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Abstract

Creating realistic characters that can react to the users’ or another character’s movement can benefit computer
graphics, games and virtual reality hugely. However, synthesizing such reactive motions in human-human interactions
is a challenging task due to the many different ways two humans can interact. While there are a number of successful
researches in adapting the generative adversarial network (GAN) in synthesizing single human actions, there are
very few on modelling human-human interactions. In this paper, we propose a semi-supervised GAN system that
synthesizes the reactive motion of a character given the active motion from another character. Our key insights are
two-fold. First, to effectively encode the complicated spatial-temporal information of a human motion, we empower
the generator with a part-based long short-term memory (LSTM) module, such that the temporal movement of different
limbs can be effectively modelled. We further include an attention module such that the temporal significance of the
interaction can be learned, which enhances the temporal alignment of the active-reactive motion pair. Second, as the
reactive motion of different types of interactions can be significantly different, we introduce a discriminator that not
only tells if the generated movement is realistic or not, but also tells the class label of the interaction. This allows the
use of such labels in supervising the training of the generator. We experiment with the SBU and the HHOI datasets.
The high quality of the synthetic motion demonstrates the effective design of our generator, and the discriminability
of the synthesis also demonstrates the strength of our discriminator.
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1. Introduction1

Human motion synthesis and generation [1, 2] have2

benefited the computer animation field. The generation3

of human reactive motions shows great potentials in con-4

trolling the movements of virtual characters in immersive5

games and human-robot interaction. Given the movement6
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of one character with a 3D pose sequence, reactive mo- 7

tion synthesis aims at generating the movement of the re- 8

sponding character, which responds to the input action. 9

While realistic reactive motions can be generated by 10

physical simulation such as ragdoll physics, such an ap- 11

proach is more suitable for creating reactive motions 12

caused by body contact or voluntary movement. On 13

the other hand, human-human interactions cover a wider 14

range of motions that may or may not have any direct 15

contacts. As a result, the kinematic-based approaches 16

[3, 4] as well as combined enforcing kinematic and phys- 17

ical constraints [5, 6] are used for preserving the con- 18

text in editing close interaction in the literature. Existing 19
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work relevant to kinematics-based reactive motion syn-1

thesis mainly focus on generating interactions based on2

the interaction history [7, 8], as well as synthesizing the3

response with non-parametric algorithms such as Markov4

Decision Process (MDP) [9, 10, 11] and motion blend-5

ing [12, 4]. However, it is a challenging task since the re-6

active motion is expected to respond properly and requires7

sufficient spatial and temporal synchronizations between8

the dynamics of the two characters, which can be poten-9

tially yet seldom explored by deep learning-based models.10

Deep learning-based models have made motion synthe-11

sis task much easier with diverse patterns and styles com-12

pounded from large amount of available motion data [13,13

14, 15], among which generative adversarial network14

(GAN) [16] has become the most popular [17, 18, 19]15

since it is effective in creating vivid samples learned from16

real distributions. The emergence of conditional GAN17

[20] further facilitates the generated samples to meet18

user’s requirements, e.g. generating a specific type of ac-19

tivities [21], by supervising the generator with the desired20

label of the generation. While many researches have been21

found in understanding single human dynamics, adversar-22

ial training is less explored in modeling human-human in-23

teraction.24

In this paper, we propose a semi-supervised GAN sys-25

tem for reactive motion synthesis. The major novelty of26

the system lies in the purposely designed generator mod-27

ule that model the spatial (i.e. joint movement) and tem-28

poral (i.e interaction synchronization) features of the re-29

active motion, as well as a discriminator that not only tells30

if a reactive motion is realistic, but also the class label of31

the interaction. This follows the idea of semi-supervised32

learning with GAN from [22, 23], where they generate33

semi-supervised generative framework with an unsuper-34

vised discriminator to tell the fidelity of the generation,35

and a supervised discriminator to tell the class label to en-36

hance the generation with better qualities.37

For the motion generator, we propose an attentive part-38

based Long Short-Term Memory (LSTM) module, solv-39

ing the problem to model complicated spatial-temporal40

correspondence during the interaction. We first propose41

the spatial structure of the input action by encoding the42

states of different body parts separately using a hierarchi-43

cal LSTM layer. Furthermore, we observe that human44

interaction contains rich spatial and temporal alignments45

between two characters. When synthesizing interactions,46

the temporal movements of two characters are prone to 47

be misaligned [9, 10] due to the lack of interactive fea- 48

tures modelling. We tackle this problem by constructing 49

an attentive LSTM network in the generator to learn the 50

temporal saliency from the input action, and deliver this 51

time-aware contextual information together with the hi- 52

erarchical states to help decoding the reaction. The de- 53

signed temporal attention facilitates the generator to ob- 54

serve the global pattern of input dynamics and perform 55

reactions at the same pace. 56

We further propose to embed multi-class classification 57

into the discriminator to endow the generated reactive mo- 58

tion with the property from its interaction type, as inspired 59

by [22, 23]. This is motivated by the observation that 60

the reactive motion of different class of interaction could 61

be significantly different. In practice, classifying the syn- 62

thesized reactions increases the capacity of the generator, 63

through generating diverse types of reactive movements. 64

Comparing to conditional GAN that observes the label in- 65

formation in the input stage, our generator can stand alone 66

without prior knowledge of the interaction type while pre- 67

dicting the type-specific reactive dynamics. By sharing 68

partial parameters with a binary classifier, our trained dis- 69

criminator is capable of improving the reliability of reac- 70

tive motion given a particular type of incoming motion. 71

We demonstrate the effectiveness of the proposed re- 72

active motion synthesis method on two popular human- 73

human interaction datasets SBU [24] and HHOI [10] 74

which contain many common interaction types such as 75

shaking hands and kicking. The discriminator power is 76

demonstrated by the classification accuracy, and the gen- 77

erator power is demonstrated by the high-quality synthetic 78

motion. 79

The main contributions of this research are concluded 80

as follows: 81

• We construct a reactive motion synthesis system 82

based on the semi-supervised generative adversarial 83

network. 84

• We propose a reactive motion generator with the at- 85

tentive recurrent network from the part-based body 86

structure to create reactive motion without knowing 87

its interaction category, where the motions of the 88

characters are well-aligned thanks to the attentive 89

module. 90
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• We propose a dual discriminator with a binary and1

