
Computers & Graphics (2022)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

ODFNet: Using orientation distribution functions to characterize 3D point clouds

Yusuf H. Sahina,∗, Alican Mertana, Gozde Unala

aIstanbul Technical University, Computer Engineering, Istanbul, 34469, Turkey

A B S T R A C T

Learning new representations of 3D point clouds is an active research area in 3D vi-
sion, as the order-invariant point cloud structure still presents challenges for the design
of neural network architectures. Recent work explored learning global, local, or multi-
scale features for point clouds. However, none of the earlier methods focused on captur-
ing contextual shape information by analyzing local orientation distributions of points.
In this paper, we use point orientation distributions around a point in order to obtain
an expressive local neighborhood representation for point clouds. We achieve this by
dividing the spherical neighborhood of a given point into predefined cone volumes, and
statistics inside each volume are used as point features. In this way, a local patch can
be represented not only by the selected point’s nearest neighbors, but also by consid-
ering a point density distribution defined along multiple orientations around the point.
We are then able to construct an orientation distribution function (ODF) neural network
that makes use of an ODFBlock which relies on MLP (multi-layer perceptron) layers.
The new ODFNet model achieves state-of-the-art accuracy for object classification on
ModelNet40 and ScanObjectNN datasets, and segmentation on ShapeNet and S3DIS
datasets.

1. Introduction

Convolutional neural networks (CNNs) are widely used in vi-
sion and pattern recognition problems like object classification,
object recognition, and segmentation [1]. However, CNNs have
not been applicable to point clouds until recent years. The main
obstacle to this was the problem of how to interpret a point in
a point cloud representation, which has a permutation-invariant
structure, a property not possessed by pixels or voxels in 2D
or 3D images. On a 2D or 3D image grid, the convolution op-
eration is defined as a weighted sum in a local neighborhood,
which is defined by the kernel. However, in a point cloud, a
similar neighborhood structure among the points does not ex-
ist. PointNet [2] pioneered the way to utilizing neural network
models for the point cloud classification problem by aiming at

∗Corresponding author: Yusuf H. Sahin
e-mail: sahinyu@itu.edu.tr (Yusuf H. Sahin), mertana@itu.edu.tr

(Alican Mertan), gozde.unal@itu.edu.tr (Gozde Unal)

constructing a global feature transformation on all the points in
the point cloud while respecting their order invariance. While
PointNet did not use any neighborhood information, it is argued
and shown that using local features improves the performance
in recent works [3, 4, 5].

Recent approaches to extracting local features from point
clouds include creating spherical volumes [3] or choosing k-
nearest neighbors [7] and collecting local information of each
point in those defined neighborhoods. The latest studies Dense-
Point [8] and ShellNet [9], that obtained state-of-the-art results
for classification on the ModelNet40 classification benchmark
[6], create spherical regions around each point. DensePoint em-
ploys spheres of different sizes in each layer of the neural net-
work to obtain features from multiple scales; whereas in Shell-
Net, coordinates of points in each shell are transformed via an
MLP (multi-layer perceptron), and a max-pooling operation ag-
gregates the features across shells. In both methods, the points
in the sphere are handled in such a way as to ignore their ori-
entations with respect to the selected point. In [10], a spherical

ar
X

iv
:2

01
2.

04
70

8v
2

 [
cs

.C
V

]
 1

5
Ju

l 2
02

2

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint Submitted for review / Computers & Graphics (2022)

Fig. 1. A plane object from the ModelNet40 [6] dataset. For each point in
a point cloud, ODFNet calculates the distribution of nearby points inside a
spherical region. To do this, it utilizes cones with predefined orientations
that spanning the spherical sectors. These cones can be of different scales
and radii.

convolution is presented alongside octree partitioning where the
sphere is divided into bins, and bin features are obtained by av-
eraging the features of the points inside the bin, without using
any point density information.

In order to increase the representative power of local features,
we employ the distribution of orientations of points in a neigh-
borhood with respect to a reference point. This leads to a new
representation named point Orientation Distribution Functions
(ODFs) for point clouds. ODFs can be computed by dividing
each sphere around a point into a set of cones along predefined
orientations, and calculating the density of points in each cone,
as depicted in Figure 1. To increase the representative power
of the feature, overlapping cones are also used. Some example
ODFs are given in Figure 2. It can be observed that the ODF at
the tip of the gun object, the ODFs on the corners of the plane
or the table, and on the surface of the car, clearly capture the
relative orientation of points with respect to the given center
point. As such, we utilize the ODFs with their enhanced capa-
bility to compactly summarize the local neighborhood structure
of a point cloud to our advantage in our point cloud analysis
network model design.

The main contributions of our work can be summarized as
such:

• The point ODFs, which incorporate the directional infor-
mation inside a spherical neighborhood, are defined.

• A dedicated neural network architecture, the ODFNet, for
classification and segmentation of point clouds, is pre-
sented.

• For different rotation-invariance scenarios, two different
ways of utilizing ODFs for a point are presented. Both
representations, which are either fully rotation-invariant or
only rotation-invariant in the x-y plane, can be used de-
pending on the alignment conditions of the environment.

• The ODFNet architecture is tested on popular benchmarks,
and state-of-the-art (SoTA) accuracy scores on Model-

Fig. 2. ODFs for some selected points on example point clouds from the
ShapeNet [11] dataset. Line length indicates strength.

Net40, Shapenet [11], S3DIS, [12] and ScanObjectNN
[13] are obtained.

2. Related Works

Earlier studies like [14, 15, 16, 6] focusing on the classifi-
cation of 3D objects prefer to voxelize the objects and use the
voxelized occupancy map as an input to a neural network. How-
ever, this approach is not efficient for two reasons: First, the
voxelization quality is highly related to the selected grid spac-
ing and, as grid spacing dimensions get lower, distortion of a
voxelized 3D object increases. Although high-resolution voxel
grids are desirable, they are impractical due to computational
constraints. Considering that the input to a voxel grid network is
a 3D matrix, the network will consume significantly more stor-
age and computation power when compared to 2D networks.
A second drawback is that this is a very sparse representa-
tion, hence a superfluous amount of data is unnecessarily pro-
cessed. [17] constructed a new representation to decrease the
data amount by processing voxels, but the deformation prob-
lem remains.

Another approach is obtaining 2D views or depth maps and
using them as inputs to a neural network [18, 19, 20, 21]. Feng
et al. [22] construct hypergraphs extracted from view-based
networks. However, view-based approaches are not deemed fa-
vorable as well since complete object or scene information is
not utilized.

Preprint Submitted for review / Computers & Graphics (2022) 3

In order to make use of the standard grid convolution opera-
tion from the Euclidean CNN domain, Hua et al. project a grid
onto every point where filter kernels are placed, and features are
calculated over those grids via the convolution operation [23].
Li et al. [24] presented an architecture that learns a transforma-
tion matrix that weighs and permutes the points to be used in
grid convolution.

