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Gif-sur-Yvette, France.

Abstract

We propose Fit4CAD, a benchmark for the evaluation and comparison of methods for fitting
simple geometric primitives in point clouds representing CAD objects. This benchmark is meant
to help both method developers and those who want to identify the best performing tools. The
Fit4CAD dataset is composed by 225 high quality point clouds, each of which has been obtained
by sampling a CAD object. The way these elements were created by using existing platforms and
datasets makes the benchmark easily expandable. The dataset is already split into a training set
and a test set. To assess performance and accuracy of the different primitive fitting methods,
various measures are defined. To demonstrate the effective use of Fit4CAD, we have tested it on
two methods belonging to two different categories of approaches to the primitive fitting problem:
a clustering method based on a primitive growing framework and a parametric method based on
the Hough transform.
Keywords: Benchmarking, Geometric primitive fitting, CAD objects, Quality measures .

1 Introduction

3D CAD models are among the most common medium to convey dimensional and geometric in-
formation on designed objects or components. However, often the CAD model of an object is not
available, it does not even exist, or no longer corresponds to the real geometry of the manufactured
object itself. One strategy for retrieving a digital model of an object when not accessible is to acquire
3D data directly on the object and use it to create a digital representation. The reconstruction of
digital models starting from the measured data is a process, commonly called Reverse Engineering
(RE), aiming at reconstructing 3D mathematical surfaces and geometric features that represent the
geometry of real parts. Many methods have been proposed to solve this problem; as a reference we
cite a recent survey that groups a large part of the approaches presented so far [1].

Given the large number of methods proposed, it becomes important to be able to evaluate their
performance by creating standard datasets with a ground truth and a “quality label”, thus paving
the road for a fair evaluation of the existing technologies and the identification of open research
directions not only in reverse engineering but also in shape retrieval, understanding, compression,
etc., taking inspiration from other approaches proposed for generic classes of objects, (e.g. [2, 3, 4]).

Here we propose Fit4CAD, a benchmark of point clouds representing CAD objects aimed at
evaluating methods for detecting simple (polynomial) geometric primitives (i.e., plane, cylinder,
cone, sphere, and torus) in 3D point clouds; by polynomial primitive, we here mean a surface that
has an algebraic implicit representation, i.e., it can be defined as the zero set of a polynomial. The
dataset consists of 225 high quality point clouds, each of which has been obtained by sampling a
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CAD object. Each point cloud is equipped of a ground-truth segmentation and, for each primitive,
we provide both implicit and parametric forms. The way these elements were created by using
existing platforms and datasets makes the benchmark easily expandable. Fit4CAD is designed to
be used also by machine learning methods: in fact, the dataset comes in the form of a training set
and a test set.

We provide a number of performance measures able to evaluate both the quality of the fitting
segments, in term of points correctly recognized as belonging to a primitive, and the quality of the
primitive approximation, evaluating the distance between the primitive detected and the ideal one.

Fit4CAD satisfies a certain number of necessary requirements, such as the relevance and repre-
sentativeness of the elements in the CAD context, the richness and the completeness of the infor-
mation associated with each primitive, thus enabling fair comparisons for a wide range of geometric
primitives recognition algorithms.

The proposed benchmark has been exploited to evaluate and compare two methods of geometric
primitive fitting, belonging to two different categories of approaches: a clustering method based
on a primitive growing framework and a parametric method based on the Hough transform. By
providing an explicit representation of the equations of the primitives, for the second method we
are also able to evaluate measures related to the accuracy of the primitives found.

The rest of the paper is organized as follows. Section 2 examines previous work related to our
topic. Section 3 describes the characteristics of the benchmark: dataset, ground truth, and the
performance and accuracy measures chosen to evaluate the identification of primitives. Section 4
describes the tests carried out on two methods of recognition and fitting of geometric primitives.
Some concluding remarks end the paper.

2 Prior work

Benchmarking involves sharing of resources, metrics, data and so on, so that the common goals of
knowledge creation and furthering the state of the art can be achieved. The creation of standard
datasets reduces the amount of work necessary for single researchers to assess the quality of their
techniques and compare them with other research groups. The steadily rising participation to
contests and open challenges shows the interest and the need for benchmarks (e.g., TreCVID [5]),
competitive contests (e.g., on Kaggle.com [6] or the 3D Shape Retrieval Contest (SHREC) [7]) and,
more in general, for code sharing (e.g., Graphics Replicability Stamp Initiative1). So far, benchmarks
for 3D object segmentation [8, 9] have mainly considered generic classes of objects and, therefore,
the methods were evaluated for their general-purpose segmentation rather than on CAD objects and
their capability of recognizing geometric primivites.

Among the datasets containing general 3D shapes (e.g., toys, mechanisms, jewelry) in the form of
triangle meshes it is worth mentioning [10, 11, 12], even if these methods were specifically designed for
different goals, e.g. 3D printing, computer vision applications and computer graphics applications,
respectively.

