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A B S T R A C T

This paper presents the results of SHREC’21 track: Quantifying Shape Complexity.
Our goal is to investigate how good the submitted shape complexity measures are (i.e.
with respect to ground truth) and investigate the relationships between these complexity
measures (i.e. with respect to correlations). The dataset consists of three collections:
1800 perturbed cube and sphere models classified into 4 categories, 50 shapes inspired
from the fields of architecture and design classified into 2 categories, and the data from
the Princeton Segmentation Benchmark, which consists of 19 natural object categories.
We evaluate the performances of the methods by computing Kendall rank correlation
coefficients both between the orders produced by each complexity measure and the
ground truth and between the pair of orders produced by each pair of complexity mea-
sures. Our work, being a quantitative and reproducible analysis with justified ground
truths, presents an improved means and methodology for the evaluation of shape com-
plexity.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

Shape complexity is studied across several fields such as psy-2

chology [1], design [2, 3], computer vision [4]. In the con-3

text of 3D shapes, it has the potential to be useful in shape4

retrieval [5, 6], measuring neurological development and dis-5

orders [7, 8], in determining the processes and costs involved6

for manufacturing products [2, 9], etc. Early work on shape7

∗Corresponding author: Tel.: +90-539-478-4937
e-mail: mferhata@gmail.com (Mazlum Ferhat Arslan)

1Track organizers

complexity appears in the literature of experimental psychol- 8

ogy as well as in literature related to design and aesthetics. The 9

classical aesthetic notions of “unity” and “variety” [10], or com- 10

parably, “order” and “complexity” [11] are directly connected 11

to the complexity of spatial objects. One of the first measures 12

of complexity for polygonal shapes can be found in [11]. At- 13

tneave [1] conducted human experiments to seek correlations of 14

shape complexity with scale, curvedness, symmetry and num- 15

ber of turns. On the basis of the variety in the responses from 16

human subjects, Attneave states that shape complexity is ill- 17
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defined. With the premise of circles being the simplest shapes,1

a natural candidate for the quantification of shape complexity2

is P2/A. In several works ([1, 3]) it is used as a measure of the3

complexity along with other indicators. In most other works4

[4, 12, 13, 14, 15, 16], tools from information theory, on top5

of various geometric features are used to quantify complexity.6

Work that relates complexity to algorithmic information theory7

and is applied to objects of art and design can also be found8

in Stiny and Gips [17]. Rossignac [18] provides a classifica-9

tion of shape complexity that focuses on measuring different10

aspects of computer representations for 3D shapes. The variety11

of approaches taken in the quantification of shape complexity12

further supports the claim that complexity can obtain a variety13

of meanings based on the approach that one chooses to take in14

a particular research area and for the particular task at hand.15

There is a lack of benchmark datasets for shape complexity.16

Even the methodologies in the literature need improvements.17

For example, in many cases just visual results are reported with-18

out quantitative analysis [19, 13]. The methods are neither19

compared to other methods nor evaluated in terms of statisti-20

cal consistency. In this track paper, we aim to account for and21

investigate different aspects of complexity that can help other22

researchers to develop and test their methods. In particular, we23

investigate how good the submitted shape complexity measures24

are (i.e. with respect to ground truth) and investigate the rela-25

tionships between these complexity measures (i.e. with respect26

to pairwise correlations). Due to the ill-defined nature of com-27

plexity, a linear order may not make sense. Hence, we propose28

to explore complexity using multiple tasks and multiple shape29

collections.30

The first collection is composed of subgroups obtained by31

introducing additive or subtractive noise to two basic shapes:32

sphere and cube. The purpose is to investigate the relation of33

complexity to noise level. The second collection is composed of34

artificial 3D shapes constructed by transforming and combining35

multiple elements, and evaluated by experts to provide ground36

truth. The purpose is to investigate the complexity methods37

in relation to perceptual categories. The final collection is an38

already existing 3D shape dataset which was originally devel- 39

oped as a segmentation benchmark. We repurpose this data and 40

use the segmentation ground truth as a means to investigate 3D 41

shape complexity via a proxy (secondary) task. The main con- 42

tributions of this work are as follows: 43

• Generation of two novel shape collections with associated 44

ground truth, and repurposing of a previous segmentation 45

benchmark for assessing complexity measures. 46

• Systematic evaluation of the performance of a selection 47

of both 2D and 3D classical and recent shape complexity 48

measures. 49

• Assessment of similarities and differences between differ- 50

ent measures by using pairwise correlations and cluster- 51

ing based on their performance with respect to multiple 52

ground truths. 53

Note that due to the ill-defined nature of shape complexity our 54

dataset contains three shape collections with different character- 55

istics. Each collection in the dataset contains a different type of 56

3D object with ground truth defined and obtained in a different 57

manner. 58

The paper is organized as follows: In Section 2 the dataset 59

is introduced. In Section 3 the ground truths and the evaluation 60

strategy are explained. In Section 4 the short descriptions of the 61

participating methods are included. In Section 5 the the eval- 62

uation results for each collection in the dataset are presented. 63

Finally, Section 6 is Discussion and Section 7 is Conclusion. 64

2. Dataset 65

The used dataset consists of three collections each aiming to 66

account for a different aspect of shape complexity. The first 67

two collections are created synthetically, and the third is an ex- 68

isting collection consisting of natural shapes. The ground truth 69

for the first collection is based on the parameters used in creat- 70

ing the collection. For the second collection, the ground truth 71

is provided by two design experts on the final design object. 72

The purpose of the third collection is to investigate how esti- 73
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mated complexity is related to the number of parts perceived by1

humans, which we hypothesise is related to shape complexity.2

2.1. Collection 1 – Perturbed basic shapes3

In this collection we aim to explore the correlation between4

shape complexity and magnitude of perturbations of a cube and5

a sphere.6

A cube of side length 199 voxels and a sphere of radius7

100 voxels are stochastically perturbed additively and subtrac-8

tively, separately. This forms four families (additively perturbed9

cubes, subtractively perturbed cubes, and so on). The algorithm10

used in perturbing a shape introduces a perturbation at a ran-11

dom location on the shape’s boundary in each application. The12

algorithm has two parameters: i) width (w) determining the area13

of effect of the perturbations and ii) number of times of appli-14

cation (c) determining how many times a local perturbation is15

introduced. Both parameters are set to three different values,16

w ∈ {3, 4, 5} and c ∈ {25, 50, 75}. This results in a group of17

nine shapes. A sample group for an additively perturbed cube18

is displayed in Fig. 1. Fifty such groups form a family.19

c = 25 c = 50 c = 75

w = 3

w = 4

w = 5

Fig. 1. A sample group of additively perturbed cubes.