a multi-class classifier that improves the authentic-2

ity and preserves the characteristics of the synthesis3

from natural reactive behaviors.4

The rest of the paper is organized as follows: In Sec-5

tion 2, we review the previous work related to motion rep-6

resentation learning and generation. Section 3 and Sec-7

tion 4 demonstrate the key prior knowledge used in our8

architecture, and our reactive motion synthesis system,9

respectively. We further evaluate our synthesized reac-10

tive motions and discuss the advantages and limitations in11

Section 5. Finally, we make conclusions in Section 7.12

2. Related Work13

2.1. Deep Generative Models in Motion Synthesis14

Deep learning-based models are efficient and versatile15

to generate human movements from vast of motion data.16

Among deep generative models, motion generation based17

on Recurrent Neural Network (RNN) becomes the main-18

stream with its effectiveness in creating sequential move-19

ments. With RNN backbones, [15] incorporated label in-20

formation as guidance to synthesize desired future mo-21

tions based on the initial given poses, and [14] retained22

spatial and temporal structural information in the gen-23

erated motion using graph convolutional layers. Some24

researches [13, 25] also adopt variational auto-encoder25

to learn a competitive motion manifold that can gener-26

ate stylistic or long-term dynamics with stochastic pat-27

terns. Some cutting-edge researches associate deep learn-28

ing with GAN to predict motion [26, 27] or generate re-29

alistic action patterns in videos [28]. However, they focus30

on single character synthesis and their generated poses or31

movements generally contain less variations because of32

mode collapse.33

Some work [7, 8] adopt RNN to synthesize human-34

human interaction given the partially observed interac-35

tion. [7] synthesized long-term interaction by alterna-36

tively generating the pose sequences of the two charac-37

ters based on the generation history. With such sampling-38

based manner [29], errors can be fast accumulated which39

eventually drifts the generated interaction to a wrong40

moving direction [30, 31].41

2.2. Spatial Modeling 42

Human action is accomplished by the movements of its 43

articulated joints, and one of the intuitive idea to model 44

the spatial variations of the skeleton joints is to place them 45

in a chain sequence [32]. However, the joints are not 46

physically connected at the margin of each body part, such 47

as foot and head, therefore it may introduce meaningless 48

connection when applying RNN-based sequence learning 49

architecture. To avoid this problem, a graph-based tree 50

structure is proposed [33] to traverse skeleton branches 51

and learn the relationship among adjacent joints. An- 52

other solution is to decompose the skeleton structure into 53

valid segments [34, 35] to capture low-level limb shift- 54

ing, and understanding high-level spatial dependencies by 55

concatenating different partitions together. 56

2.3. Attention Perception 57

Attention mechanism attends to allocate weights to 58

the valuable content from considerable information, and 59

it shows great advantage especially in context-based se- 60

quence learning such as sequence-to-sequence (seq2seq) 61

translation [36]. The translated sample can be aligned as 62

the focus of the decoder will be updated during the for- 63

ward propagation. In image description tasks, visual at- 64

tention is involved to highlight which regions of the im- 65

age that the model should emphasize [37], and it is also 66

applicable in video captioning which combines with neu- 67

ral networks to identify salient frames that the network 68

should pay attention to [38]. 69

Adding attentions in action streams can facilitate ex- 70

ploring motion saliency through stripping background in- 71

formation [39], exploiting pose attention from human ac- 72

tions [40], or assigning more weights to engaged joints 73

and active frames in 3D skeleton dynamics [41]. This 74

comes from the fact that, for example, if one character 75

is moving his or her arm towards another character, we 76

need to lock the arm movement of the compelling char- 77

acter and react accordingly. However, if one character 78

approaches another character with a kick, then we may 79

focus on the active leg and dodge at an appropriate times- 80

tamp. In synthesizing interactions, [8] attended to the in- 81

formative joints to synthesize the reactive features which 82

motivates our work to explore the synchronization of the 83

two characters during the interaction. 84
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3. Preliminaries1

3.1. Generative Adversarial Networks2

Generative adversarial networks (GAN) [16] is intro-
duced from game theory that a generator and a discrimi-
nator contrast with each other to achieve a Nash equilib-
rium [42]. The generative model G processes a random
variable z to G(z) which will be evaluated by the discrim-
inative model D, and the function of D is to differentiate
the real sample x from the fake sample G(z). The ob-
jective function of training GAN follows a minimax opti-
mization procedure:

min
G

max
D

LGAN(G,D) =

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

With GAN and its vast variations, one can generate3

vivid samples such as images [43] or videos [21] follow-4

ing real-world data distributions judged by the discrimi-5

nator. In this paper, we utilize the power of a binary and6

a multi-class discriminator to enhance the quality of the7

synthesized reactive motion with realistic and discrimina-8

tive dynamics.9

3.2. Seq2seq Attention Mechanism10

The seq2seq attention [44] aims to establish a bridge11

between encoder and decoder to emphasize the informa-12

tive steps and improve output quality in decoding. Specif-13

ically, with a RNN-based backbone, seq2seq attention at14

each decoder step t learns a context vector rt from the15

weighted summation of all the encoded states {hs}
S
s=1 by:16

rt =

S∑
s=1

α(s, t)hs. (2)