The most relevant dataset for our work is the ABC dataset [13]; here, the authors present a
massive dataset (over one million models), specifically developed to train data-driven algorithms
for geometric deep learning. Models are defined by parametric surfaces, possibly accompanied
with the information related to the decomposition into patches, sharp feature annotations, and
analytic differential properties. The models were created by using the interface available on the
online infrastructure Onshape2. All models are stored as triangle meshes, while the associated files
(annotations, features, etc.) are not available for all models: more precisely, the file may lack the
true list of primitives, or their parametric/implicit representations; this is not a big issue for that
specific dataset, as primitive extraction is not their purpose. Being specifically designed for data-
driven methods, the models are stored with different resolutions (i.e., different samplings of the same
parametric model) or slight variations. Moreover, models in [13] do not present any kind of data

1http://www.replicabilitystamp.org
2https://www.onshape.com/en/
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perturbation. Lastly, the ABC dataset is not designed for point cloud segmentation, and does not
present any specific quality measures for comparing methods.

3 The benchmark

We here introduce our benchmark, geared towards the following desirable properties:

• Dataset richness and representativeness. The first and foremost requirement for a thorough
evaluation is the availability of a data set characterized by a good sampling of varied shapes:
each family of simple geometric primitives (i.e., plane, cylinder, cone, sphere, and torus) should
appear in a sufficient number of point clouds. In addition, we consider different point cloud
densities as well as data integrity (with/without missing data). Each CAD object is used to
generate one and only one point cloud.

• Ease of expansion. An ideal benchmark should be able to develop over time, in order to test
new paradigms and face new challenges; this requires the capability to generate new data in
an easy and efficient way. To satisfy this basic requirement, Section 3.1 outlines a general
pipeline that can be used for data generation.

• Availability of both implicit and parametric representations. Modern CAD systems are based
on two complementary representations for surfaces, according to the manipulation they are
involved in: implicit and parametric representations. Parametrized surfaces are best suited
for point generation, while implicit representations allow to check whether a query point lies
or not on the surface in a more convenient way. Having both representations makes it possible
to answer a wide range of questions (e.g., intersection problems).

• Completeness of the documentation. All models are equipped with all and the same informa-
tion. For each of them, this includes: the files with primitive segments, implicit and parametric
primitive representations; a preset split of the dataset into training set and test set. Further
details are provided in Section 3.2.

• Variety of performance indicators and accuracy measures. To evaluate and compare methods,
it is of vital importance to select measures that highlight strengths and weaknesses. In our
case, the problem is twofold: on the one hand, we want to quantify the capability to produce
precise segmentations into simple geometric primitives (by performance indicators); on the
other hand, we also aim at measuring the fitting accuracy when it comes to implicit and
parametric representation of the same shapes (by accuracy measures). Section 3.3 describes
the measures selected to evaluate the detection of simple primitives in CAD objects point
clouds.

3.1 Dataset

At present, the dataset contains 225 individual high quality point clouds, each of which has been
obtained by sampling a CAD object. The dataset is already split into two subsets: a training set,
counting 190 point clouds, and a test set, containing the remaining 35 point clouds. Figure 1 shows
the distribution of surface types for both training and test sets.

The dataset generation process, in the most general form, has been carried out by the following
three steps:

1. Model creation. We created part of the models, by using the publicly available interface hosted
by Onshape, while the remaining part was collected from the ABC dataset [13], which was
derived, in turn, from the Onshape public collection. Models gathered from the ABC dataset
have been filtered by manually correcting the parts presenting minimum flaws and rejecting
low quality models, in order to avoid rare yet bothersome imperfections, such as overlapping
or repeating patches. Some examples of CAD objects from Onshape are displayed in Figure
2.
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Figure 1: Surface type distribution. The two bar charts show the distributions for the training set
(left) and the test set (right).

2. Parametric and implicit representations. The generation of B-rep models was crucial to extract
the parametric representation behind each geometric primitive; in our case, the parametric
representations for each patch have been obtained by processing the STEP files produced by
Onshape in GMSH [14]; nevertheless, we emphasize that other software could be considered
too (e.g., [15]). Several methods to compute the implicit representation from a parametric
form are nowadays available. We here consider the numerical approach known as approximate
implicitization, introduced in [16] and further delevoped in [17]. One of the advantages of
this approach is that it provides exact implicit representations when the exact total degree is
selected; we remind that a bivariate polynomial has total degree n if all monomials xiyj are
such i+ j ≤ n, and there exists at least one monomial xiyj such that i+ j = n.

3. Point cloud extraction. CAD objects are sampled at different densities, and optionally man-
ually postprocessed by using CloudCompare3 to simulate missing data. To give an example,
Figure 3(a) shows a model from Onshape, which is then sampled and postprocessed in 3(b-c).

Figure 2: Example of models obtained using Onshape.

(a) (b) (c)

Figure 3: Example of point cloud creation. The initial object in (a) is sampled at a chosen density
(b) and then perturbed by simulating missing data (c).

3CloudCompare (version 2.10.2), http://www.cloudcompare.org/
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PC 1 PC 2 PC3 PC 4 PC 5 PC6 PC 7

PC 8 PC 9 PC10 PC 11 PC 12 PC13 PC 14

PC 15 PC 16 PC17 PC 18 PC 19 PC20 PC 21

PC 22 PC 23 PC24 PC 25 PC 26 PC27 PC 28

PC 29 PC 30 PC31 PC 32 PC 33 PC34 PC 35

Figure 4: The 35 point clouds used as a test set. Different colors represent different primitives, as
stored in the CAD models, i.e., our ground truth.