PointNet [2] is considered as the first attempt to use point
clouds as raw inputs to a neural network. As it might be ex-
pected, the main difficulty of using directly the points instead
of view renders or voxelized 3D maps comes from the set rep-
resentation since all permutations on a point set describes the
same entry. Hence in PointNet, to classify a point cloud, all
points are processed in multi-layer perceptrons in parallel (i.e.
as shared weights for all points) to obtain point features and a
symmetric function (e.g. a max-pooling operation) is used over
these features to obtain an aggregated global feature. Although
studies like [23] showed that ordered points can be used without
a symmetric function, the symmetric function notion is widely
used [4, 25]. Other studies using PointNet as a backbone net-
work or in the middle steps include [26, 4].

PointNet++ [3] focuses on the fact that the original PointNet
loses local features since all points are treated independently
until the max-pool step. Thus, they hierarchically sample and
group the point cloud and implement mini PointNets for each
group. In [7], DGCNN, which handles the point cloud as a
graph and uses a k-nearest neighbor approach to construct the
connections, is introduced. Then, an edge convolution oper-
ation to perform a convolution centered on the selected point
according to its nearest neighbors is defined. In SpiderCNN
[5], a new convolution operation that benefits from Taylor se-
ries expansion is presented. In KPConv [27], kernel points with
learnable weights are defined inside a local neighborhood and a
linear correlation between a kernel point position and a neigh-
bor point position is calculated and multiplied by these weights.
In DensePoint[8] and ShellNet [9], a dedicated convolution is
defined relying on statistics inside local neighborhoods, particu-
larly spherical regions. Lei et al. [10] design a procedure where
spherical regions are divided into bins and point features for
each bin are collected according to bin weights. Then mean of
the point features of each bin is used as bin features. In Con-
vPoint [28], convolution operation differentiates for spatial and
feature operations where the spatial operations are done on ran-
domly selected parts. For further reading on point clouds, a
detailed survey on this topic can be investigated [29].

The works we examine so far are not invariant to rotation
changes. Recently, developing rotation-invariant point features
started to attract more attention in the point cloud community.
In [30], the points are mapped on an icosahedral lattice and a
new convolution operation to perform on this structure is de-
fined. In [31], a rotation-invariant convolution, the RIConv op-
erator is presented to obtain features from distances and angles
in a rotation-invariant manner. Kim et al. presented RI-GCN
which uses graph convolutions hierarchically [32]. In CG-Conv
[33], local reference frames are created for each point neigh-
borhood to obtain the local features and the global features are
calculated via anchors.

…

…

…
…

…
… …

…

(N
,3
)

(N
,N

c,N
d)

(N
c,N

d)
(N

c,N
d)

(N
c,N

d)

(Nc)

(Nc)

{32,16}

(16)

{2
56

,6
4}

(16)

Fig. 3. The ODFBlock and its usage to obtain ODF features. Here Nc and
Nd represent the number of different cones and directions, respectively. For
every point, ODF values are computed along different cones. Then, ODF
values are processed in ODFBlocks. An ODFBlock consists of two mlps:
ODFDir and ODFGlob.

In the point cloud processing literature, the lack of any
orientation-specific local feature representation motivated us to
propose the ODFNet in this work. The inspiration for ODFs
comes from the orientational probability distribution functions
in the Diffusion MRI field [34, 35] that characterize the water
diffusion in the brain. Those ODFs model the heterogeneous lo-
cal tissue micro-structure in order to extract underlying multiple
axonal fiber populations. For point clouds, the indirect analogy
relies on constructing orientation distributions of the local point
cloud mass that can reveal and help resolve the local geometry
of the 3D shape along several directions. This is the main mo-
tivation in proposing ODFs for characterizing local structure
in point clouds. Theoretically, for ODF estimation, one could
use mathematical techniques such as spherical harmonics de-
composition [36, 37], or for instance fitting von Mises-Fisher
distributions [38], in which the latter involves constructing a
multivariate normal distribution on the sphere. Alternatively,
one could take a purely discrete approach to estimate an ODF
through a histogram computation, by binning the local sphere
around a given point into conic volumetric sections, as we per-
form in this work. We present numerical evidence that shows
adopting ODFs in point clouds provides mostly competitive and
in some cases superior performance among existing point cloud
representations in problems of classification and segmentation
of point clouds. This supports our conjecture that the inclusion
of directional statistics of the local point cloud density leads to
an improved localized structural representation and hence pro-
vides a performance upgrade.

3. Method

Our approach relies upon Orientation Distribution Functions
due to their capability to express directional properties of lo-
cal point cloud structure. In this section, we first describe the
ODFs, the dedicated ODFBlock which is depicted in Figure 3,
and then we present the ODFNet.

3.1. ODF Representation for Point Clouds

ODFs that we propose in this work rely on the number of
points in a local conic neighborhood at multiple orientations.

4 Preprint Submitted for review / Computers & Graphics (2022)

Furthermore, to capture the local point density information in a
hierarchy of scales, we utilize multi-scale cones with different
apex angles and heights. There are three important components
in defining ODFs; namely defining cones, their alignment given
a point, and calculation of ODF values.

Defining cones: We divide the local sphere around a given
point into conical volumes. The motivation for the usage of
cones to parcellate the sphere comes from ODF-based methods
for the medical imaging field [39]. Although there are some
studies dividing the sphere using cylinders [35], a more effi-
cient parcellation in terms of conical volumes is preferred in
this work. Each of these cones can be characterized by their
direction vl, apex angle αk, and length dn as illustrated in Fig-
ure 4. We define 42 conic neighborhood directions vl for each
point, where directions are obtained after the first tessellation of
an icosahedron. This is selected empirically by observing that
further increasing the amount of tessellation causes a high rate
of intersection between the cones and reducing it decreases the
representation power.

𝑥𝑖𝛼𝑘𝑣𝑙

𝑑𝑛

Fig. 4. An example ODF cone is placed on xi along direction vl. Cones
at multiple scales (of heights and apex angles) are used to capture point
density features at a hierarchy of neighborhoods.

For each neighborhood direction vl, we utilize multiple cones
to capture features from a hierarchy of neighborhoods. To this
end, we use 2 different apex angles αk, 31.71 degrees, which
is the smallest angle that covers the whole sphere, and 60 de-
grees creating some intersection between the cones; and 4 dif-
ferent distances dn, where dn is the distance of the n

th
neigh-

bor of the given point, and n is selected from the collection of
[8, 16, 24, 32]. Thus, for each point, 336 different cones are ob-
tained (42 cone directions vl, 4 distances dn, and 2 apex angles
αk).

Aligning neighborhoods for a given point: In order to
make the proposed ODF representation more adaptive to ori-
entation changes of the objects, in the calculation of the ODFs,
pivot directions need to be selected. Aligning cone directions
vl according to pivot directions calculated for each point as in
Figure 5 effectively makes the ODF representation robust to ori-
entation changes of the objects.

Particularly, two orthogonal directions have to be specified
to achieve rotation-invariant ODF representations. We devise
two methods for selecting these directions, namely RI-XY and
RI-XYZ.

