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Abstract 

The performance of applications that require frame rendering time estimation or dynamic frequency scaling, rely on the accuracy of the workload 

model that is utilized within these applications. Existing models lack sufficient accuracy in their core model. Hence, they require changes to the 

target application or the hardware to produce accurate results. This paper introduces a mathematical workload model for a rasterization-based 

graphics Application Programming Interface (API) pipeline, named GAMORRA, which works based on the load and complexity of each stage 

of the pipeline. Firstly, GAMORRA models each stage of the pipeline based on their operation complexity and the input data size. Then, the 

calculated workloads of the stages are fed to a Multiple Linear Regression (MLR) model as explanatory variables. A hybrid offline/online training 

scheme is proposed as well to train the model. A suite of benchmarks is also designed to tune the model parameters based on the performance of 

the target system. The experiments were performed on Direct3D 11 and on two different rendering platforms comparing GAMORRA to an 

AutoRegressive (AR) model, a Frame Complexity Model (FCM) and a frequency-based (FRQ) model. The experiments show an average of 1.27 

ms frame rendering time estimation error (9.45%) compared to an average of 1.87 ms error (13.23%) for FCM which is the best method among 

the three chosen methods. However, this comes at the cost of 0.54 ms (4.58%) increase in time complexity compared to FCM. Furthermore, 

GAMMORA improves frametime underestimations by 1.1% compared to FCM.  
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1. INTRODUCTION 

In traditional Cloud Gaming (CG) [1], rendering is 

performed at the server side while in graphics streaming-based 

CG [2, 3] all the frames are rendered at client side. As a 

compromise between these two methods, hybrid graphics/video 

streaming CG [4, 5] has been proposed in which there is a 

potential for some frames to be rendered at client side. The latter 

two CG methods require to estimate the rendering time of each 

frame to make sure that the client device can handle the 

workload of the game for every frame that needs to be rendered 

at client side. In addition, real time collaborative rendering 

platforms like Kahawai [6] and other similar platforms [7], 

require a reliable workload model to set the graphical level of 

details of every frame based on the computational power of the 

thin client before rendering is carried out. Also, Dynamic 

Voltage and Frequency Scaling (DVFS)-based power 

management systems for mobile games, which reduce the power 

consumption of a processor by dynamically adjusting its voltage 

and frequency, need to take into account the amount of workload 

of each frame [8-11]. These studies usually rely on simple 

workload models based on the number of triangles [12] or 

mostly focus on predicting the upcoming frames’ workload by 

using a simple linear model [13]. These models try to 

compensate for their lack of sufficient detail in their core model 

by operating at hardware level. 

Due to the high variety of GPU architectures among 

vendors, a hardware level model effectively limits the 

applicability of such a model to a specific hardware device. 
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Although each graphics driver covers a certain range of 

hardware models, they also differ significantly from each other 

due to their hardware dependent nature and the frequent updates 

they receive. But graphics APIs usually follow a certain model 

for their rendering pipeline with minor differences between 

different APIs’ pipeline architectures. Hence, designing a 

mathematical model to estimate frame rendering times 

(frametime) at the graphics API level covers a much wider range 

of applications compared to a hardware architecture or driver 

level model. Additionally, other proposed methods [14, 15] 

usually require changes to the hardware or software to provide 

an accurate estimation. Utilizing an API-level model avoids the 

need for game engine modifications or hardware-level changes 

that are not possible in case of commercial off-the-shelf 

products. Therefore, a Graphics API-level Model of Rendering 

workload for Rasterization-based graphics pipeline 

Architecture, GAMORRA, is proposed in this paper. However, 

to compensate for this high-level approach which would 

inevitably lead to loss of accuracy, three components are devised 

for GAMORRA to ensure an accurate prediction: (i) a detailed 

regression core model, (ii) a customized training scheme to train 

the core model weights, and (iii) a suite of benchmarks to tune 

the model parameters based on the performance of the target 

hardware. 