3.2 Ground truth

Each model in the ground truth comes in the form of four TXT files. We here provide a description
of each file content for the i-th point cloud.

PCi lists the three-dimensional points forming the point cloud to be segmented.

PCi primitives contains the list of true primitives. For each primitive, a list of indices is provided;
each index corresponds to a point in “PCi”, with respect to the ordering there introduced.
For example,

Primitive6:=[4 9 184 185 186 187 188 189 190 191 192]

means that the sixth primitive contains points number 4, 9, 184, 185, 186, 187, 188, 189, 190,
191 and 192 (where the ordering is the one in the corresponding “PCi”).

PCi parametric provides, for each primitive in “PCi primitives” corresponding to a plane, a
cylinder, a cone, a sphere or a torus, its parametric representation. To give an example,

Primitive6:=[primitive type, v]

where v is the vector that contains the parameters of the parametric representation (see A.1
for further details on the considered ordering).

PCi implicit provides, for each primitive in “PCi primitives” corresponding to a plane, a cylinder,
a cone, a sphere or a torus, its implicit representation. For example,

Primitive6:=[primitive type, w]
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where w is the vector that contains the coefficients of the implicit representation (see A.2 for
further details on the considered ordering).

The points that do not correspond to any of the simple primitives mentioned above (i.e., plane,
cylinder, cone, sphere or torus) are classified as unsegmented and not explicitly reported in files
PCi primitives, PCi parametric and PCi implicit; in the original model, these points usually
originate from B-spline surfaces. We intentionally decided to insert some models with non-simple
geometric primitives to check whether a candidate method can avoid misclassification.

3.3 Quality indicators

To evaluate the detection of simple primitives in CAD objects, we have proposed quality measures
selected from [18, 19] with particular care on what concerns their performance and approximation
accuracy.

3.3.1 Performance measures of the point classification

Any primitive in a model is identified by the list of points belonging to it or, equivalently, by the
list of points that do not belong to it. The problem of primitive detection can therefore be easily
written in terms of binary classification tasks, one per primitive in the ground truth.

Let PB be a a set of points in the benchmark point cloud corresponding to a specific primitive,
and let PS be the primitive in the segmentation to assess that most overlap with PB. We can
define the following quantities:

• True positives, TP: the number of points shared by PB and PS .

• False positives, FP: the number of points in PS that do not belong to PB.

• False negatives, FN: the number of points in PB that do not belong to PS .

• True negatives, TN: the number of points that do not belong to either PB nor PS .

Based on these four quantities, we consider the following measures:

• Sensitivity, also called true positive rate, measures the proportion of positives which are cor-
rectly identified, i.e.,

TPR :=
TP

TP + FN
.

Specificity, or true negative rate, measures the proportion of true negatives that are correctly
identified as such, i.e.,

TNR :=
TN

TN + FP
.

• Positive predictive value is defined as the proportion of predicted positives which are actual
positives, i.e.,

PPV :=
TP

TP + FP
.

Similarly, negative predictive value is given by

NPV :=
TN

TN + FN
.

• Accuracy is the ratio of correct predictions to total predictions made, i.e.,

ACC :=
TP + TN

TP + TN + FP + FN
.
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• Sørensen-Dice index. It is given by

DSC :=
2|PB ∩PS |
|PB|+ |PS |

.

In case of binary classification, it is shown to be equivalent to

DSC :=
2TP

2TP + FP + FN
,

which is often referred to as F1 score.

For more details, we refer the reader to [18].

3.3.2 Approximation accuracy

To measure the recognition accuracy of a specific primitive, we use the parametric and the implicit
representations provided in “PCi implicit” and “PCi parametric”. Exploiting the notation pro-
vided before, let us consider a primitive PS to be evaluated, and let S be the surface described by
the corresponding parametric representation. When it comes to the parametric representation, we
use the following two measures to evaluate the approximation accuracy of primitive PS :

• Mean Fitting Error (MFE):

MFE(PS ,S) :=
1

|PS |
∑

x∈PS

d(x,S)/l, (1)

where d is the Euclidean distance, and l is the diagonal of the minimum bounding box con-
taining PS .

• Directed Hausdorff distance:

ddHaus(PS ,S) = max
x∈PS

min
y∈S

d(x,y),

with d the Euclidean distance. To make the measure independent from the primitive size, we
normalize it with respect to the diagonal l of the minimum bounding box containing PS .

The fitting accuracy for the implicit representation is evaluated by the following measure:

• Coefficient distance:
d1(v,v

′) = ‖v − v′‖1
where v and v′ are the coefficient vectors for the implicit representations of the primitives
PS and PB, respectively, and where ‖ · ‖1 is the well-known `1 norm. In order to make this
measure consistent, we assume the coefficient vectors to be normalized, and the first nonzero
entry to be positive (where the ordering is the one provided in A.2).

We refer the reader to [19] for further details.