Here, the attention weight α(s, t) is a content-based ad-17

dressing function that evaluates the general score between18

encoder state hs and the previous decoder state ĥt−1 given19

by:20

α(s, t) = so f tmax(Vtanh(W[hs; ĥt−1])), (3)

where W is a fully connected matrix to keep the dimen-21

sion consistent. The seq2seq attention can be either global22

or local depending on whether all or a part of the hidden23

states of the encoder are included [45].24

Since using global attention in a seq2seq architecture 25

can effectively model the dependencies between the input 26

dynamics and the previous decoder step, in this paper, we 27

adapt it to strengthen the stepwise correlations between 28

two characters in an interaction. 29

4. Reactive Motion Synthesis 30

In an interaction involving two characters denoted as A 31

and B, we consider character A to be the one performing 32

the intended action, and character B to be the one react- 33

ing. The aim of our system is to synthesize the motion of 34

B given that of A. As data pre-processing, we normalize 35

the interaction by rotating them according to the facing 36

direction of A, and translating the origin point of the new 37

coordinate system to the pelvis joint of A. B’s joint loca- 38

tions are then represented under such a transformation. 39

The framework of our reaction generation can be found 40

in Fig. 1. The overall network is trained by integrating 41

three auxiliary constraints: bone, continuity and contrac- 42

tive losses, that target at reinforcing the adversarial objec- 43

tive with physical properties, stability and continuity of 44

the synthesized motion sequence, respectively. The archi- 45

tecture of our reactive motion synthesis system consists 46

of two parts: a part-based attentive recurrent generator to 47

synthesize reaction from the input action, and a dual dis- 48

criminator to increase the generator capacity with type- 49

specific realistic reactive features. 50

4.1. The Part-based Attentive Recurrent Generator 51

We propose a generator that synthesizes the reactive 52

motion in an interaction. The generator does not require 53

the class label of the interaction to be explicitly defined, 54

which enhances the usability of the system as an anima- 55

tion system, since the nature of the interaction may be un- 56

clear to the animators in some scenarios. Instead, we only 57

take in the action from the active character as the input. 58

We construct a part-aware recurrent generator with 59

seq2seq attention to learn the dynamic mapping between 60

the input and its reactive motion. For encoding the ob- 61

served motion, we break down the character and sepa- 62

rately model the body part-level dynamics. The obtained 63

hierarchical information helps the synthesized character 64

to better observe local movements and react properly. For 65

generating the reactive motion, we construct an attentive 66
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Figure 1: An overview of the proposed reaction generation architecture.

LSTM decoder to temporally align the decoded reactive1

motion with the input character by recognizing the infor-2

mative encoder steps. The part-aware encoder and atten-3

tive decoder together form our reactive motion generator4

G.5

We first adopt hierarchical part-based LSTM blocks to6

shape the temporal variations of each input body part.7

With the articulated structure, human joints can be seg-8

mented into five main parts (four limbs and the trunk)9

[34]. In particular, our input and output actions are rep-10

resented with 3D joint positions in Cartesian coordinate11

system, and we denote an interaction after normalization12

with S frames of poses as: {XA,XB} = {(xA
s , x

B
s )}Ss=1 =13

{(xAp
s , x

Bp
s )}S ,5s,p=1,1with the body part index p. In the en-14

coder, the LSTM neuron takes xAp
s of character A at frame15

s as the input to generate the hidden state hp
s , and its pre-16

vious state of the decoder hp
s−1 is also participated in each17

LSTM cell to update the input gate ip
t , the output gate op

t ,18

the forget gate f p
t , the interim gate up

t , and the cell gate cp
t19

for the p-th body part respectively by the equations:20 
ip
s

f p
s

op
s

up
s

 =


σ
σ
σ

tanh

 Wp


xAp

s−1

hp
s−1

 , (4)

21

cp
s = f p

s � cp
s−1 + ip

s � up
s , (5)

22

hp
s = op

s � tanh(cp
s ), (6)

where Wp represents the shared LSTM weights for all the 23

joints in the p-th body part. Then, the five local hidden 24

states go through a concatenated layer to formulate the fi- 25

nal integrated spatial state hs = h1
s ⊕ . . . ⊕ h5

s of the whole 26

body, which can be regarded as a precise geometric re- 27

finement at the s frame step. 28

In our decoder phase, the attention mechanism intro- 29

duced in Sect. 3.2 is integrated with a LSTM layer to fo- 30

cus on the crucial information among rich temporal data 31

for each decoder state ĥt. The context vector rt obtained 32

from the probability combination of all the hidden states 33

in the connected hierarchical-LSTM layer is calculated by 34

Equations (2) and (3), and then rt is used to update all the 35

potential gates of the LSTM decoder at step t as well as 36

the motion output x̂B
t with attention significance: 37

ît
f̂t
ôt

ût

x̂t

 =


σ
σ
σ

tanh
tanh

 Ŵ


x̂B

t−1

ĥt−1

rt

 . (7)

where ĉt and ĥt are updated using the same configuration 38

as in (5) and (6). Since the generated motion for charac- 39

ter B should have the same number of frames as the input 40

motion for character A to complete an effective interac- 41

tion, S and T are set to be equal in our encoder-decoder 42

model. Besides, we constructed a linear layer after the 43

attentive LSTM layer to restore the reactive pose at each 44
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timestep t.1