The shapes in this collection were distributed to the participants20

as both volumetric data and triangular meshes.21

2.2. Collection 2 – Parametric shape families22

The second collection is made up of two distinct families of23

shapes and each family contains twenty five shapes. The shapes24

in this collection are inspired from 3D models and designs that25

are commonly found in the fields of architecture and urban de-26

sign. The shapes were created with two primary objectives in27

mind. The first objective was to have shapes that vary para- 28

metrically in terms of a few spatial features. The set of spatial 29

features is different for each family (see below), but in both fam- 30

ilies, these features guide the generation of the shapes in a sys- 31

tematic way via algorithms. The second objective was to have 32

shapes that on the one hand are spatially “rich”, in the sense 33

that they can be deployed in a variety of realistic design scenar- 34

ios and problems, and on the other hand, are abstract enough 35

to not suggest fixed typological interpretations or the shapes of 36

everyday objects. While such shapes make the task of measur- 37

ing complexity significantly more challenging, they present an 38

opportunity for a broader exploration of what constitutes com- 39

plexity of spatial objects. 40

The shapes in both families are generated with the built- 41

in scripting language of the Rhinoceros 3D software package 42

(Robert McNeel & Associates, USA). All shapes are repre- 43

sented as watertight triangle meshes and were distributed to the 44

workshop’s participants in this format. 45

In the first family, the shapes are generated by stacking 46

cuboids. The main spatial features that control the generation 47

are the number of cuboids and the length of the side faces of 48

each cuboid. An additional rotational factor is used for eleven 49

out of twenty five shapes in the family. In more detail, for each 50

shape in the family the opposite faces of each cuboid are equal 51

and all cuboids have constant height (heights are adjusted au- 52

tomatically based on the number of cuboids, for a fixed total 53

height). The sizes of the cuboids are controlled by varying the 54

length of the side faces according to the function of a prede- 55

fined curve (either a sine or a Bezier curve). For the shapes that 56

are controlled by a rotational factor, variation is also achieved 57

by varying the angle of rotation of the cuboids around a central 58

vertical axis. The resulting shapes can be understood as design 59

objects ranging anywhere between pedestals and columns, to 60

high-rise buildings and towers. 61

In the second family, the shapes are generated by aggregating 62

three, four or five cuboids within a predefined rectangular area 63

in the plane. All the resulting shapes form connected config- 64

urations (that is to say, there are no gaps between neighboring 65
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Fig. 2. Sample shapes from the first family of Collection 2.

cuboids) and the cuboids are merged in a single solid. The main1

spatial features that control the generation are the number of2

cuboids, the locations of the cuboids within the rectangular area3

and their individual heights. The lengths of the side faces of all4

cuboids are equal. Variation in the way cuboids are aggregated5

in the plane is achieved mainly by varying the locations and the6

heights of the cuboids. This is done by randomly sampling val-7

ues from the allowable ranges specified for the locations and8

the heights. The resulting shapes can be understood as designs9

ranging anywhere between furniture and stairs, to volumes of10

buildings that form city blocks.

Fig. 3. Sample shapes from the second family of Collection 2.

11

2.3. Collection 3 – Manually segmented shapes12

Collection 3 is the dataset for Princeton mesh segmentation13

benchmark [20]. We use this set with the primary objective of14

exploring how shape complexity measures correlate with the15

uniformity of the number of segments of the segmentations of16

the shape. The benchmark consists of 380 shapes across 19 cat-17

egories and their human-generated segmentations. As opposed18

to the synthetic shapes in the first two collections, the shapes19

in the benchmark are natural. As such, they have a particular20

semantic content, which may affect the perception of complex-21

ity. The availability of manual segmentations for this collection22

makes it an ideal candidate to be used in exploring complexity23

by using segmentation as a proxy task.24

The shapes in this collection were distributed to the partici-25

pants as triangular meshes.26

2.4. 2D Collections 27

Most of the shape quantifying methods in the literature work 28

exclusively in 2D. To include such methods into this study 29

we have created the 2D analogues of the shapes. We cre- 30

ate twelve 2D silhouettes of each shape in the above col- 31

lections from the views determined by the azimuthal angles 32

({0◦, 30◦, 60◦, . . . 330◦}) and the elevation angle (30◦). The re- 33

sulting silhouettes of a shape are similar in size, thus, the col- 34

lections do not pose a challenge in terms of scale-invariance. 35

The contributing 2D methods report the averaged score over 36

the twelve silhouettes as the measure of complexity for the cor- 37

responding 3D shape. 38

The families consisting of subtractively perturbed spheres 39

and cubes are excluded because the resulting silhouettes highly 40

depend on whether the perturbations appear on the 2D boundary 41

of a given view or not, rather than the controlling parameters. 42

3. Ground truths and evaluation 43

3.1. Collection 1 44

For the first collection, the two parameters w and c used in creat- 45

ing the shapes constitute the ground truth. We expect the com- 46

plexity scores to increase as either of the parameters increase. 47

The performance of the methods are measured in a controlled 48

experiment manner: we keep one of the parameters fixed and 49

let the other vary. The performance of a method is then mea- 50

sured by averaging the Kendall rank correlation coefficient over 51

the groups. This results in six measures of performance (one 52

for each value of the parameters) for a family. 53

3.2. Collection 2 54

In Collection 2 the ground truth is provided manually. Two ex- 55

perts on the topics of Computer-Aided Design and 3D Shape 56

Modeling determined the ground truth complexities of the 57

shapes in the two families. The shapes in each family were 58

presented to an expert in a random presentation order. 59

The evaluation of the experts was based on a qualitative com- 60

parison of the shapes in each collection that aimed to deter- 61

mine how simple or difficult it would be to model or execute 62

a shape in three-dimensional space in a finite number of steps. 63
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The shapes in a family were divided into groups of shapes of1