(a) Unaligned (b) Aligned

Fig. 5. An example alignment of the neighborhoods for a given point. The
same rotation that aligns the two neighborhood directions, directions of the
blue and the green cone, with the two pivot directions, the blue and green
arrows, is applied to all neighborhood directions.

RI-XY achieves rotation-invariance in the x-y plane. Thus, it
can be used when the object is aligned according to the z-axis.
For RI-XY, for every point, projections of the selected point’s
32 nearest neighbors on the x-y plane are calculated and the
densest direction is selected as the pivot. Using the pivot direc-
tion and the z-axis, the ODF directions are aligned. In Figure
7, some pivot directions are shown for the RI-XY method. In
addition to this alignment’s contribution to obtain a rotation-
invariant representation for rotations in the x-y plane (Figure
7.a), it also leads to symmetric representations for symmetric
points (Figure 7.b). Unless otherwise stated, the RI-XY method
is used for the experiments in this paper.

RI-XYZ allows us to define fully rotation-invariant represen-
tations. For RI-XYZ, the direction from the selected point x to
the object center cob ject is chosen as the first pivot direction. The
second pivot direction is the cross product of the first pivot and
the vector from point x to the center of the 32 nearest neighbors
clocal as depicted in Fig 6. This pivot selection technique can
be applied when no information about the object’s alignment is
available. Thus, RI-XYZ could be used for scenarios with to-
tally unaligned objects. However a decrease in performance is
expected since the relative coordinates of the points are vastly
changed.

Calculation of ODF values: To compute the ODF value at
a point xi ∈ S , where S denotes the set of all points, and for
a specific cone with an apex angle 2αk, height dn, and center
direction vector vl,

ODF(xi, αk, dn, vl) =∑
x j∈S ,i, j

1(||xi − x j||2 < dn) · 1(acos
(

(xi − x j)· vl

||xi − x j||||vl||

)
<αk) (1)

which gives us the point count inside the selected cone. Here,
1(·) refers to the indicator function. Since the cone heights dn

are selected according to the n
th

-neighbor distance, this value is
then normalized by n. In our experiments on a single NVIDIA
Titan RTX graphics card, calculation of the cone values takes
under ∼ 76 msecs for a point cloud of 1024 points despite its
complex information. It is also advantageous that the represen-
tation is calculated only once in the network.

Preprint Submitted for review / Computers & Graphics (2022) 5

x
clocal

cobject

Fig. 6. An example of rotation-invariant pivot calculation in RI-XYZ. The
blue arrow shows the direction to the object center which is the first pivot,
the red arrow shows the direction to the center of the neighbors, and the
green arrow is the second pivot direction which is the cross product of the
other two vectors.

3.2. ODFBlock
In a point cloud, those differently sized and oriented cones

that we construct help capture local variations in terms of point
density, and encode them into the ODF features, which is pro-
vided into the dedicated neural network block in Figure 3. After
calculating the ODFs at each point, we define the ODFBlock
which operates on the ODFs as follows:

ODFBlock(xi, θd, θg) = ODFGlob
(
θd,ODFDir

(
θg,ODF(xi)

))
(2)

where ODF(xi) in short denotes a tensor of point density val-
ues ODF(xi, αk, dn, vl) for different cones along a collection of
direction vectors in S2. Parameters θd = [θ1

d, θ
2
d, ..., θ

m
d], and

θg = [θ1
g, θ

2
g, ..., θ

p
g] are learnable parameters of the ODFBlock.

ODFDir is an mlp that embeds the ODF tensor through ag-
gregating features by collecting features of each direction, and
ODFGlob is another mlp which aggregates the output embed-
ding over all directions to obtain the aggregate ODFBlock out-
put features.

3.3. ODFNet Network Models
3.3.1. ODFNet

To exploit our point ODF’s representation capability over
point clouds, we design different ODFNets, which benefit from
ODFs as well as point locations to capture both local and global
features of point clouds and, which can be used for classifica-
tion and segmentation tasks. As depicted in Figure 8, ODFNet
first calculates the ODFs for each point as given by Equation 1
for Nc cones rotated around Nd direction vectors. Then for each
point, it benefits from two different mlps inside ODFBlock:
ODFDir and ODFGlob. For differently scaled cones placed
along the same direction, ODFDir calculates features captur-
ing the point density along that direction. ODFGlob then oper-
ates on the features captured by ODFDir in order to fuse those
features and the result is later concatenated with the point coor-
dinates.

In the blocks shown as ODFBlock in Figure 8, in a similar
manner with DGCNNs [7], each point’s features are combined

(a)

(b)

Fig. 7. For the RI-XY method, ODF directions according to nearest neigh-
bors are depicted. Green arrows indicate pivot and blue arrows indicate
the z-axis. (a) By rotating the objects in the x-y plane, ODF values do not
change since the directions are aligned with respect to rotation-invariant
pivots. (b) For symmetric points of the same object, nearly symmetric pivot
directions are obtained.

with its nearest neighbors’ features and the difference vector
features, where the latter represents x − xi for x indicating a
point location and xi indicating one of its 32 neighbors.

For the classification task, the last layers of the architecture
include a max-pooling operation to produce a global feature
vector describing the shape. After three fully connected layers,
class scores are obtained at the output. For part segmentation in
ShapeNet, the ODFNet architecture makes use of the categori-
cal vector, which indicates the one-hot-coded object class. It is
fed to the segmentation part of the ODFNet, as in [7] and [2].
The output size of the final output layer in both tasks depends
on the number of object classes and object parts. For semantic
segmentation in S3DIS, nearly the same architecture with part
classification is used. However, since the dataset also includes
RGB color information, colors and color differences are also
used to obtain difference features and location features.

3.3.2. ODFNet-xyz

To ensure the global invariance, we used RI-XYZ pivot selec-
tion method and slightly changed the architecture as shown in
Figure 8.e to obtain ODFNet-xyz, where instead of difference
vectors we used a vector set of magnitude of difference vec-
tors |x − xi|, point’s distances to object center |x − cob ject |, point
neighbors’ distances to object center |xi−cob ject |, angles between
points and their neighbors ∠(x, xi), and angles between points
and object center ∠(x, cob ject). Also ∠(x, cob ject) and |x − cob ject |

are concatenated to the features from the last block of the net-
work.

