video of the baby is from (WU et al., 2012), the figure is ours.

33

Figure 3.9 – Comparison between two ways of applying the chrominance-based mask. In (a), the
first frame of a video of a face is shown, where the motion arising from the man’s heartbeats is
magnified. The result of applying the mask only to the magnified frame is shown in (b) and the

result of applying a mask at each layer is shown in (c). Notice that in (b) white marks are visible
at the borders which are not visible in (c).

(a)

(b) (c)

Source: the authors.

34

4 IMPLEMENTATIONS

We have implemented our method for simultaneous motion and color-change

magnification using Python and we have created a simple graphical user interface for

using it. Moreover, we have also created an Android application that implements the

Riesz motion magnification (WADHWA et al., 2014a) and the color-change magnifica-

tion method of Wu et al. (2012). We have not added our implementation to the Android

application, as the app was just a proof-of-concept.

In this chapter, we briefly describe our implementations, while detailed explana-

tions for the implementations are given in Appendix C.

4.1 Python Simultaneous Color-change and Motion Magnification

We have implemented our technique using Python and the scipy and OpenCV li-

braries. The GUI was built using the user interface components available in OpenCV and

it is shown in Figure 4.1. It is possible to select in real time the magnification factors for

both color-change and motion magnification. The masks can also be constructed in real

time by clicking over the regions of interest to add or remove them. The user can also

Figure 4.1 – GUI implementing the simultaneous color-change and motion magnification with
the Riesz pyramids. The current mask selected by the user is also shown to the right.

Source: the authors.

select different temporal bands of interest for motion and color-change magnification. It

would also be possible to change the bands of interest in real-time, however this would

necessitate the use of recurrent temporal filters, which introduce delay in the signal of in-

35

terest because their frequency response has a non-zero phase. Therefore, we have chosen

to use the scipy implementations of filtering and used either ideal temporal filters which

were applied in the frequency domain or applied Butterworth filters forwards and then

backwards. Those implementations are also efficient and take around 15s to process a

video containing 500 frames of dimensions 352 × 640× 3 forwards and then backwards

using a Butterworth band-pass filter of order 2.

The main class which implements the color-change and motion magnification si-

multaneously is partially shown in Listing 4.1. The constructor allows for a very flexible

magnification process. One can choose specific magnification factors for motion (local

phase shift), for the amplitudes of the Riesz pyramid and for its residue. It is also possible

to give a list of values for the amplitudes specifying how much amplification is to be done

in each level of the pyramid. This is important to allow magnification of the amplitudes

only at the more coarse levels of the pyramids. In general, one will want to use the same

values for the amplitude magnification factor and for the residue magnification factor.

It is also possible to specify different temporal filters for motion, amplitudes

and the residue. A temporal filter here is simply an object containing the method fil-

ter_array(array), which filters the given array. One can also attenuate the magnification

factor for the chrominance channels. In general, motion magnification performs well with

magnification of just the luminance channel, as is done by Wadhwa et al. (2014b).

The constructor also allows the inclusion of an initial mask and whether the ideal

Riesz transform should be used (the ideal Riesz transform is applied in the spatial fre-

quency domain, while the approximations are applied in the primal domain). Finally, the

kernel_sigma parameter specifies the standard deviation of the Gaussian kernel used for

the amplitude weighted blur step.

Listing 4.1 – Simultaneous Motion and Color-change Magnification Python Class

1 class RieszSimultaneousMagnification:

2 def __init__(self, num_levels=None, alpha_motion=50,

alpha_amplitude=150, alpha_residue=150,

temporal_filter_motion=None, temporal_filter_amplitude=None,

temporal_filter_residue=None, chr_attenuation_motion=0.0,

chr_attenuation_amplitude=1.0, chr_attenuation_residue=1.0,

pixel_mask=None, kernel_sigma=2,

ideal_riesz_transform=False):

3 ...

36

4

5 def append_frame(self, frame):

6 ...

7

8 def magnify_video(self):

9 # Compute differences between adjacent quaternionic phases.

10 self.compute_differences(progress)

11

12 # Temporally filter the differences and amplitudes

13 self.apply_temporal_filter()

14

15 # Spatially filter

16 self.apply_amplitude_weighted_blur()

17

18 # Use these differences to magnify frames

19 frames_magnified = self.magnify_frames()

20 return frames_magnified

The append_frame method (Line 5) simply takes a RGB frame and stores it in

the object so it can be later processed. The magnify_video (Line 8) magnifies the frames

previously appended. It beings by computing the quaternionic phase differences between

each frame and the first frame for each coefficient of the Riesz pyramid. This method

also computes the amplitudes of each coefficient. Then, the given temporal filters are

applied to the the phases, amplitudes and to the residue. If a temporal filter for a particular

component of the pyramid is not given, the component is not magnified. For instance, if

it is desired to magnify only the color variations, one can pass None as the temporal filter

for motion. The amplitude weighted blur is also applied before the frames are magnified.

The magnification step uses the filtered phases, amplitudes and residue to compute the

motion and color-change magnified video.

It is not necessary to apply all these methods at once. Instead, one can compute

the phases and amplitudes and apply the temporal and spatial filters as a pre-processing

step. Then, each frame can be magnified at a time by calling the method magnify_frame

instead of magnify_frames. The method magnify_frames is simply a wrapper which call

magnify_frame for each frame in the video). This method uses the previously computed

37

values to magnify a single frame. This way, one can change the mask or the magnification

factors in real time. That is what we did for our user interface.

4.2 Android Application

We have implemented the Riesz motion magnification and the linear Eulerian

color-change magnification for Android using Java and OpenCV for Java. We have also

used the Java Native Interface (JNI) for implementing time-crucial methods using C++.

The C++ implementations are compiled by the Android Native Development Kit (NDK)

for multiple architectures. Figure 4.2 illustrates the use of our application. The user can

select which method is to be used in the magnification process. It is also necessary to

specify the sampling rate of the video. This is necessary because this is not always given

by the frame rate, as some videos might be recorded using a higher sampling rate but

saved with a smaller frame rate so that the high frequency phenomena are visible. The

user can also choose the low and high cut-off frequencies of the temporal filter used and

the magnification factor. We have used a difference of low-pass first order Butterworths

filters for implementing the band-pass filter. This filter does not have very sharp edges at

the cut-off frequencies, but it is efficient and can be more easily designed. Finally the user

selects between the real time and the open video options. In the real time case, the camera

opens and shows the magnified captured frames. This interface was implemented using

boilerplate Java OpenCV code. In the open video case, the user selects a video from the

cell phone to be magnified and the magnified video is then saved to the device storage.

Both magnification algorithms implementations are based on the abstract class

shown in Listing C.1. More details about the implementation are given in the Appendix

C.

Listing 4.2 – Subtle Motions Abstract Class

1 public abstract class SubtleSignalMagnification {

2 /**

3 * Update internal states of the algorithm with given frame

and generate the magnified version

4 * of the given frame.

5 * @param frame openCV Mat.

6 */

7 public abstract void update(Mat frame);

38

Figure 4.2 – Selecting a video for magnification with the Android application. In (a), the main
interface of the app is shown. The user can then fills the magnification parameters and select the
magnification method (b). By pressing Open Video, an interface for selecting a video opens (c).

After video is chosen, it processed (d) and the result is stored in the device storage (e). The
magnified video can then be seen use a video player in Android (f).

Source: the authors.

8

9 /**

10 * Store in the given Mat the current magnified frame which

was generated in the update method.

11 * @param dst openCV Mat of same dimensions and type as the

frames given in the update method.

12 */

39

13 public abstract void getMagnifiedFrame(Mat dst);

14 }

40

5 RESULTS

In this section, we show our results from applying the techniques and applications

developed here to multiple different videos.

5.1 Simultaneous Color-change and Motion Magnification with Riesz Pyramids

As described in Section 4, we have implemented the described techniques in

Python and used them to magnify both motion and color variations on a large number of

videos. These methods are computationally efficient and allow the users to obtain simul-

taneous magnification of these signals interactively. The user can specify the frequency

bands (in Hz) for the signals of interest, after which a Riesz pyramid decomposition is

obtained and the amplitudes and phases of the pyramid coefficients are computed. Such

preprocessing steps takes approximately 21 seconds for a 592× 528 RGB video with 300

frames, on a notebook with a i7-10510U @1.80 GHz CPU and 16 GiB of RAM memory.

After the preprocessing, the user can interactively change the magnification factors for the

selected bands, as well as the frame regions for which the different magnifications should

be applied to, receiving instant feedback.

In the results shown here the frames were processed in the YIQ color space, with

the Riesz pyramids containing 7 layers plus the residual. We magnify motion using only

the luminance (Y) channel and used both luminance and chrominance channels for mag-

nifying color variations (in this case, additional Riesz pyramids for the I and Q channels

are created and processed). It is also possible to use only the luminance channel for color

magnification, but the inclusion of chrominance channels produce better results. When

magnifying color changes, besides the residue, we also magnify the amplitude coeffi-

cients from levels 5 up to 7 the Riesz pyramids. We have not used levels 1 to 4 since color

variations are generally very weak, being indistinguishable from noise in the lowest levels

of the pyramids. Moreover, we have used a Laplacian pyramid as the basis for building

the Riesz pyramid using the approximate Riesz transform from (WADHWA et al., 2013).

Table 5.1 summarizes the magnification parameters used in our experiments presented

here.

Figure 5.1 illustrates the magnification of both the color variations and motion

associated to a man’s blood flow.. The time slices reveal specifically how his neck moves

as the blood passes through his artery. Furthermore, the heart beats also cause the head to

41

Table 5.1 – Summary of the magnification parameters used for each video. Kernel sigma is the
Gaussian blur sigma used for the amplitude-weighted blur.

Video αM αC
Motion Temporal
Bands (Hz)

Color-change
Temporal Bands
(Hz)

Kernel Sigma

face heartbeat 30 150 0.83 - 1.10 0.83 - 1.10 4
face2 25 122 0.83 - 1.10 0.83 - 1.10 4
face heartbeat
and respiration 12 70 0.20 - 0.33 0.83 - 1.10 4

baby2 10 150 0.61 - 1.91 2.33 - 2.67 4
eye 50 70 30.0 - 40.0 0.83 - 2.00 2
violin 100 - 340 - 370 - 2
drum 5 - 74.0 - 78.0 - 2
guitar 25 - 72.0 - 92.0 - 2
baby 10 - 0.25 - 3.00 - 4
plants 6 - 0.2 - 7.75 - 4

move slightly, as illustrated in Figure 5.2

Figure 5.1 – In (a), the frames from the input video face are shown. Their motion and
color-change magnified version showing the pulse of the man are shown in (b). (c) and (d) show

the time slices over his neck in the original and magnified videos, revealing the color-changes and
motion associated with the pulse in his coronary artery.

x

0

50

100

150

200

250

T
im

e

x

0

50

100

150

200

250

T
im

e(a)

(b) (c) (d)

Source: The original video is from Wu et al. (2012) and the Figure is ours.

One can also choose to magnify different signals for motion and color changes by

using a band-pass filter for the quaternionic phases and another one for the amplitudes

and the residue. In Figure 5.3 we use a band-pass filter with lower cut-off frequencies for

the quaternionic phases in order to show the man’s respiration moving his head together

with the color changes caused by his pulse cycle.

