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Abstract

Point set registration has been actively studied in computer vision and graphics.

Optimization algorithms are at the core of solving registration problems. Tra-

ditional optimization approaches are mainly based on the gradient of objective

functions. The derivation of objective functions makes it challenging to find opti-

mal solutions for complex optimization models, especially for those applications

where accuracy is critical. Learning-based optimization is a novel approach to

address this problem, which learns the gradient direction from data sets. How-

ever, many learning-based optimization algorithms learn gradient directions via

a single feature extracted from the data set, which will cause the updating di-

rection to be vulnerable to perturbations around the data, thus falling into a

bad stationary point. This paper proposes the General Discriminative Opti-

mization (GDO) method that updates a gradient path automatically through

the trade-off among contributions of different features on updating gradients.

We illustrate the benefits of GDO with tasks of 3D point set registrations and

show that GDO outperforms the state-of-the-art registration methods in terms

of accuracy and robustness to perturbations.
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optimization

1. Introduction1

Point set registration has been actively studied in computer vision and com-2

puter graphics. For shape reconstruction [1] [2], point set registration is used3

to find the overlaps of point sets reconstructed from images and align them in a4

global coordinate system. For face recognition [3], point set registration aligns5

the face descriptors extracted from a face with different facial expressions or6

different viewpoints. In medical image processing [4], point set registration is7

the fundamental step to fuse multiple images(e.g., computed tomography (CT),8

magnetic resonance imaging (MRI), and positron emission tomography (PET)).9

In intelligent vehicles [5], point set registration is an important step to align10

the images and extract feature points that will be further used for location and11

mapping. For shape retrieval [6], point set registration converts unstructured12

shapes into structured ones to rapidly retrieve 3D shapes that resemble a query13

object from a database.14

The goal of point set registration is to find correspondences and to estimate15

the transformation between two or more point sets. Various rigid registra-16

tion methods arise to solve the estimation of transformation parameters, i.e.,17

a map defined as rotation and translation, which is essentially a mathemati-18

cal optimization task. Gradient-based algorithms are widely used for solving19

the optimization problems in the applications of registration, such as gradient20

descent for multi-view reconstruction [7], Gauss-Newton for face alignment [8],21

Levenberg-Marquardt for surface fitting [9], Conjugate Gradient for surface22

reconstruction [10].23

One of the gradient-based optimization algorithms is Newton’s algorithm [11],24

which is an extremely powerful technique due to quadratic convergence. The25

computational cost for obtaining the second-order gradient information of the26

Hessian matrix makes Newton’s method not feasible in many cases. Quasi-27

Newton methods are proposed to generate an estimation of the inverse Hes-28
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sion matrix, which leads to faster computation time. However, Quasi-Newton29

methods (such as Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS)) take30

a larger memory space to store the inverse Hessian approximation, thus could31

be detrimental for large, complicated tasks. Limited-memory BFGS (LBFGS),32

as the variant of the BFGS method, only stores a set of vectors and calculates a33

reduced rank approximation to the Hessian approximation, which needs much34

less memory to operate. However, the amount of storage required by LBFGS35

depends on the parameter setting that determines the number of BFGS correc-36

tions saved.37

The high complexity and the large storage required for inverse Hessian ap-38

proximation pose challenges to the applications of gradient-based optimization39

methods in computer vision and graphics while limiting the performances of the40

traditional registration methods that use gradient-based approaches for param-41

eter estimation. In contrast, learning-based registration methods have a higher42

performance of registration with less time-consuming. The robustness and the43

high efficiency of the learning-based registration are due to that the approach in-44

tegrates the traditional optimization (modeling and solution) as a learning-based45

optimization process, in which gradient directions are learned without calculat-46

ing the Jacobian matrix or Hessian matrix. For example, Supervised Descent47

Method (SDM) [12] [13] and Discriminative Optimization (DO) method [14]48

learn to update directions from the single feature of the training data set and49

mimics gradient descent to estimate transformation parameters without regis-50

tration modeling. However, if a single feature lacks robustness, it could make51

the learned direction susceptible to perturbations and likely to be trapped in52

stationary points rather than optimal solutions.53

In this paper, we put forward a General Discriminative Optimization (GDO)54

method for point clouds registration. GDO, as the learning-based optimization55

method, overcomes the limitation of the learning-based registration methods.56

Our key insight is that, by balancing the contribution of different extracted fea-57

tures on the updating gradient, we can learn a sequence of gradient directions58

directly from training data sets while making the gradient path converge to the59
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optimal point as closely as possible. We provide a framework for updating gra-60

dient directions via different features and show the proof of GDO’s convergence.61