4 Test of the benchmark on two methods

The proposed benchmark has been used to evaluate and compare two methods dealing with primitive
fitting. As guiding examples of how the benchmark works, we have selected two methods that are
both available and representative of two classes of methods according to the taxonomy defined in
[1]: a clustering method based on a primitive growing framework (Section 4.1) and a parametric
method based on the Hough transform [20] (Section 4.2). Both methods can be evaluated according
to the measures described in Section 3.3.1, as they explicitly provide the list of the points that form
any primitive; on the other hand, the approximation accuracy can be assessed only for methods that
can provide parametric or implicit representations, in our examples the Hough-based fitting.
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4.1 PG: a discrete curvature-based method for point cloud segmentation

As a first approach, we present a curvature-based method based on a primitive growing framework,
on the basis of the method proposed in [21] for triangle meshes; for the sake of brevity, we will often
use the acronym PG as a shorthand for this method, where PG stands for “Primitive Growing”.

The method consists of two main steps: an initial region partitioning process based on high
curvature detection and, then, a region refinement process based on slippage analysis, as summarized
in Figure 5. These two steps run as follows:

• Initial region partition. Points that identify sharp edges are characterized via a point attribute
called surface variation, as introduced in [22]. Given a point p and n neighbouring points, its
surface variation is defined as

σn(p) :=
λ1

λ1 + λ2 + λ3
,

where λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the covariance matrix for the sample point p and its
n neighbouring points; note that λl measures the variability of the neighborhood of n points
along the direction of the corresponding eigenvector. In our experiments, n is set to 15 as it
yields good results when considering the training set. Points on sharp edges are characterized
by a high surface variation. These points are here selected by analysing a histogram of the
surface variation values, by means of a threshold η: all points having surface variation above
η are labelled as sharpe edge points; for example, setting η = 0.8 means that the points whose
surface variation is higher than 80% (top 20%) are considered to belong to a sharp edge. In
our implementation, the threshold η is user-defined and taken in the interval [0.65, 0.95]. Once
sharp edges have been identified, a region growing approach is applied to compute a first coarse
pre-segmentation, along the lines of what detailed in [22]: starting from a random seed point,
its nearest neighbors are progressively located; those points which does not belong to sharp
edges will be labelled and used as new seed points, until all neighboring points are labelled.

• Region refinement. According to the ISO GPS invariance class [23], “ideal” features can
be categorized into seven invariance classes: planar, cylindrical, helical, spherical, revolute,
prismatic, and complex. The seven invariance classes are here captured by local slippage
analysis [24]. This step aims at decomposing any coarse segment S from the previous step
into simpler geometric parts. Given a point set P of n points from S, the slippable motions of
P are found as the motion vector [r, t] that, when applied to P , minimizes the motion along
the normal direction at each point

min
[r,t]

n∑
i=1

((r× xi + t) · ni)
2, (2)

where: r = (rx, ry, rz) is a rotation vector around x, y, and z; t = (tx, ty, tz) is a translational
vector; pi ∈ P are the n samples, and ni are their respective normals. Equation 2 is a least-
square problem which can be reduced to the linear system based on the covariance matrix of
the second partial derivatives of the function in 2 with respect to the rotation and translation
parameters, see [24] for further details. Slippage analysis permits the detection of 3-, 2-, 1-
and 0-slippable motions, see Table 1. According to the primitives defined in the benchmark,
segments identified as prismatic, revolute and complex could be undersegmented; to address
this problem, the RANSAC method introduced in [25] is applied; an example of prismatic
segment requiring further processing is shown in Figure 6. Finally, points on sharp edges are
assigned to the closest primitives.

4.1.1 Computational complexity

The characterization of the sharp edges according to surface variation [22] is done by considering the
k-nearest neighbour points with O(n log n) operations, where n represents the number of points. The
growing algorithm for grouping points inside boundaries costs O(n) operation while the classification
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Figure 5: The framework of the curvature-based surface partitioning method.

ISO GPS Invariance Slippage geometric primitives

planar 3 plane
spherical 3 sphere

cylindrical 2 cylinder
helical 2 -

prismatic 1 undersegmented
revolute 1 cone/torus
complex 0 undersegmented

Table 1: Relation between ISO GPS invariance class [23] and the simple geometric primitives in
this benchmark. Note that, in this terminology, prismatic/complex could include include planar,
spherical or cylindrical primitives.

Figure 6: Example of undersegmented invariance class. On the left, the external blue primitive is
classified as prismatic. On the right, the same primitive is split into 2 planes and 2 half cylinders.

of each point set via slippage analysis isO(m), where m is the number of points in one surface portion
[24]. The further RANSAC based segmentation in case of point sets with low slippage values (such
as revolute, prismatic and complex primitives) is O(m) [25], where m < n in the most common
scenario.

4.2 HT: Simple primitive fitting based on Hough transform

Figure 7: The HT-based paradigm: a visual illustration of how a cylinder representation Sa is con-
verted by the Hough transform into |Pi| hypersurfaces ΓPi ; then the intersection of the hypersurfaces
ΓPi identifies the parameters (ā, b̄) that correspond to the red cylinder in the right.