comparable executional difficulty. Shapes in different groups2

were considered incommensurate from this standpoint.3

For the first family, the evaluation produced the following4

five groups in which shapes are listed in increasing order of5

complexity:6

Group 1: (16, 14, 12, 17, 18, 19, 20)7

Group 2: (15, 13, 24, 22)8

Group 3: (23, 21, 25)9

Group 4: (11, 10, 7, 1, 2)10

Group 5: (9, 8, 4, 5, 6, 3)11

For the second family, the evaluation produced the following12

six groups in which shapes are considered to be of equal com-13

plexity:14

Group 1: (18, 24, 17, 20)15

Group 2: (25, 21, 22, 19)16

Group 3: (5, 3, 2)17

Group 4: (23, 16, 15)18

Group 5: (6, 4, 14, 12, 13)19

Group 6: (7, 9, 10, 1, 11, 8)20

As the shapes from different groups are incommensurate, we21

provide ground truths only for the shapes in the same group.22

While many qualitative notions of complexity could equally ap-23

ply to shapes of the kind we use in this collection, we consider24

the aforementioned notion of executional complexity one of the25

best determinants of complexity for 3D models representing de-26

sign objects (i.e. objects that can be used for design purposes).27

It is also an approach to the characterization of complexity that28

has not been investigated in the literature.29

Since we have a total order on the groups of the first family,30

we measure the performance of the methods using the Kendall31

rank correlation coefficient between the complexity order indi-32

cated by the assigned complexity scores and the ground truth.33

For the second collection, we measure the uniformity of in-34

group scores. The scores are first normalized to the range [0, 1].35

The pairwise absolute differences of the normalized scores are36

summed to yield the performance measure of a group. Note that37

the lower score indicates a better performance, in contrast to the 38

rest of the performance measures. 39

3.3. Collection 3 40

The shapes in the third collection are segmented by both hu- 41

mans and computer algorithms in [20]. We consider the data 42

collected from humans to be an indicator of a shape’s complex- 43

ity. The fact that these human annotations differ is consistent 44

with the ill-posed nature of specifying both segmentation and 45

complexity. For each shape, there are 11 human-generated seg- 46

mentations and 7.90 segments, on average. We use two ground 47

truths: one is the order induced on the shapes by the mean num- 48

ber of segmentations (µ) and the other is the order acquired by 49

the standard deviation (σ) of the number of segments. For each 50

ground truth, we calculate i) Kendall rank correlation coeffi- 51

cient over all the shapes in the collection which we refer to 52

as τµall and τσall in Table 4 ii) the averaged coefficients 1
N

∑
i τi 53

where τi is the correlation coefficient for the ith category, re- 54

ferred to as τµcat and τσcat . 55

4. Methods 56

We present the examined methods in this section. A total of 19 57

methods are presented in 6 groups: 58

1. A multi-scale measure of complexity for arbitrary dimen- 59

sional discrete shapes [16] by M. F. Arslan, § 4.1, 60

2. Alpha-shape complexity [21] by J. Gardiner and C. 61

Brassey, § 4.2 62

3. Discrepancy [15] by A. Genctav, § 4.3, 63

4. PARCELLIN distance [14] by M. Genctav, § 4.4, 64

5. 2D multi-view based shape convexity measures C1, C2, 65

[22], [23] by P. L. Rosin § 4.5 66

6. 2D multi-view based shape complexity measures [24], [4], 67

CCRE ([25]), [26] and Cσ, [27], [28], [29], CPC ([19]) from 68

the literature, § 4.6. 69

4.1. A Multi-scale Measure of Complexity for Arbitrary Dimen- 70

sional Discrete Shapes (M.F. Arslan) 71

Assuming the space (of any dimensions) in which the shape S

is embedded has uniform grid, we solve the following partial
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differential equation (PDE) inside S
(
∆∞ − 1

ρ2

)
fS = −1 subject to fS

∣∣∣∣
∂S

= 0 (1)

where ∆∞ is the Laplace operator in L∞. The term ∆∞ f is the1

minimizer of
∫
|∇ f |p as p → ∞. The parameter ρ is chosen as2

the maximum of the L∞ distance transform of S (the field is re-3

ferred to as t from now on). This choice ensures the robustness4

of solutions under changes in scale.5

We construct fS using the iterative scheme given in [16].

However, as the 3D shapes in the collections contain high num-

ber of voxels, instead of applying the convergence conditions

used there, we start with a guided initial assumption and solve

for a fixed number of steps. For the shapes in Collection 1, we

solve for 200 steps, whereas for the shapes in Collection 2 and

3 (sampled to fit into a rectangle of total volume 300×300×300

voxels) we solve for 600 steps. The guided initial assumption is

the analytical solution of (1) for an axis-aligned origin-centered

rectangle whose value at the point (x, y) ∈ S is given as:

f (0)
S (x, y) = ρ2−ρ2 e

e2 + 1
×

(
exp

{
max {|x|, |y|}

ρ

}
+ exp

{−max {|x|, |y|}
ρ

})
.

In vague terms, fS can be regarded as a well-behaving dis-6

tance transform. The discrepancy between fS and t is due to the7

smoothed propagation of the level sets of fS in comparison to8

those of t. We use the entropy of the values of f̂S ( fS normal-9

ized to [0, 1]) collected from a level set t = t0 to measure the10

discrepancy at the scale t0. We construct a pseudo-probability11

distribution acquired from f̂S
∣∣∣
t=t0

by partitioning it into 102412

bins and normalizing it to have a total sum of 1. The entropy of13

this distribution gives the complexity of the shape at the scale14

t = t0.15

The submitted scores are the summation of the complexities16

at scales t ≤ 0.1.17

4.2. Alpha-shape Complexity (J. Gardiner and C. Brassey)18

Model pre-processing. All data collections were pre-processed19

to produce the prerequisite 3D point clouds for subsequent20

alpha-shape complexity analysis. Each model’s original vol-21

ume and a reference length (to be used as a metric of the22

model’s scale) were also calculated during pre-processing. 23

Models in Collection 1 were stored in a 3D voxel format, and 24

the points clouds were produced by taking the row, column and 25

depth of each voxel’s location as the x, y and z coordinates 26

respectively and randomly down-sampling to 100,000 points. 27

Previous analyses [30, 21, 31] have found 100,000 points to be 28

a good compromise between retaining sufficient detail of the 29

original model and minimising calculation times. The volume 30

of each model in Collection 1 was calculated as the sum of the 31

number of voxels in the original model. The models in Collec- 32

tions 2 and 3 were stored as watertight surface meshes. Point 33

clouds were produced by generating a spatially random distri- 34

bution of 100,000 points inside each mesh (Fig. 4). The volume 35

of each model in Collections 2 and 3 was calculated as the vol- 36

ume of the original watertight mesh. 37

Fig. 4. Example generation of a point cloud from an original watertight
mesh by filling the internal volume of the mesh with a random distribution
of 100,000 points.