We attach the attentive layer to help strengthen the cor-2

relations between the encoder and decoder by inform-3

ing the importance of all the encoder steps to the current4

decoder step. With an effective context vector linking5

the encoder and decoder per frame, the attentive mech-6

anism brings an actual effect that temporally aligns the7

synthesized reactive B with the observed A. The detailed8

attention-based generator is illustrated in Fig. 2.9

4.2. The Class-aware Discriminator10

We propose a two-way discriminator that not only iden-11

tifies natural reactions xB from the synthesis x̂B, but also12

classifies which interaction type it belongs to. This is13

driven by the observation that the reactive motion of dif-14

ferent types of interactions can be significantly different.15

Being able to tell the class of the interaction helps increase16

the capacity of the generator by synthesizing high-quality17

reactions with diverse reactive patterns.18

We present a dual discriminator structure, in which we19

construct a standard binary classifier Db to maintain the20

authenticity, and a multi-class classifier Dm to promote21

the discriminability of the synthesis. With the assistance22

of Dm, we can prevent G from creating monotonous re-23

actions for all kinds of input actions, while preserving24

the natures learned from the class-specific information to25

build a desired yet precise representation to react. As26

shown in the right part of Fig. 1, since most of the struc-27

tures are shared between Db and Dm, the dual discrimina-28

tor is efficient without introducing massive extra parame-29

ters to learn.30

To avoid abuse of the input motion, we only feed in31

the synthesized reactive motion to the dual discriminator.32

This is because if both the real A and synthesized B are33

visible, the discriminator will mainly rely on extracting34

features from the input A for classification. As a result,35

less effective features are learned to justify the reactive36

motion that will ultimately downgrade the ability of the37

discriminator. On the contrary, only observing the move-38

ment of character B will enforce the discriminator focus-39

ing on the reactive pattern to increase its discriminability.40

Specifically, we consider bidirectional LSTM layers41

shared between the two classifiers in the dual discrimi-42

nator to globally execute the reactive dynamics, each of43

which will further go through a fully connected layer to44

achieve the two classification tasks, respectively. Since45

for the discriminator architecture, empirically under a 46

bidirectional procedure, exploiting contextual informa- 47

tion from both the forward and backward movements can 48

summarize high-level features that significantly boosts the 49

classification performance compared with its undirected 50

counterpart [46]. 51

4.3. The Loss Functions 52

The adversarial system of our reactive motion genera- 53

tor and the class-aware discriminator is trained based on 54

a semi-supervised loss inspired by [42]. Traditionally, the 55

aim of semi-supervised GAN [42, 22, 23] is to learn a 56

capable classifier that can recognize real samples. In con- 57

trast, we utilize the classification ability of the multi-class 58

classifier to generate samples of different classes, such 59

that the generator can learn from the class-specific infor- 60

mation to synthesize a better reaction. 61

Our multi-class classifier Dm is supervised for discrimi-
nating whether a reactive motion belongs to any of the real
N classes or the fake class N + 1, and our binary classifier
Db is unsupervised that tells the real reaction from fake.
The overall semi-supervised adversarial loss can thus be
expressed by the supervisedLsup and unsupervisedLunsup

components as:

Lsup = −Ex,y∼G log
pDm (y|x, y < N + 1)
pDm (y|x, y = N + 1)

+ Ex,y∼pB log pDm (y|x, y < N + 1), (8)
62

Lunsup = Ex∼pB log[1 − pDb (ysyn|x)] + Ex∼G log pDb (ysyn|x)
= Ex∼pB log Db(x) + Ex∼pA log[1 − Db(G(x))].

(9)

where pA and pB stand for the real data distributions of 63

the motions from character A and B, respectively, y is the 64

class label for the input action x and p(ysyn|x) represents 65

the probability of x being classified as the synthesized 66

class. In Lunsup, we denote Db(x) = 1 − pDb (ysyn|x) so 67

that it can be rewritten into the form of standard objective 68

function of GAN. 69

Different from the normal semi-supervised GAN, our 70

multi-class classifier Dm also classifies the synthesized 71

reaction. This is done by employing a new term 72

Ex,y∼G log pDm (y|x,y<N+1)
pDm (y|x,y=N+1) to the supervised Dm. Compared 73

to conditional GAN [20], we do not adopt label infor- 74

mation into the generator but only for the discriminator, 75
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Figure 2: The reactive motion generator pipeline. The characters in red show example frames of real-world shaking hand and the blue characters
are example frames of the synthesized reaction.

since our generator will create plausible responses that1

can be recognized as the underlying interaction type with-2

out early annotation.3

We further design three loss functions for synthesizing4

high-quality movement as follows:5

Bone loss: To synthesize a valid motion, it is essential6

to preserve bone lengths among all the generated frames,7

and we use an additional loss function Lskl to restrict this8

physical constraint:9

Lskl =
∑

t

∑
j

∣∣∣skl(x̂B
t , j) − sklre f ( j)