6 Preprint Submitted for review / Computers & Graphics (2022)

(a) (b) (c) (d) (e)

M
lp

-b
lo

ck{𝑥
0
…
𝑥
𝑛
}

(𝑁
,6
4
)

𝐷
𝑖𝑓
𝑓
𝑒𝑟𝑒𝑛

𝑐𝑒
𝐹
𝑒𝑎
𝑡𝑢
𝑟𝑒𝑠

O
D

F
𝐹
𝑒𝑎
𝑡𝑢
𝑟𝑒𝑠

(𝑁
,3
2
,6
4
)

mlp{𝑥0…𝑥𝑛}

N
eigh

b
o

r
featu

res

(𝑁
,3
2
,6
4
)

P
o

p
u

late

(𝑁
,3
2
,6
4
)

𝑀
𝑎
𝑥

𝑝
𝑜
𝑜
𝑙𝑖𝑛

𝑔

𝑂𝐷𝐹
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛

(𝑁, 42,8)

(𝑁, 3)

𝑂𝐷𝐹𝐵𝑙𝑜𝑐𝑘

(𝑁, 64)

𝑚
𝑙𝑝
{3
2
,6
4
,6
4
}

(𝑁
,3
2
,6
4
)

𝐷
𝑖𝑓
𝑓
𝑒𝑟𝑒𝑛

𝑐𝑒
𝐹
𝑒𝑎
𝑡𝑢
𝑟𝑒𝑠

𝑚
𝑙𝑝
{3
2
,6
4
,1
2
8
}

𝐿
𝑜
𝑐𝑎
𝑡𝑖𝑜

𝑛
𝐹
𝑒𝑎
𝑡𝑢
𝑟𝑒𝑠

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑚𝑙𝑝{128,128}

(𝑁, 256)

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

(𝑁, 128)

(𝑁, 256)

𝑚𝑙𝑝{512,1024}

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑀
𝑎
𝑥

𝑝
𝑜
𝑜
𝑙𝑖𝑛

𝑔

(𝑁, 2048)

𝑚𝑙𝑝{1024,512,256,13}

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64}

(𝑁, 64)

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64}

(𝑁, 64)

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64}

(𝑁, 64)

𝑂𝐷𝐹
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛

(𝑁, 42,8)

(𝑁, 3)

𝑂𝐷𝐹𝐵𝑙𝑜𝑐𝑘

(𝑁, 64)

𝑚
𝑙𝑝
{3
2
,1
6
}

(𝑁, 32,3)

(𝑁
,3
2
,1
6
)

𝐷
𝑖𝑓
𝑓
𝑒𝑟𝑒𝑛

𝑐𝑒
𝐹
𝑒𝑎
𝑡𝑢
𝑟𝑒𝑠

𝑚
𝑙𝑝
{3
2
,6
4
,1
2
8
}

𝐿
𝑜
𝑐𝑎
𝑡𝑖𝑜

𝑛
𝐹
𝑒𝑎
𝑡𝑢
𝑟𝑒𝑠

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑚𝑙𝑝{256,128}

(𝑁, 320)

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

(𝑁, 128)

(𝑁, 256)

𝑚𝑙𝑝{512,1024}

C
𝑎
𝑡𝑒𝑔

𝑜
𝑟𝑖𝑐𝑎

𝑙
𝑣
𝑒𝑐𝑡𝑜

𝑟
𝑚
𝑙𝑝
{6
4
}

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑀
𝑎
𝑥

𝑝
𝑜
𝑜
𝑙𝑖𝑛

𝑔

(𝑁, 2112)

𝑚𝑙𝑝{512,256,128,50}

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64,64}

(𝑁, 64)

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64}

(𝑁, 64)

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64}

(𝑁, 64)

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64}

𝑂𝐷𝐹
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛

(𝑁, 42,8)

(𝑁, 3)

𝑚𝑙𝑝{128}

𝑚𝑙𝑝{512,256,C}

(1024)

𝑀
𝑎
𝑥

𝑝
𝑜
𝑜
𝑙𝑖𝑛

𝑔

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑂𝐷𝐹𝐵𝑙𝑜𝑐𝑘

(𝑁, 64)

𝑚
𝑙𝑝
{1
6
,3
2
,6
4
}

(𝑁, 32,5)

(𝑁
,3
2
,6
4
)

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64,64}

(𝑁, 64)

(𝑁, 64)

R
o

t. In
d

ep
en

d
en

t.
N

eig. 𝐹
𝑒𝑎
𝑡𝑢
𝑟𝑒𝑠

(𝑁, 256)

(𝑁, 128)

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑚𝑙𝑝{512,1024}

(𝑁, 256)

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64}

(𝑁, 64)

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64}

𝑚
𝑙𝑝
{1
6
,3
2
,6
4
}

R
o

t. In
d

ep
en

d
en

t.
P

o
in

t 𝐹
𝑒𝑎
𝑡𝑢
𝑟𝑒𝑠

𝑂𝐷𝐹
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛

(𝑁, 42,8)

(𝑁, 3)

𝑚𝑙𝑝{128}

𝑚𝑙𝑝{512,256,C}

(1024)

𝑀
𝑎
𝑥

𝑝
𝑜
𝑜
𝑙𝑖𝑛

𝑔

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑂𝐷𝐹𝐵𝑙𝑜𝑐𝑘

(𝑁, 64)

(𝑁, 32,3)

(𝑁
,3
2
,6
4
)

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64,64}

(𝑁, 64)

(𝑁, 64)

𝐷
𝑖𝑓
𝑓
𝑒𝑟𝑒𝑛

𝑐𝑒
𝐹
𝑒𝑎
𝑡𝑢
𝑟𝑒𝑠

(𝑁, 256)

(𝑁, 128)

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛

𝑚𝑙𝑝{512,1024}

(𝑁, 256)

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64}

(𝑁, 64)

𝑀𝑙𝑝 − 𝑏𝑙𝑜𝑐𝑘{64}

𝑚
𝑙𝑝
{3
2
,6
4
,6
4
}

Fig. 8. (a) Mlp-block common structure in the ODFNet that is employed for tasks of (b) classification, (c) part segmentation (d) Scene segmentation. (e)
represents the ODFNet-XYZ which is fully rotation-invariant. c represents class count.

4. Experimental Results

In this section, we present the details of the experiments and
performance evaluation results for ODFNet on classification
and segmentation tasks 1. We select widely used benchmark
datasets and evaluate the ODFNet model over those, in order to
provide a comparison with the existing methods. Particularly,
we experiment and report results on ModelNet40 and ScanOb-
jectNN for classification, ShapeNet for part segmentation, and
S3DIS for scene segmentation.

4.1. Shape Classification

For shape classification, we evaluated our model on Mod-
elNet40 [6] which consists of mesh models for 40 different
categories, and ScanObjectNN [13] which contains 3D real-
life scans for 13 different object categories which also contains
noise and missing parts.

ModelNet: To have a fair comparison, we use the prepro-
cessed data from [2] and use 1024 points for each object. Fol-
lowing the previous studies [7, 2], the objects are fit into a unit
sphere. Recent works prefer to do scaling and translation [8],
scaling and perturbing [7], and only perturbing [9] for data aug-
mentation during training. Instead, nonuniform scaling, flip-

1The source code for our ODFNet model will be provided at the time of
publication.

ping in x and y directions, and rotation by multiples of 90 de-
grees are applied. Also, random sampling is used as in [24] by
deleting half of the points before the last classification block
before max-pooling. Since the classification features are ob-
tained by a max-pooling layer, the deletion operation does not
affect the network structure. The ODFs are calculated regard-
less of this operation to avoid shape inconsistencies. To make a
fair comparison with the previous work, we compared our study
with the methods that use only 1024 points for each object. The
results in Table 1 show that our implementation outperforms
other methods by an overall accuracy score of 93.4% via a sin-
gle prediction. Also, by applying a voting mechanism with ran-
dom scaling and averaging the predictions, we obtained state-
of-the-art results among the studies that follow a similar voting
procedure.