For 3D points registration, GDO learns a sequence of directions through the 3D62

coordination and density information of the point sets. The experimental re-63

sults show that GDO outperforms the state-of-the-art registered algorithms in64

terms of robustness and accuracy on different data sets.65

In the next section, we review related work on 3D registration and optimiza-66

tion. The following sections introduce our framework and theoretical analysis67

of GDO. Finally, we evaluate the registration performance of our algorithm.68

2. Previous Work69

2.1. 3D point sets registration70

Point set registration has been an important problem in computer vision71

for the last few decades. The most commonly used method for registration is72

based on the iterative closest point (ICP) [15] algorithm, which finds the best73

transformation parameters of a group of three-dimensional points through rigid74

transformation and continuous iteration to minimize the difference between two75

point sets. Due to its conceptual simplicity, high usability, and good perfor-76

mance in practice, ICP and its variants are very popular and have been success-77

fully applied in numerous real-world tasks. However, ICP is sensitive to outliers78

and needs initialization to be close to the optimal solution to avoid a bad local79

minimum. ICPMCC [16] combines ICP and the correntropy to improve the ro-80

bustness of ICP in terms of the noises and outliers. GO-ICP [17] combines ICP81

with a branch-and-bound (BnB) scheme to search the optimal 3D motion space82

SE(3) efficiently. RICP [18], as a semantic-based method, avoids ICP trapping83

into local minimum due to the non-homogeneous point-set distribution or the84

poor initial pose through combining region selection, point matching, and noise85

treatment. Iteratively Reweighted Least Squares(IRLS) [19] uses various cost86

functions to provide robustness to outliers and avoid bad local minima. Fast87

global registration (FGR) [20] searches the correspondences between point sets88
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through 3D feature descriptors and optimizes robust objectives based on those89

correspondences. Normal Distribution Transformation (NDT) [21] applies a sta-90

tistical model to match 3D point sets. Coherent Point Drift (CPD) [22] achieves91

point sets registration based on a Gaussian mixture model, which moves the92

Gaussian mixture model centroids coherently as a group to preserve the topo-93

logical structure of the point sets.94

All the above registration methods cast point set registration as a tradi-95

tional optimization problem, which can be divided into two stages: registration96

modeling and searching solutions. And the performances of the traditional reg-97

istration approaches depend on the robustness of the registration models and98

searching methods. Learning-based registration methods, such as Supervised99

Descent Method (SDM) and Discriminative Optimization (DO), integrate the100

registration modeling and searching solutions as a learning-based optimization101

process, which leads to the robustness and high efficiency of registration.102

2.2. Optimization algorithms103

A general formula of the objective function of an optimization problem can

be cast as follows:

x∗ = min
x∈S

f (x) . (1)

f : S → R models the phenomena of interest and then finds the best solution104

x∗ through a suitable search method. S is a set including all possible solutions105

for the objective function.106

The least-square regression is the most popular form of objective functions,107

which is frequently employed in the majority of computer vision and computer108

graphics [23] [24] [25]. [26] [27] add various regularization terms to improve109

the robustness of least square regressions and reduce over-fitting. However,110

the addition of regularization terms increases the complexity of optimization111

models, which will further make it challenging to get the derivation of objective112

functions. Gradient descent and its variants, Newton’s methods, and Quasi-113

Newton methods are commonly used to search optimal solutions of optimization114

models [28]. The learning rate of gradient descent is not optimal, the gradient115
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information is not readily available [29], the Hessian matrix may not be positive116

definite, or the convergence rate is slower.117

Several works have proposed to use learning techniques to compute the gra-118

dient directions of objective functions. Specifically, this is done by learning119

a sequence of regressors to replace the gradient directions of objective func-120

tions. [30] [31] regard weak learner as a gradient to update the parameter vec-121

tor. [32] applies cascaded regression into facial landmark tracking system. [33]122

and [13] all learn a sequence of regressor matrices to update the shape parame-123

ters at per iteration. The former learns a set of averaged Jacobian and Hessian124

matrices from data, and the latter learns a mapping from image features to125

problem parameters directly.126

[34] [35] [14] explore a framework to learn search directions from the feature127

of data without cost functions. Although this approach avoids the computation128

of Jacobian and Hessian matrices, it also uses only a single feature to learn129

the update direction. The lack of other features of data increases the risk of130

perturbations around data on the update of gradient directions. The cooperation131

of multiple features is able to effectively preserve and utilize geometric details132

of point sets, which is mostly used in semantic segmentation [36].133

In view of this, in this paper, our proposed GDO algorithm learns the gra-134

dient update directions by combining different features of the point sets, fully135

utilizing the detailed information of point sets to reduce the impact of pertur-136

bations on gradient directions and, as a result, increasing the accuracy of the137

parameter estimation for registration.138

3. General Discriminative Optimization139

3.1. Motivation of Discriminative Optimization140

Discriminative Optimization (DO) updates gradient directions according to

the feature of input data without calculating the Jacobian or Hessian ma-

trix. More specifically, DO splits gradient information as the updating map

D ∈ Rp×f and the feature h : Rp → Rf , and updates the map D through
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approaching the current estimated parameter vector xt to ground truth x∗.