Across all models, a reference length was calculated to be 38

used for model scaling within the complexity algorithm. Ref- 39

erence length was calculated as the mean of the distance from 40

10,000 random points (10% of the point cloud) to their nearest 41

100 neighbors. 42

Alpha-shape complexity algorithm. Once model point clouds, 43

and their associated volumes and reference lengths, had been 44

calculated, the alpha-shape complexity algorithm (originally 45

developed for analysing biological datasets lacking homolo- 46

gous landmarks [30, 21, 31]) was run. Alpha-shapes [32] are a 47

suite of shapes fitted to underlying point clouds, with the ‘tight- 48

ness’ of their fit being determined by the value of the radius α. 49
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For large values of α, the fit is coarse and tends to a convex1

hull as α approaches infinity (Fig. 5). For smaller values of α2

the fit conforms tightly to the underlying ‘shape’ of the object,3

until the single alpha shape fit breaks down and begins to form4

multiple separate objects as α approaches the smallest distance5

between any two points within the point cloud, where no fit will6

be achieved.7

To calculate the shape complexity of each model, ten separate

alpha-shapes were fitted to each point cloud across a range of

α values (Fig. 5), from highly refined (corresponding to fine

scale complexity) to very coarse (corresponding to gross scale

complexity). To account for differences in the absolute size of

models, the α used for each model was scaled by the reference

length such that

αm = k × Iref

where αm is the model-specific alpha radius, k the refinement8

coefficient and Iref the point cloud reference length calculated9

in pre-processing. For the ten alpha-shape fits calculated,10

the same ten values of k (equally spaced on a logarithmic11

scale) were used, ensuring fits are equivalent across each12

model despite differences in absolute scale. Alpha-shapes13

were fitted using the “alphavol” function of Jonas Lundgren14

(www.mathworks.co.uk/matlabcentral/fileexchange/28851-15

alpha-shapes).16

Following shape fitting, ‘volume ratios’ were calculated for17

each of the fits as the ratio of alpha-shape volume to the orig-18

inal model’s volume (calculated in pre-processing). Relatively19

larger volume ratios therefore correspond to greater complex-20

ity in the model at any given scale. To further boil down the21

results of the alpha-shape analysis, the ten volume ratios pro-22

duced for each model were subject to principal component anal-23

ysis (PCA) as a dimension reduction technique. PCAs were run24

for each collection separately and the first two principal com-25

ponent scores were taken as the complexity metrics for each26

model. All data pre-processing and analysis were performed in27

Matlab R2020b (Mathworks Inc., Natick, USA).28

Fig. 5. Example chair model illustrating the ten alpha-shape fits used in the
complexity analysis, ranging from highly refined (top left) to very coarse (
bottom right). Particular underlying details of the model’s point cloud are
resolved at the different scales of fit, from only gross shape at the coarsest
fits to details of the chair’s legs and back at finer scales.

4.3. Discrepancy (A. Genctav) 29

Discrepancy [15] is a field D : Ω → R defined over shape do- 30

main Ω. At each shape point p, it measures local deviation from 31

a reference disk shape. Radius of the reference disk is defined 32

using a global shape property A that is radius of maximally in- 33

scribed circle of Ω. The deviation is measured indirectly using 34

an auxiliary field, which is selected as solution of the following 35

screened Poisson equation: 36

(
∆ − 1

A2

)
v = 0 subject to v

∣∣∣∣
∂Ω

= 1 (2)

The auxiliary field is obtained numerically for Ω and analyti- 37

cally for the reference disk. For each shape point p, discrepancy 38

D(p) is computed as the difference between value of the auxil- 39

iary field at p and value of the auxiliary field at the correspond- 40

ing point of p in the reference disk. For each shape point p, the 41

corresponding point in the reference disk is specified using its 42

minimal distance to the shape boundary ∂Ω. Due to uniform 43

inhomogeneous boundary condition in (2), the auxiliary field 44

is circularly symmetric for the reference disk, so it takes the 45

same value at each point with the same minimal distance to the 46

boundary. For more information including the implementation 47

details, the reader is referred to [15]. 48

Discrepancy is uniformly zero for a perfect disk and, hence, 49

the entropy is 0. As shape deviated from a disk, discrepancy 50

takes its highest positive values on central regions and lowest 51

negative values on appendages, protrusions and boundary de- 52

tail, and the entropy increases. 53
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In this work, we used discrepancy entropy for measuring1

shape complexity. As discrepancy is presented in [15] for 2D2

shapes, our method works on the 2D views of 3D shapes.3

4.4. PARCELLIN Distance (M. Genctav)4

In this method, following the idea presented in [14], (3) is

solved simultaneously with different source functions, which

are designed for exploration of the shape volume, subject to ho-

mogeneous Dirichlet boundary conditions.