Modern API pipelines consist of fixed-function and 

programmable stages as opposed to the fully fixed-function 

pipelines of old rendering systems. The early experiments to 

determine the proper core model, as well as the benchmark 

results in Section 4.1., indicate a linear relation between the 
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performance of each stage of the pipeline and the overall 

rendering time of each frame. The results of these experiments 

show that each stage of the pipeline contributes differently to the 

final rendering time. This difference which stems from the 

difference in the computational complexity of the stages, despite 

the same underlying hardware, indicates their independence as 

explanatory (independent) variables. Also, the linear relation 

between the performance of each stage and the overall 

processing time of the pipeline which acts as the response 

(dependent) variable, suggests that a Multiple Linear Regression 

(MLR) [16] technique has the potential to serve as a core for the 

proposed model. Hence, as opposed to previous studies such as 

[9] that consider only one explanatory variable, in GAMORRA 

which takes advantage of MLR at its core, an explanatory 

variable is dedicated to each stage of the graphics API pipeline. 

This approach provides more flexibility and a better imitation of 

the rendering process of a rasterization-based application which 

leads to more accurate frametime estimations.  

Using an offline training scheme to train model weights 

helps with avoiding the need to train the weights from scratch 

during runtime which can compromise the real-time 

functionality of the model especially at the start of a rendering 

session. However, only a limited number of samples can be used 

to train the model weights prior to a rendering session, which 

would not be representative of the whole gameplay. Online 

training [17] can be used to adapt the weights to the changes 

during runtime, on the fly. Hence, a new hybrid offline/online 

training method is proposed to train the model prior to a 

rendering session (offline) to obtain an acceptable set of initial 

weight values while updating the weights during runtime 

(online). This approach also helps with avoiding overfitting 

which might be experienced in case of an overly complicated 

model and an extensive offline-only training scheme.  

Additionally, to accurately tune the model parameters based 

on the performance of the target rendering system, a suite of 

benchmarks is designed to assess the performance of each stage 

of the pipeline according to GAMORRA’s workload model. 

In summary, the primary contributions of this study are as 

follows: 

- A reliable and practical model for frametime estimation 

of rasterization-based commercially off-the-shelf 

software and hardware 

- A hybrid offline/online training scheme to train the 

proposed model 

- A benchmark suite to evaluate the performance of the 

target rendering system and tune the model parameters 

accordingly 

The rest of the paper is organized as follows. The next 

section discusses notable works in this field and how 

GAMORRA differs from them. Section 3 explains the core 

design and functionality of GAMORRA in detail. Section 4 

focuses on the implementation details of the proposed method 

and the experimental results. And finally, the paper is concluded 

in Section 5. 

2. RELATED WORK 

A limited number of studies have focused on estimating 

frametimes by targeting different applications for their proposed 

methods. Some of the studies in this field require hardware and 

software changes to perform properly which is not desired in the 

case of closed source software and already available hardware.  

Wimmer et al. [14] proposed to use the number of 

transformed vertices and the number of projected pixels for each 

object to estimate frametime. They propose a hardware 

extension to further improve the estimation accuracy.  

Mochocki et al. [18] proposed a signature-based model for 

workload estimation in which each signature is calculated based 

on the number of triangles and the transformations that are 

performed on the vertex data. Focusing on the number of 

triangles and geometrical transformations is not sufficient for a 

programmable pipeline in a realistic scenario and results in 

reduced precision.  

Gu et al. [19] proposed a hybrid workload prediction 

method that switches between a Proportional-Integral-

Derivative (PID) [20] controller-based and a frame structure-

based prediction scheme. This method is mainly used to predict 

the workload of an upcoming frame to be used in a Dynamic 

Voltage Scaling (DVS) power management system. In this 

work, rasterization workload is considered as the most 

significant contributing source of processing time in rendering. 

Similarly, Zhang-Jian et al. [8] proposed to use the number of 

triangles as a measure of workload complexity and a PID 

controller to predict the workload of each frame. Dietrich et al. 