In this section, we consider a method to segment and to fit a point cloud PC with surface
primitives using the Hough Transform (HT) technique. The general HT-framework deals with the
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problem of finding a surface Sā – within a family F = {Sa} of surfaces dependent on a set of
parameters a = (a1, ..., an) – that best approximates a particular shape. The common strategy to
identify the solution (or a solution) consists in a procedure whereby each point in PC votes a n-uple
a in the parameter space; the most voted n-uple ā corresponds to the most representative surface
Sā for a dense subset of PC. Figure 7 illustrates how the Hough transform converts the problem of
fitting points on a primitive into the problem of fitting the parameters of a family of primitives into
points.

This method is based on the theory related to the extension of the Hough transform to general
algebraic objects [26]. This theory is very broad and can be used for many types of primitives, for
instance in [27] is used for fitting point sets with ellipsoids and can deal with non-simple primitives,
such as helical surfaces. The families of primitives included in this benchmark are planes, cylinders,
spheres, cones and tori. Once a family of primitives F is selected, the main steps can be summarized
as follows:

• Inizialization and estimation of the accumulator function. Once the family F is chosen, a
region T of the parameter space is selected exploiting the knowledge of the geometric char-
acteristics of F (e.g., bounding box). Then, it is discretized into cells, which are uniquely
identified by the coordinates of their centre. This space is associated with an accumulator
function H, discretized as a matrix. Its entries are in a one-to-one correspondence with the
cells of T. An entry of H is increased by 1 each time the HT of a point P , ΓP , intersects the
corresponding cell.

• Selection of potential fitting primitives. In the case the input point cloud is composed of
different primitives, the peaks of H identify the potential primitives Sāi

that might fit different
parts Xi ⊆ PC. Then, the cells corresponding to the peak values of the accumulator function
H are identified by studying its topological persistence (see [28]). In our implementation, the
peaks that correspond to primitives are automatically recognised by keeping the local maxima
with a persistence higher than 10% of the maximum value of H, using the algorithm for
persistent maxima proposed in [29]. The coordinates of the cell centres of the maxima or
the peaks of the accumulator function correspond to the parameters of potentially recognised
surface primitives.

Since it can happen that more types of primitives fit the same dense subset Xi (or a part of it),
the Mean Fitting Error (see Equation 1) is used to evaluate the approximation accuracy of each
primitive. Then, if Sāi,1

and Sāi,2
are two candidate primitives, the fitting errors MFE(Xi,Sāi,1

)
and MFE(Xi,Sāi,2

) between each primitive and Xi are calculated; the primitive having lowest error
is kept. The final result is the partitioning of the input point cloud PC into several subsets in
such a way that points of the same segment are well approximated by the same primitive. Figure 8
summarizes the HT framework. In particular, Figure 8(b) shows an example of accumulator matrix
referred to the recognition of the cylinders, while the four cylinders corresponding to the four peaks
are highlighted on the original point cloud in Figure 8(c). Finally, Figure 8(d) exhibits the resulting
segmentation.

4.3 Evaluation

We here analyse the performance of the methods outlined in Sections 4.1 and 4.2, with the purpose
of showing how the benchmark works. Firstly, we compare the quality of the segments/primitives
found against a ground-truth; the measures involved do not require an explicit representation of the
primitive equation, and thus can be applied to both methods. Secondly, we consider the accuracy of
the parametric/implicit representations: in our case, this comes down to the analysis of the method
introduced in Section 4.2.

Performance measures of the point classification

Figures 11 and 12 in B provide the segmentation results obtained by the primitive growing (PG)
and Hough transform (HT) based approaches, colored as follows: given a model and an approach,
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(a) (b) (c) (d)

Figure 8: HT framework. In (a), an example of input point cloud; in (b), the accumulator function
associated with the search for cylinders and the peaks found by the method for persistent maxima;
in (c), the four cylinders corresponding to the four peaks (black stands for unclassified points). The
final outcome, after searching for all simple geometric primitives, is shown in (d).

for each primitive in the benchmark we find the most overlapping segmented primitive; misclassified
points are colored in black, while correct matches follows the 1 − 1 primitive-color correspondence
from Figure 4.

Table 2 summarizes the performances of the two methods over all the test set models. Each row
correspond to a model; for each model, the table provides information on the number of true and
predicted primitives, as well as the accuracy measures introduced in Section 3.3.1. For each metric,
two columns are considered, respectively referring to the PG- and the HT-based approaches.