(∆ − α) Φi = − fi (3)

where ∆ denotes the Laplace operator, and α is a small damp-5

ing parameter introduced for numerical conditioning and i =6

1, 2, . . . , n.7

By design, each source function represents an initial hypoth-

esis for a decomposition of the shape volume into central and

outer regions which correspond to positive and negative sets

in the steady state distribution, respectively. Specifically, the

source function selected for the ith solution is

f (x)i = sign (d(x) − i × s)

where s = 1/n is the step size and d(x) is the normalized signed8

distance between the location x and the boundary point near-9

est to x. The normalization is performed by dividing the raw10

distances to their maximum value.11

Once a set of n = 70 equations are solved, the shape informa-12

tion contained in the solutions Φi are aggregated by assigning13

each shape location the number of solutions in which the loca-14

tion falls into the outer region, i.e. attains a negative value.15

Finally, to obtain a measure of complexity, the entropy is16

computed on the 70 bin histogram of function values near shape17

boundary.18

4.5. 2D Multi-view Based Shape Convexity (P.L. Rosin)19

Several methods for measuring convexity were tested as it is20

hypothesised that a convexity measure can act as a shape com-21

plexity measure. It is likely that oscillations and irregularities in22

a shape’s boundary which lead to scores indicating lower con-23

vexity will also indicate high complexity.24

The method [22] measured convexity by applying a polyg- 25

onal convexification process which applies a flip operation that 26

reflects a polygon’s concavities about their corresponding edges 27

(termed lids) in the convex hull. The process is guaranteed to 28

converge to a convex polygon in a finite number of flips. To 29

ensure repeatability for similar shapes, the order of flipping is 30

standardised. At each iteration the maximum deviation between 31

each pocket and its lid is determined, and the pocket with the 32

largest deviation is selected for flipping. Convexity is measured 33

as the ratio of the areas of the original and convexified polygon. 34

An alternative version is also considered, in which the pocket is 35

flipped and also has the order of its vertices reversed (a flipturn). 36

To improve computational efficiency and also reduce sensitivity 37

to digitisation effects, polygonal approximation is first applied 38

to the shape boundaries [33] using a small error tolerance (0.5). 39

The convexity measure [23] of shape S is given by

C(S ) = min
θ∈[0,2π]

P2(R(S , θ))
P1(S , θ)

where P1(S , θ) denotes the l1 perimeter of S after rotation by 40

angle θ, and P2(R(S , θ)) is the l2 (Euclidean) perimeter of the 41

minimum area bounding rectangle of S . Polygonal approxi- 42

mation is first applied to the shape boundaries, using an error 43

tolerance of 2. 44

The two standard convexity measures in the literature are in-

cluded: If we denote the convex hull of polygon S by CH(S )

then the measures are defined as

C1(S ) =
area(S )

area(CH(S ))

and

C2 =
P2(CH(S ))
P2(S )

.

4.6. 2D Multi-view Based Shape Complexity 45

The method [24] attempts to capture global and local aspects 46

of a shape in order to measure its complexity. It uses a linear 47

combination of three quantitative terms: the number of notches 48

(non-convex vertices) normalized to be in the range [0, 1], and 49

two terms similar to C1 and C2. 50

The method [4] uses the entropy of boundary turning angles 51

(i.e. the subtended angle at each point); this is used as a discrete 52
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alternative to curvature. We use Sturges’ rule to select the bin1

size for estimating the probability distribution. An alternative2

version was tested, where cumulative residual entropy [25] was3

used instead of Shannon entropy, and is denoted as CCRE .4

Another approach that considers curvature is [26], who use5

the sum of absolute Gaussian curvature to calculate the com-6

plexity of curved surface shapes. We apply a version to two-7

dimensional shapes, and also calculate the standard deviation8

of signed curvature as another measure of complexity, denoted9

as Cσ. In order to make these measures scale invariant, the10

shapes are first scaled to a fixed area (100,000) and uniformly11

sampled along the interpolated boundary at a fixed resolution12

(single unit steps).13

The method [27] measures k-regularity (i.e. wiggliness or

fractal dimension) of curves based on a ratio between lines

lengths (distances between points on the curve) at different

scales. The local value at point pi of S is given as

rs,k(S )(i) =
‖pi+ks − pi‖∑k

j=1 ‖pi+ js − pi+( j−1)s‖
and the k-regularity of the shape is the mean value of rs,k(S )(i)14

over S . Our experiments used the values s = 2 and k = 3.15

The method [28] computes the fractal dimension of a curve16

by estimating a shape’s perimeter using a series of ruler lengths.17

We use the hybrid (Clark) method which is a combination of18

two other methods, the fast and exact algorithms. Fractal di-19

mension is then estimated as the slope of the regression line20

computed for log versus log plots of ruler length versus perime-21

ter.22

Another fractal approach (the averaged mass dimension23

method) is given by [29] who use a version of box counting24

but replace the box with a circular neighborhood. To obtain a25

more robust line fit, we find the line with least median absolute26

error rather than least mean squared error.27

We have implemented a method, denoted as CPC , that is a28

simplified version of [19]. Their insight was that simple shapes29

lead to similar views whereas complex ones result in dissimilar30

views. In our version this is measured by performing a pairwise31

comparison of the boundaries of all the views for a given model,32

and returning the mean score across all comparisons. Arkin et33

al.’s [34] method for comparing polygons is used since it is 34

invariant under translation, rotation, and scaling. 35

5. Results 36

Since ground truths provide only the order information, we are 37

interested in the order relations rather than linear relationship 38

between actual values that could be measured by Pearson cor- 39

relation coefficient or any other parametric relation. Even for 40

pairwise comparison of measures in Section 6, order correlation 41

seems as a more meaningful measure rather than some preas- 42

sumed parametric relation which may or may not exist. Hence, 43

we use only Kendall rank correlation as a robust rank correla- 44

tion measure. We report Kendall rank correlation coefficients 45

between the participating methods and the ground truths in Ta- 46

bles 1-4. In the tables, we mark the scores of the best perform- 47

ing methods with red, the second best performers with green, 48

and the third best performers with blue. 49

5.1. Collection 1 50

The Kendall rank correlation coefficient (τ) for the additively 51

perturbed cubes and spheres are given in Table 1. For the 52

cubes [16], and for the spheres [15] induce the correct order on 53

all considerations. In both cases, [14] and [21]-1 follow very 54

closely. Some of the methods ([4], [27], CCRE , [23], [22]-1, 55

[22]-2 and C2) achieve strong correlations when the parameter 56

c is varied, yet the correlations weaken when the parameter w is 57

varied. This suggests that it is easier to account for the number 58

of perturbations than it is for the magnitude of perturbations. 59

Likewise, performances of some of the methods are sensitive to 60

the base shape. Notable are [15], [28], [29] and C1. 61

Comparing 3D methods with 2D ones, we see that 3D meth- 62

ods [16], [14] and [21]-1 consistently score highly whereas the 63

best performing 2D methods performs only partially well. For 64

example, [15] only achieves high scores for the sphere-related 65

tasks and [24], [4], CCRE , CPC , and so on, score high only when 66

the width parameter w is kept fixed. 67

Four submissions have been run on the subtractively per- 68

turbed cubes and spheres. The performances of these are re- 69
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Table 1. The averaged Kendall τ for the additively perturbed cubes (the
first value) and spheres (the second value).