[13] further expanded PID-based methods and proposed to use 

the Least Mean Squares (LMS) method for controller parameter 

identification to avoid the need to hand-tune the parameters. 

Dietrich et al [21] also proposed to predict each frame’s 

workload using an autoregressive model by considering the 

previous frames’ number of cycles as the explanatory variable. 

They further expanded their work by proposing a self-tuning 

LMS linear predictor to estimate the parameters of an 

AutoRegressive (AR) moving average model for workload 

(number of cycles) prediction [9]. Solely relying on the previous 

frames’ workload without taking the characteristics of the frame 

into account is severely misleading due to the heavily variant 

workload of graphical scenes even in consecutive frames. These 

methods usually fail to react in time to the workload variations 

of frames.    

Cheng et al. [22] proposed a behavior-aware power 

management system for mobile games which estimates each 

frame’s workload based on the number of game application’s 

API calls and texture processing load.  

Song et al. [23] proposed a fine-grained GPU power 

management called Frame Complexity Model (FCM) for closed 



 

source mobile games which works based on the number of 

vertices, the number of API commands and the size of textures. 

This approach does not take the impact of other contributing 

factors such as the complexity of shader programs or the 

structure and performance of the graphics API that processes all 

the aforementioned data, into account. This causes such a model 

to produce the same results for different APIs. 

Gupta et al. [10] proposed a light-weight adaptive runtime 

performance model to estimate the sensitivity of frametimes to 

the current GPU frequency. This method consists of two steps: 

first, an offline data collection process is performed where the 

required data on frametimes and GPU performance counters are 

collected. Second, the collected data are used to tune a 

differential frametime model and predict the frametimes. This 

method considers the overall frametime of the previous frames 

to predict future frametimes based on the changes that are made 

to the GPU frequency and GPU counters. Also, an online 

learning scheme is employed to update the parameters at 

runtime. In this work, the graphical structure of a frame is 

ignored. Also, GPU counter values are unknown when a batch 

[24] is not yet processed which can be problematic for practical 

use. 

Cheng et al. [15] proposed to use the changes in frequency 

and the number of active GPU computational slices for power 

management in mobile games. This method requires to be 

implemented in GPU firmware to achieve sufficient accuracy.  

Choi et al. [25] proposed a predictive method for frametime 

estimation based on previous frametimes and the frequency at 

which they were rendered. This study, similar to other more 

recent studies [26], focuses on big.LITTLE architecture in 

mobile devices. 

To summarize, some of the proposed methods on workload 

modeling require modifications in the application or the target 

hardware [14, 15, 27]. GAMORRA attempts to avoid such 

requirements by operating at an API-level. In order to 

compensate for its high-level approach, GAMORRA considers 

the workload of all the stages of the pipeline and the pipeline 

architecture, unlike numerous studies [8, 10, 11, 19, 28] that 

focus on a limited number of contributing factors. Additionally, 

as opposed to multiple studies that are designed for a specific 

hardware [25, 26], GAMORRA is independent of the underlying 

architecture. 

3. PROPOSED MODEL 

GAMORRA acts as a middleware that resides between the 

application and the graphics API software, capturing the output 

API commands produced by the application’s rendering engine. 

Figure 1 shows the placement of GAMORRA in a computer 

system. GAMORRA analyzes the graphics data stream to obtain 

the value of the contributing factors to the workload so that they 

are fed to the MLR model as the explanatory variables. The 

overall workload of the model and the workload of each stage is 

discussed in subsection 3.1. Then, the training process is 

explained in subsection 3.2 followed by some notes on the 

benchmark suite in subsection 3.3. 

3.1. Workload model 

The overall architecture of a modern graphics API pipeline 

(Direct3D 11 in this case) is shown in Figure 2. Direct3D 11’s 

graphics pipeline consists of 4 fixed-function stages (marked by 

rectangle containers) and 5 shader stages (marked by oval-

shaped containers), a total of 9 stages: Input Assembler (IA), 

Vertex Shader (VS), Hull Shader (HS), Tessellator Stage (TS), 

Domain Shader (DS), Geometry Shader (GS), Rasterizer (Ras), 

Pixel Shader (PS), and Output Merger (OM). 