Using the RI-XYZ pivot to calculate the ODFs, and ODFNet-
xyz network architecture, we also evaluated our ODF features
in three different scenarios focusing on rotation invariance:
train and test with z rotations (z/z), train and test with SO3
rotations (SO3/SO3), train with z rotations and test with SO3
rotations (z/SO3).

In Table 2, we examined the results for these experiments in
three groups of works (separated by horizontal lines in the ta-
ble). The first group of networks [16, 47, 48, 19, 2, 3, 24, 44]
which indicates the rotation-variant networks, for the z/z sce-
nario, generally achieves scores that are comparable to their
scores for the default setup. However, they lack robustness

Preprint Submitted for review / Computers & Graphics (2022) 7

Table 1. Overall Accuracies (OA) for point cloud classification results on
ModelNet40 dataset. (p: points, n: normals)

Method input voting OA
PointNet [2] p 89.2
PointNet++ [3] p+n 90.7
SpiderCNN [5] p+n 92.4
Point2Seq [40] p 92.6
InterpCNN [41] p 93.0
PointwiseCNN [23] p 86.1
ShapeContextNet [42] p 90.0
KCNet [43] p 91.0
PointCNN [24] p 92.2
RS-CNN [44] p 92.4
ShellNet [9] p 93.1
DGCNN [7] p 92.9
ODFNet p 93.4
Kd-network [45] p 91.8
GDANet [46] p 93.8
DensePoint [8] p 93.2
RS-CNN [44] p 93.6
ODFNet p 94.2

and their performance drops drastically for SO3/SO3 and z/SO3
scenarios. For the second group of approximately rotation-
invariant networks, small standard deviations of accuracy are
obtained for different scenarios. The third group, which also
includes the ODFNet-xyz, is fully rotation-invariant as veri-
fied by the zero standard deviation values. The performances
of rotation-invariant methods are consistent across the three
scenarios. According to the scores, the ODFNet achieves the
second-best results for the more challenging SO3/SO3 and
z/SO3 scenarios among totally rotation-invariant methods.

Despite ODFNet’s success for the z/z scenario and the orig-
inal scenario (Table 1), its accuracy is drastically decreased for
the z/SO3 scenario. It is a natural result of depending on the ob-
ject’s alignment to the XY-plane for both the training procedure
and the architecture.

ScanObjectNN: We use the original dataset that has 2048
points for each object to have a fair comparison. To eval-
uate the ODFNet on ScanObjectNN, an augmentation proce-
dure similar to the ModelNet experiments is used. However,
because the object point counts are larger here, 1024 points
are randomly selected at train time. There are five different
tasks: OBJ ONLY, OBJ BG, PB T25, PB T25R, PB T50R,
and PB T50RS. In OBJ BG, objects with background noise
are classified. OBJ ONLY consists of objects having no back-
ground noise. The other sets are augmented versions of
OBJ BG. Comparing our results with the scores given in [13],
the ODFNet model produces SoTA accuracy scores as can be
observed in Table 3.

Further Experiments: To further investigate our network’s
capacity for point cloud object abstraction, for each test sub-
ject, we extract the output of the last classification layer for
the ODFNet, as well as for DensePoint and ShellNet, where
the latter two are the previous SoTA point cloud architectures.
Then, using two widely utilized dimensionality reduction tech-

Table 2. Comparisons of the classification accuracy under different rota-
tion settings. Best results are bolded and second bests are underlined. std.
represents the standard deviation of accuracy between different settings.
The ODFNet-xyz architecture is only used for these experiments.

Method z/z SO3/SO3 z/SO3 std.
VoxNet [16] 83.0 87.3 - 3.0

SubVolSup [47] 88.5 82.7 36.6 28.4
SphericalCNN [48] 88.9 86.9 78.6 5.5
MVCNN 80x [19] 90.2 86.0 81.5 4.3

PointNet [2] 87.0 80.3 21.6 41.0
PointNet++ [3] 89.3 85.0 28.6 33.8
PointCNN [24] 91.3 84.5 41.2 27.2
RS-CNN [44] 90.3 82.6 48.7 22.1

ODFNet 91.3 88.0 17.4 34.0
RIConv [31] 86.5 86.4 86.4 0.1
SPHNet [49] 87.0 87.6 86.6 0.5
SFCNN [30] 92.3 91.0 85.3 3.5

ClusterNet [50] 87.1 87.1 87.1 0.0
RI-GCN [32] 91.0 91.0 91.0 0.0
GCANet [33] 89.0 89.2 89.1 0.0
ODFNet-xyz 90.2 90.2 90.2 0.0

niques, UMAP [53] and t-SNE [54], we project those vectors
onto 2D space and assess this mapping by the Silhouette score
[55], which evaluates whether each object is well matched to
its own cluster. The scores are given in Table 5, and the projec-
tions are visualized in Figure 9. As can be seen from the results,
although quantitative scores on the classification of these meth-
ods are close to each other, ODFNet’s features appear more
distinctive and produce a relatively more separated layout than
the other two methods, which is also observed in the Silhouette
scores.

Furthermore, to understand which points generate global fea-
tures at the classification step, features before the last max-
pooling of the network are examined. Heat maps according to
the contribution of each point to the final result are obtained for
ODFNet and DGCNN as given in Figure 10. It can be observed
that the ODFNet selects more diverse and seemingly impor-
tant feature points from the point clouds when compared to the
DGCNN2. According to the visual results, we can conclude that
for objects with relatively more complex geometric shapes, vi-
sually representative points, which are mostly corners and end-
points, are selected by the ODFNet. The ODFs for those points
that are around corners and edges have anisotropic distributions
while the ODFs on the flat areas have isotropic distributions
with similar strengths over many directions.

We also further investigate our method to analyze the effects
of two important decisions we make when calculating ODF
values: number of different conic neighborhood directions and
pivot selection. Table 6 shows the accuracies for different set-
tings. The results for Experiment A, B, and C indicate that 42
directions which are obtained by the second tessellation of the
icosahedron give the best performance compared to the first (12

2Pointwise heat maps cannot be created for DensePoint and ShellNet since
they do not use directly the points but their distribution.