∣∣∣, (10)

where skl(x̂B
t , j) is the predicted skeleton length at time10

t and sklre f ( j) is the reference skeleton length with j11

denoting the bone index. The ground truth skeleton12

length skl(xB
t , j) is character specific so a uniform con-13

stant sklre f ( j) is used instead, as the intention of our net-14

work is not to shape the physiological properties (e.g.15

bone length, height) of the people in front, but to predict16

the tendency of motion kinetics.17

Continuity loss: Similar to [28] that designs a triple18

loss to maintain video appearance consistency based19

on pixel difference, we demonstrate the continuity loss20

based on joint locations, which is beneficial to synthesize21

smooth and stable motion. The modified continuity loss22

for skeleton-based motion sequence is defined as:23

Lcon =
∑

t

max(|‖x̂B
t+∆t− x̂B

t ‖
2−‖x̂B

t+k∆t− x̂B
t ‖

2+λ|, 0), (11)

where ∆t is temporal gradient and λ measures the sensi-24

tiveness of the constructed activity. A small λ demands25

to narrow the gap between close frames (differ by ∆t) and 26

remote ones (differ by k∆t) to obtain a smooth motion. By 27

tuning the intrinsic parameters λ, ∆t and k, we can control 28

the quantity of random movements emerged in X̂B. 29

Contractive loss: We also adopt the L1 norm for train- 30

ing the generator to make sure it follows the real reactive 31

patterns, which will also strongly guide the reactive move- 32

ments and reduce ambiguous predictions. Therefore, a 33

contractive loss under L1 norm is formulated to approxi- 34

mate the ground truth reaction: 35

L1 =
∑

t

|x̂B
t − xB

t |. (12)

This loss aims to mimic specific motion style to avoid 36

neutrality and monotonous generation. 37

The overall min-max objective function of the reaction 38

generation architecture is the combination of all the net- 39

work losses: 40

min
G

max
D
Lsup +Lunsup + αLskl + βLcon + γL1, (13)

where α, β and γ control the weights of the respective 41

losses. 42

5. Experimental Results 43

Dataset settings: To demonstrate the effectiveness 44

of our approach on 3D joint space, we evaluate on 45

both Kinect-based datasets, i.e. SBU Kinect Interac- 46

tion dataset (SBU) [24] and Human-Human-Object In- 47

teraction dataset (HHOI) [10], and high-quality Mo- 48

tion Capture-based Character-Character dataset (2C) [47]. 49
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Figure 3: The ground truth and the synthesis for SBU dataset for different classes of interactions. The red character is the observation. The green
and blue characters are the ground truth and the synthesis, respectively.
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Figure 4: The ground truth and the synthesis for the high-quality 2C dataset for kicking and punching. The red character is the observation. The
green and blue characters are the ground truth and the synthesis, respectively.

The SBU dataset includes 8 interaction categories (i.e.,1

approach, depart, kick, push, punch, hug, shake hands2

and exchange objects) performed by 7 participants. It3

also provides the annotations of “active” agent (charac-4

ter A) and “inactive” agent (character B). We exclude ap-5

proach and depart since in these interactions the indicated6

character stands still and no movement is presented for7

forecasting. For HHOI dataset, we experiment on 2 types8

of human-human interactions: shake hands and high-five.9

Compared with SBU dataset, HHOI contains fewer in-10

stances in each category but a longer duration with more11

frames in each captured sequence. To better fit the net-12

work, we expand the dataset by clipping a sliding win- 13

dow with the size of 40 frames and shifting every 5 frames 14

along the sequence. On both datasets, we conduct leave- 15

one-subject-out cross-validation. The 2C dataset contains 16

kicking and punching interactions with about 50 clips in 17

total. In this high-quality dataset, each character contains 18

20 joints and we convert the 3D joint angle representa- 19

tions into joint positions using forward kinematics. 20

Implementation details: Our reaction generator is 21

built upon the Keras platform with the TensorFlow back- 22

end. RMSprop is adapted as the optimizer with the learn- 23

ing rate of 0.01. There are 40 and 60 LSTM neurons for 24

9



each spatial slice, and 200 and 300 for the temporal atten-1

tive layer for SBU and HHOI, respectively. For 2C, the2

LSTM neurons are set to 200 and 1000 for the body slice3

and the attentive layer, respectively. The parameters k, ∆t,4

and λ are set to 1, 5, and 0.1, respectively. The training5

time is about 9.3s for each epoch and our model normally6

converges around 1000 epochs. The inference time for7

each interaction is around 5.2ms. For the weights of net-8

work losses, we set α = β = 0.01, and γ = 1 in Equa-9

tion (13). Since the function of Lskl and Lcon is to prevent10

the abuse of physical properties, i.e., skeleton length and11

action smoothness, lower weights are assigned to these12

losses. Otherwise, the model will vacillate among various13

body shapes and not converge. For the adversarial loss,14

we also adopt one-side label smoothing [42] to help train15

the discriminator.16

5.1. Qualitative Evaluations17

We demonstrate that our system can generate realis-18

tic reactive motion. Given the observation of an inten-19

tional action, the proposed mechanism can forecast the20

natural response which is successive in both space and21

time. Some example comparisons between ground truth22

and synthesis are visualized in Fig. 3. The synthesized23

character will learn from the skeletal positions and tem-24

poral synchronization for a reaction, which imitates how25

a human perceives an action and behaves accordingly. For26

example, the synthesized characters can move backward27

to dodge in punching, pushing and kicking. Our model28

can also recognize the attack from different directions per-29

formed by different body parts. As in punching and push-30

ing, the synthesized character leans back its upper body31

to avoid the arm from the observed actor. In kicking, the32

synthesized character escapes the offensive leg by pulling33

back his lower body. In the neutral interactions (i.e., hug-34

ging, shaking hands, and exchanging objects), the relative35

distance between two characters is first shortened then en-36

larged compared with the other three aggressive interac-37

tions showing a consistent increasing distance. This is38

because the Dm classifier promotes the quality of the syn-39

thesized reactive motion by adding more discriminative40

details in each of the ground truth classes.41

We also observe that in some unusual situations, the42

ground truth reactive motion is noisy with flickering joints43

due to occlusion. Our system synthesized a more natural44

reactive motion than the ground truth but with similar key45

Table 1: The effectiveness of Dm evaluated with AFD on each interaction
category of SBU.