# points
# true

primitives

# predicted
DSC PPV TPR TNR NPV ACC

primitives
PG HT PG HT PG HT PG HT PG HT PG HT PG HT

PC 1 7, 500 8 12 8 0.370 0.987 0.693 0.989 0.332 0.985 0.968 0.998 0.696 0.995 0.706 0.995

PC 2 20, 621 17 13 16 0.656 0.921 0.795 0.960 0.632 0.937 0.994 0.999 0.947 0.998 0.944 0.998

PC 3 9, 723 35 36 35 0.843 0.896 0.778 0.828 0.943 0.986 0.994 0.996 0.998 1.000 0.992 0.996

PC 4 10, 000 15 12 12 0.736 0.840 0.831 0.981 0.729 0.800 0.993 0.999 0.964 0.972 0.960 0.973

PC 5 20, 000 37 32 34 0.480 0.839 0.665 0.872 0.544 0.901 0.990 0.999 0.925 0.978 0.918 0.978

PC 6 9, 320 26 13 20 0.465 0.783 0.671 0.857 0.466 0.772 0.994 0.999 0.968 0.997 0.964 0.996

PC 7 5, 000 68 41 69 0.465 0.923 0.642 0.871 0.429 0.994 0.993 0.999 0.978 1.000 0.972 0.999

PC 8 7, 500 32 28 30 0.390 0.890 0.528 0.896 0.438 0.889 0.984 0.997 0.930 0.998 0.916 0.996

PC 9 17, 000 104 43 40 0.403 0.568 0.607 0.848 0.335 0.456 0.998 0.999 0.993 0.996 0.991 0.995

PC 10 10, 000 10 7 10 0.627 0.919 0.793 0.926 0.555 0.938 0.988 0.995 0.949 0.996 0.943 0.993

PC 11 13, 201 13 9 10 0.705 0.805 0.874 0.959 0.677 0.770 0.993 0.998 0.937 0.973 0.934 0.973

PC 12 12, 327 6 6 6 0.894 0.998 0.852 0.997 0.982 1.000 0.984 0.999 0.994 1.000 0.981 0.999

PC 13 10, 000 21 17 16 0.582 0.800 0.792 0.991 0.576 0.761 0.993 1.000 0.951 0.983 0.946 0.984

PC 14 7, 500 8 6 8 0.623 0.963 0.836 0.997 0.606 0.933 0.987 0.999 0.878 0.990 0.878 0.991

PC 15 5, 000 15 15 14 0.533 0.941 0.615 0.972 0.566 0.933 0.981 0.999 0.951 0.993 0.937 0.992

PC 16 29, 641 35 28 31 0.676 0.848 0.771 0.842 0.702 0.891 0.997 0.999 0.986 0.994 0.984 0.993

PC 17 21, 137 45 45 45 0.916 0.935 0.859 0.889 0.983 0.996 0.997 0.998 1.000 1.000 0.997 0.998

PC 18 16, 406 29 20 29 0.555 0.933 0.847 0.912 0.536 0.978 0.994 0.999 0.898 0.999 0.896 0.998

PC 19 16, 740 16 14 11 0.751 0.747 0.869 0.967 0.747 0.681 0.990 0.998 0.971 0.960 0.963 0.960

PC 20 2, 500 14 8 14 0.525 0.954 0.789 0.917 0.467 1.000 0.991 0.999 0.916 1.000 0.914 0.999

PC 21 1, 000 5 3 5 0.677 0.985 0.891 0.983 0.588 0.988 0.977 0.997 0.834 0.998 0.845 0.996

PC 22 26, 093 10 6 10 0.561 0.967 0.751 0.949 0.586 0.987 0.994 1.000 0.824 1.000 0.822 0.999

PC 23 19, 088 13 14 12 0.721 0.886 0.699 0.878 0.828 0.930 0.985 0.997 0.987 0.991 0.975 0.989

PC 24 13, 767 27 21 27 0.742 0.916 0.795 0.861 0.750 0.999 0.995 0.997 0.992 1.000 0.987 0.998

PC 25 18, 331 38 26 35 0.677 0.873 0.841 0.862 0.665 0.921 0.997 0.998 0.986 0.998 0.984 0.996

PC 26 17, 374 14 10 14 0.663 0.975 0.762 0.953 0.607 1.000 0.988 0.999 0.965 1.000 0.956 0.999

PC 27 19, 339 9 7 9 0.789 0.994 0.860 0.995 0.751 0.993 0.988 1.000 0.971 0.999 0.963 0.999

PC 28 46, 364 21 15 21 0.589 0.983 0.776 0.975 0.551 0.993 0.996 0.999 0.963 0.999 0.960 0.999

PC 29 12, 753 9 7 9 0.785 0.991 0.852 1.000 0.758 0.983 0.992 1.000 0.985 0.998 0.980 0.999

PC 30 2, 500 13 8 12 0.468 0.873 0.666 0.873 0.421 0.887 0.974 0.995 0.863 0.978 0.855 0.974

PC 31 22, 098 22 18 23 0.729 0.869 0.813 0.906 0.758 0.887 0.992 0.995 0.980 0.991 0.972 0.986

PC 32 18, 950 22 18 22 0.682 0.972 0.853 0.948 0.749 1.000 0.994 0.998 0.992 1.000 0.987 0.998

PC 33 1, 500 3 3 3 0.811 0.978 0.875 0.983 0.819 0.974 0.910 0.983 0.948 0.997 0.901 0.988

PC 34 12, 089 14 13 14 0.788 0.939 0.823 0.892 0.806 0.998 0.994 0.998 0.979 0.999 0.976 0.998

PC 35 24, 068 8 15 8 0.866 0.975 0.872 0.958 0.960 0.999 0.983 0.992 0.997 1.000 0.984 0.995

Table 2: Number of fitted primitives and classification performance metrics: comparison between
the PG-based and the HT-based algorithms.