In Figure 5.4 we reveal the heartbeat of the baby through color-changes magnifi-

cation using a temporal band-pass filter from 140 beats per minute (bpm) to 160 bpm. At

42

Figure 5.2 – In (a), a reference frame from the source video face2 is shown. The time slice from
the original frame is shown in (b) and the time slice of the magnified video is shown in (c). Here

what is shown is the color-changes and the head movement which is associated with the pulse
rate of the man.

x

0

50

100

150

200

250

T
im

e

x

0

50

100

150

200

250

T
im

e

(a) (b) (c)

Source: The original video is from Wu et al. (2012) and the Figure is ours.

the same time we magnify the motion related to the the respiration by using a temporal

filter for motion which selects the motions between 0.61 Hz and 1.91 Hz. In this exam-

ples, we have used our chrominance-based mask to magnify only the head of the baby.

This results in a video without artifacts in regions which are not of interest.

We can also select signals with different sampling rates and magnify distant fre-

quency bands for motion and color changes. In Figure 5.5, a video captured with a sam-

pling rate of 500 Hz is magnified. The temporal filter for the color changes selects fre-

quencies in the range of the heart rate (between 0.83 and 2 Hz), while the temporal filter

for motion selects the band from 30 to 40 Hz, corresponding to microsaccades of the eye.

Since our technique extends the Riesz motion magnification (WADHWA et al., 2014a) to

also support color, we can also use it for phase-based motion magnification only. In violin

(Figure 5.6), a video with a sampling rate of 5, 600 Hz has the temporal bands from 340

and 370 magnified, revealing the motion of the bow that plays the strings.

Figure 5.7 (drum) illustrates the magnification of motions from 74 to 78 Hz, re-

vealing the vibrations of the skin of a drum. Figure 5.8 (guitar) shows the recovery of

small vibrations from a specific string of a guitar. Figure 5.9 (baby) presents an exam-

ple of magnification of the periodic motion of a baby’s chest during respiration. Finally,

Figure 5.10 (plants) illustrates the amplified the motions from a plant leaf.

43

Figure 5.3 – In (a), a reference frame from the source video face is shown. The time slice from
the original video is shown in (b) and the time slice from the magnified version is shown in (c),

where motion associated to the respiration was magnified together with color changes associated
with the pulse.

(a) (b)
x

0

50

100

150

200

250

T
im

e

(c)
x

0

50

100

150

200

250

T
im

e
Source: The original video is from Wu et al. (2012) and the Figure is ours.

5.1.1 Amplitudes and Residue Magnification

It is possible to use only the residues of the pyramids for magnifying color changes.

This is useful in cases where reducing the computational cost of the algorithm is impor-

tant, since the residues are generally small, with dimensions around 6× 6 pixels, depend-

ing on the original dimensions of the image and the number of levels used. The problem

with this approach, however, is that spatial information will be lost, since the residue is

significantly blurred. Figure 5.11 illustrates this idea, where magnifying only the residue

is compared to magnifying only the amplitudes (from levels 5 to 7 of a Riesz pyramid

containing 8 levels in total) and magnifying both the amplitudes and the residue. Figure

5.11 (c) shows the effect of magnifying only the residue, which produces an almost homo-

geneous magnification in the whole face. Including the amplitudes (Figure 5.11 (b)) then

introduces information which is more localized (the region around the nose, for instance,

is less magnified than the cheeks), thus producing a more complete result in Figure 5.11

(d).

5.1.2 Discussion and Limitations

Our technique extends the Riesz motion magnification framework to also support

magnification of color variations. Thus, one can obtain phase-based motion magnifica-

tion and color-change magnification within the same framework. Because the motion

44

Figure 5.4 – In (a), the frames from the input video baby2 are shown. Their motion and
color-change magnified version is shown in (b). Figure (c) shows the time slices from his head,
revealing both the motion associated with the the respiration of the baby and the color changes

associated with the pulse.

x

0

50

100

150

200

250

T
im

e

x

0

50

100

150

200

250

T
im

e

(a) Input

(b) Motion and Color-change Magnified

(c) Original and
Magnified Slices

Source: The original video is from Wu et al. (2012).

Figure 5.5 – In (a), a reference frame from the source video eye is shown. Figures (b) and (c)
show the time slices from the border of the eye in the original and magnified videos, where it is
possible to see both the intensity change associated with the heart rate and the microsaccades.

x

0

100

200

300

400

500

T
im

e

x

0

100

200

300

400

500

T
im

e

(a) (b) (c)

Source: The original video is from Wadhwa et al. (2013).

Figure 5.6 – In (a), a reference frame from the source video violin is shown. Figures (b) and (c)
show original and magnified time slices of the bow playing the violin.

0 50 100 150 200 250
Time

x

0 50 100 150 200 250
Time

x

(a)

(b)

(c)

The original video is from Wadhwa et al. (2013) and the Figure is ours.

magnification component of our method is based on the Riesz motion magnification tech-

nique described by Wadhwa et al. (2014b), both have the same strengths and limitations.

Specifically, the Riesz motion magnification method depends on the frames having a sin-

45

Figure 5.7 – In (a), a reference frame from the source video drum is shown. Figures (b) and (c)
show original and magnified time slices of the skin of the drum.

0 50 100 150 200 250 300 350 400
Time

x

0 50 100 150 200 250 300 350 400
Time

x

(a)

(b)

(c)

The original video is from Wadhwa et al. (2013) and the Figure is ours.

Figure 5.8 – In (a), a reference frame from the source video drum is shown. Figures (b) and (c)
show original and magnified time slices of the vibrating string.

0 50 100 150 200 250
Time

x

0 50 100 150 200 250
Time

x

(a)

(b)

(c)

The original video is from Wadhwa et al. (2013) and the Figure is ours.

Figure 5.9 – In (a), a reference frame from the source video baby is shown. Figures (b) and (c)
show original and magnified time slices of the chest of the baby.

(a)

(b)

(c)

The original video is from Wadhwa et al. (2013) and the Figure is ours.

Figure 5.10 – In (a), a reference frame from the source video plants is shown. Figures (b) and (c)
show original and magnified time slices of a leaf of the plant.

x

0

20

40

60

80

100

120

140

T
im

e

x

0

20

40

60

80

100

120

140

T
im

e

(a)
(b) (c)

The original video is from Zhang, Pintea and Gemert (2017) and the Figure is ours.

46

Figure 5.11 – Comparison between magnifying only the residues versus magnifying the
amplitudes as well. The frame from the original video is shown in (a). In (b), the result of

magnifying only the amplitudes from levels 5 to 7 is shown. The result of magnifying only the
residue is shown in (c) and the result of magnifying both is shown in (d).

(a) (b) (c) (d)

Source: the authors.

gle dominant direction and show problems when this is not the case. However, we have

not found this to be a problem on real videos. Furthermore, the Riesz framework uses an

approximate Riesz transform for efficiency purposes, which in principle leads to worse es-

timations of the local phase, causing artifacts. In practice, however, we have not observed

any artifacts when compared with the use of the ideal Riesz transform.

To minimize the impact of noise, our technique for color magnification avoids

using the finest levels of the spatial decomposition. Ideally, one should magnify all spa-

tial bands for visualizing color changes. However, besides noise issues, this actually also

magnifies subtle motions (WU et al., 2012). On the other hand, since we are using the

amplitudes of Riesz pyramids and they separate phase changes from amplitude changes –

which in an ideal scenario with a single sub-band means that intensity variations and mo-

tion are completely separated – our color magnification strategy should not affect motion

so much. Nevertheless, since motion and color variations are ultimately variations in the

intensity of the pixels, they cannot be completely separated in the magnification process,

which means that motion can be magnified when only color changes were to be modified.

This is more prone to happen near edges, where the pixel-intensity variations related to

motion are more pronounced. Figure 5.12 illustrates a synthetic video of a homogeneous

disk undergoing translation and the result of magnifying color changes in it.

Finally, we did not address the problem caused by the presence of larger motions

in videos. However, since our method is similar to the previous Eulerian techniques, one

can apply any of the approaches for video magnification in the presence of larger motions

such as the ones by Elgharib et al. (2015) and Zhang, Pintea and Gemert (2017).

47

Figure 5.12 – Color-change magnfication applied to a homogeneous disk undergoing translation.
The first frame of the video is shown in (a). In (b) and (c) the time slices of the original and

magnified videos are shown. Notice that the color-change magnification process magnifies color
variations that were actually caused by motion.

x

0

50

100

150

200

250

T
im

e

x

0

50

100

150

200

250

T
im

e
(a) (b) (c)

Source: the authors.

5.2 Android Implementation Results

We have implemented the phase-based Riesz motion magnification (WADHWA

et al., 2014b) and the color-change magnification (WU et al., 2012) methods in an An-

droid mobile phone, as described in Section 4.2. Both of the implementations work in the

YIQ color space. While the color-change implementation magnified all three channels,

the motion magnification is performed only to the luminance channel. Our implementa-

tions were tested on a mobile with a MTK Helio G85 processor with up to 2GHz. The

implementations of the Riesz motion magnification and the color-change magnification

methods take respectively 22.8 seconds and 10.5 seconds to process a video containing

300 RGB frames, each with dimensions 528 × 592, on the previously mentioned mobile

phone.

We illustrate the results obtained using the Android application with two exam-

ples, one for color-change magnification and the other one for motion magnification. Fig-

ure 5.13 shows the results of magnifying the color changes caused by the heart beats of

the man. As can be seen, the temporal filter implemented has ringing artifacts during its

beginning. This is a result of the fact that its initial conditions are zero. As such, the video

can be thought of as containing a step function at its beginning. Using copies of the initial

frame for the initial conditions also cause these ringing artifacts. They could be fixed,

however, by choosing appropriate initial conditions.

Figure 5.14 illustrated the magnification of the periodic motion of the chest of the

48

Figure 5.13 – Color-change magnification of the face video in the Android application. In (a), the
frames from the input video face are shown. Their motion and color-change magnified version
showing the pulse of the man are shown in (b). (c) shows the evolution of the video over time

from a slice in the middle of the face of the man, going from the top to the bottom of the image.

(b) Magnified

0 100 200 300
Frame

y

(a) Source

(c) Time slices

The original video is from Wu et al. (2012) and the Figure is ours.

baby caused by its respiration.

Figure 5.14 – Motion magnification of the baby video in the Android application. In (a), the
frames from the input video face are shown. Their motion and color-change magnified version
showing the pulse of the man are shown in (b). (c) shows the evolution of the video over time

from a slice in the middle of the face of the man, going from the top to the bottom of the image.

0 50 100 150 200 250 300
Time

x

0 50 100 150 200 250 300
Time

x

(a)

(b)

(c)

The original video is from Wu et al. (2012) and the Figure is ours.

5.2.1 Discussion and Limitations

As is the case with the Android implementation, our implementations inherit

the limitations from the original works on phase-based motion magnification and color-

change magnification. In particular, however, our Android implementations also suffer

49

from the problem of ringing in the beginning of the magnified videos. As mentioned

previously, this is the result of poorly defined initial values for the temporal filters. Our

Python implementation does not suffer from this, as we have used available temporal filter

implementations.

Furthermore, the intended real-time implementation only performs in real time

for the color-changes magnification algorithm. In that case, it can execute at a rate of

approximately 30 frames per second for frames with dimensions 528 × 592. However,

capturing videos in general and processing them in real time implies that the actual frame

rate will vary during execution, though not significantly. Since we have used a soft band-

pass temporal filter, small changes in the frame rate should not be of great concern. The

Riesz motion magnification implementation, on the other hand, can process frames with

dimensions 528× 592 only at a rate close to 13 frames per second.