xt+1 = xt −Dt+1h (xt) (2)

Dt+1 =min
D̃

1

N

N∑
i=1

∥∥∥xi
∗−xi

t + D̃h
(
xi
t

)∥∥∥2
2

+
λ

2

∥∥∥D̃∥∥∥2
F
. (3)

Where ‖·‖F is the Frobenius norm, and λ is a hyperparameter.141

Despite not calculating the Jacobian or Hessian matrix, DO still has several142

issues theoretically. One issue is that DO uses a single feature of data to gain a143

sequence of updating maps. The lack of other features of data increases the risk144

of perturbations around data on the update of gradient directions. In this case,145

GDO explores the collaboration of different features Hf to reduce the impact146

of perturbations on the gradient direction.147

Another theoretical issue of DO is that the constraint for the convergence of148

DO requires eachDh (x) to be strictly monotone at ground truth for all samples.149

Actually, not all features are able to fulfill this constraint. In other words, the150

convergence constraint limits the select of feature function h. We provide a151

weaker constraints for the convergence of the learning-based optimization.152

3.2. Method153

The objective function used to derive the feature of GDO can be formulated154

as follows:155

min
x

Φ (x) =

I∑
i=1

γi
1

Ji

Ji∑
ji=1

ϕi (gji (x)) . (4)

Where I is the number of categories of the different penalty functions ϕi. Ji is156

the number of residual functions gji . γi is the weighting coefficient of penalty157

function ϕi.158

hi =
1

Ji

Ji∑
ji=1

[
∂gji

∂x

]
k,l

δ (v − gji) . (5)
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γi =
Tr (Cov (hi))∑I
i=1 Tr (Cov (hi))

. (6)

Where we express gji (x) as gji and ϕi (gji (x)) as ϕi to reduce notation clutter.

[Y ]k is the kth row of Y ,and [y]k means the kth element of y. δ (x) is the Dirac

function. Tr (Cov (hi)) is the trace of the covariance matrix of hi. If I = 2,

the feature of GDO Hf can be represented as follows:

Hf =

γ1h1

γ2h2

 . (7)

The details of the derivation and the summary of notation have been provided159

in the supplementary material.160

3.3. Relation to the original DO161

GDO can be seen as the extension of DO. When I = 1, the coefficient γi162

is set to 1, which means that DO has a single feature. In this case, GDO and163

DO are equivalent. When I 6= 1, the sum of the coefficients is still equal to164

1, and GDO achieves the cooperation of multiple features. It is worth noting165

that the way to combine the features is derived from the function Eq.4, and the166

coefficients are learned from the features.167

4. GDO Framework168

4.1. Learning for GDO169

Assume that we are given a set of training data
{(

xi
0,x

i
∗,Hf (xi

0)
)}N

i=1
, in-170

cluding N problem instances, each instance has its ground truth parameter xi
∗,171

the initial parameter xi
0, and the extracted feature Hf (xi

0). For simplicity, we172

denote Hf (xi
t) as Hi

ft to represent the feature of the i-th sample at the t-th173

iteration. GDO aims at learning a sequence of maps Dt+1 by approaching xi
t174

to xi
∗.175

Dt+1 =min
D̃

1

N

N∑
i=1

∥∥∥xi
∗−xi

t + D̃Hi
ft

∥∥∥2
2

+
λ

2

∥∥∥D̃∥∥∥2
F
. (8)
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Where ‖·‖F is the Frobenius norm, and λ is a hyperparameter.176

We can apply the initial training data
{(

xi
0,x

i
∗,H

i
f0

)}N

i=1
to (8) to learn177

map D1 at first. Then, D1 will be applied to (2) to get the current estimation178

x1. At each step, a new parameter vector can be created by recursively applying179

the update rule in (2). The learning process is repeated until certain termination180

criteria are met, for example, until the error is not reduced too much or the181

maximum number of iterations T is reached. The pseudocode for training GDO182

is shown in Alg.1.183

Algorithm 1 Training a sequence of update maps

Require:
{(

xi
0,x

i
∗,H

i
f0

)}N

i=1
, T , λ

Ensure: {Dt}Tt=1

1: for t = 0 to T − 1 do

2: Compute Dt+1 with (8)

3: for i = 1 to N do

4: Update xi
t+1 := xi

t −Dt+1H
i
ft

5: end for

6: end for

4.2. Convergence analysis of GDO184

Theorem 4.1 (Convergence of GDO’s training error). Given a training185

set
{(

xi
0,x

i
∗,H

i
f0

)}N

i=1
, if there exists a linear map D̂ ∈ Rp×f where D̂Hf186

meets the condition
∑N

i=1

(
xi
∗ − xi

t

)T
D̂Hi

ft > 0 at xi
∗ for all i, and if there187

exists an i where xi
t 6= xi

∗, then the update rule:188

xi
t+1 = xi

t −Dt+1H
i
ft. (9)