Method w = 3 w = 4 w = 5 c = 25 c = 50 c = 75

[16] 1.00 / 1.00 1.00 / 1.00 1.00 / 0.99 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
[14] 0.87 / 0.93 0.95 / 0.97 0.93 / 1.00 0.89 / 0.93 0.92 / 1.00 0.96 / 1.00

[21]-1 0.99 / 0.97 0.99 / 1.00 0.99 / 1.00 1.00 / 0.99 1.00 / 1.00 1.00 / 1.00
[21]-2 0.17 / 0.57 0.24 / 0.80 0.52 / 0.88 -0.09 / 0.35 0.03 / 0.69 0.39 / 0.69

[15] 0.25 / 1.00 0.31 / 1.00 0.68 / 1.00 0.13 / 1.00 0.39 / 1.00 0.52 / 1.00
[29] 0.67 / 0.91 0.84 / 0.99 0.80 / 0.97 0.84 / 0.68 0.95 / 0.71 0.93 / 0.68
[28] 0.45 / 0.97 0.65 / 0.99 -0.11 / 0.96 0.44 / 0.83 0.43 / 0.89 0.04 / 0.84
[27] -0.97 /-1.00 -0.96 /-1.00 -0.97 /-1.00 -0.29 /-0.08 -0.29 / 0.05 -0.24 / 0.28
CCRE 0.97 / 1.00 0.95 / 1.00 0.96 / 1.00 0.33 / 0.12 0.47 /-0.07 0.47 /-0.35
[4] 0.93 / 1.00 0.96 / 1.00 0.96 / 1.00 0.20 / 0.28 0.39 / 0.17 0.32 /-0.21

[26] 0.79 / 0.87 0.87 / 0.93 0.87 / 0.93 0.83 / 0.83 0.88 / 0.83 0.88 / 0.79
Cσ 0.51 / 0.72 0.60 / 0.80 0.64 / 0.87 0.68 / 0.60 0.68 / 0.63 0.69 / 0.64
C1 -0.73 /-0.97 -0.83 /-0.97 -0.76 /-0.95 -0.77 /-0.89 -0.81 /-0.95 -0.93 /-0.96
CPC 0.93 / 0.96 0.91 / 0.93 0.88 / 0.97 0.61 / 0.53 0.71 / 0.51 0.64 / 0.36
[24] 0.93 / 1.00 0.95 / 0.99 0.91 / 0.99 0.73 / 0.69 0.83 / 0.77 0.79 / 0.64
[23] -1.00 /-0.99 -0.96 /-0.99 -0.91 /-0.96 -0.68 /-0.59 -0.77 /-0.68 -0.76 /-0.61
C2 -0.95 /-0.99 -0.96 /-0.99 -0.93 /-0.99 -0.67 /-0.53 -0.80 /-0.63 -0.77 /-0.51

[22]-1 -0.96 /-0.99 -0.93 /-0.99 -0.92 /-0.99 -0.59 /-0.68 -0.76 /-0.76 -0.76 /-0.64
[22]-2 -0.96 /-0.99 -0.95 /-0.99 -0.92 /-0.99 -0.65 /-0.68 -0.76 /-0.76 -0.75 /-0.63

MA 0.79 / 0.94 0.83 / 0.96 0.82 / 0.97 0.60 / 0.65 0.68 / 0.69 0.68 / 0.68

ported in Table 2. For the cubes, [14] ranks the first in all mea-1

surements, and for the spheres there is no clear winner.2

In the last rows of Tables 1 & 2 we provide the mean of3

the absolute scores, denoted as MA. The mean absolute scores4

show that the most challenging case is the cubes with c = 255

for both the additive and subtractive cases. We also note that6

for the additive perturbations it is significantly harder for the7

considered methods to correlate with the ground truth when the8

parameter w is varied.9

Table 2. The averaged Kendall τ for the subtractively perturbed cubes (the
first value) and spheres (the second value).

Method w = 3 w = 4 w = 5 c = 25 c = 50 c = 75

[16] 1.00 / 0.99 1.00 / 0.99 1.00 / 1.00 0.67 / 0.92 0.89 / 1.00 0.91 / 0.97
[14] 1.00 / 0.89 1.00 / 0.88 1.00 / 0.93 0.97 / 0.97 0.97 / 1.00 0.99 / 1.00

[21]-1 0.68 / 0.81 0.81 / 0.95 1.00 / 1.00 0.77 / 0.83 0.91 / 1.00 0.97 / 1.00
[21]-2 0.21 / 0.48 0.48 / 0.83 0.87 / 0.96 0.37 / 0.61 0.69 / 0.80 0.81 / 0.95

MA 0.72 / 0.79 0.82 / 0.91 0.97 / 0.97 0.70 / 0.83 0.87 / 0.95 0.92 / 0.98

5.2. Collection 210

For the first family of Collection 2, the top five methods are11

CCRE , CPC , [27], [4] and C2 according to the summed scores12

given in Table 3. Note that all of these are 2D methods, three of13

which are convexity measures. The best performing 3D method14

is [14] and places the sixth. [26] and [21]-2 perform the poor-15

est on this family both having almost no correlations with the16

ground truth considering all of the groups.17

For each group except the fifth, there is at least one method18

that completely agrees (or disagrees) with the ground truth. It19

seems that none of the considered methods is able to capture the20

notion of complexity that induces the order given by the ground 21

truth for Group 5. The MA scores are in alignment with this, 22

indicating that Group 5 is the most challenging group. We also 23

note that the highest MA is attained by Group 3 that consists 24

only of three elements which is the minimum number required 25

to attain a non-trivial Kendall rank correlation coefficient (τ). 26

Strangely, some of the methods ([28], [29], [15] and [21]-2) 27

have both strongly positive and strongly negative correlations 28

with the ground truth. 29

Table 3. The Kendall τ for the first family (the first value) and the non-
uniformity measurements for the second family (the second value) of Col-
lection 2.