8 Preprint Submitted for review / Computers & Graphics (2022)

Table 3. Classification Accuracies for different tasks in ScanObjectNN [13] dataset.
Model OBJ BG PB T25 PB T25R PB T50R PB T50RS OBJ ONLY
3DmFV [51] 68.2 67.1 67.4 63.5 63.0 73.8
PointNet [2] 73.3 73.5 72.7 68.2 68.2 79.2
SpiderCNN [5] 77.1 78.1 77.7 73.8 73.7 79.5
PointNet++ [3] 82.3 82.7 81.4 79.1 77.9 84.3
DGCNN [7] 82.8 83.3 81.5 80.0 78.1 86.2
PointCNN [24] 86.1 83.6 82.5 78.5 78.5 85.5
ODFNet 87.2 88.9 86.7 88.8 85.1 89.3

Method input mpIoU mIoU a.plane bag cap car chair e.phone guitar knife lamp laptop m.bike mug pistol rocket s.board table
PointNet [2] p 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [3] p+n 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN [7] p 84.6 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
PCNN [52] p 81.8 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
DensePoint [8] p 84.2 86.4 84.0 85.4 90.0 79.2 91.1 81.6 91.5 87.5 84.7 95.9 74.3 94.6 82.9 64.6 76.8 83.7
Point2Sequence [40] p 82.2 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8
ODFNet p 83.3 86.5 85.1 85.0 89.5 78.7 91.9 73.6 92.2 88.2 85.9 96.1 74.9 95.3 82.2 53.7 77.7 83.3

Table 4. ShapeNet Part segmentation results for different architectures. Input column indicates whether points (p) and normals (n) are used.

Table 5. Silhouette scores for last layers of ODFNet, DGCNN and ShellNet
after UMAP [53] and t-SNE [54] projection. {worst:best}:{-1:1}

Method tSNE S. Score UMAP S. Score
ODFNet 0.623 0.660
DensePoint 0.453 0.474
ShellNet 0.472 0.466

D
en

se
P
o
in
t

O
D
FN

et
Sh
el
lN
et

UMAP T-SNE

Fig. 9. The projections from the last layer outputs of ODFNet, DensePoint
and ShellNet architectures for ModelNet40 dataset onto a 2D space using
the UMAP [53] and t-SNE [54] methods.

Fig. 10. Different heat maps for DGCNN and ODFNet.

Table 6. An experiment on selection of hyperparameters: direction count
and pivot selection. OA refers to overall accuracy.

Experiment Dir. Count Pivot Sel. OA
A 12 RI-XY 92.9
B 42 RI-XY 93.4
C 162 RI-XY 93.1
D 12 RI-XYZ 91.6
E 42 RI-XYZ 91.8
F 162 RI-XYZ 91.4

directions) and third (162 directions) tessellations. The results
for the remaining experiments show that choosing pivots that
are rotation-invariant in the x-y plane works better compared
to the pivots that are fully rotation-invariant. Because all the
training data is aligned according to the z-direction, using this
direction as a pivot improves the performance.

4.2. Part Segmentation

We evaluated our segmentation network on the ShapeNet part
segmentation benchmark [11], which contains 14007 training

Preprint Submitted for review / Computers & Graphics (2022) 9

and 1874 test samples, 16 object categories each of them parti-
tioned into {2 − 6} parts, making a total of 50 parts. Following
the practice of the previous state-of-the-art [8], which used en-
sembling, during the testing phase, for every test object, we also
obtain scaled versions of test objects by +0.3%,−0.3% in each
direction and averaged their scores. We compare our perfor-
mance with those studies using a point cloud structure. Our ex-
perimental results for ShapeNet part segmentation are reported
for ODFNet along with previous methods in Table 4.

4.3. Scene Segmentation

For scene segmentation, the commonly used S3DIS dataset
[12] is utilized. The dataset contains point clouds sampled from
six different challenging scenes. General practice in experimen-
tation with this dataset involves training with a leave-one-out
cross-validation (6-fold) strategy. State-of-the-art results are
obtained for S3DIS for the overall accuracy measure as shown
in Table 7.

Table 7. Overall accuracies and mIOU values for point cloud scene seg-
mentation results on S3DIS dataset.

Method OA mIoU
PointNet [2] 78.6 47.6
PointNet++ [3] 81.0 54.5
PointSIFT [56] 88.7 70.2
Engelmann [57] 84.0 58.3
3DContextNet [58] 84.9 55.6
PointWeb [59] 87.3 66.7
ShellNet [9] 87.1 66.8
PointCNN [24] 88.1 65.4
InterpCNN [41] 88.7 66.7
DGCNN [7] 84.1 56.1
Liu et al. [60] 88.5 64.1
RandLA-Net [61] 88.0 70.0
HEPIN [62] 88.2 67.8
PointWeb [59] 87.3 66.7
CF-SIS [63] 88.0 74.0
ODFNet 90.8 72.2

4.4. Ablation Studies

We perform ablation studies on the ModelNet40 dataset
for the classification task to further analyze our decisions for
ODFNet and ODF-xyz.

To quantify the functionality of different modules of the
ODFNet, we experimented with removing ODF-Dir and ODF-
Glob blocks. For these experiments, we use 42 conic neighbor-
hood directions and the RI-XY pivot selection method. The
performance results in Table 8 show that both ODF-Dir and
ODF-Glob blocks contribute to the performance.

For the ODFNet-xyz, another ablation study is carried out
in order to analyze the two factors contributing to the rotation
invariance: (i) using rotation invariant feature vectors instead
of difference vectors; and (ii) using RI-XYZ, that is selection
of pivot directions that are also rotation invariant, instead of RI-
XY. The results given in Table 9 show that by using both factors,
the best accuracy is obtained.

Table 8. Ablation study results on ODFNet. OA refers to overall accuracy.
Experiment ODF-Dir ODF-Glob OA
A 93.4
B 92.3
C 91.9
D 91.2

Table 9. Ablation study results on ODFNet-xyz. OA refers to overall accu-
racy.

Exp.
Rot.Inv.
Features

RI-
XYZ z/z SO3/SO3 z/SO3 std.

E 90.4 85.0 42.9 26.0
F 91.6 89.5 24.9 37.9
G 90.2 90.2 90.2 0

5. Discussions and Conclusion

Our experimental results demonstrate that ODFNet achieves
the SoTA performance in both the classification task and partic-
ularly for the more challenging segmentation task in ShapeNet
and S3DIS. This provides evidence to our hypothesis that the
ODF representation, which exploits the idea of incorporation of
local point orientation distribution characteristics into the point
cloud neural network models, is highly beneficial.

The point orientation distribution features help the neural net-
work models capture further informative characteristics of the
point cloud. This is revealed by the attention that the ODFNet
model pays to the unique identifying points on an object such
as corners, tips, and borders between planar regions. Features
generated by the ODFNet correlate with an increased represen-
tation power for point clouds.

Moreover, we investigate the rotation invariance properties
of ODF representations through a variant of the proposed
ODFNet: ODFNet-xyz, which is fully rotation-invariant. Our
experimental results show that ODF features can be effectively
calculated in a rotation-invariant manner, and ODFNet-xyz
performs comparably against state-of-the-art rotation-invariant
point cloud analysis models.

From the results in Table 1 and 2, we can conclude that
the original point locations and other location-based proper-
ties are highly discriminative. However, there is a trade-off

between exploiting rotation-invariant features versus location-
based rotation-variant point features, as location-based features
are naturally not robust to rotation changes. Indeed, when the
objects are rotated, the performances of rotation-variant net-
works drastically decrease. Moreover, the established bench-
marks and procedures for evaluations on those benchmarks do
not reward the rotation-invariant representations, as indicated
by the inferior performance of rotation-invariant methods on
those benchmarks.