Dt+1 =min
D̃

1

N

N∑
i=1

∥∥∥xi
∗−xi

t + D̃Hi
ft

∥∥∥2
2

+
λ

2

∥∥∥D̃∥∥∥2
F
.

guarantees that the training error strictly decreases in each iteration:189

N∑
i=1

∥∥xi
∗ − xi

t+1

∥∥2
2
<

N∑
i=1

∥∥xi
∗ − xi

t

∥∥2
2
. (10)
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If D̂Hf is strongly monotone, and if there exist H > 0, M > 0 such that190 ∥∥∥D̂Hi
f

∥∥∥2
2
≤ H + M

∥∥xi
∗ − xi

∥∥2
2

for all i, then the training error converges to191

zero.192

The proof of Thm.4.1 is provided in Supplementary Material. Thm.4.1 says that193

for all instances, if D̂Hf meets the condition
∑N

i=1

(
xi
∗ − xi

t

)T
D̂Hi

ft > 0, then194

the average training error will decrease in each iteration; if D̂Hf is strongly195

monotone at xi
∗, the average training error will converge to zero. Note that Hf196

can be not only a single function but also a combination of different functions197

of xi. DO also presents a similar convergence result for a update rule, but it198

requires D̂Hi
ftto be strictly monotone at xi

∗ for all i. Besides, different from199

the single feature h in DO, as the combination composed of several feature200

functions, Hf takes into account more features of data.201

5. EXPERIMENTATION202

This section describes how to apply GDO to 3D point set registration with203

various perturbations. We compare GDO with other classical registration meth-204

ods on various data sets.205

(a) Stanford

Bunny

(b) UWA data

set

(c) Dancing

Children

(d) Air-

plane627

(e) Car201 (f) Chair964 (g) Toilet378 (h) Indoor

Scene 01

(i) Indoor

Scene 02

Figure 1: Experimental data sets

5.1. 3D Point set Registration206

Let {M,S} be two point sets in a finite-dimensional real vector space R3,207

which contains Nm and Ns points, respectively. Our goal is to find a rigid208
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transformation T to be applied to scene set S such that the difference between209

S and model set M is minimized. The transformation matrix T is posed as the210

Lie algebra x ∈ R6 in our optimization problem.211

Feature for registration212

The feature Hf for registration is combined by two different features: the213

coordinates-based feature [h(x;S)]
c

and the density-based feature [h(x;S)]
d
.214

‘Front’

‘Back’

1n

1m

   0; 11 mxsFn b

T

   0; 11 mxsFn b

T
1s

1m
1s

Figure 2: The positional relationship between scene points (square) s1 and model point

(hexagon) m1.

We use the feature extraction method in [34] to extract the features [h(x;S)]
c

215

and [h(x;S)]
d

, where h is devised to be a histogram indicating the weights of216

scene points on the ’front’ and the ’back’ sides of each model point. As shown217

in Fig.2.218

S+
a =

{
sb : nT

a (F (sb;x)−ma) > 0
}

(11)

S+
a indicates the set of scene points on the ’front’ of model point ma, and219

S−a contains the remaining scene points.; na ∈ R3 is the normal vector of the220

model point ma; F(sb;x) is the function that applies rigid transformation with221

parameter x to scene point sb.222

Then the feature [h(x;S)]
c

can be calculated through the following formulas:

[h(x;S)]
c
a+ =

1

z

∑
sb∈S+

a

exp

(
−1

σ̂2
‖F(sb;x)−ma‖2

)
. (12)

[h(x;S)]
c
a− =

1

z

∑
sb∈S−

a

exp

(
−1

σ̂2
‖F(sb;x)−ma‖2

)
. (13)
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Where z normalizes h to sum to 1, and σ̂ controls the width of the exp function.223

The design of the feature [h(x;S)]
d

can be divided into two stages. The first224

stage is to calculate the probability of measuring each point of S in the boxes of225

M, and the probability of each point of M in the boxes of S, as shown in Fig.3.226

The second stage is to apply the calculated probability to (12),(13) to extract227

the density feature [h(x;S)]
d
.228

Figure 3: The first stage for designing the density feature [h(x;S)]d. The Grid S represents

the grids around the model S. The Grid M represents the grids around the model M. The

grid marked by the red dotted line represents the grid where is no point, which will be removed

when calculating the mean µ and covariance σ2.

The probability of measuring each point of S in the boxes of M can be229

calculated as follows, and the probability of measuring the points of M in the230

boxes of S can be calculated in a similar way.231

1. The 3D space around the point set M is subdivided regularly into boxes232

with constant size (e.g. the Grid S, Grid M in Fig.3).233

2. For each box, the following is done:234

• Collect all 3D points mi=1,2,··· ,Nm in M contained in this box. If235

there is no point in a box, the box will be removed (e.g. the grids236

marked by the red dotted line in Fig.3).237

• Calculate the mean238

µm =
1

Nm

Nm∑
i=1

mi.