A frame is broken down into multiple rendering batches. 

Each batch has a different pipeline state that result in one or more 

drawcalls which draw the pixels prepared by the current batch 

[24]. Batches are rendered sequentially. Each batch can contain 

multiple drawcalls as long as these drawcalls do not cause any 

state changes to the pipeline. Since there are no state changes in 

this case, GAMORRA considers the drawcalls in a batch as a 

single drawcall. Hence, the proposed frametime model 

formulates the overall estimated processing time of the 𝑖𝑡ℎ 

frame, 𝑇𝑖 , as in (1) where 𝐵𝑖  is the number of batches for the 𝑖𝑡ℎ 

frame and 𝐵𝑎𝑡𝑐ℎ𝑏 shows the estimated processing time of the 

𝑏𝑡ℎ batch: 

𝑇𝑖 = ∑ 𝐵𝑎𝑡𝑐ℎ𝑏
𝐵𝑖−1
𝑏=0                        (1) 

In the case of Direct3D 11, there are 9 explanatory variables 

required which are represented by 𝑤𝑛
𝑏  for the 𝑏𝑡ℎ batch with 𝑛 =

1,… ,9. Let 𝛽𝑛 represent the model parameter of each stage with 

𝑛 = 1,… ,9, 𝛽0 represent the minimum processing time of the 

pipeline and 𝜀 be the overall model error, then the MLR model 

of the rendering pipeline is defined as: 

 
Figure 1 GAMORRA’s placement in a rendering system 

 
 

 
Figure 2 The overall architecture of the Direct3d 11 pipeline 

 
 



 

𝐵𝑎𝑡𝑐ℎ𝑏 = β0 + ∑ 𝑤𝑛
𝑏𝛽𝑛

9
𝑛=1 + 𝜀                  (2) 

To simplify (2), 𝑤0
𝑏  is defined and set to 1 for all the 

batches. Then (2) can be written as: 

𝐵𝑎𝑡𝑐ℎ𝑏 = ∑ 𝑤𝑛
𝑏𝛽𝑛 + 𝜀

9
𝑛=0 = β𝑤 + 𝜀                    (3) 

where 𝑊 and β are vectors containing explanatory variables of 

the model and model parameters respectively which are defined 

as: 

𝑤 = [1, 𝑤1
𝑏 , 𝑤2

𝑏 , 𝑤3
𝑏 , 𝑤4

𝑏 , 𝑤5
𝑏 , 𝑤6

𝑏 , 𝑤7
𝑏 , 𝑤8

𝑏 , 𝑤9
𝑏]𝑇 

𝛽 = [𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽8, 𝛽9]
                 (4) 

Since 𝑤 is actually a 1 × 10 matrix, the 𝑇 superscript in the 

above equation represents the transpose operation. The values in 

𝛽 are obtained by using the Singular Value Decomposition 

(SVD) [29, 30]. But before obtaining the model parameters, the 

explanatory variables 𝑊 should be known. These variables 

represent the load of each stage in time unit and they are 

calculated as discussed in the next sub-section.  

3.1.1. Stage workload 

To model the workload of each stage, a generic formula is 

proposed. The formula is able to incorporate the details that may 

differ in various stages of the pipeline due to their unique 

characteristics. Let us assume that 𝑃𝑒𝑟𝑓𝑛
  represents the 

performance function of the 𝑛𝑡ℎ stage in time unit, 𝐿𝑛
𝑏  stands for 

the load of the 𝑛𝑡ℎ stage and Ƞ determines the number of cores 

of the GPU, then the workload of each stage is modeled as: 

𝑤𝑛
𝑏 = 𝑃𝑒𝑟𝑓𝑛

 (𝐿𝑛
𝑏 )/Ƞ                  (5) 

𝑃𝑒𝑟𝑓𝑛 maps the amount of load of the 𝑛𝑡ℎ stage which is the 

number of input elements (number of vertices or pixels) to the 

performance weight of the stage for that specific amount of load. 