To ease the analysis, the metrics are studied via boxplots:

• Figure 9 compares the two methods over the whole test set. A first observation of this analysis
is that accuracy measures from the HT-approach have generally a lower variability. At a closer
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look, one can notice that the quartiles, as well as the minimum and maximum, always assume
higher values when it comes to the HT-based method; in particular, the second quartile (i.e.,
the median) is always above 90%. DSC, TPR and PPV are the three accuracy measures that
varies the most; this highlights that the two methods have lower performances in identifying
the true positives, compared to true negatives. Both methods exhibit outliers in most of the
boxplots.

• Robustness to missing data is analysed in Figure 10. The HT-based method turns out to
be hardly affected by such perturbation, as the inter-quartile range and the whiskers do not
significantly vary; the only noteworthy variation is that of TPR, which points out a slightly
decreased capability in correctly identifying positives. A more prominent variation can be
noted for the PG-method.

Interestingly enough, both methods rarely suffer from oversegmentation, while it is more likely
for them to undersegment. The most dramatic undersegmentation is that of point cloud 9 (i.e.,
PC 9 in Table 2), where the PG-based and the HT-based methods only manage to detect 43 and
40 primitives, respectively, out of the 104 there expected; this highlights possible issues when the
original model has thin or small primitives.

Figure 9: Boxplot for the classification metrics presented in Table 2. All 35 models are here consid-
ered.

Approximation accuracy

Table 3 reports the performance of the HT-based method evaluated according to the metrics reported
in Section 3.3.2. Each row corresponds to a segmented point cloud from Figure 12; each column
represents a different accuracy measure; for each point cloud, each measure has been obtained by
averaging over all segments.

• Being the MFE normalized by definition, its value can be interpreted as a percentage. From
the numbers provided in the table, we can conclude that the MFE ranges from a minimum of
0.1% to a maximum of 1.0%.

• The directed Hausdorff distance, in its normalized version, ranges from 0.2% to 1.9%. The
generally higher values, compared to those from the MFE, can be explained by the Hausdorff’s
sensitivity to outliers.

• The coefficient distance seems to provide a much more fluid situation. By checking the model
corresponding to the highest error, we can conclude that the HT-based method has lower
precision when applied to point clouds containing tori.
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Figure 10: Performance of the PG- and HT-based methods, with an eye on models suffering from
missing data. For these boxplots, we have made use of classification metrics presented in Table 2.

Computational time

All tests are performed on a desktop PC equipped with an Intel Core i9 processor (at 3.6 GHz) and
a Windows 10 operating system. The routines have also been tested on a MacBook Pro equipped
with macOS Catalina (version 10.15.7). We provide here some statistics of the execution times,
obtained on the desktop PC:

• The PG-method has minimum, mean and maximum execution time corresponding to 1.7,
286.0 and 19074.0 seconds, respectively.

• The HT-method has minimum, mean and maximum execution time corresponding to 2.6, 50.7
and 358.0 seconds, respectively.

We observe that, for small point clouds, the PG-method is generally faster, while for big point
clouds it is slower.

5 Conclusions

In this work we have proposed Fit4CAD, a benchmark for the evaluation and comparison of methods
for fitting simple geometric primitives in point clouds representing CAD objects. The ground truth
dataset of point clouds is segmented in geometric primitives and subdivided into a training set and
a test set. In addition, a set of quality metrics and two fitting methods are given. In this work,
evaluation metrics are used to quantify various performance aspects of geometric primitive fitting
methods. In our intent, these metrics would assist both comparing with some methods in literature
and allowing a parameters fine-tuning of a new method, in order to optimize it on a sufficiently large
set of CAD models.

We hope the results of our comparison will inspire the development of new methods for prim-
itive fitting, computational time being the main bottleneck in practice. In particular, it would be
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Table 3: Approximation accuracy of the HT method.

MFE ddHaus d1
PC 1 0.002 0.005 0.008

PC 2 0.007 0.011 0.149

PC 3 0.002 0.004 0.621

PC 4 0.002 0.003 0.000

PC 5 0.004 0.006 0.028

PC 6 0.003 0.005 0.001

PC 7 0.007 0.011 0.232

PC 8 0.004 0.013 0.001

PC 9 0.003 0.006 0.000

PC 10 0.005 0.019 1.203

PC 11 0.003 0.006 0.165

PC 12 0.002 0.004 0.058

PC 13 0.002 0.005 0.000

PC 14 0.004 0.006 1.264

PC 15 0.001 0.003 0.000

PC 16 0.003 0.004 0.029

PC 17 0.003 0.007 0.000

PC 18 0.003 0.004 0.324

PC 19 0.003 0.006 0.019

PC 20 0.002 0.003 0.001

PC 21 0.004 0.007 0.566

PC 22 0.002 0.005 0.000

PC 23 0.006 0.012 0.002

PC 24 0.001 0.003 0.000

PC 25 0.002 0.003 0.001

PC 26 0.001 0.003 0.000

PC 27 0.003 0.005 0.301

PC 28 0.001 0.002 0.000

PC 29 0.010 0.003 0.119

PC 30 0.002 0.009 0.003

PC 31 0.002 0.003 0.000

PC 32 0.006 0.007 0.000

PC 33 0.003 0.006 0.000

PC 34 0.003 0.005 0.004

PC 35 0.004 0.006 0.000

interesting to have a comparison with methods that use machine learning approaches, such as [30],
because the dataset has been already organized in the form of a training set and a test set.