• Calculate the covariance matrix239

σ2
m =

1

Nm

Nm∑
i=1

(mi − µm) (mi − µm)
T
.
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3. The probability of measuring each point sj of S in this box is now modeled240

by the normal distribution N
(
µm,σ

2
m

)
.241

Pm (sj) ∼ exp

(
−(sj − µm)T(sj − µm)

2σ

)
.

[h(x;S)]
d
a+ =

1

z

∑
sb∈S+

a

exp

(
−1

σ̂2
‖Pm(F(sb;x))−Ps(ma)‖2

)
. (14)

[h(x;S)]
d
a−=

1

z

∑
sb∈S−a

exp

(
−1

σ̂2
‖Pm(F(sb;x))−Ps(ma)‖2

)
. (15)

The final feature Hf can be posed as:242

Hf =

γ1[h (x;S)]
c

γ2[h (x;S)]
d

 . (16)

We get the coefficients γ1, γ2 using (6), which represent the contributions of243

features on updating gradient direction.244

5.2. GDO Training Settings245

The parameters in the GDO training process are the same as those in the246

code provided in the Github of DO [34] for the comparison experiments on247

the synthetic data sets. We normalize a given model shape M to [−1, 1]3 and248

uniformly sample from M with the replacement 400 to 700 points to generate a249

scene model. Then we apply the following perturbations to the scene model: (i)250

Rotation and translation: The rotation is within 60 degrees and the translations251

is in [−0.3, 0.3]3, which represents ground truth x∗; (ii) Noise and Outliers:252

Gaussian noise with the standard deviation 0.05 is added to the scene model.253

0 to 300 points within [−1.5, 1.5]3 are added as the sparse outliers. Besides, a254

Gaussian ball of 0 to 200 points with the standard deviation of 0.1 to 0.25 is255

used to simulate the structured outliers; (iii) incomplete shape: We remove 40%256

to 90% points from scene model to simulate occlusions, the detailed removing257

approach can be found in [34]. For all experiments, we generated 30000 training258

samples, set up iterations T = 30 and set λ as 2 × 10−4, β2 as 0.03, and the259
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initial transformation x0 is 06. For the second feature [h(x;S)]
d
, we build the260

uniform grid in the range [−2, 2] with 81 points in each dimension.261

For the comparison experiments on Modelnet40 dataset, we design three262

modes for GDO training. (i) mode1: The rotation is within 45 degrees and the263

translations is in [−0.5, 0.5]3; (ii) mode2: The rotation is within 90 degrees and264

the translations is in [−0.5, 0.5]3; (iii) mode3: The rotation is within 90 degrees,265

the translations is in [−0.5, 0.5]3 and Gaussian noise with the standard deviation266

0.05 is also applied. The first two modes aim to compare the registration of all267

methods in terms of varying degrees of rotation, named single-class training.268

The latter is to compare the performance of different methods on the registration269

with multiple perturbations, named multi-class training. We generated 30000270

training samples for all modes, and the training sample will be normalized to271

[−1, 1]3 without downsampling. The number of points of all samples is 5120.272

5.3. Performance Metrics273

Baselines. We compared GDO with the advanced learning-based approach274

DO [34], two point-based approaches (ICP and IRLS), two density-based ap-275

proaches (CPD and NDT) and the feature-based approach (FGR).276

We used the successful registration rate, average MSE and computation time as277

performance metrics.278

Successful Registration Rate. A registration is successful when the mean `2 is279

less than 0.05 of the model’s largest dimension.280

Average MSE. It is worth noting that the MSE is the mean `2 error between281

the model and scene sets, and the Average MSE is the average for MSE for all282

test sets.283

In order to make the experimental results more clear, we use log10 MSE and284

log10 computing time to describe the accuracy and efficiency of the registration285

of all registration methods on ModelNet40 dataset.286

5.4. Parameters settings287

The maximum number of iterations of all registration methods were set to288

30. For DO and GDO, we set λ as 2 × 10−4, β2 as 0.03. The value of the289
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tolerance of absolute difference between current estimation and ground truth in290

iterations is 1e-4; For ICP, the tolerance of absolute difference in translation and291

rotation is 0.01 and 0.5 respectively; For IRLS, we used Huber criterion function292

as the regression function, the remaining parameters were set as the same as293

the setting of ICP. For CPD, the type of transformation is set to rigid, and294

the expected percentage of outliers with respect to a normal distribution is 0.1,295

the tolerance value is the same of that in DO. For NDT, the value of expected296

percentage of outliers is set to 0.55, and the tolerance value is set as the same297

of that in ICP ; For FGR, the value of the division factor used for graduated298

non-convexity is 1.4, the maximum correspondence distance is 0.025, the value299

of the similarity measure used for tuples of feature points is 0.95, the value of300

the maximum tuple numbers for trading off between speed and accuracy is set301

to 1000.302

For BCPD, the expected percentage of outliers is set to 0.1, the parameter303

in Gaussian kernel is 2.0 and the expected length of displacement vector is 400.304