50

6 CONCLUSION AND FURTHER WORK

Videos posses a range of signals which occur in such a small level that cannot be

easily seen. In order to recover these signals, multiple techniques have been developed

over the years, as we have described. In this work, we have given a step forward in the

research of Eulerian video magnification. First, by making a simple Android applica-

tion showing that it is possible to have these algorithms running in mobile phones. More

importantly, we have improved upon the other techniques in order to provide simultane-

ous phase-based motion and color-change magnification by extending the Riesz pyramids

approach which was developed for motion magnification only. This way, it becomes pos-

sible to see both signals without having to recur to the application of different algorithms

sequentially, which does not always produce good results. Moreover, this also allows the

implementation of real time applications for magnification of both signals. We have also

created a simple GUI which allows the user to play around with the magnification tool

and to mask regions of the video based on the chrominance similarity of the pixels.

Possible directions for future exploration include improving our technique riesz-

based motion and color-change magnification technique by adding to it the methods devel-

oped for dealing with larger motions (ZHANG; PINTEA; GEMERT, 2017; ELGHARIB

et al., 2015; WU et al., 2018a). Furthermore, the orientation of the Riesz coefficients

could be used as a parameter for creating directional selective masks. In this case, it

would be possible to only magnify motions oriented along a group of intended directions.

Our Android implementations also could be improved in future works. First of

all, different temporal filter types could be introduced to allow stronger cut-off frequencies

and more appropriate initial conditions could be used in order to avoid the ringing artifacts

in the beginning of the magnified videos. A dynamic adaptation of these temporal filters

would also be useful for dealing with the varying frame rates in the real time scenarios.

Finally, further improvements on the phase-based motion magnification method could be

introduced in order to reduce its processing time per frame.

51

APPENDIX A — TEMPORAL FILTERS

In this Appendix, we review some concepts about temporal filters which we have

used for our implementations. This does not aim at being a thorough review of the area

of temporal filters, but only those aspects of it which we had to use directly.

A.1 Bilinear Transform

The bilinear is a popular method for converting an analog filter into a digital filter

by mapping its s-plane to the z-plane. This mapping can be written as

s =
z − 1

z + 1
(A.1)

and its inverse is given by

z =
1 + s

1− s
. (A.2)

This is a non-linear mapping from the s-plane to the z-plane which avoids the aliasing

problem of impulse invariance. Some important properties of this transformation are

listed.

1. The imaginary region of the s-plane is mapped to the region inside the unitary circle

in the z-plane, with the imaginary axis being mapped to the unity circle.

2. s = 0 is mapped to z = 1.

3. s = j∞ and s = −j∞ are mapped to z = −1.

4. An analog frequency ω is mapped to tan(θ/2).

Property 1 can be seen by writing z = rejΩ and s = σ + jω in Equation (A.2) then

noticing that the radius r of z is given by

|z| = r =

√
(1 + σ)2 + ω2

(1− σ)2 + ω2
. (A.3)

Hence, if σ > 0 the numeration in Equation A.3 is greater then the denominator and

r > 1, the reverse is also true. Properties 2 and 3 follow from Equation A.2. Property 4

can also be seen by writing z = rejΩ and s = σ + jω and getting the argument of z from

52

Equation A.2. This gives

θ = arg{z} = arctan
ω

1 + σ
− arctan

−ω
1− σ

. (A.4)

The mapping from a certain frequency ω to the digital frequency θ can then be seen by

setting σ = 0 and noticing that arctan(−x) = − arctan(x), which gives θ = 2arctan(ω)

or ω = tan θ
2
. An important consequence of this is that if it is desired to design a digital

filter with cutoff frequency θd, with θd ∈ [−π, π], then our original analog filter must have

a cutoff frequency given by ωd = tan θd
2

. Hence, if the goal is to design a digital filter with

that will cut off the frequencies above the continuous frequency ωc for a signal sampled at

a sampling rate r, then θd = ωc/r and the actual cutoff frequency of the designed analog

filter must be ωd = tan ωc
2r

A.2 Butterworth Filters

The butterworth filters are a widely used class of filters designed to be maximally

flat in the pass-band. That is, they are design such that their squared magnitude has very

little variation in the pass band. Moreover, the squared magnitude is approximately unity

in the pass-band and is small as possible in the stop-bands.

The squared magnitude of the frequency response of a low-pass butterworth filter

with cutoff frequency ωc = 1 is given by

|H(jω)|2 = 1

1 + ε2ω2n
, (A.5)

where n is the order of the filter. If we set ε = 1, the cut-off frequency is the frequency

at which the energy has decreased by half. The transfer function for this energy response

can be found by noticing that H(s)H(−s)|s=jω = |H(jω)|2 and substituting ω = −js.

This gives

s = ejπ(2k+1)/(2n), (A.6)

with k ∈ [0, 2n − 1]. In order to have a stable filter, we must choose the poles for H(s)

such that they are in the left-hand side of the s-plane, that is, they all have negative real

parts. The poles for the filter are therefore

53

Hence the poles of H(s) can be written as

pk = − sin

(
π
2k − 1

2n

)
+ j cos

(
π
2k − 1

2n

)
, (A.7)

now with k ∈ [0, n− 1]. The transfer function of a low-pass Butterworth filter of order n

with ωc = 1 can therefore be written as

Gn(s) =
n∏
k=0

1

s− pk
. (A.8)

For orders 1 and 2, for instance, this gives G1(s) =
1
s+1

and G2(s) =
1

s2+
√

2s+1
.

Low-pass filters with other cut-off frequencies, band-pass filters and high-pass

filters can be obtained from the prototype with ωc = 1 through an appropriate frequency

transform. Specifically, low-pass and high-pass Butterworth filters with cut-off frequency

ωc can be computed through the transformations s→ s
ωc

and s→ ωc
s

, respectively.

A band-pass filter can also be obtained from the low-pass template. In this case,

the band-pass is said to be centered at a frequency ω0, around which H(ω) ≈ 1 and is 0

at ω = 0 and ω = ∞. If the bandwidth of the filter is B, then a valid transformation for

these requirements is given by

s→ s2 + ω2
0

Bs
. (A.9)

A digital version of these filters can be obtained using the bilinear transform (Appendix

A.1):

s→ z − 1

z + 1
. (A.10)

The non-linearity of the bilinear transform implies that the important frequencies in the

design of the filter must be pre-warped before the application of the transform. Specifi-

cally, if the goal is to produce a low-pass filter with cut-off frequency ωc, then the analog

filter should be designed to have a cut-off frequency of ωd = tan ωc
2r

, where r is the sam-

pling rate of the signal.

Hence, applying the low-pass to low-pass and the continuous to digital filter trans-

forms consecutevely, we obtain the following transform for converting the low-pass pro-

totype

s→ 1

α

z − 1

z + 1
, (A.11)

where α = tan ωc
2r

.

54

APPENDIX B — OTHER EULERIAN VIDEO MAGNIFICATION METHODS

B.1 Motion Magnification with the Steerable Pyramids

In 2013, Wadhwa et al. (2013) introduced a phase-based Eulerian video motion

magnification. The main idea of their work was to decompose each frame into oriented

sub-bands containing both local amplitude and local phase information using complex

Steerable Pyramids (FREEMAN; ADELSON et al., 1991; PORTILLA; SIMONCELLI,

2000). Inspired by works such as done by Gautama and Van Hulle (2002), which used

phase information to estimate the motion field in a video, the authors showed how ampli-

fying only the local phases of a complex steerable pyramid would also magnify the local

motions.

Instead of using a Laplacian Pyramid, therefore, the algorithm begins by building

the complex steerable pyramid for each frame, which results in a decomposition into

oriented sub-bands, each of which containing separate information for local phase and

local amplitude. These phases can then be temporally filtered in order to select motions in

the chosen frequency band, analogously to what was done in the previous linear Eulerian

technique. Finally, adding the modified phases back to the pyramid and collapsing it

resulted in the magnified frames. This process is illustrated in Figure B.1.

Figure B.1 – Phase-based Video Motion processing with Steerable Pyramids

Source: (WADHWA et al., 2013)

The relation between the local phase of a steerable pyramid and the displacement

can be better understood by first considering the relation between a global phase, obtained

through the Fourier decomposition of the image, and the displacement. A 1-dimensional

55

video characterized only displacement is described by I(x, t) = f(x + δ(t)) and the

targeted motion magnified version is f(x+(1+α)δ(t)). If we decompose a frame of this

video using a complex Fourier Series, an arbitrary band ω of the displaced image could

be written as

Sω(x+ δ(t)) = Aωe
iω(x+δ(t)).

The phase of this component is given by ω(x + δ(t)). Temporally filtering the phase at

each x such as to remove the DC component results in Bω(x, t) = ωδ(t). Multiplying

this signal by a magnification parameter α, it can be added back to the phase in the form

of a complex exponential in order to give the band of the motion magnified signal

Ŝω(x, t) = Sω e
iαBω(x,t) = Aωe

iω(x+(1+α)δ(t)).

This equation implies that by modifying the phase of a pixel x in a given band we obtain a

new value for the pixel which is equivalent to that if the band had been translated. Hence,

if all the pixels participating in a certain motion have their phases modified accordingly,

the motion will also be translated. Instead of using a temporal filter that only removes the

DC signal, using a band-pass temporal filter is also possible. In this case, we can modify

each band independently in order to select only the motions that fall within the specified

frequency range. The mathematical development for the band-pass filter is analogous to

that in 2.1 and is omitted here.

However, using Fourier basis for the decomposition would not work, because their

spatial support occupies the whole image. Hence, different features would be contained

in the same sub-band and hence if one of them moves, but the others don’t, we would

have displacement in only one region of the band and the phase change over time would

not correspond simply to any the motion. That is, the phase has to rearrange itself in

order to represent both a region that has moved and a region that has remained static.

This is the reason for using the complex Steerable Pyramids, since they have a finite

impulse response and therefore we could expect its filters to capture approximately only

one image feature. Moreover, the fact that the sub-bands are oriented is also necessary.

If, instead, we had non-oriented sub-bands (a Laplacian Pyramid, for instance), and used

only the positive frequencies in order to generate a complex signal with a phase in the

spatial domain, then there is no underlining idea of a wave and no meaning for that phase.

In the Fourier decomposition, where there is a single point in frequency for each band –

that is, each band is a single wave–, the underlining idea of a wave is made perfect, while

56

in the Steerable Pyramids it is made approximate.

In order to derive bounds for the amount of magnification possible with the Steer-

able Pyramids, Wadhwa et al. (2013) model the Steerable filters analytically as a Gabor

filter and consider a Dirac function under translation. The frequency response of a Ga-

bor filter is a Gaussian centered at some frequency fc and is given by e−2π(fx−fc)2σ2 . Its

impulse response is therefore (up to a constant)

Sfc(x, 0) = e−x
2/(2σ2)e2πif0x. (B.1)

If the Dirac translates, it results in

Sfc(x, 0) = exp (−(x− δ(t))2/(2σ2)) exp (2πif0(x− δ(t))). (B.2)

Filtering the phase thus results inBfc(x, t) = 2πfcδ(t). If we magnify it and add it back to

the band through a complex exponential, we will translate the underlining complex wave

but not the Gaussian envelope multiplying it. Hence, the wave will be attenuated and dis-

torted. The authors choose therefore to bound the magnification such that the additional

displacement (αδ(t) pixels further than the non-magnified motion) must be below one

standard deviation of the Gaussian envelope. Moreover, in the Steerable Pyramid there

is approximately one period of the sinusoid under the Gaussian envelope, which means
1
fc
≈ 4σ and 1

fc
= λ. Therefore,

αδ(t) <
λ

4
,

which is 2 times greater then the possible magnification factor using the linear Eulerian

method of Wu et al. (2012).