Regarding the two tested methods, the overall quality of the fitting is satisfactory for both. A
rather unexpected conclusion is that over-segmentation is quite limited for both methods, while
the combination of small and large primitives is a challenging task that often leads to a significant
under-segmentation, see for instance the outcome on the model PC 9.

In future, we plan to continue to expand the dataset, even if we do not aim at a large scale dataset,
for example by including more complex primitives and possibly considering specific contexts such
as assembly models. Moreover, the flexibility of Fit4CAD permits the insertion of other available
methods to reach a more complete view of the different typologies of approaches for geometric
primitive fitting.

The benchmark is available at https://github.com/chiararomanengo/Fit4CAD.
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A File type description

The geometrical information of the primitives are provided in the files “PCi parametric” and
“PCi implicit”. Here, we describe in detail the equations of the parametric and implicit repre-
sentation that they contain. Notice that, although the simple primitives shapes considered in this
benchmark are polynomial (i.e., can be written as the zero set of a bivariate polynomial), the
parametric representation we provide for cylinders, cones, spheres and tori are written in terms of
trigonometric functions.

A.1 Parametric representations

• Plane: 
x = a1u+ b1v + c1

y = a2u+ b2v + c2

z = a3u+ b3v + c3

The parameters for a plane are stored as follows:

[Plane, [a1 a2 a3 b1 b2 b3 c1 c2 c3]]

• Cylinder: 
x = a1 cos(u) + b1 sin(u) + c1v + d1

y = a2 cos(u) + b2 sin(u) + c2v + d2

z = a3 cos(u) + b3 sin(u) + c3v + d3

The parameters for a cylinder are stored as follows:
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[Cylinder, [a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3]

• Cone: 
x = a1 cos(u) + b1 sin(u) + c1v cos(u) + d1v sin(u) + e1v + f1

y = a2 cos(u) + b2 sin(u) + c2v cos(u) + d2v sin(u) + e2v + f2

z = a3 cos(u) + b3 sin(u) + c3v cos(u) + d3v sin(u) + e3v + f3

The parameters for a cone are stored as follows:

[Cone, [a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 e1 e2 e3 f1 f2 f3]]

• Sphere: 
x = a1 cos(u) cos(v) + b1 sin(u) cos(v) + c1 sin(v) + d1

y = a2 cos(u) cos(v) + b2 sin(u) cos(v) + c2 sin(v) + d2

z = a3 cos(u) cos(v) + b3 sin(u) cos(v) + c3 sin(v) + d3

The parameters for a sphere are stored as follows:

[Sphere, [a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3]]

• Torus:
x = a1 cos(u) + b1 sin(u) + c1 cos(u) cos(v) + d1 sin(u) cos(v) + e1 sin(v) + f1

y = a2 cos(u) + b2 sin(u) + c2 cos(u) cos(v) + d2 sin(u) cos(v) + e2 sin(v) + f2

z = a3 cos(u) + b3 sin(u) + c3 cos(u) cos(v) + d3 sin(u) cos(v) + e3 sin(v) + f3

The parameters for a torus are stored as follows:

[Torus, [a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 e1 e2 e3 f1 f2 f3]]

A.2 Implicit representations

• Plane:
ax+ by + cz + d = 0

The coefficients for a plane are stored as follows:

[Plane, [a b c d]]

• Cylinder:
ax2 + by2 + cy2 + 2(dxy + exz + fyz) + 2(gx+ hy + iz) + l = 0

The coefficients for a cylinder are stored as follows:

[Cylinder,[a b c d e f g h i l]]

• Cone:
ax2 + by2 + cy2 + 2(dxy + exz + fyz) + 2(gx+ hy + iz) + l = 0

The coefficients for a cone are stored as follows:

[Cone, [a b c d e f g h i l]]

• Sphere:
ax2 + by2 + cy2 + 2(dxy + exz + fyz) + 2(gx+ hy + iz) + l = 0

The coefficients for a sphere are stored as follows:

[Sphere, [a b c d e f g h i l]]

• Torus: the coefficients of the implicit representation are provided in the form of a polynomial
of degree 4 in x, y and z; they are stored in reverse lexicographic order.
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B Results of the test set segmentations

PC 1 PC 2 PC3 PC 4 PC 5 PC6 PC 7

PC 8 PC 9 PC10 PC 11 PC 12 PC13 PC 14

PC 15 PC 16 PC17 PC 18 PC 19 PC20 PC 21

PC 22 PC 23 PC24 PC 25 PC 26 PC27 PC 28

PC 29 PC 30 PC31 PC 32 PC 33 PC34 PC 35

Figure 11: Segmentations obtained via the PG-based method.

PC 1 PC 2 PC3 PC 4 PC 5 PC6 PC 7

PC 8 PC 9 PC10 PC 11 PC 12 PC13 PC 14

PC 15 PC 16 PC17 PC 18 PC 19 PC20 PC 21

PC 22 PC 23 PC24 PC 25 PC 26 PC27 PC 28

PC 29 PC 30 PC31 PC 32 PC 33 PC34 PC 35

Figure 12: Segmentations obtained via the Hough-based method.
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