All deep-learning based registration networks are trained on an Nvidia Geforce305

2080Ti GPU with 12G memory. For PCRNet, the kernel sizes are 64, 64, 64,306

128, 1024, 1024, 512, 512, 256 and 7. The iteration for rotation and translation307

is set to 8. Adam optimizer with an initial learning rate of 0,1, 300 epochs308

and a batch size of 32 are used for the training process. For PointnetLK, the309

kernel sizes are 64, 64, 64, 128, 1024. The maximum iteration for rotation and310

translation is set to 30. Adam optimizer with an initial learning rate of 0.001,311

250 epochs and a batch size of 10 are used for the training process. For DCP,312

the kernel sizes are 64, 64, 128, 256, 512, 1024, 256, 128, 64, 32 and 7. The313

iteration for rotation and translation is set to 1. Adam optimizer with an initial314

learning rate of 0.001, 250 epochs and a batch size of 32 are used for the training315

process. For ICPMCC, the error threshold is set to 10−7, the iteration number316

is 30, and the number of nearest points for calculating normal vectors is set to317

10.318
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Figure 4: Results of 3D registration with Bunny model under different perturbations;(Top)

Examples of scene points with different perturbations. (Second Row) Successful Registra-

tion Rate (SRR). (Third row) Average MSE (AMSE). (Bottom) Computation Time. In the

presence of noise and outliers, the registration success rates of most algorithms are the same,

which is 1, so the number of visualized dash lines is less than the number of algorithms.

Learning-based registration algorithms (DO, GDO) can deal with point set registration with

more accuracy than traditional registration algorithms (ICP, CPD, NDT, IRLS, and FGR).

GDO is more time-consuming than DO, although its performance is slightly better than the

performance of DO.
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Figure 5: Results of 3D registration with Chef model under different perturbations
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Figure 6: Results of 3D registration with Dancing Children model under different perturba-

tions

17



Figure 7: Registration results of Dancing Children model with 500 outliers
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Figure 8: Results of 3D registration with Indoor Scene01 model under different perturbations

5.5. Registration Experiments319

We have used the Stanford Bunny model[37], UWA dataset [38], Dancing320

Children, Indoor Scene[39] as the data sets for experiments Fig.1. Dancing Chil-321

dren are available at the AIM@SHAPE shape repository http://visionair.322

ge.imati.cnr.it/ontologies/shapes/. The model set M is generated by us-323

ing the grid average downsample method in MATLAB to select 477 points from324

the original model.The performance of algorithms are evaluated by comparing325

the evaluation metrics in the case of various perturbations: (1) rotation: We326

compare the performance metrics when the initial angle is 0◦, 30◦, 60◦, 90◦,327

120◦ and 150◦[default=0◦to60◦]; (2) noise: The standard deviation of the noise328
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Figure 9: Results of 3D registration with Indoor Scene02 dataset under different perturbations
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Figure 10: The registration results on Modelnet40 with perturbation setting mode1. (Top)

The computational time for registration. (Bottom) the log10MSE of all the comparison

methods. GDO, DO, FPFH-ICP and ICPMCC cost less time to achieve the registration.

Although BCPD and PointnetLK register point clouds with more accuracy, the computation

time of both is higher, even the time required for BCPD is almost dozens of times the time

required for other registration methods. By comparison, GDO represents better registration

performance with less computational time. And FPFH-ICP has poor stability. ICPMCC is

unable to handle the registration over 60o.
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Figure 11: The registration results on Modelnet40 with perturbation setting mode2. (Top)

The computational time for registration. (Bottom) the log10MSE of all the comparison

methods. The accuracy of DO, GDO and BCPD has a sharp decrease after the registration

over 90o. However, GDO still performs better than other methods in terms of accuracy. The

performance of the deep-learning methods (PCR, PointnetLK and DCP) is not good even on

the registration with the rotation of 60o. BCPD and DCP are still the most time-consuming.
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Figure 12: The registration results on Modelnet40 with perturbation setting mode3. (Top)

The computational time for registration. (Bottom) the log10MSE of all the comparison

methods. DO and GDO can keep the higher stability and accuracy on the registration with

multiple perturbations, compared with other methods. The ability of deep-learning methods

to handle the registration with multiple perturbations is poor than that of the traditional

methods. The performance of FPFH-ICP is still stable, but the accuracy is not high.
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is set to 0, 0.02, 0.04, 0.06, 0.08 and 0.1 [default=0]; (3) outliers: We set the329

number of outliers to 0, 100, 200, 300, 400 and 500 respectively [default=0]; (4)330

incomplete ratio: The ratio of incomplete scene shape is set to 0, 0.15, 0.3, 0.45,331