The value of this performance weight roughly estimates the 

overall processing load of each stage compared to the other 

stages of the pipeline. 𝑃𝑒𝑟𝑓𝑛 is determined by the custom 

graphics benchmarks that are designed specifically for 

GAMORRA and are discussed in Section 3.2.  

For a fixed function stage, 𝐿𝑛 mainly depends on the number 

of inputs or outputs of that stage. But, the overall processing load 

of shaders is strongly affected by their shader program as well. 

The shader compilation is performed in 2 stages: first a tool 

compiles the HLSL code into the GPU agnostic Intermediate 

Language (IL). Then the GPU driver converts the IL into the 

final shader assembly (ISA) that can be executed on a specific 

GPU. The complexity of the shader program is obtained through 

analyzing its Intermediate Language (IL) assembly code which 

comprises a series of instructions each of which performs a 

specific operation based on its opcode. To obtain the overall time 

complexity of a shader, the time complexity of each IL opcode 

needs to be determined through benchmarking. Let the number 

of assembly operators be shown by 𝑁𝑜𝑝, the processing time of 

the 𝑗𝑡ℎ operator be represented by 𝑜𝑝𝑗, the number of its 

occurrences in the current shader be represented by 𝑥𝑗 and 𝑁𝑖 

represent the number of times that the shader is invoked, then 

the complexity of a programmable stage, 𝐶𝑖, and consequently, 

𝐿𝑖 is calculated as follows: 

𝐶𝑛
𝑏 = ∑ 𝑜𝑝𝑗

𝑛.𝑥𝑗
𝑛𝑁𝑂𝑃−1

𝑗=0   

𝐿𝑛
𝑏 = {

𝑁𝑛
𝑏 ,          if fixed function    

𝐶𝑛
𝑏 . 𝑁𝑛

𝑏 ,   if Programmable  
                    (6)  

It should be noted that the shader complexity model is not 

meant to act as an accurate stand-alone model for shader 

processing time estimation. The goal of this model is to provide 

the core model of GAMORRA with a rough estimate of the 

overall complexity of each shader and still perform with enough 

accuracy while ensuring real-time functionality of the overall 

model. Since shaders are invoked per input, 𝑁𝑖 represents the 

number of vertices for VS, HS, DS, and GS and it represents the 

number of pixels for PS. The IA stage reads and prepares the 

vertex data that are required for the current batch by determining 

their attributes and topology. For the IA stage, since the data is 

read from resource buffers, the available memory bandwidth 

becomes the potential bottleneck. Hence, the load of the IA stage 

(LIA) is chosen to be the size of the input vertex data which might 

vary based on the number of vertices and their attributes 

(#𝐴𝑡𝑡𝑟). 

Since Vertex Shader (VS) is a programmable stage, its 

performance depends on the complexity of its code and should 

be reflected in 𝐿𝑉𝑆. VS program is invoked individually for each 

vertex, so  𝐿𝑉𝑆 is also affected by the number of vertices. Let 𝐶𝑉𝑆 

be the assembly code’s complexity, then 𝐿𝑉𝑆 is defined as: 

𝐿𝑉𝑆 = 𝐶𝑉𝑆.𝑁𝑉𝑒𝑟𝑡𝑒𝑥                  (7) 

For shaders, the assembly operators are profiled separately 

and a performance function is derived for each operator. Some 

operators are used exclusively in a specific stage (e.g., sampling 

operator for PS).  

Tessellation stages consist of three separate stages, HS, the 

Tessellator and DS that act as a single unit and turning off 

tessellation disables all the underlying stages. These stages are 

programmed differently but they all work together and they 

manipulate the vertices in a patch. HS consists of a main shader 

program and a patch constant function (PCF) that are executed 

once per output control point and once per patch respectively. 