Widening the Gaussian can increase the allowable magnification. In order to do

this, Wadhwa et al. (2013) also develop sub-octave pyramids, which have more than one

band per octave of the frequency domain. However, widening the Gaussians comes at the

cost of increased computational complexity, besides the problem of joining features with

different motions.

The method developed by Wadhwa et al. (2013) (and phase-based approaches in

general) are more resistant against noise then the method by Wu et al. (2012), since by

modifying the phases of the bands we are only translating the noise and not amplify-

ing it. Nevertheless, the phase obtained from the pyramids will be noisy if the input

video is noisy. This problem can be reduced by spatially filtering the phases. Therefore,

57

Wadhwa et al. (2013) also apply an amplitude-weighted Gaussian filter, so as to ignore

low-amplitude points in the sub-band, whose phase values are probably irrelevant. For

the i-th band and k-th frame with a Gaussian kernel Kρ, where ρ is the kernel standard

deviation, blurring the local phase φi,k takes the form

φi,kAi,k ∗Kρ

Ai,k ∗Kρ

.

It was mentioned before that widening the Gaussian envelope also increases the

computational complexity. In fact, building the Steerable Pyramid is much more com-

putationally expensive than the Laplacian Pyramid from the linear Eulerian magnifica-

tion algorithm, because the Steerable Pyramid is significantly more over-complete. The

over completeness of the pyramid with respect to the Laplacian pyramid is given by

2k/(1− 2−2/n), for k orientations and n filters per octave.

Wadhwa et al. (2013) also notice that motion can be attenuated by using α = −1.

This, however, is not the same as making the video completely static, since the envelope

of the feature still moves. It does however produces an effect of reduced motion.

In the case of large motions, the model of temporal filtering does not capture the

motion correctly, since the motion will be larger than the spatial support of the filter,

and the value of the local phases will be meaningless. The authors avoid amplifying the

phases in these situations by not amplifying the pixels where the phase differences are

higher than a certain threshold.

Wadhwa et al. (2013) have therefore described a phase-based algorithm for mo-

tion magnification or attenuation. The phases are obtained from the complex coefficients

of the oriented filters of a complex steerable pyramid. Those filters look like sinusoids at-

tenuated by a Gaussian curve, which, together with the fact that they have an orientation,

implies that the phase can be seen as an approximation for the phase of a Fourier base.

Temporally filtering the phases then isolates the motion. Moreover, the temporal filter can

be chosen such as to isolate only the desired frequencies of motion, in a similar way as

with the Linear method, thus allowing frequency-based motion selection.

B.1.1 More Details on the Meaning of the Local Phases

In frequency, the real steerable pyramid filters are like Gaussian curves across the

radial frequency and also across the angular frequency (they are not really built with Gaus-

58

sians, but it is easier to imagine them like that). Those Gaussians are centered at some

radial frequency and also at some angular frequency (they are 2-dimensional Gaussian

in polar coordinates). That is, they are not in the center of the spectrum. In frequency,

this means that they are band-passing a set of adjacent radial frequencies and orientations.

A Gaussian in frequency is also a Gaussian in space. Moreover, translating a base-band

Gaussian to fc and −fc is equivalent to multiplying this Gaussian by a cosine with fre-

quency fc in space. Hence, the real steerable pyramid filters are like cosines attenuated

by a Gaussian.

The complex steerable pyramid, in turn, does not have the −fc band (similarly to

how the analytic signal would be built in one dimension). Therefore, its corresponding

Gaussian in space will be multiplied only by ei2πfct. Therefore, the complex steerable

pyramid filters are complex sinusoids attenuated by Gaussians. These complex sinusoids

have the same instantaneous phase as that of their real counterparts. Moreover, the instan-

taneous phases of the real counterparts correspond approximately to the perfect sinusoid

with frequency fc, as the filter in frequency is centered around it. Thus, the real steerable

pyramid afford a way to get a space localized measure of the amplitude and phase of a

given wave fc. The complex steerable pyramid in turn provides an easy way to get access

to the instantaneous phase 2πfcx+ φ

B.2 Quaternionic Representation of the Riesz Pyramid for Video Magnification

In Wadhwa et al. (2014a), the authors show how Equation (2.24) develops natu-

rally given a quaternionic representation of the Riesz pyramids coefficients signal. This

Appendix gives some information on this representation.

B.2.1 Quaternions

The quaternions are a generalization of the complex numbers containing three

imaginary units. A quaternion q is written

q = q0 + iq1 + jq2 + kq3, (B.3)

59

where the imaginary units satisfy

i2 = j2 = k2 = ijk = −1. (B.4)

From Equation B.4, it follows that

ij = k = −ji

jk = i = −kj

ki = j = −ik.

The sum of two quaternions p and q is given by

p+ q = (p0 + q0) + i(p1 + q1) + j(p2 + q2) + k(p3 + q3).

The product pq = (p0 + ip1 + jp2 + kp3)(q0 + iq1 + jq2 + kq3) between two quaternions

however is non-commutative and is given by

pq = p0q0 − (p1q1 + p2q2 + p3q3) + p0(iq1 + jq2 + kq3) + q0(ip1 + jp2 + kp3)

+ i(p2q3 − p3q2) + j(p3q1 − p1q3) + k(p1q2 − p2q1)

or pq = p0q0 − p · q + p0q + q0p+ p× q, where q = iq1 + jq2 + kq3 and p = ip1 + jp2 + kp3

are the imaginary parts of the quaternions. The conjugate, norm and inverse of a quater-

nion q are given by the equations

q∗ = q0 − iq1 − jq2 − kq3, (B.5)

|q| = q∗q =
√
q2

0 + q2
1 + q2

2 + q2
3, (B.6)

q−1 =
q∗

|q|
. (B.7)

The exponential of a quaternion is defined using its Taylor Series,

eq =
∞∑
n=0

qn

n!
= eq0

(
cos |q|+ q

|q|
sin |q|

)
. (B.8)

and its logarithm is given by

ln q = ln |q|+ q

|q|
arccos

q0

|q|
. (B.9)

60

An arbitrary quaternion q can also by written in an exponential (polar) form as

q = |q| q
|q|

(B.10)

= |q|
(
cos θ +

q

|q|
sin θ

)
(B.11)

= |q| exp
(

q

|q|
θ

)
, (B.12)

where cos θ = q0
|q| and sin θ = q

|q| .

B.2.2 Riesz Motion Magnification with Quaternions

Instead of using the vector representation of the Riesz pyramid coefficients in

Equation 2.12, Wadhwa et al. (2014a) write them in a quaternionic form as

r = I + iR1 + jR2. (B.13)

where r(x, y) is an arbitrary coefficient of the Riesz pyramid and I , R1 andR2 are defined

as in Section 2.2.1. Similarly as before, this can also be expressed in terms of the local

phase φ(x, y), local orientation θ(x, y) and local amplitude A(x, y), resulting in

r = A cos(φ) + iA sin(φ) cos(θ) + jA sin(φ) sin(θ). (B.14)

When working with complex numbers, the phase can be computed using the loga-

rithm of the normalized complex number. Here, similarly, Wadhwa et al. (2014a) compute

the quaternionic phase using the logarithm of the normalized quaternion. The norm ||r||

is given by A and the quaternionic phase is therefore

log

(
r
||r||

)
=

v
||v||

arccos(q0) = iφ cos(θ) + jφ sin(θ), (B.15)

where v = iφ cos(θ) + jφ sin(θ) and q0 is the real part of r. This is the same quantity

that was used in 2.24 for filtering in place of the phase and it has no discontinuities in the

phase arising from whether orientation is represented by θ or by θ + π.

However, there are still wrapping problems occasioned by the fact that φ corre-

sponds to φ + 2π. The authors solve this by unwrapping the quaternionic phase. This is

performed first taking the difference of the phases and converting them to their principle

61

values. That is, the difference is chosen such that it is always in [−π, π). (Notice that

this assumes that the phase never changes by more than π after each frame.) Then the

principle values of the differences are summed up to get the unwrapped phases. After the

unwrapping, time filtering and spatial filtering, one ends up with a value analogous to that

in Equation 2.24, given by

iφ′′ cos(θ) + jφ′′ sin(θ), (B.16)

where φ′′ = Aφ∗Kρ
A∗Kρ . This is the local quanternionic phase already spatially smoothed and

temporally filtered to select the desired motion frequencies.

Finally, this value is magnified by multiplication by a parameter α and added back

to the pyramid level by exponentiating it (according to Equation B.8) and multiplying it by

the monogenic signal of the sub-band currently being modified. The magnified sub-band

corresponds to the real part of the resulting magnified monogenic signals. Therefore, the

pyramid composed of the real parts of the Riesz pyramid is collapsed in order to obtain

the magnified frame.

B.3 Subtle Motion Magnification in the Presence of Large Motions

A major drawback in the video magnification techniques is the fact that larger

variations will influence the subtle signal amplification process and distort the magnified

video. In this Appendix, we describe how this problem was taken care of by different

authors.

B.3.1 Dynamic Video Magnification (DVMAG)

Elgharib et al. (2015) propose a solution for dealing with larger displacements in

videos that is based on temporally stabilizing a user defined region of the video and in

using matting in order to magnify only the foreground and the alpha matte. The stabiliza-

tion is performed by registering each frame to a reference frame, such as to remove the

large motions of the region of interest. This registration step uses feature points which are

acquired either using KLT tracks (Jianbo Shi; Tomasi, 1994) or optical flow. Having the

larger motion removed, a given region of interest is decomposed using alpha matting and

the foreground and opacity matte are magnified using either the linear Eulerian technique

(WU et al., 2012), in the case of color variations, or the steerable pyramids phase-based

62

method (WADHWA et al., 2013). Finally, each frame is de-warped using the same motion

estimations obtained during the registration step.

Their algorithm allowed video magnification to be used even in the presence of

large motions. Their results, however, are dependent on user input. Moreover, the warping

used in the registration step is specified to be either affine or translation-only, which limits

the array of possible larger motions that can be accounted for. It is not able to handle, for

instance, different large motions on the object of interest.

B.3.2 Acceleration Magnification

Another approach for magnifying subtle signals in the presence of larger changes

was proposed by Zhang, Pintea and Gemert (2017). Their idea was to magnify only the

deviations from the changes, instead of magnifying all changes within a certain temporal

band as done by Wu et al. (2012) and Wadhwa et al. (2013). That is, their temporal filter

was based on magnifying the second temporal derivative of the pixels of the video: the

acceleration. If we assume that the larger variations are almost linear with respect to time,

then magnifying only those terms that remain after a second order derivative will not alter

the larger motions or intensity variations.

In order to obtain a second derivative of the video and still maintain the frequency-

based change selection property, the authors use a Laplacian of Gaussian as their temporal

filter. Specifically, the standard deviation σ of the Gaussian filter is chosen in order to

select for a certain frequency. Moreover, the linearity property of the Gaussian filter and

the second derivative is used so that the Laplacian of Gaussian can be applied instead of

directly taking the second derivative of the video. That is,

∂2I(x, t)

∂t2
∗Gσ(t) = I(x, t) ∗ ∂

2Gσ(t)

∂t2
. (B.17)

The authors also mention that they use a temporal window of size r
4ω

, where ω is

the desired frequency and r is the frame rate. Moreover, the value of σ is chosen to be

σ = r
4ω
√

2
and the filter is centered at the current frame being filtered.