As for future work, in geometric representation learning of
point clouds, capturing essential defining characteristics of an
object, whether through better augmented definitions of local
patches around points as the ODFNet does or in other similarly
effective ways of local and global encoding schemes, could
provide further improvements in supervised and unsupervised

10 Preprint Submitted for review / Computers & Graphics (2022)

learning tasks on point clouds.

References

[1] LeCun, Y, Bengio, Y, Hinton, G. Deep learning. nature
2015;521(7553):436–444.

[2] Qi, CR, Su, H, Mo, K, Guibas, LJ. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017, p. 652–
660.

[3] Qi, CR, Yi, L, Su, H, Guibas, LJ. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In: Advances in neural
information processing systems. 2017, p. 5099–5108.

[4] Deng, H, Birdal, T, Ilic, S. Ppfnet: Global context aware local features
for robust 3d point matching. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, p. 195–205.

[5] Xu, Y, Fan, T, Xu, M, Zeng, L, Qiao, Y. Spidercnn: Deep learning on
point sets with parameterized convolutional filters. In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018, p. 87–102.

[6] Wu, Z, Song, S, Khosla, A, Yu, F, Zhang, L, Tang, X, et al. 3d
shapenets: A deep representation for volumetric shapes. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015,
p. 1912–1920.

[7] Wang, Y, Sun, Y, Liu, Z, Sarma, SE, Bronstein, MM, Solomon, JM.
Dynamic graph cnn for learning on point clouds. ACM Transactions on
Graphics (TOG) 2019;38(5):146.

[8] Liu, Y, Fan, B, Meng, G, Lu, J, Xiang, S, Pan, C. Densepoint: Learning
densely contextual representation for efficient point cloud processing. In:
Proceedings of the IEEE International Conference on Computer Vision.
2019, p. 5239–5248.

[9] Zhang, Z, Hua, BS, Yeung, SK. Shellnet: Efficient point cloud con-
volutional neural networks using concentric shells statistics. In: Proceed-
ings of the IEEE International Conference on Computer Vision. 2019, p.
1607–1616.

[10] Lei, H, Akhtar, N, Mian, A. Octree guided cnn with spherical kernels
for 3d point clouds. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, p. 9631–9640.

[11] Yi, L, Kim, VG, Ceylan, D, Shen, I, Yan, M, Su, H, et al. A scalable
active framework for region annotation in 3d shape collections. ACM
Transactions on Graphics (TOG) 2016;35(6):210.

[12] Armeni, I, Sener, O, Zamir, AR, Jiang, H, Brilakis, I, Fischer, M, et al.
3d semantic parsing of large-scale indoor spaces. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2016, p.
1534–1543.

[13] Uy, MA, Pham, QH, Hua, BS, Nguyen, T, Yeung, SK. Revisiting point
cloud classification: A new benchmark dataset and classification model
on real-world data. In: Proceedings of the IEEE International Conference
on Computer Vision. 2019, p. 1588–1597.

[14] Sedaghat, N, Zolfaghari, M, Amiri, E, Brox, T. Orientation-boosted
voxel nets for 3d object recognition. arXiv preprint arXiv:160403351
2016;.

[15] Li, Y, Pirk, S, Su, H, Qi, CR, Guibas, LJ. Fpnn: Field probing neural
networks for 3d data. In: Advances in Neural Information Processing
Systems. 2016, p. 307–315.

[16] Maturana, D, Scherer, S. Voxnet: A 3d convolutional neural network for
real-time object recognition. In: Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on. IEEE; 2015, p. 922–928.

[17] Riegler, G, Ulusoy, AO, Geiger, A. Octnet: Learning deep 3d represen-
tations at high resolutions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, p. 3577–3586.

[18] Sfikas, K, Pratikakis, I, Theoharis, T. Ensemble of panorama-based
convolutional neural networks for 3d model classification and retrieval.
Computers & Graphics 2018;71:208–218.

[19] Su, H, Maji, S, Kalogerakis, E, Learned-Miller, E. Multi-view convo-
lutional neural networks for 3d shape recognition. In: Proceedings of the
IEEE international conference on computer vision. 2015, p. 945–953.

[20] Zanuttigh, P, Minto, L. Deep learning for 3d shape classification from
multiple depth maps. In: Proceedings of IEEE International Conference
on Image Processing (ICIP). 2017,.

[21] Guo, H, Wang, J, Gao, Y, Li, J, Lu, H. Multi-view 3d object retrieval
with deep embedding network. IEEE Transactions on Image Processing
2016;25(12):5526–5537.

[22] Feng, Y, You, H, Zhang, Z, Ji, R, Gao, Y. Hypergraph neural net-
works. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence; vol. 33. 2019, p. 3558–3565.

[23] Hua, BS, Tran, MK, Yeung, SK. Pointwise convolutional neural net-
works. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, p. 984–993.

[24] Li, Y, Bu, R, Sun, M, Wu, W, Di, X, Chen, B. Pointcnn: Convolution
on x-transformed points. In: Advances in Neural Information Processing
Systems. 2018, p. 820–830.

[25] Yang, Y, Feng, C, Shen, Y, Tian, D. Foldingnet: Point cloud auto-
encoder via deep grid deformation. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2018, p. 206–215.

[26] Zamorski, M, Zieba, M, Klukowski, P, Nowak, R, Kurach, K,
Stokowiec, W, et al. Adversarial autoencoders for compact represen-
tations of 3d point clouds. Computer Vision and Image Understanding
2020;193:102921.

[27] Thomas, H, Qi, CR, Deschaud, JE, Marcotegui, B, Goulette, F, Guibas,
LJ. Kpconv: Flexible and deformable convolution for point clouds. arXiv
preprint arXiv:190408889 2019;.

[28] Boulch, A. Convpoint: Continuous convolutions for point cloud process-
ing. Computers & Graphics 2020;88:24–34.

[29] Guo, Y, Wang, H, Hu, Q, Liu, H, Liu, L, Bennamoun, M. Deep
learning for 3d point clouds: A survey. arXiv preprint arXiv:191212033
2019;.

[30] Rao, Y, Lu, J, Zhou, J. Spherical fractal convolutional neural networks
for point cloud recognition. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2019, p. 452–460.

[31] Zhang, Z, Hua, BS, Rosen, DW, Yeung, SK. Rotation invariant convolu-
tions for 3d point clouds deep learning. In: 2019 International Conference
on 3D Vision (3DV). IEEE; 2019, p. 204–213.

[32] Kim, S, Park, J, Han, B. Rotation-invariant local-to-global representa-
tion learning for 3d point cloud. arXiv preprint arXiv:201003318 2020;.