Method Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Sum

[16] 0.33 / 2.91 0.67 / 2.08 0.00 / 0.16 1.00 / 0.66 0.47 / 2.53 – / 2.75 2.47 / 11.09
[14] 0.81 / 1.82 1.00 / 1.31 0.00 / 0.02 0.80 / 0.28 0.33 / 2.78 – / 0.52 2.94 / 6.73

[21]-1 -0.52 / 0.88 -0.33 / 1.65 -1.00 / 0.41 0.80 / 0.06 0.60 / 0.75 – / 1.05 -0.46 / 4.79
[21]-2 0.62 / 0.87 0.33 / 1.83 -1.00 / 0.53 -0.60 / 0.09 0.73 / 0.49 – / 1.46 0.09 / 5.27

[15] -0.81 / 0.86 0.33 / 1.60 1.00 / 0.38 -0.20 / 0.63 -0.60 / 0.67 – / 3.33 -0.28 / 7.47
[29] -0.81 / 1.37 0.67 / 1.91 1.00 / 0.31 0.40 / 0.35 0.47 / 1.00 – / 1.62 1.72 / 6.56
[28] -0.43 / 1.57 -0.67 / 0.71 1.00 / 1.93 0.00 / 0.08 0.33 / 0.12 – / 0.24 0.24 / 4.65
[27] -1.00 / 1.75 -1.00 / 2.15 -1.00 / 1.08 -0.40 / 0.34 -0.47 / 1.43 – / 5.55 -3.87 / 12.31
CCRE 0.90 / 1.72 1.00 / 2.10 1.00 / 0.99 0.60 / 0.26 0.47 / 0.86 – / 4.28 3.97 / 10.21
[4] 0.81 / 2.01 0.67 / 2.98 1.00 / 1.76 0.80 / 1.63 0.47 / 0.80 – / 6.04 3.74 / 15.23
[26] -0.71 / 1.06 -0.33 / 0.84 0.33 / 0.24 0.40 / 0.21 0.33 / 0.80 – / 1.33 0.02 / 4.47
Cσ -0.81 / 1.44 0.00 / 1.29 0.33 / 0.17 0.40 / 0.17 0.33 / 0.61 – / 1.19 0.26 / 4.87
C1 0.05 / 1.31 -0.33 / 1.88 -0.33 / 0.10 -0.80 / 0.09 -0.73 / 0.45 – / 0.59 -2.15 / 4.41
CPC 0.62 / 1.19 0.67 / 1.49 1.00 / 0.20 1.00 / 0.14 0.60 / 1.13 – / 0.62 3.89 / 4.78
[24] 0.43 / 1.17 0.33 / 1.66 1.00 / 0.16 0.60 / 0.10 0.47 / 0.33 – / 0.92 2.83 / 4.33
[23] -0.52 / 0.98 -0.33 / 1.37 -1.00 / 0.10 -0.60 / 0.25 -0.47 / 0.75 – / 1.42 -2.92 / 4.88
C2 -0.43 / 1.28 -0.33 / 1.41 -1.00 / 0.19 -0.80 / 0.18 -0.47 / 0.29 – / 1.02 -3.03 / 4.37

[22]-1 0.14 / 0.93 -0.33 / 1.59 -1.00 / 0.11 -0.80 / 0.20 -0.47 / 0.43 – / 1.00 -2.46 / 4.27
[22]-2 -0.05 / 1.12 -0.33 / 1.85 -1.00 / 0.13 -0.80 / 0.16 -0.60 / 0.43 – / 0.82 -2.78 / 4.51

MA 0.57 / 1.38 0.51 / 1.67 0.79 / 0.47 0.62 / 0.31 0.49 / 0.88 – / 1.88 2.11 / 6.59

For the second family of Collection 2, we start by remark- 30

ing that the reported scores indicate better performances when 31

they are close to 0, in contrast with the other reported scores. 32

Similar to the case in the first family, 2D methods take the lead 33

(listed from best to worst: [22]-1, [24], C2, C1, [26]), with the 34

best performing 3D method ([21]-1) placing the 8th. The worst 35

performing method is [4]. This is interesting because it is also 36

the third best performing method in the first family. In a similar 37

manner, we note that there is no overlap between the top five 38

performers of the two families except for C2. 39

The top three performers for both families are 2D methods 40

based on the summed scores. The highest scoring 3D method 41

for the first family is [14] and [21]-1 for the second family. 42

5.3. Collection 3 43

The Kendall rank correlation coefficients computed for Collec- 44

tion 3 are reported in Table 4. The best performers are [21]-2, 45

[26], [4] and [4] for τµcat , τµall , τσcat and τσall , respectively. 46
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All of the methods, except [21]-1, perform better when the1

correlations are computed over the whole collection, regardless2

of the ground truth.3

For the tasks of this collection we observe that [21]-2 out-4

performs [21]-1. This is interesting because [21]-1 is a better5

performer for the majority of tasks involving the other two col-6

lections. Since these two are the first two principal components7

of the method of [21], this suggests that the segmentation ac-8

counts for an aspect of shape complexity different than those of9

the other collections.10

We note that all of the top three performers are 2D methods,11

except for τµcat .12

Table 4. Kendall τ when the ground truth is the mean and the standard
deviation of the number of segments of the human segmentations.

Method τµcat τµall τσcat τσall

[16] 0.148 0.346 0.072 0.234
[14] 0.041 0.354 0.018 0.203

[21]-1 0.110 0.105 0.055 -0.006
[21]-2 0.151 0.417 0.065 0.262

[15] -0.022 0.251 0.013 0.138
[29] 0.061 0.401 0.027 0.202
[28] 0.140 0.375 0.087 0.167
[27] -0.082 -0.458 -0.089 -0.282
CCRE 0.110 0.585 0.083 0.331
[4] 0.132 0.600 0.117 0.350

[26] 0.131 0.671 0.066 0.283
Cσ 0.075 0.540 0.077 0.244
C1 -0.037 -0.255 -0.037 -0.078
CPC 0.099 0.464 0.078 0.217
[24] 0.041 0.326 0.029 0.123
[23] -0.105 -0.486 -0.056 -0.219
C2 -0.112 -0.501 -0.084 -0.227