The procedure also differs depending on whether it is desired to magnify color

changes or motion, but both processes occur in the YIQ color space. In the case of color

changes, the procedure is similar to the linear Eulerian color-change magnification de-

scribed in Section 2.1. On the other hand, motion magnification uses the Steerable Pyra-

63

mid (Appendix B.1). In this case, the Laplacian of Gaussian filter is applied to the phases

of the pyramid.

The algorithm proposed by Zhang, Pintea and Gemert (2017) was able to achieve

similar results to those of Elgharib et al. (2015) without requiring user input. Nevertheless,

it assumed that the larger signals are approximately linear with respect to time. If non-

linear motion or motions with multiple different speeds are present, which is often the

case, then magnification will cause blurring.

B.4 Deep Learning Approaches

All the preceding techniques rely on hand-designed filters and neglect non-idealities

such as occlusion in the video. Oh et al. (2018) argue that this makes them prone to noise

and other artifacts. Therefore, they propose a new Eulerian video magnification technique

that learns the filters for isolating the small motions. Specifically, the authors use CNNs

and Residual Blocks in the three major steps of motion processing algorithms in general:

an encoder network that decomposes the image into a useful representation for motion

processing, a manipulator that manipulates this representation such as to magnify the mo-

tion, and finally a decoder that synthesizes a motion-modulated frame from the modified

representation. These networks are trained on a synthetic dataset generated by the authors

containing sequences of frames representing small motions.

Their results proved to be an improvement over the previous techniques, by re-

ducing noise and artifacts. However, their networks give motion representations which

are approximately linear only for small amplification factors. This means that the use of

temporal filtering for motion selection is restricted. Moreover, deep convolutional neural

networks can be computationally expensive which limits its use in real-time applications.

Chen and McDuff (2018) proposed a new method for video magnification which

was based on applying gradient ascent in Convolutional Neural Networks (CNN). Their

technique required a CNN trained to extract the signal of interest from an input video.

For instance, if the goal was to magnify the facial color changes caused by the cardiac

cycle, then a CNN needs to be trained to extract the cardiac cycle from videos of faces.

The authors then fix the CNN weights and update each frame of the input video such as

to increase the L2 norm of the output of the network. This maximization process is done

through multiple iterations of gradient ascent. The result is a modified video that when

passed through the CNN produces an amplified version of the signal of interest.

64

Although the proposed framework is general, the authors tested it in the tasks of

extracting facial color changes related to the heart rate and in body motions associated

with respiration. In both tasks, their results are comparable to the earlier approaches.

Moreover, their technique is robust against a wider range of larger motions. When magni-

fying facial color changes, for instance, the algorithm performs well even when the subject

is rotating its face. Nevertheless, the procedure can only be applied in tasks where it is

possible to find a labeled dataset for extracting the signal of interest, which might restrict

its applicability, and the use of CNN also imposes constraints for real-time applications.

65

APPENDIX C — IMPLEMENTATIONS

We have implemented both a Python application which performs the simultane-

ous motion and color-change magnification and an Android application which indepen-

dently magnifies motion and color changes using different methods. In this Appendix,

we describe in more details the Android implementations. We do not give a detailed de-

scription of the Python implementation, first because many parts of it are very similar to

the Android implementations, only adapted to Python, second because the simultaneous

motion and color-change magnification theme is more interesting for its conceptual devel-

opment, described in the main part of this document, and not for its strict implementation

in Python. Finally, because we do not wish to write these descriptions, as this is of little

value compared to the effort it would take.

C.1 Android Implementations

The Android implementations of the magnification algorithms are based on the

abstract class shown in Listing C.1 (we repeat the Listing shown earlier for convenience).

The update method should take an OpenCV matrix as the input frame, whose type is not

specified in this context, and update its states such that a magnified version of the same

frame is available. This magnified version can then be recovered through the getMagni-

fiedFrame method.

Listing C.1 – Subtle Motions Abstract Class

1 public abstract class SubtleSignalMagnification {

2 /**

3 * Update internal states of the algorithm with given frame

and generate the magnified version

4 * of the given frame.

5 * @param frame openCV Mat.

6 */

7 public abstract void update(Mat frame);

8

9 /**

10 * Store in the given Mat the current magnified frame which

was generated in the update method.

66

11 * @param dst openCV Mat of same dimensions and type as the

frames given in the update method.

12 */

13 public abstract void getMagnifiedFrame(Mat dst);

14 }

We’ve also used an abstract class for the temporal filters, thus adding the possibil-

ity for later adding new types of band-pass filters. The class is shown in Listing C.2. The

only requirement for the temporal filters is to have the filterFrame public method, which

filters a given input OpenCV matrix and stores the result in the output matrix of same type

and dimensions. A temporal filter implementing this class should therefore be a recursive

filter, as it must output the magnified frame before all the input frames are given.

Listing C.2 – Temporal Filters Abstract Class

1 public abstract class TemporalFilter {

2

3 /**

4 * Filter Mat in frameSrc, update the internal states of the

filter and store the resulting filtered Mat in frameDst.

5 * @param frameSrc input frame

6 * @param frameDst output frame of the same size and type as

frameSrc

7 */

8 public abstract void filterFrame(Mat frameSrc, Mat frameDst);

9 }

Moreover, the magnification algorithms will in general apply temporal filters in many dif-

ferents matrices whose sizes and quantity is not known beforehand. For instance, in the

Riesz magnification method, it is necessary to filter the quaternionic phases in all the lev-

els of a Riesz pyramid. The number of levels, however, is defined inside the magnification

method itself. Therefore, the magnification algorithms need to have the ability to create

the temporal filters themselves. In order to allow the filter properties to be defined iso-

lated from the magnification method, while still allowing for the magnification to create

the filter objects when needed, we have also introduced the TemporalFilterBuilder class.

The more relevant parts of this class are shown in Listing C.3. The filter parameters such

as its cut-off frequencies and its type are specified in the constructor. The temporal filter

67

itself, however, is only built by the build method, with the appropriate dimensions and

OpenCV type. A temporal filter builder object can then be passed to the magnification

algorithm which then uses it to build the filters only when needed.

Listing C.3 – Temporal Filter Builder class

1 public class TemporalFilterBuilder {

2 public enum Type {

3 DIFF_BUTTER_1

4 }

5

6 ...

7

8 /**

9 * Specify the parameters of the temporal filter that should

be built by the build method.

10 *

11 * @param type type of temporal filter

12 * @param frameRate sampling rate of the signal to be filtered

13 * @param freqLow low cut-off frequency of the filter

14 * @param freqHigh high cut-off frequency of the filter

15 */

16 public TemporalFilterBuilder(Type type, double frameRate,

double freqLow, double freqHigh) {

17 ...

18 }

19

20 /**

21 * Builds a temporal filter with the parameters specified in

the constructor and with the given dimensions and type.

22 * @param size size of the frames to be filtered

23 * @param cvType type of the frames to be filtered

24 * @return temporal filter

25 */

26 public TemporalFilter build(Size size, int cvType) {

27 if (this.type == Type.DIFF_BUTTER_1) {

28 return new DifferenceOfButterworths1(size, cvType,

frameRate, freqLow, freqHigh);

68

29 }

30

31 return null;

32 }

33 }

C.2 Android Temporal Filters

We have chosen to implement the computation of the coefficients for the needed

temporal filters in the code itself instead of using external libraries. The reason for this

is that most of the mathematical and image processing algorithm needed were already

provided by OpenCV and introducing another large library would increase the size of the

application unnecessarily and also its complexity and dependencies.

A band-pass filter H(z) was implemented using the difference of two low-pass

Butterworth filters with cut-off frequencies ωl and ωh. The values of ωl and ωh are chosen

such that they specify the low and high cut-off frequencies of the pass band, respectively:

H(z) = BH(z)−BL(z). (C.1)

Following A.2, a first order low-pass Butterworth filter with unitary cut-off fre-

quency can be written as 1
s+1

. In order to obtain from it a digital filter with cut-off fre-

quency ωc, we apply the transformation in Equation A.11, which results in the following

frequency responses

BH(z) =
αH(1 + z−1)

(1 + αH)− (1− αH)z−1
(C.2)

and

BL(z) =
αL(1 + z−1)

(1 + αL)− (1− αL)z−1
, (C.3)

with αH = tan ωH
2r

and αL = tan ωL
2r

and r is the sampling rate of the video.

These equations can be turned into recursive relations which can be implemented

in the computer through the inverse z-transform and remembering that BH(z) = YH(z)
X(z)

and BL(z) =
YL(z)
X(z)

. This results in

yH [n] =
(1− αH)
(1 + αH)

yH [n− 1] +
αH

(αH + 1)
(x[n] + x[n− 1]) (C.4)

69

and

yL[n] =
(1− αL)
(1 + αL)

yL[n− 1] +
αL

(αL + 1)
(x[n] + x[n− 1]). (C.5)

Finally, the temporally band-passed signal can then be written as

yBP [n] = A(yH [n]− yL[n]), (C.6)

where A is a normalization factor. We can set this A such that |H(e−jθc)| = 1 for a

given θc. A possible value for θc is the average between the low and high digital cut-off

frequencies. The calculation for the value of A is tedious and therefore is omitted here,

but is presented in Appendix E. We could also have ignored this normalization factor

and compensated in the value of the amplification parameter α in the next steps of the

algorithm. It’s important to notice also that the frequency where the given condition is

satisfied is not necessarily the frequency with the highest magnitude response, although it

will be close to it.

C.3 Android Color-change Magnification

The color-change magnification method implemented here uses the linear Eule-

rian approach for color-change magnification. This consists in constructing the Gaussian

pyramid for each frame and filtering its highest (coarsest) level temporally. The resulting

band-passed level is then multiplied by a magnification factor and collapsed in order to

obtain a band-passed image with the same dimensions as the original frame. This band-

passed and magnified frame is finally added back to the original frame.

The Listing C.4 shows the public methods of the class implemented for color-

change magnification, which extends the abstract class SubtleSignalMagnification ex-

plained earlier. In the constructor, the value of level specifies which level of the Gaus-

sian pyramid is to be used for magnification and the chrominanceAttenuation is a factor

multiplied to the chrominance channels of the specified level. Since in the color-change

magnification algorithm the three channels of the colorspace are processed, the given

amplification and chrominance attenuation values are used to construct a ’three element’

scalar in OpenCV. Notice that the chrominance channels are attenuated by the given fac-

tor. A temporal filter builder is also passed to the constructor.

Listing C.4 – Color-change Magnification Class

70

1 public class ColorChangeMagnification extends

SubtleSignalMagnification {

2

3 public ColorChangeMagnification(int level, double alpha,

double chrominanceAttenuation, TemporalFilterBuilder

builder) {

4 this.bandLevel = level;

5 this.alpha3f = new Scalar(alpha, alpha *

chrominanceAttenuation, alpha *

chrominanceAttenuation);

6 this.builder = builder;

7 }

8

9 @Override

10 public void update(Mat frame) {...}

11

12 @Override

13 public void getMagnifiedFrame(Mat dst) {...}

14 }

The update method is shown in Listing C.5. When the first frame is passed to it

(the attribute firstFrame has default initial value True), the memory for the object variables

used later is initialized. This includes the memory space for the Gaussian pyramid and

the initialization of the temporal filters with the temporal filter builder.