AFD (↓) w/o Dm w/ Dm (Ours)
Kick 0.58 0.53
Push 0.52 0.52
Punch 0.44 0.45
Hug 0.81 0.72
Shake hands 0.50 0.44
Exchange object 0.49 0.45

Table 2: The effectiveness of the proposed reactive synthesis method
over existing models evaluated with AFD on each interaction category
of SBU.

AFD (↓) NN HMM DMDP KRL ME-IOC Ours
Kick 0.81 0.92 0.65 0.92 0.67 0.53
Push 0.51 0.60 0.45 0.61 0.48 0.52
Punch 0.56 0.66 0.48 0.66 0.52 0.45
Hug 0.61 0.67 0.48 0.81 0.47 0.72
Shake hands 0.48 1.41 0.42 0.54 0.42 0.44
Exchange object 0.63 3.84 0.53 0.74 0.54 0.45

features. This indicates that the generator we developed 46

generalize well to model human movement. 47

Since the ground truth movements in the Kinect-based 48

dataset (SBU) are very likely to present noisy joints and 49

unnatural configurations, we also test the feasibility of our 50

method on high-quality precise interactions (i.e. 2C) to 51

remove the inherited noise from the low-quality motion 52

data. We give example interactions with key frames show- 53

ing the real and the generated reactive motions in Fig. 4. 54

We first observe that the synthesized reaction is highly 55

consistent with the ground truth with natural arm and leg 56

movements. The motion details are also sufficiently pre- 57

served in the synthesized reaction. For example, we can 58

simulate the state from squat to stand at beginning of the 59

reaction as shown in Fig. 4(b). Furthermore, in the punch- 60

ing of Fig. 4(c), the necessary body contact is preserved 61

with the punching hand of A hitting the upper body be- 62

fore the step back of B in the initial poses. The readers 63

are referred to the supplementary video for more results. 64

5.2. Quantitative Evaluations 65

We also conduct quantitative analysis to test the effec- 66

tiveness of the multi-class discriminator. The determin- 67

istic metric Average Frame Distance (AFD) is adopted 68

to measure the geometric similarity between the learned 69
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Table 3: Recognition performance (SBU) on the prototype and synthesized interactions on ablation study of losses .
Accuracy prototype Adv. Adv. +Lskl Adv. +Lskl +Lcon Adv. +Lskl +Lcon +L1

Aggresive
Kick 0.9698 0.8413

0.6413
0.8841

0.7273
0.9016

0.7196
0.9365

0.7921Push 0.8806 0.5755 0.6478 0.7135 0.7573
Punch 0.8583 0.5071 0.65 0.5437 0.6825

Neutral
Hug 0.8857 0.2381

0.4379
0.0778

0.3848
0.1683

0.4352
0.2087

0.3997Shake hands 0.7092 0.6495 0.6546 0.7138 0.4735
Exchange object 0.81 0.4261 0.4219 0.4236 0.5168

Table 4: Recognition performance (HHOI) on the prototype and synthesized interactions on ablation study of losses.
Accuracy prototype Adv. Adv. +Lskl Adv. +Lskl +Lcon Adv. +Lskl +Lcon +L1

High-five 0.9785 0.5171 0.9901 0.9067 0.9473
Shake hands 0.9778 0.9533 0.7132 0.8966 0.9673
Average 0.9782 0.7352 0.8517 0.9017 0.9573

skeleton x̂B and the ground truth xB, which is defined by:1

AFD B
1
T

∑
t

‖x̂B
t − xB

t ‖
2. (14)