[22]-1 -0.069 -0.372 -0.085 -0.168
[22]-2 -0.079 -0.395 -0.090 -0.188

MA 0.092 0.416 0.065 0.206

6. Discussion13

Despite the lack of full shape information, 2D methods are ob-14

served to perform unexpectedly well when compared with 3D15

methods, especially for Collection 3. However, it should be16

noted that for the results presented in this paper, the participat-17

ing 3D methods also do not make use of the full shape informa-18

tion because some of them ([14, 21]) down-sample the shapes19

in Collection 1 and they all need to voxelize the shapes in Col- 20

lection 2 and 3. Also, [16] solves for only a limited number of 21

steps for all of the collections due to the size and the number of 22

the shapes and relatively costly computation. 23

One of the interesting observations is that [4], [27] and [26] 24

perform poorly under the changes of the parameter w despite 25

their high scores under the changes of the parameter c. This 26

might be explained by the fact that changing the width parame- 27

ter w has a greater impact on the local changes in curvature than 28

the parameter c and that these methods are inherently curvature- 29

dependent. Similar results for the methods that measure con- 30

vexity can be explained in a similar manner since convexity 31

can be related to curvature for the examples in our datasets. 32

Note also that this observation highlights the non-triviality of 33

the noisy collections. 34

Assessing the results for Collection 1 suggests the use of dif- 35

ferent methods for different use cases. For example, [16], [21]-1 36

can be used in applications involving additive perturbations and 37

[15] can be used in applications involving noisy spheres. Pro- 38

vided one has information about the type of the noise present in 39

their use cases, one can settle for [4], [27], C2, [22], or [23]. For 40

overall robustness [14] can be preferred. The results for Collec- 41

tion 2 suggest that classical measures supported by psychology 42

experiments are still better alternatives for quantifying percep- 43

tual complexity as judged from the final product of the design 44

process (i.e. ignoring the generation level complexity). For 45

Collection 3, we observe that the performances of the methods 46

improve significantly when the entire collection is considered. 47

In this sense, we can say that the task of correlating complexity 48

with the segmentation is harder when the shapes are from the 49

same category. 50

In Fig. 6, two 2D embeddings of the evaluated complexity 51

measures using Stochastic Neighborhood Embedding (t-SNE) 52

[35] are depicted. For each measure a high dimensional feature 53

vector is formed using the Kendall rank correlation coefficients 54

reported in Tables 1-4. For the plot on the left, 17-dimensional 55

feature vectors (whose components are the twelve τ scores from 56

Table 1 and five τ scores from Table 3) are used. For the plot on 57
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Fig. 6. Clustering of the methods in τ-based feature space: 2D embedding applied to 17 (left) and 21 (right) τ-values

the right 21-dimensional feature vectors are used by augment-1

ing the 17-dimensional vectors with four additional τ scores2

from Table 4. We considered the scores from Collection 3 as3

optional because we feel that the nature of this collection is4

different from those of the first two collections. Note that we5

negate the τ scores of the methods, [27], C1, [23], C2, [22]-16

and [22]-2 as they serve as measures of simplicity rather than7

complexity. In both plots the perplexity parameter is set to 2.8

Nevertheless, we have observed that doubling or even quadru-9

pling the perplexity parameter does not make a significant qual-10

itative change except that the spread gets larger. Notice that [4],11

[27] and [26] form a distinct cluster. Another interesting obser-12

vation from Fig. 6 is that the two methods [15] and [16], both13

employing real valued fields computed using a common Par-14

tial Differential Equation, are not close in the τ-based feature15

space. This is because these methods use different metrics. The16

choice of the metric makes [16] an ideal method for noisy cubes17

whereas the other is better suited for noisy spheres.18

In addition to correlations between the ground truths and the19

order induced by the measures, we believe that the correlations20

among the orders induced by the measures convey insight into21

the ill-defined concept of shape complexity. Hence, we report22

in Fig. 7 Kendall rank correlation coefficients (τ) for each pair23

of methods over the dataset. Specifically, for Collection 1 we24

compute the mean of τi (i ∈ {1, 2, . . . , 50}) for the groups of25

each family, for Collection 2, we compute τ over the families26

(i.e. disregarding the groups), and for Collection 3 we com- 27

pute both the mean of τcat over the categories and τall over the 28

whole collection. Here also we negate the scores of the meth- 29

ods, [27], C1, [23], C2, [22]-1 and [22]-2. The results show that 30

the methods correlate the most to each other over the additively 31

perturbed spheres. This could be explained by noting that the 32

different approaches of the methods towards complexity, such 33

as uniformity of curvature, convexity, or the agreement of the 34

shape with the underlying grid, more or less agree for this fam- 35

ily. Similar clusters to the ones seen to emerge in Fig. 6 can be 36

identified, such as [4], [27] and CCRE or the cluster consisting 37

of convexity measures. Yet, for example, the second family of 38

Collection 2 provides a means of distinguishing [4] from CCRE 39

and [27]. The same family also allows us to observe the dif- 40

ferences between the behaviors of the 3D methods. Similarly, 41

the results acquired for Collection 3 by comparing shapes from 42

the same categories show that [23] and C2 are more close to 43

each other than they are to [22]-1 and [22]-2, and vice versa. 44

Together, these provide support for our claim that the three col- 45

lections account for different aspects of shape complexity. 46

The correlations for Collection 3 are generally lower than 47

those for Collections 1 and 2. This could be a consequence 48

of either the data being more challenging, or else that the proxy 49

task does not map strongly to complexity. This needs further 50

study, and can be explored in future work. 51
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Fig. 7. Correlations between pairs of methods

7. Conclusion1

We have introduced a novel 3D dataset to evaluate shape com-2

plexity measures. Using this dataset we not only evaluated the3

methods with respect to ground truth but also with respect to4

each other under a rich variety of ordering tasks in order to see5

how they are related in the context of shape complexity. To eval-6

uate methods with respect to each other, we clustered measures7

in the tau-based feature space, and displayed pairwise rank cor-8

relations between orders induced by all pair of methods.9

We conclude the paper by noting that the evaluation method-10

ology of the paper is a significant improvement on the current11

literature in the sense that the reported scores are quantitative12

with justified ground truths and the analysis is reproducible.13

Since the research in 3D shape complexity is still in its infancy,14

we believe that this work will encourage further explorations of15

the field.16
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Research Highlights

❖ Two novel datasets with associated ground truth are introduced.

❖ Segmentation is used as a proxy task for measuring complexity.

❖ The performance of 2D and 3D complexity measures are systematically compared and
evaluated.
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