Listing C.5 – Color-change Magnification Update Method

1 public void update(Mat frame) {

2 if (this.firstFrame) {

3 this.firstFrame = false;

4 this.initializeMemory(frame);

5 }

6

7 rgb2yiq32f(frame, this.frameYIQ);

8

9 this.buildGaussianPyramid(this.frameYIQ,

this.gaussianPyramid, this.bandLevel);

10 this.temporalFilter.filterFrame(this.gaussianPyramid.get(bandLevel),

71

this.gaussianPyramid.get(this.bandLevel));

11 multiply(this.gaussianPyramid.get(this.bandLevel),

this.alpha3f, this.gaussianPyramid.get(this.bandLevel));

12 this.collapseGaussianPyramid(this.gaussianPyramid,

this.gaussianPyramid);

13 add(this.gaussianPyramid.get(0), this.frameYIQ,

this.frameYIQ);

14

15 cvtColor(this.frameYIQ, this.frameYIQ,

Imgproc.COLOR_YUV2BGR);

16 this.frameYIQ.convertTo(this.magnifiedFrame, CvType.CV_8UC3,

255.0);

17 }

The processing of the frame happens from line 7 to 16. The given frame is first

converted to a 32 bit float and to the YIQ colorspace. The Gaussian pyramid (implemen-

tation explained in Section C.3.1) is built for each channel of this frame and its highest

level is filtered temporally and magnified by multiplication with the scalar alpha3f. The

pyramid is then collapsed. Since its highest level is filtered and magnified, the resulting

image has the same dimensions as the original frame, but contains the magnified tempo-

ral band of interest. The band is finally added back to the YIQ frame, which is converted

back to the RGB color space. The RGB representation is then converted to an unsigned

8-bit matrix whose values are in the range from 0 to 255 and stored in the object attribute

magnifiedFrame.

Lastly, the getMagnifiedFrame simply has to copy the Mat in the object attribute

magnifiedFrame to the output matrix passed as parameter.

C.3.1 Gaussian Pyramid

The implementations of the building and collapsing of the Gaussian pyramids is

shown in Listing C.6.

Listing C.6 – Gaussian Pyramid Implementation

1 public void buildGaussianPyramid(Mat frameSrc, List<Mat>

pyramid, int levels) {

72

2 frameSrc.copyTo(pyramid.get(0));

3 for (int i=1; i <= levels; i++) {

4 Imgproc.pyrDown(pyramid.get(i-1), pyramid.get(i));

5 }

6 }

7

8 public void collapseGaussianPyramid(List<Mat> pyramidSrc,

List<Mat> pyramidDst) {

9 int level = pyramidSrc.size()-1;

10 for(int k=level; k > 0; k--) {

11 Imgproc.pyrUp(pyramidSrc.get(k), pyramidDst.get(k-1),

pyramidSrc.get(k-1).size());

12 }

13 }

The buildGaussianPyramid method builds the pyramid corresponding to the given

frameSrc and uses the memory space from a pre-allocated pyramid. This pyramid pre-

allocation step can be performed as in Listing C.7. The same steps can be used for Lapla-

cian and Riesz pyramids. In the case of the Riesz pyramid, however, it’s also necessary

to allocate memory for the x and y components of the Riesz transform (that is, the i and j

components in the quaternionic representation).

Listing C.7 – Pyramids Memory Initialization

1 GaussianPyramid = new LinkedList<>();

2 int levelRows = frame.rows();

3 int levelCols = frame.cols();

4 for(int k = 0; k <= bandLevel; k++) {

5 gaussianPyramid.add(Mat.zeros(levelRows, levelCols,

CvType.CV_32FC3));

6 levelRows = (levelRows + 1)/2;

7 levelCols = (levelCols + 1)/2;

8 }

The bulk of the Gaussian pyramid construction and collapsing is performed in

the OpenCV methods pyrUp and pyrDown, which, given and input (the first argument)

construct the next or previous level of the pyramid, respectively. The output is stored in the

73

second argument and the third argument specifies the size of the output. This specification

of the output size serves only to resolve the ambiguity that arises when building the next

level of a pyramid with odd sizes.

C.4 Android Riesz Motion Magnification

Following the pseudo code provided by the original authors, we have implemented

the Riesz pyramids approach for motion magnification. This consists first in constructing

the Riesz pyramid for the frames being processed. Then, the quaternionic phase of each

coefficient of the pyramid needs to be computed. In order to produce and unwrapped ver-

sion of these phases, we compute the quaternionic phase difference between frames and

accumulate them in another variable which represents the current unwrapped quaternionic

phase. The resulting quaternionic phase is filtered temporally and spatially and used for

shifting the original quaternionic phase of the coefficients of the pyramid. Collapsing the

real part of the Riesz pyramid gives the magnified frame.

The Listing C.8 shows the public methods implemented for the Riesz motion mag-

nification class, which extends SubtleSignalMagnification. In the constructor, the num-

Levels specifiy the number of levels of the Riesz pyramid and alpha is the magnification

factor. A temporal filter builder is also passed to the constructor.

Listing C.8 – Android Riesz Motion Magnification Public Methods

1 public class RieszMotionMagnification extends

SubtleSignalMagnification{

2 ...

3 public RieszMotionMagnification(int numLevels, int alpha,

TemporalFilterBuilder builder) {...}

4

5 @Override

6 public void update(Mat frame) {...}

7

8 @Override

9 public void getMagnifiedFrame(Mat dst) {...}

A slightly modified version of the update function is shown in Listing C.9. The

method behaves differently when the first frame is passed to it (the initial value of the at-

74

tribute firstFrame is True). In this case, it has to initialize the memory for the objects that

will later be used in other methods. This includes allocating memory for the Riesz pyra-

mids and building all the necessary temporal filters. The given frame is then converted

to the YIQ color space and to 32 bits floats. Each pixel is also scaled down to the range

[0, 1] by dividing each of them by 255.0. The luminance channel is extracted from this

representation and stored in the first level of the Laplacian pyramid (its base). The Riesz

pyramid is then built taking the first element of the given pyramid as the original frame of

which to build the pyramid. Further explanation on the construction and collapsing of the

Riesz Pyramid can be seen in Section C.4.1.

Since it is the first frame that is being processed, there is no phase difference to

compute and the method returns after switching the pointers of the current and previous

pyramids. That is, the current pyramid becomes the previous.

Listing C.9 – Riesz Motion Magnification Update

1 public void update(Mat frame) {

2 if (this.firstFrame) {

3 this.firstFrame = false;

4 this.initializeMemory(frame);

5

6 rgb2yiq32f(frame, this.frameYIQ);

7 extractChannel(this.frameYIQ,

this.laplacianPyramid.get(0), 0);

8 this.buildRieszPyramid(this.laplacianPyramid,

this.rieszPyrX, this.rieszPyrY, this.numLevels);

9 this.switchCurrentPreviousPyramids();

10 return;

11 }

12

13 rgb2yiq32f(frame, this.frameYIQ);

14 extractChannel(this.frameYIQ, this.laplacianPyramid.get(0),

0);

15 buildRieszPyramid(this.laplacianPyramid, this.rieszPyrX,

this.rieszPyrY, this.numLevels);

16 for(int k=0; k < numLevels; k++) {

17 Mat phaseDiffCos = Mat.zeros(this.phaseCos.get(k).size(),

this.phaseCos.get(k).type());

75

18 Mat phaseDiffSin = Mat.zeros(this.phaseCos.get(k).size(),

this.phaseCos.get(k).type());

19

20 this.computeDifference(phaseDiffCos, phaseDiffSin, k);

21

22 add(this.phaseCos.get(k), phaseDiffCos,

this.phaseCos.get(k));

23 add(this.phaseSin.get(k), phaseDiffSin,

this.phaseSin.get(k));

24

25 this.temporalFilterCos.get(k).filterFrame(this.phaseCos.get(k),

phaseCosFiltered);

26 this.temporalFilterSin.get(k).filterFrame(this.phaseSin.get(k),

phaseSinFiltered);

27

28 amplitudeWeightedBlur(phaseCosFiltered, phaseCosFiltered,

this.amplitude.get(k), this.kSize, this.kSigma);

29 amplitudeWeightedBlur(phaseSinFiltered, phaseSinFiltered,

this.amplitude.get(k), this.kSize, this.kSigma);

30

31 this.shiftPhase(phaseCosFiltered, phaseCosFiltered,

this.magnifiedLaplacianPyramid, k);

32 }

33

34 this.collapseLaplacianPyramid(this.magnifiedLaplacianPyramid,

this.frameYMag);

35 insertChannel(this.frameYMag, this.frameYIQ, 0);

36 this.switchCurrentPreviousPyramids();

37 }

The next frames are processed further. After applying similar steps as those done

with the first frame processed, we loop over each level of the pyramid computing its

magnified version. The first step is to compute the difference between the quaternionic

phases of the coefficients of this level in the current pyramid and of the coefficients of the

same level in the previous pyramid. The difference is a quaternion whose only non-zero

units are the i and j imaginary units and therefore two variables are necessary to store

76

it, phaseDiffCos and phaseDiffSin. This is done in Line 20 with the compute difference

method. Being an object method, it always computes the difference using the current

and previous Riesz pyramids, which are stored as attributes in the object. The compute

difference method is further explained in Section C.4.2.

The differences are summed to the object attributes phaseCos and phaseSin, which

store, for each level of the pyramid, the current unwrapped quaternionic phase. Their ini-

tial values are zeros. The current values of the quaternionic phase is then passed through

a temporal filter and the filtered values are stored in the variables phaseCosFiltered and

phaseSinFiltered. After the temporal filtering, the Amplitude Weighted Blur (implemen-

tation shown in Section C.4.3) is applied, using the amplitude values that were computed

in the computeDifference method.

The last pyramid-level-specific operation is the shifting of the quaternionic phase

of each level of the frame Riesz Pyramid in Line 31. This is where the motion is actually

magnified according to the filtered local phases (in this case, the quaternionic phases) and

it is further explained in Section C.4.4. The real part of this computation is stored in the

corresponding level of the modifiedLaplacianPyramid.

Finally, the real part of the magnified Riesz pyramid (which correspond to the

magnified Laplacian pyramid) is collapsed to produce a magnified luminance channel.

The luminance channel is then inserted in the luminance channel of the YIQ representa-

tion generated earlier and the RGB value can be recovered when calling the getMagni-

fiedFrame method.

C.4.1 Riesz Pyramids

The implementation of a method for building the Riesz Pyramid is shown in List-

ing C.10. The method takes as inputs pre-allocated pyramids for the real, i and j compo-

nents of the Riesz Pyramid and the number of levels to be built. Moreover, it expects the

frame whose Riesz pyramid is being built to be stored in the first level of the real pyramid.