The AFD comparison towards Dm under different interac-2

tion class is shown in Table 1. We can see that the synthe-3

sized reactive motion shows a much lower positional er-4

ror in most classes by including the multi-class classifier5

Dm, which verifies that discriminating different interac-6

tions helps improve the synthesized reactions with better7

quality.8

To evaluate our model, We also compare the proposed9

reactive synthesis method with prior work [9, 48] that10

are closely related to ours, and some classic machine11

learning-based methods. Following [48], the first base-12

line we adopted is the Nearest Neighbour [49] (denoted13

as NN) based on the framewise co-occurrence without14

considering temporal correlations. The second baseline15

is hidden Markov model [50] (denoted as HMM), which16

restores the reactive poses with sequential state transition17

based on the given movement. The third baseline is dis-18

crete Markov decision process [51] (denoted as DMDP)19

by discretizing the time steps with unsupervised cluster-20

ing. In addition, we also compare with [9] and [48] that21

adopting kernel-based reinforcement learning (denoted as22

KRL) and maximum-entropy inverse optimal control (de-23

noted as ME-IOC), respectively, for reaction synthesis.24

The comparison results on different action classes are25

given in Table 2. We observe that our method achieves26

comparable performance with the lowest prediction errors 27

in half of the categories. For the interactions of push- 28

ing and shaking hands, the AFD differences between our 29

method and the corresponding best models (i.e. DMDP 30

and ME-IOC, respectively) are less than 0.1. Different 31

from other actions, hugging shows a relatively higher 32

AFD with our model. This is because the large diversity 33

caused by frequent self-occlusions makes it hard to learn 34

the feature co-occurrence in this class, thus reducing the 35

synthesis performance. Although the quantitative results 36

are compatible with the statistical models [9] and [48], 37

their methods mainly sample or assemble source move- 38

ments from the training data. This makes them less likely 39

to be generalized to large-scale motions when more vari- 40

ations are needed in the synthesis to meet diverse user re- 41

quirements. 42

Furthermore, we quantify the recognition accuracy of 43

the reaction generated by different combinations of losses. 44

We first construct a two-layer LSTM with 512 units each 45

layer and a linear layer connected to its end as the base- 46

line classification network, and train it with the 3D joints 47

of real interactions with the same cross-subject strategy 48

as we train the reactive motion generator. The test inter- 49

actions consist of real actions for character A and their 50

corresponding real or synthesized reactions for charac- 51

ter B. For this baseline evaluation, we denote it as pro- 52

totype. We also evaluate the model under different loss 53

combinations: Adversarial loss only (denoted as Adv.), 54

adversary with bone losses (denoted as Adv. + Lskl), 55

11



Enoder LSTM layer Decoder LSTM layer Cascading Element-wise product

(a) (b) (c)

Figure 5: Qualitative results and architectures of three generator modalities for the alignment test. The skeletons refer to the synthesized frames of
a pushing reaction sequence in the SBU dataset. The top to the third rows are generated by methods (a) Seq2seq Generator, (b) Seq2seq Part-based
Generator, and (c) Seq2seq Part-based Attentive Generator (our G). The green box highlights the biased frames, and the orange box highlights the
aligned frames. We observe that when modeling the body part, the reactive motion shows less spatial artifacts, and further including the attentive
mechanism can better align the two characters.

adversary with bone and continuity losses (denoted as1

Adv. + Lskl + Lcon), and adversary with all 3 losses (de-2

noted as Adv. +Lskl +Lcon +L1).3

The recognition performance on each interaction cat-4

egory of the two datasets is given by Table 3 and 4.5

In general, the discriminability will increase when we6

include more restrictions on the synthesized actor, and7

our model with all three constraints outperforms oth-8

ers, which shows the effectiveness and indispensability of9

each proposed loss function. For SBU dataset (Table 3),10

it is challenging to differentiate pushing and punching as11

the two reactions behave visually similar in skeletal rep-12

resentation, and it will mainly rely on the contractive L113

loss to examine the slight distinction in spatial patterns ex-14

isted in two kinds of reactions. Another observation is that15

our architecture does not perform well in neutral types of16

interaction especially hug since large biases of the bone17

lengths and frame jumping problems occurred because of18

abundant occlusions and intersects between two charac- 19

ters during hugging frames in the training set. This distor- 20

tion makes the generator hard to learn its intrinsic spatial 21

regularities and temporal dependencies. We also observed 22

that the Shake hands and Exchange object interactions are 23

highly similar and result in relatively low classification 24

accuracy in those classes. Nevertheless, such ambiguity 25

does not have a significant impact on the visual quality of 26

the synthesized interactions as those two interactions are 27

very similar in terms of body movements. In Table 4, the 28

recognition results on HHOI with all types of losses are 29

also the closest to the compared prototype baseline. 30

5.3. Interaction Alignment Evaluations 31

To clarify how each component of the generator struc- 32

ture contributes to the final output, we compare three ab- 33

lation strategies on the network construction to train the 34

generator G. The baseline structure (denoted as “Seq2seq 35

12



Figure 6: Interaction alignment demonstration of three phases from one
high-five sequence in HHOI. The blue bar implies the individual time pe-
riod and the orange bar is the overlap period which shows the keyframes
of this interaction. For different time periods, the synthesized character
aligns the input character with coincident arm movements.

Figure 7: Example skeleton errors in the SBU dataset. The grey area
displays the inaccurate joint positions.