0.6 and 0.75 [default=0]. The random translation of all generate scenes is within332

[−0.3, 0.3]3. When one parameter is changed, the values of other parameters333

are fixed to default values. In addition, the scene points are sampled from the334

original model, not from M. We will test 750 testing samples in each variable335

setting. It is noteworthy that the training samples are generated by adding336

various perturbations to the model M and assigning random parameters for the337

translation and rotation of the model M. The testing samples are generated338

similarly, but the degree of perturbation and the parameters for transformation339

are different, and the down-sampled model is the original model instead of the340

model M.341

We also conduct comparative registration experiments on the ModelNet40342

dataset [40] with traditional methods (BCPD [41], FPFH-ICP [42] and ICPMCC [16])343

and other advanced deep-learning-based registration methods, such as PCR-344

Net [43], PointnetLK [44], and DCP [45] (as shown in (d) ∼ (g) of Fig.1). There345

are three kinds of comparison settings corresponding to the training modes in346

5.2: for mode1: the initial angle is 0◦, 15◦, 30◦, 45◦, 60◦ and 75◦; for mode2: the347

initial angle is 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦; for mode3: the initial angle is 0◦,348

30◦, 60◦, 90◦, 120◦ and 150◦ [default=0◦ to 90◦] and the standard deviation of349

Gaussian noise is set to 0, 0.02, 0.04, 0.06, 0.08 and 0.1 [default=0]. It is worth350

noting that when we change one parameter, the values of other parameters are351

fixed to the default value. We will test 100 test samples in each variable set-352

ting. The registration results with the single-class training scheme are shown in353

Fig.10 and Fig.11. The registration results with the multi-class training scheme354

are shown in Fig.12.355

Experimental Results356

Registration results. Fig.4 and Fig.5 show the 3D registration results on357

Bunny model and Chef model with various perturbations. It can be seen that358
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in the presence of arbitrary perturbation, learning-based registration algorithms359

(DO, GDO) can achieve more accurate registration results than the traditional360

registration methods (ICP, CPD, NDT, IRLS, FGR). Compared with DO, the361

performance of GDO is slightly better than DO. However, GDO is more time-362

consuming, the reason for which is that the second feature [h(x;S)]
d

calculates363

the density probability of each point in point sets, which involves the search of364

the closest box. Also, the calculation way of the second feature determines that365

the running time of GDO and the size of the point set are positively correlated.366

Fig.6 and Fig.7 show the registration results on Dancing Children model.367

The trend and distribution of the running time of all algorithms on the Dancing368

Children model are the same as that on Bunny or Chef models. GDO is more369

capable when dealing with the complex model than registering simple models370

(Bunny, Chef), which can be illustrated by the Mean Square Error criteria.371

Fig.8 and Fig.9 show the results of 3D registration on Indoor Scenes. The372

performances of NDT and GDO are prominent when registering real scenes373

models.374

While FGR and ICP required low computation time for all cases, they had375

low success rates when the perturbations were high. CPD performed well in376

all cases except when the number of outliers was high. The running time of377

IRLS was similar to that of CPD when dealing with the registration of simple378

models (Bunny, Chef); it did not perform well when the model was highly379

incomplete. NDT achieved more accurate registration of real scenes than other380

algorithms; it was the most time-consuming for all cases. For the learning-381

based algorithms, DO and GDO outperformed the baselines when registering382

simple models. When dealing with the complex model (Dancing Children) and383

real large scene models, GDO performed better than DO. This is because DO384

just considers one single feature that does not consider the internal topology or385

density distribution of points, which makes it lack robustness than GDO.386

Fig.10 displays the performance of all methods on registration with mode1.387

It can be seen that the accuracy of BCPD is higher than other methods, but388

BCPD takes almost dozens of times as long as other algorithms. DCP takes389
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about the same time as BCPD, but its accuracy and stability are poor. The390

poor performance also occurs on the PCRnet method. By contrast, PointnetLK391

can keep higher stability and accuracy when dealing with the registration not392

over 60o. Compared with the deep-learning methods, as the traditional learning-393

based method, DO and GDO can achieve the registration with higher accuracy394

and stability. FPFH-ICP also performs well. The stability of ICPMCC has a395

sharp decrease when ICPMCC registers the registration over 60o.396

Fig.11 shows the registration results on the perturbation of larger rotations397

mode2. The stability and accuracy of ICPMCC and PointnetLK are worse when398

ICPMCC and PointnetLK handle the registration over 60o. The performance399

of DCP and PCR is unstable as ever. DO, GDO, and BCPD can keep the high400

accuracy and stability until they register points sets with large rotations (over401