Listing C.10 – Construction of the Riesz Pyramid

1

2 private void buildRieszPyramid(List<Mat> pyrReal, List<Mat>

pyrX, List<Mat> pyrY, int levels){

3 for(int k=0; k < levels; k++) {

77

4 pyrDown(pyrReal.get(k), pyrReal.get(k+1));

5 pyrUp(pyrReal.get(k+1), this.pyrTmp.get(k),

pyrReal.get(k).size());

6 subtract(pyrReal.get(k), this.pyrTmp.get(k),

pyrReal.get(k));

7

8 filter2D(pyrReal.get(k), pyrX.get(k), -1, this.kernelX);

9 filter2D(pyrReal.get(k), pyrY.get(k), -1, this.kernelY);

10 }

11 }

12

13 private void initKernels() {

14 this.kernelX = Mat.zeros(new Size(3, 3), type);

15 this.kernelX.put(1, 0, 0.5);

16 this.kernelX.put(1, 2, -0.5);

17

18 this.kernelY = Mat.zeros(new Size(3, 3), type);

19 this.kernelY.put(0, 1, 0.5);

20 this.kernelY.put(2, 1, -0.5);

21 }

Lines 4-6 construct the Laplacian pyramid over the memory space of pyrReal

using the OpenCV pyrDown and pyrUp methods. Furthermore, an auxiliary memory

space is used in the form of a pyramid in the object attribute pyrAux. Without this pre-

allocated attribute, it would be necessary to initialize a number of Mat objects during the

execution of the method, which would unnecessarily increase its processing time. Then,

Lines 8-9 convolve using the OpenCV filter2D function the kernels used for building the

i and j components of the pyramid with the current level of the Laplacian pyramid. These

kernels can be initialized as in the method shown in Line 13. We observe also that the

real pyramid has one more level than the i and j components and that corresponds to the

residue of the Laplacian pyramid.

Collapsing a Riesz Pyramid in order to obtain the frame which would originate it is

equivalent to collapsing the Laplacian pyramid stored in its real part. The implementation

of collapsing a Laplacian Pyramid is shown in Listing C.11. In this case, we collapse the

given pyramid over the pre-allocated pyrTmp and store the resulting frame in the Mat dst

given.

78

Listing C.11 – Collapsing a Laplacian Pyramid

1 private void collapseLaplacianPyramid(List<Mat> pyramid, Mat

dst) {

2 int sizePyr = pyramid.size() - 1;

3

4 pyrUp(pyramid.get(sizePyr), this.pyrTmp.get(sizePyr-1),

pyramid.get(sizePyr-1).size());

5 add(pyramid.get(sizePyr-1), this.pyrTmp.get(sizePyr-1),

this.pyrTmp.get(sizePyr-1));

6

7 for(int k=sizePyr-1; k > 1; k--) {

8 pyrUp(this.pyrTmp.get(k), this.pyrTmp.get(k-1),

pyramid.get(k-1).size());

9 add(pyramid.get(k-1), this.pyrTmp.get(k-1),

this.pyrTmp.get(k-1));

10 }

11

12 pyrUp(this.pyrTmp.get(1), this.pyrTmp.get(0),

pyramid.get(0).size());

13 add(pyramid.get(0), this.pyrTmp.get(0), dst);

14 }

C.4.2 Computation of the Quaternionic Phase Difference

The computeDifference (signature shown in Listing C.12) function computes the

difference between the quaternionic phase of the current and previous Riesz pyramids

coefficients in the given level. The phases can then be used to compute the unwrapped

sequence of quaternionic phases for each pixel over time. The differences are computed

between the current and preivous Riesz Pyramids coefficients, which are attributes of the

Riesz Magnification object in use, and are stored in the given variables phaseDiffCos and

phaseDiffSin, whose values correspond respectively to the i and j units of the quaternionic

phase difference, which is a quaternion.

Listing C.12 – Declaration of Compute Difference Method

1 private void computeDifference(Mat phaseDiffCos, Mat

79

phaseDiffSin, int level) {...}

We’ve implemented this method using the JNI and C++. The reason for doing this

is that it is a computationally expensive operation which has to be repeated multiple times

(for each coefficient in each level of the pyramid). Furthermore, some of the mathematical

operations used are not available as matrices operations in OpenCV. The C++ implemen-

tation used is shown in Listing C.13. The parameters lapPyrLevel, rieszXPyrLevel and

rieszYPyrLevel are the real, i and j components of the quaternionic representation of

the coefficients of the current level of the Riesz pyramid. lapPyrPrevLevel, rieszXPyr-

PrevLevel and rieszYPyrPrevLevel are similar, but point to the pyramid of the previous

frame. The amplitudeLevel is where to store the magnitudes of the Riesz Pyramid coef-

ficients. The method loops over each element of the matrices by setting pointers to each

row and the actual computation happens in Lines 26 - 36.

Listing C.13 – C++ Implementation of computeDifference

1 void compute_difference_loop(Mat& phaseDiffCos, Mat&

phaseDiffSin, Mat& lapPyrLevel, Mat& rieszXPyrLevel, Mat&

rieszYPyrLevel, Mat& lapPrevPyrLevel, Mat&

rieszXPyrPrevLevel, Mat& rieszYPyrPrevLevel, Mat&

amplitudeLevel)

2 {

3 float min_val = 1e-7;

4 int nRows = phaseDiffCos.rows;

5 int nCols = phaseDiffCos.cols;

6

7 int i,j;

8 float *pcos, *psin, *plap, *prieszx, *prieszy;

9 float *plapprev, *prieszxprev, *prieszyprev, *pamp;

10 float q_conj_prod_real, q_conj_prod_x, q_conj_prod_y,

q_conj_prod_amplitude;

11 float phase_difference, den;

12

13 for(i = 0; i < nRows; ++i)

14 {

15 pcos = phaseDiffCos.ptr<float>(i);

16 psin = phaseDiffSin.ptr<float>(i);

80

17 plap = lapPyrLevel.ptr<float>(i);

18 prieszx = rieszXPyrLevel.ptr<float>(i);

19 prieszy = rieszYPyrLevel.ptr<float>(i);

20 plapprev = lapPrevPyrLevel.ptr<float>(i);

21 prieszxprev = rieszXPyrPrevLevel.ptr<float>(i);

22 prieszyprev = rieszYPyrPrevLevel.ptr<float>(i);

23 pamp = amplitudeLevel.ptr<float>(i);

24

25 for (j = 0; j < nCols; ++j) {

26 q_conj_prod_real = plap[j] * plapprev[j] + prieszx[j]

* prieszxprev[j] + prieszy[j] * prieszyprev[j];

27 q_conj_prod_x = plapprev[j] * prieszx[j] - plap[j] *

prieszxprev[j];

28 q_conj_prod_y = plapprev[j] * prieszy[j] - plap[j] *

prieszyprev[j];

29 q_conj_prod_amplitude = sqrt(q_conj_prod_real *

q_conj_prod_real + q_conj_prod_x * q_conj_prod_x +

q_conj_prod_y * q_conj_prod_y) + min_val;

30

31 phase_difference = acos(q_conj_prod_real /

q_conj_prod_amplitude);

32 den = sqrt(q_conj_prod_x * q_conj_prod_x +

q_conj_prod_y * q_conj_prod_y) + min_val;

33 pcos[j] = phase_difference * q_conj_prod_x / den;

34 psin[j] = phase_difference * q_conj_prod_y / den;

35

36 pamp[j] = sqrt(q_conj_prod_amplitude);

37 }

38 }

39 }

The method computes Equation C.7, where rm and rm−1 represent a coefficient of

the current and previous Riesz Pyramid. Moreover, v and q are such that rmr∗m−1 = q+ v

and v is the imaginary part of the quaternion. The imaginary component k of the product

is ignored, since it’s very small under the assumption that the orientation of the pixel is not

81

changing. That is, the θ in the spherical representation of the Riesz pyramid coefficients.

v
‖v‖

arccos
q∥∥rmr∗m−1

∥∥ (C.7)

The equivalence between Equation C.7 and the difference of the quaternionic phases is

derived in Appendix D.

Lines 26 - 28 compute the real, i and j values of rmr∗m−1, while the k compo-

nent is ignored and its norm is calculated in Line 29. The values of phaseDiffCos and

phaseDiffSin (the i and j components of Equation C.7) are computed in Lines 31 - 34.

Finally, the magnitude of the coefficient is approximated in Line 36. This approxima-

tion is based on the idea that the amplitude changes only slightly and is used later for an

amplitude-weighted blurring of the quaternionic phases.

C.4.3 Amplitude-weighted Blur

The implementation of the amplitude-weighted blur is shown in Listing C.14. It

uses the OpenCV GaussianBlur methods in order to apply the Gaussian blurring.

Listing C.14 – Amplitude-weighted Blur

1

2 public static void amplitudeWeightedBlur(Mat src, Mat dst, Mat

amplitude, double kSize, double kSigma) {

3 Mat den = Mat.zeros(src.size(), src.type());

4 multiply(src, amplitude, dst);

5

6 GaussianBlur(dst, dst, new Size(kSize, kSize), kSigma);

7 GaussianBlur(amplitude, den, new Size(kSize, kSize), kSigma);

8

9 divide(dst, den, dst);

10 }

82

C.4.4 Shifting the Quaternionic Phase

The shiftPhase method (declaration in Listing C.15) shifts the phase of the current

coefficients of the determined Riesz pyramid level according to the given quaternionic

phase. The arguments phaseFilteredCos phaseFilteredSin represent respectively the i

and j units of the quaternionic phase. The magPyr argument specify where the resulting

pyramid should be stored and level selects which level of the pyramid. The method always

uses the current Riesz pyramid (which is an object attribute) as the pyramid whose phases

should be shifted, but it stores the results in the given magPyr.

Listing C.15 – Declaration of the Shift Phase Method

1 private void shiftPhase(Mat phaseFilteredCos, Mat

phaseFilteredSin, List<Mat> magPyr, int level) {

We’ve implemented this method using the Java Native Interface (JNI) and C++,

since it’s an expensive operation. Moreover, it uses methods that are not available as

matrices operations in OpenCV. The C++ implementation is shown in Listing C.16. The

parameters lapPyrLevel, rieszXPyrLevel and rieszYPyrLevel are the real, i and j compo-

nents of the quaternionic representation of the coefficients of the current level of the Riesz

pyramid. alpha is the magnification factor. The method loops over each element of the

matrices by setting pointers to each row and the actual computation happens only in Lines

25 - 33.

Listing C.16 – C++ Implementation of shiftPhase

1 void shift_phase_loop(Mat& phaseFilteredCos, Mat&

phaseFilteredSin, Mat& magPyrLevel,

2 Mat& lapPyrLevel, Mat& rieszXPyrLevel, Mat&

rieszYPyrLevel,

3 double alpha)

4 {

5 int nRows = phaseFilteredCos.rows;

6 int nCols = phaseFilteredCos.cols;

7

8 int i,j;

9 float *pcos, *psin, *pmag, *plap, *prieszx, *prieszy;

10 float magcos, magsin, phase_mag, exp_phase_real, exp_phase_x;

83

11 float exp_phase_y;

12 float min_val = 1e-7;

13

14 for(i = 0; i < nRows; ++i)

15 {

16 pcos = phaseFilteredCos.ptr<float>(i);

17 psin = phaseFilteredSin.ptr<float>(i);

18 pmag = magPyrLevel.ptr<float>(i);

19 plap = lapPyrLevel.ptr<float>(i);

20 prieszx = rieszXPyrLevel.ptr<float>(i);

21 prieszy = rieszYPyrLevel.ptr<float>(i);

22

23 for (j = 0; j < nCols; ++j)

24 {

25 magcos = pcos[j] * alpha;

26 magsin = psin[j] * alpha;

27

28 phase_mag = sqrt(magcos * magcos + magsin * magsin) +

min_val;

29 exp_phase_real = cos(phase_mag);

30 exp_phase_x = magcos / phase_mag * sin(phase_mag);

31 exp_phase_y = magsin / phase_mag * sin(phase_mag);

32

33 pmag[j] = exp_phase_real * plap[j] - exp_phase_x *

prieszx[j] - exp_phase_y * prieszy[j];

34 }

35 }

36 }}

The method computes Equation C.8, where an arbitrary coefficient of the level of

the Riesz pyramid is given by I + rxi + ryj and the shifting quaternionic phase is given

by bxi + byj. Appendix D shows the equivalence between Equation C.8 and shifting the

phases of a Riesz pyramid.