Generator”) is formed by a two-layer LSTM with ba-1

sic sequential encoder-decoder architecture. The second2

structure is trained with five LSTM layers separately, each3

of which encodes the action of an articulated branch in a4

skeleton, and their final states are cascaded to be inter-5

preted by the decoder (denoted as “Seq2seq Part-based6

Generator”). The third one is our method with the atten-7

tion mechanism equipped with the encoder-decoder struc-8

ture based on the second model (denoted as “Seq2seq9

Part-based Attentive Generator”).10

The corresponding architecture and their visualized ef-11

fects are compared in Fig. 5. We observe that when12

adding spatial hierarchy (the 1st and 2nd row), the encoder13

can better recognize the input action and react with less14

floating and artifacts. However, in the 2nd row which tem-15

poral attention is not considered, we observe that the right 16

character (synthesized) dodges before the left character 17

(input) pushes. For the essential pushing frames, the right 18

agent stops moving back and recovers gradually, which 19

shows the misalignment in the whole interaction perfor- 20

mance. As highlighted in the orange box of the 3rd row, 21

we can see that the temporal attention better aligns the 22

movements of the two characters by dodging at a proper 23

time, since the decoder can learn which interaction stage 24

should the system pay more attention to for a punctual 25

reaction. 26

We further test on three time phases of a high-five se- 27

quence as shown in Fig. 6 (i.e. raise arm, high-five, put 28

down arm). The synthesized reaction shows coincident 29

arm raising and putting down with the input character in 30

each time scope, which also demonstrates that our sys- 31

tem can build the reaction based on the observed spatial 32

pattern, but not answer back with a uniform temporal pat- 33

tern. It indicates that the proposed network can not only 34

identify and encode the detected context, but also provide 35

real-time and refined feedback. 36

To clarify the attention module, we also show the 37

learned attention weights of three interaction samples 38

from shake hands and exchange objects. As given in 39

Fig. 8, each element α(i, j) from Eq. 3 in an attention map 40

represents the attention value between character A in the 41

ith frame (i.e. Ai) and character B in the jth frame (i.e. 42

B j). Since the attention is attached to the reaction, the ac- 43

tive frames of A will contribute to the entire action of B. 44

From Fig. 8(a) and Fig. 8(b), the wide range of non-zero 45

weights indicates that the shaking interaction remains ac- 46

tive for a long time, and it shows the alignment (higher 47

values in diagonals) till the end of shaking. By comparing 48

the two attention maps, we also observe that the attention 49

pattern of different instances varies that is not determined 50

by the interaction type. Compared to shaking hands, most 51

of the large weights of exchanging objects are centered at 52

a short period (i.e. A7∼A10 in Fig. 8(c)), which makes 53

sense as the activity of exchanging is relatively fast. 54

Note that simply depending on the action type will gen- 55

erate some ambiguous reactive patterns (e.g. the 2nd row 56

in Fig. 5), while adding attention module helps to gener- 57

ate sample-wise reactive motion according to its received 58

interaction pace. Thus, the advantage will also be kept 59

even though the interaction shows less synchronization, 60

such as waving back. 61
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(a) Shake hands (#1) (b) Shake hands (#2)

(c) Exchange objects

Figure 8: The example attention maps between the input character A and synthesized character B at every frame. (a) and (b) are attention maps of
two shake hands interactions, and (c) is exchange objects, respectively. Note that the size of attention map may be varied based on the length of the
interaction sequence.

5.4. More Generalization Tests1

We also conduct a generalization test by feeding in2

reactive motions in training and testing on unseen reac-3

tions. Some example generations are given in Fig. 9. By4

feeding in two dodging reactions (the red character), the5

model generates some attacking actions (the blue charac-6

ter), such as kicking and punching. When feeding in a7

high-five reaction, the model can recognize it and gener-8

ate the high-five as well. We also observe that the system9

will not create some averaged action (e.g. kicking while10

punching) as the discriminator help to identify generation11

to a single type of response.12

6. Limitations13

For the limitations, the proposed model may fail to syn-14

thesize the microscopic movements when the interactions15

contain local actions. For example, during shaking hand16

interaction, it is difficult to perform shaking for B’s arm 17

with the simple amplitude as A, which will result in a re- 18

semble acting as exchange object. To reduce this ambigu- 19

ity, the system is required to learn the geometric relation- 20

ship between two actors to further reflect the reciprocal 21

interaction in detail. 22

Another limitation of the method is that as a data-driven 23

approach, the result of the synthesized motion will largely 24

depend on the observed interaction in the dataset. For ex- 25

ample, feet floating may sometimes take the place of the 26

walking steps in the generated kicking and dodging inter- 27

actions. This is because, like many other deep learning- 28

based action synthesis work [15, 26], the walking pattern 29

is hardly learned when most of the interactions observed 30

are non-walking related. We improve the rendering us- 31

ing 3D stickman figures representing each bone with vol- 32

umetric cylinders in the video, where the root positions 33

are also included with less feet sliding. However, as an 34
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Figure 9: Example frames of the synthesized actions (blue character) by feeding in the reaction (red character).

extension, it would be possible to fix this problem by con-1

straining the velocity of the toe or heel when considering2

foot contact parameters in locomotion [52]. Due to the3

limitation of depth sensors, it is inevitable to draw in some4

occlusions and artifacts (e.g. Fig. 7), especially for the5

interactions with close contact such as hugging which re-6

sults in inaccuracies in the captured data. This will make7

it hard for the generated reaction to perform in the way of8

a true human motion. Furthermore, the model proposed9

in this work uses 3D joint positions for motion synthesis.10

Because of the nature of the data, it is hard to fully syn-11

thesize a skinned character pose due to the impossibility12

to determine the orientation of the body joints.13

7. Conclusion14

In this paper, we proposed an innovative human reac-15

tion generation system based on seq2seq generative ad-16

versarial network. The generator is self-adaptive which17

can autonomously recognize the observed action from18

spatial and temporal perspectives without the label infor-19

mation, and further shape a precise reaction. The dual dis-20

criminator with the binary and multi-class classifiers are21

designed to promote the authenticity and the discrimina-22

tion of the reaction. The movements of body parts are an-23

alyzed hierarchically to discover the part-based features,24

and they are integrated to be interpreted by the decoder.25

An attention mechanism is also attached to the decoder to26

align the synthesized interaction. To synthesize a more re- 27

alistic reaction, we add a skeleton loss to keep the basics 28

of the physical body structure, a continuity loss to smooth 29

the appearance among motion frames and a contractive 30

loss to reduce the artifacts of the generated movements. 31

We have both qualitatively and quantitatively evaluated 32

our reaction synthesis approach with respect to the dis- 33

criminability, the synchronism between characters, and 34

the similarity to the actual reaction. Experimental results 35

show that the proposed generative model can produce log- 36

ically and numerically analogous generations of human 37

reaction when the input action is provided. 38

In this work, we synthesize the natural reactive patterns 39

by assuming the action and reaction appear in pairs. Since 40

human responses in social interaction should not be lim- 41

ited to one single reaction pattern, as future work, we aim 42

to increase the diversity of the generated reactive motion. 43

Possible solutions include disentangling the basic reactive 44

patterns and different reactive styles, or accommodating 45

random noise z to our generative model to increase the 46

variations of the synthesized reaction. In addition, creat- 47

ing an online human reactive motion with local temporal 48

attention is another interesting direction to explore. 49

As another potential future direction, our work can be 50

further improved by collecting a larger interaction dataset 51

where the distribution-based metrics such as FID (Fréchet 52

Inception Distance) [53] can be applied to evaluate the 53

generation space. 54
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