120o). Nevertheless, the accuracy of GDO is higher than that of BCPD and DO402

when dealing with the registration over 120o. FPFH-ICP still keeps its high403

stability and accuracy, and the performance of ICPMCC is poor once it is used404

to achieve the registration with larger rotations.405

Fig.12 illustrates the registration results on Modelnet40 dataset with mul-406

tiple perturbations mode3. DO and GDO can keep the higher stability and407

accuracy on the registration with multiple perturbations, compared with other408

methods. The ability of deep-learning methodsto handle the registration with409

multiple perturbations is poor than that of the traditional methods. The per-410

formance of FPFH-ICP is still stable, but the accuracy is not high.411

In summary, the learning-based methods (DO and GDO) have higher sta-412

bility and robustness compared with deep-learning methods (PCRnet, Point-413

netLK, and DCP) and other traditional methods. FPFH-ICP performs well414

even on the registration with larger rotations, but the accuracy of FPFH-ICP415

is not better, which may be caused by the fewer iterations for FPFH to find416

correspondences. The ability to achieve more accurate and stable registration417

on larger rotations or multiple perturbations for the deep-learning methods and418

ICPMCC is limited.419

The benefit of the FPFH-ICP is the ability to handle registration with larger420
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rotations while maintaining higher stability. Comparing the registration results421

on mode2 and mode3, it can be seen that the only drawback of the traditional422

learning-based methods (DO and GDO) is the less ability to register point clouds423

over 120o, which illustrates that the learning-based methods are more vulnera-424

ble on rotations, not noises. In addition, the features in GDO can be replaced by425

any features extracted by 3D feature descriptors such as Fast Point Feature His-426

tograms (FPFH) descriptors, Signature of Histogram of Orientations (SHOT),427

and so on. The potential issue of the usage of various descriptors is whether it428

will increase the degree of over-fitting of the learning-based methods.429

Verify Convergence. Fig.13 shows the Convergence Criteria and Training430

Error of our method on different data sets. We can find that the D̂Hf in our431

method meets the convergence condition
∑N

i=1

(
xi
∗ − xi

t

)T
D̂Hf

(
xi
t

)
> 0 for432

all data sets, and the training error of our method decreases in each iteration.
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Figure 13: The Convergence Criteria and Training Error of our method on different data sets.

(a) The value of
∑N

i=1

(
xi
∗ − xi

t

)T
D̂Hf

(
xi
t

)
on different data sets. (b) The training error of

our method on different data sets.

433

6. Conclusion and Discussion434

This paper proposes general discriminative optimization (GDO) method to435

solve the transformation parameter estimation in point set registration by learn-436

ing update directions from different features of training samples. Specifically,437
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GDO derivates an approach to achieve the collaboration of the different ex-438

tracted features from point sets to reduce the effect of perturbations on up-439

dating directions. In this paper, GDO combines a coordinates-based feature440

and a density-based feature to update the gradient map to improve the accu-441

racy and robustness of transformation estimation. We provided a theoretical442

result on the convergence of the registration method under mild conditions. We443

also illustrate GDO outperformed state-of-the-art registration approaches on444

different data sets. The major advantage of GDO over traditional registration445

methods and learning-based registration methods include robustness to outliers446

and other perturbations, which is more prominent when dealing with complex447

3D models and real scene models registration. The limitation of GDO is that448

the training point cloud and the test point cloud are highly relevant, limiting its449

ability to train many point clouds and achieve multiple point clouds registration450

like the registration methods based on deep learning. In addition, the feature451

extraction approach of GDO takes longer as the number of points increases.452

Future works of interest are to design a feature function that is more robust to453

perturbations and more efficient, and to design a registration framework to en-454

able GDO to achieve multiple point clouds registration. The strong theoretical455

foundation and good registration performance of GDO suggest its usefulness as456

a general-purpose registration technique.457

Acknowledgment458

This research did not receive any specific grant from funding agencies in the459

public, commercial, or not-for-profit sectors.460

References461

[1] Choi, SM, Kim, MH. Shape reconstruction from partially missing data462

in modal space. Computers & Graphics 2002;26(5):701–708.463

[2] Ludwig, M, Berrier, S, Tetzlaff, M, Meyer, G. 3d shape and texture464

25



morphing using 2d projection and reconstruction. Computers & Graphics465

2015;51:146–156.466

[3] Berretti, S, Werghi, N, Del Bimbo, A, Pala, P. Matching 3d face467

scans using interest points and local histogram descriptors. Computers &468

Graphics 2013;37(5):509–525.469

[4] Zhu, X, Ding, M, Huang, T, Jin, X, Zhang, X. Pcanet-based structural470

representation for nonrigid multimodal medical image registration. Sensors471

2018;18(5):1477.472

[5] Li, L, Yang, M, Wang, C, Wang, B. Rigid point set registration based473

on cubature kalman filter and its application in intelligent vehicles. IEEE474

Transactions on Intelligent Transportation Systems 2018;19(6):1754–1765.475

[6] Liu, Z, Xie, C, Bu, S, Wang, X, Han, J, Lin, H, et al. Indirect shape476

analysis for 3d shape retrieval. Computers & Graphics 2015;46:110–116.477
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