I cos
√
b2
x + b2

y − rx
bx sin (

√
b2
x + b2

y)√
b2
x + b2

y

− ry
by sin (

√
b2
x + b2

y)√
b2
x + b2

y

(C.8)

84

In Lines 25 and 26 the quaternionic phase is multiplied by the magnification factor α.

Then Lines 28 - 31 calculate the exponential of the quaternionic phase. Finally, the real

part of the product between the current pyramid and the exponential is given in Line 33.

Only the real part of the product is necessary, since it constitutes the Laplacian pyramid

of the frame which is then collapsed in order to obtain the magnified frame.

85

APPENDIX D — DIFFERENCE OF QUATERNIONIC PHASES AND SHIFTING

THE QUATERNIONIC PHASE

In this Section, we show the equivalence between Equation C.7 and the difference

of the quaternionic phases. Specifically, the difference between the quaternionic phases

of the coefficient rm of a Riesz Pyramid and the correspondent coefficient rm−1 of the

previous Riesz Pyramid. We also let rmr∗m−1 = q + v, where v is the imaginary part of

the quaternion and q is its real part.

log
rm
‖rm‖

− log
rm−1

‖rm−1‖
= log

(
rm
‖rm‖

(
rm−1

‖rm−1‖
)

)−1
)

= log
rmr

∗
m−1∥∥rmr∗m−1

∥∥
= log rmr

∗
m−1 − log

∥∥rmr∗m−1

∥∥
= log

∥∥rmr∗m−1

∥∥+ v
‖v‖

arccos
q∥∥rmr∗m−1

∥∥ − log
∥∥rmr∗m−1

∥∥
=

v
‖v‖

arccos
q∥∥rmr∗m−1

∥∥
(D.1)

The real part of a Riesz Pyramid whose quaternionic phase was shifted is given

by Equation C.8. In order to see this, we consider an arbitrary coefficient of the Riesz

pyramid given by I+ rxi+ ryj to be shifted by the quaternionic phase bxi+ byj. The first

step is to exponentiate the phase, which results in

ebxi+byj = cos
√
bxi+ byj +

(bxi+ byj)√
bxi+ byj

sin
√
bxi+ byj (D.2)

Multiplying this result by I + rxi+ ryj and taking only the real part gives Equation C.8.

86

APPENDIX E — DERIVATION OF THE NORMALIZATION FACTOR FOR

THE DIFFERENCE OF BUTTERWORTHS

In this Section, we wish to find the value of A such that |H(ejθc)| = 1 for a given

θc with

H(z) = A (BH(z)−BL(z)) (E.1)

and BH(z) and BL(z) as defined in Equations C.2 and C.3.

H(z) = BH(z)−BL(z)

=
αH(1 + z−1)

(1 + αH)− (1− αH)z−1
− αL(1 + z−1)

(1 + αL)− (1− αL)z−1

=
(1 + z−1)(αH((1 + αL)− (1− αL)z−1)− αL((1 + αH)− (1− αH)z−1))

((1 + αL)− (1− αL)z−1)((1 + αH)− (1− αH)z−1)

(E.2)

By computing the norm of each element individually, we find

|H(ejθc)| =
√
2(1 + cos θc)

√
2(αH − αL)(1− cos θc)

DHDL

(E.3)

with

DH =
√

(1 + αH)2 − 2(1 + αH)(1− αH) + (1− αH)2

and

DL =
√
(1 + αL)2 − 2(1 + αL)(1− αL) + (1− αL)2

Finally, in order to normalize H(z) according to the predefined constraint, we

must have A = 1
|H(ejθc)| .

87

APPENDIX — REFERENCES

ARANGO, C. et al. Subtle motion analysis and spotting using the riesz pyramid. In: .
[S.l.: s.n.], 2018.

BALAKRISHNAN, G.; DURAND, F.; GUTTAG, J. Detecting pulse from head motions
in video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. [S.l.: s.n.], 2013. p. 3430–3437.

BELAID, A. et al. Phase-based level set segmentation of ultrasound images. IEEE
Transactions on Information Technology in Biomedicine, IEEE, v. 15, n. 1, p.
138–147, 2010.

CHEN, W.; MCDUFF, D. Deepmag: Source specific motion magnification using
gradient ascent. arXiv preprint arXiv:1808.03338, 2018.

CHEN, W.; PICARD, R. W. Eliminating physiological information from facial videos.
In: IEEE. 2017 12th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2017). [S.l.], 2017. p. 48–55.

DAVIS, A. et al. Visual vibrometry: Estimating material properties from small motion
in video. In: Proceedings of the ieee conference on computer vision and pattern
recognition. [S.l.: s.n.], 2015. p. 5335–5343.

ELGHARIB, M. et al. Video magnification in presence of large motions. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.: s.n.],
2015. p. 4119–4127.

FELSBERG, M.; SOMMER, G. The monogenic signal. IEEE transactions on signal
processing, IEEE, v. 49, n. 12, p. 3136–3144, 2001.

FREEMAN, W. T.; ADELSON, E. H.; HEEGER, D. J. Motion without movement. ACM
Siggraph Computer Graphics, ACM New York, NY, USA, v. 25, n. 4, p. 27–30, 1991.

FREEMAN, W. T.; ADELSON, E. H. et al. The design and use of steerable filters. IEEE
Transactions on Pattern analysis and machine intelligence, v. 13, n. 9, p. 891–906,
1991.

Gautama, T.; Van Hulle, M. A. A phase-based approach to the estimation of the optical
flow field using spatial filtering. IEEE Transactions on Neural Networks, v. 13, n. 5, p.
1127–1136, 2002.

Jianbo Shi; Tomasi. Good features to track. In: 1994 Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition. [S.l.: s.n.], 1994. p. 593–600.

LAURIDSEN, H. et al. Extracting physiological information in experimental biology via
eulerian video magnification. BMC biology, BioMed Central, v. 17, n. 1, p. 1–26, 2019.

Le Ngo, A. C. et al. Micro-expression motion magnification: Global lagrangian vs. local
eulerian approaches. In: 2018 13th IEEE International Conference on Automatic
Face Gesture Recognition (FG 2018). [S.l.: s.n.], 2018. p. 650–656.

88

LIU, C. et al. Motion magnification. ACM transactions on graphics (TOG), ACM New
York, NY, USA, v. 24, n. 3, p. 519–526, 2005.

LIU, L. et al. Enhanced eulerian video magnification. In: IEEE. 2014 7th International
Congress on Image and Signal Processing. [S.l.], 2014. p. 50–54.

OH, T.-H. et al. Learning-based video motion magnification. In: Proceedings of the
European Conference on Computer Vision (ECCV). [S.l.: s.n.], 2018. p. 633–648.

PERROT, V. et al. Video magnification applied in ultrasound. IEEE Transactions on
Biomedical Engineering, IEEE, v. 66, n. 1, p. 283–288, 2018.

PORTILLA, J.; SIMONCELLI, E. P. A parametric texture model based on joint statistics
of complex wavelet coefficients. International journal of computer vision, Springer,
v. 40, n. 1, p. 49–70, 2000.

SIMONCELLI, E. P.; FREEMAN, W. T. The steerable pyramid: A flexible architecture
for multi-scale derivative computation. In: IEEE. Proceedings., International
Conference on Image Processing. [S.l.], 1995. v. 3, p. 444–447.

SIMONCELLI, E. P. et al. Shiftable multiscale transforms. IEEE transactions on
Information Theory, IEEE, v. 38, n. 2, p. 587–607, 1992.

UNSER, M.; SAGE, D.; VILLE, D. V. D. Multiresolution monogenic signal analysis
using the riesz–laplace wavelet transform. IEEE Transactions on Image Processing,
IEEE, v. 18, n. 11, p. 2402–2418, 2009.

WADHWA, N. Revealing and analyzing imperceptible deviations in images and
videos. Thesis (PhD) — Massachusetts Institute of Technology, 2016.

WADHWA, N. et al. Phase-based video motion processing. ACM Transactions on
Graphics (TOG), ACM New York, NY, USA, v. 32, n. 4, p. 1–10, 2013.

WADHWA, N. et al. Quaternionic representation of the riesz pyramid for video
magnification. 2014.

WADHWA, N. et al. Riesz pyramids for fast phase-based video magnification. In: IEEE.
2014 IEEE International Conference on Computational Photography (ICCP). [S.l.],
2014. p. 1–10.

WU, H.-Y. et al. Eulerian video magnification for revealing subtle changes in the world.
ACM transactions on graphics (TOG), ACM New York, NY, USA, v. 31, n. 4, p. 1–8,
2012.

WU, X. et al. Amplitude-based filtering for video magnification in presence of large
motion. Sensors, Multidisciplinary Digital Publishing Institute, v. 18, n. 7, p. 2312, 2018.

WU, X. et al. Pca-based magnification method for revealing small signals in video.
Signal, Image and Video Processing, Springer, v. 12, n. 7, p. 1293–1299, 2018.

ZHANG, Y.; PINTEA, S. L.; GEMERT, J. C. van. Video acceleration magnification. In:
Computer Vision and Pattern Recognition. [S.l.: s.n.], 2017.

	Abstract
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Related Work
	2.1 Linear Eulerian Motion and Color-change Magnification
	2.2 Phase-based Video Motion Processing
	2.2.1 Motion Magnification Using Riesz Pyramids

	3 Intensity and Motion Magnification with the Riesz Pyramids
	3.1 Simultaneous Motion and Intensity Magnification
	3.2 Selection of Regions for Magnification

	4 Implementations
	4.1 Python Simultaneous Color-change and Motion Magnification
	4.2 Android Application

	5 Results
	5.1 Simultaneous Color-change and Motion Magnification with Riesz Pyramids
	5.1.1 Amplitudes and Residue Magnification
	5.1.2 Discussion and Limitations

	5.2 Android Implementation Results
	5.2.1 Discussion and Limitations

	6 Conclusion and Further Work
	Appendix A — Temporal Filters
	A.1 Bilinear Transform
	A.2 Butterworth Filters

	Appendix B — Other Eulerian Video Magnification Methods
	B.1 Motion Magnification with the Steerable Pyramids
	B.1.1 More Details on the Meaning of the Local Phases

	B.2 Quaternionic Representation of the Riesz Pyramid for Video Magnification
	B.2.1 Quaternions
	B.2.2 Riesz Motion Magnification with Quaternions

	B.3 Subtle Motion Magnification in the Presence of Large Motions
	B.3.1 Dynamic Video Magnification (DVMAG)
	B.3.2 Acceleration Magnification

	B.4 Deep Learning Approaches

	Appendix C — Implementations
	C.1 Android Implementations
	C.2 Android Temporal Filters
	C.3 Android Color-change Magnification
	C.3.1 Gaussian Pyramid

	C.4 Android Riesz Motion Magnification
	C.4.1 Riesz Pyramids
	C.4.2 Computation of the Quaternionic Phase Difference
	C.4.3 Amplitude-weighted Blur
	C.4.4 Shifting the Quaternionic Phase

	Appendix D — Difference of Quaternionic Phases and Shifting the Quaternionic Phase
	Appendix E — Derivation of the Normalization Factor for the Difference of Butterworths
	Appendix — References