[33] Zhang, Z, Hua, BS, Chen, W, Tian, Y, Yeung, SK. Global con-
text aware convolutions for 3d point cloud understanding. arXiv preprint
arXiv:200802986 2020;.

[34] Tuch, DS. Q-ball imaging. Magnetic Resonance in Medicine: An Official
Journal of the International Society for Magnetic Resonance in Medicine
2004;52(6):1358–1372.

[35] Cetin, S, Unal, G. A higher-order tensor vessel tractography for seg-
mentation of vascular structures. IEEE transactions on medical imaging
2015;34(10):2172–2185.

[36] Bloy, L, Verma, R. On computing the underlying fiber directions from
the diffusion orientation distribution function. In: International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention.
Springer; 2008, p. 1–8.

[37] Descoteaux, M, Angelino, E, Fitzgibbons, S, Deriche, R. Regular-
ized, fast, and robust analytical q-ball imaging. Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic
Resonance in Medicine 2007;58(3):497–510.

[38] McGraw, T, Vemuri, BC, Yezierski, B, Mareci, T. Von mises-fisher
mixture model of the diffusion odf. In: 3rd IEEE International Sym-
posium on Biomedical Imaging: Nano to Macro, 2006. IEEE; 2006, p.
65–68.

[39] Ehricke, HH, Otto, KM, Klose, U. Regularization of bending and cross-
ing white matter fibers in mri q-ball fields. Magnetic resonance imaging
2011;29(7):916–926.

[40] Liu, X, Han, Z, Liu, YS, Zwicker, M. Point2sequence: Learning the
shape representation of 3d point clouds with an attention-based sequence
to sequence network. In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence; vol. 33. 2019, p. 8778–8785.

[41] Mao, J, Wang, X, Li, H. Interpolated convolutional networks for 3d
point cloud understanding. In: Proceedings of the IEEE International
Conference on Computer Vision. 2019, p. 1578–1587.

[42] Xie, S, Liu, S, Chen, Z, Tu, Z. Attentional shapecontextnet for point
cloud recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, p. 4606–4615.

[43] Shen, Y, Feng, C, Yang, Y, Tian, D. Mining point cloud local structures
by kernel correlation and graph pooling. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, p. 4548–
4557.

[44] Liu, Y, Fan, B, Xiang, S, Pan, C. Relation-shape convolutional neural
network for point cloud analysis. In: Proceedings of the IEEE Conference

Preprint Submitted for review / Computers & Graphics (2022) 11

on Computer Vision and Pattern Recognition. 2019, p. 8895–8904.
[45] Klokov, R, Lempitsky, V. Escape from cells: Deep kd-networks for

the recognition of 3d point cloud models. In: Proceedings of the IEEE
International Conference on Computer Vision. 2017, p. 863–872.

[46] Xu, M, Zhang, J, Zhou, Z, Xu, M, Qi, X, Qiao, Y. Learning geometry-
disentangled representation for complementary understanding of 3d ob-
ject point cloud. arXiv preprint arXiv:201210921 2020;.

[47] Qi, CR, Su, H, Nießner, M, Dai, A, Yan, M, Guibas, LJ. Volumetric
and multi-view cnns for object classification on 3d data. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016,
p. 5648–5656.

[48] Esteves, C, Allen-Blanchette, C, Makadia, A, Daniilidis, K. Learning
so (3) equivariant representations with spherical cnns. In: Proceedings of
the European Conference on Computer Vision (ECCV). 2018, p. 52–68.

[49] Poulenard, A, Rakotosaona, MJ, Ponty, Y, Ovsjanikov, M. Effective
rotation-invariant point cnn with spherical harmonics kernels. In: 2019
International Conference on 3D Vision (3DV). IEEE; 2019, p. 47–56.

[50] Chen, C, Li, G, Xu, R, Chen, T, Wang, M, Lin, L. Clusternet:
Deep hierarchical cluster network with rigorously rotation-invariant rep-
resentation for point cloud analysis. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, p. 4994–
5002.

[51] Ben-Shabat, Y, Lindenbaum, M, Fischer, A. 3dmfv: Three-dimensional
point cloud classification in real-time using convolutional neural net-
works. IEEE Robotics and Automation Letters 2018;3(4):3145–3152.

[52] Atzmon, M, Maron, H, Lipman, Y. Point convolutional neural networks
by extension operators. arXiv preprint arXiv:180310091 2018;.

[53] McInnes, L, Healy, J, Melville, J. Umap: Uniform manifold ap-
proximation and projection for dimension reduction. arXiv preprint
arXiv:180203426 2018;.

[54] Maaten, Lvd, Hinton, G. Visualizing data using t-sne. Journal of ma-
chine learning research 2008;9(Nov):2579–2605.

[55] Rousseeuw, PJ. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied math-
ematics 1987;20:53–65.

[56] Jiang, M, Wu, Y, Zhao, T, Zhao, Z, Lu, C. Pointsift: A sift-like
network module for 3d point cloud semantic segmentation. arXiv preprint
arXiv:180700652 2018;.

[57] Engelmann, F, Kontogianni, T, Schult, J, Leibe, B. Know what your
neighbors do: 3d semantic segmentation of point clouds. In: Proceedings
of the European Conference on Computer Vision (ECCV). 2018, p. 0–0.

[58] Zeng, W, Gevers, T. 3dcontextnet: Kd tree guided hierarchical learning
of point clouds using local and global contextual cues. In: Proceedings of
the European Conference on Computer Vision (ECCV). 2018, p. 0–0.

[59] Zhao, H, Jiang, L, Fu, CW, Jia, J. Pointweb: Enhancing local neigh-
borhood features for point cloud processing. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, p. 5565–
5573.

[60] Liu, J, Yu, M, Ni, B, Chen, Y. Self-prediction for joint instance and se-
mantic segmentation of point clouds. In: European Conference on Com-
puter Vision. Springer; 2020, p. 187–204.

[61] Hu, Q, Yang, B, Xie, L, Rosa, S, Guo, Y, Wang, Z, et al. Randla-
net: Efficient semantic segmentation of large-scale point clouds. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, p. 11108–11117.

[62] Jiang, L, Zhao, H, Liu, S, Shen, X, Fu, CW, Jia, J. Hierarchical
point-edge interaction network for point cloud semantic segmentation. In:
Proceedings of the IEEE International Conference on Computer Vision.
2019, p. 10433–10441.

[63] Wen, X, Han, Z, Youk, G, Liu, YS. Cf-sis: Semantic-instance seg-
mentation of 3d point clouds by context fusion with self-attention. In:
Proceedings of the 28th ACM International Conference on Multimedia.
2020, p. 1661–1669.

	1 Introduction
	2 Related Works
	3 Method
	3.1 ODF Representation for Point Clouds
	3.2 ODFBlock
	3.3 ODFNet Network Models
	3.3.1 ODFNet
	3.3.2 ODFNet-xyz

	4 Experimental Results
	4.1 Shape Classification
	4.2 Part Segmentation
	4.3 Scene Segmentation
	4.4 Ablation Studies

	5 Discussions and Conclusion