Hence, the load of this stage can be simply considered as the 

number of vertices (𝑁𝑉𝑒𝑟𝑡𝑒𝑥) along with the number of patches 

(𝑁𝑃𝐶𝐹) as the input to the PCF which is treated like a complete 

shader stage. The complexity of HS’s main shader and PCF are 

shown by 𝐶𝐻𝑆 and 𝐶𝑃𝐶𝐹  respectively while the load for each one 

is represented by 𝐿𝐻𝑆 and 𝐿𝑃𝐶𝐹 . 𝑃𝑒𝑟𝑓𝐻𝑆 and 𝑃𝑒𝑟𝑓𝑃𝐶𝐹  are 

calculated as: 

𝐿𝐻𝑆 = 𝐶𝐻𝑆.𝑁𝑉𝑒𝑟𝑡𝑒𝑥  

𝐿𝑃𝐶𝐹 = 𝐶𝑃𝐶𝐹.𝑁𝑃𝐶𝐹   

𝑃𝑒𝑟𝑓𝑇𝐻𝑆 = 𝑃𝑒𝑟𝑓𝐻𝑆(𝐿𝐻𝑆) + 𝑃𝑒𝑟𝑓𝑃𝐶𝐹(𝐿𝑃𝐶𝐹)                       (8) 

The Tessellator stage is also a fixed function unit and its 



 

inputs are the tessellation factors and patch constant data that are 

produced by PCF. For this stage, 𝐿𝑇𝑒𝑠𝑠 mainly depends on the 

total number of newly generated points in each patch where the 

total number of patches is shown by 𝑃 and the number of 

tessellations in the 𝑝𝑡ℎ patch by 𝑁𝑇𝑒𝑠𝑠
𝑝

:  

𝐿𝑇𝑒𝑠𝑠 = ∑ 𝑁𝑇𝑒𝑠𝑠
𝑝𝑃−1

𝑝=0  
                                (9)  

DS stage is fed with the output of the Tessellator and HS 

stages, namely UVW coordinates of every point in a patch from 

the Tessellator along with control points and patch constants 

from the HS stage. The DS stage produces a single tessellated 

vertex per input vertex, so 𝐿𝐷𝑆 depends on the number of vertices 

as well as the complexity of DS’s code, 𝐶𝐷𝑆, and is calculated 

as: 

𝐿𝐷𝑆 = 𝐶𝐷𝑆. 𝑁𝐷𝑆                  (10) 

GS is an optional stage which handles complete primitives 

instead of a single vertex. In addition to the complexity of GS’s 

code, 𝐶𝐺𝑆, the load of this stage, LGS, is also dependent upon the 

number of vertices which might be different from the input of 

VS due to being processed in tessellation stages (if tessellation 

is on). Hence, 𝐿𝐺𝑆 is calculated as: 

𝐿𝐺𝑆 = 𝐶𝐺𝑆. 𝑁𝐺𝑆                    (11) 

Rasterizer generates fragments that might end up on screen 

as pixels. Hence, 𝐿𝑅𝑎𝑠 which represents the load of the 

Rasterization stage is considered to be equal to the number of 

fragments that are produced in this stage, 𝑁𝐹𝑟𝑎𝑔.  

PS or fragment shader is the last programmable stage that 

manipulates each input fragment’s color [31]. As the number of 

fragments 𝑁𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡  that are produced by the Rasterizer 

increases, the number of times that a PS is invoked increases as 

well. Also, the PS code complexity 𝐶𝑃𝑆 should be considered in 

the model. hence, 𝐿𝑃𝑆 is calculated as: 

𝐿𝑃𝑆 = 𝐶𝑃𝑆.𝑁𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡                  (12) 

OM is the last stage of the pipeline and the fragments that 

are processed by the PS are fed to this stage. Reading and writing 

to the render targets are the main cause of the performance issues 

related to the OM stage when blending is utilized. Hence, this 

stage is mostly bandwidth limited and is affected by the number 

of fragments, 𝑁𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 along with the render target resolution, 

𝑁𝑊𝑖𝑑𝑡ℎ × 𝑁𝐻𝑒𝑖𝑔ℎ𝑡 . 𝐿𝑂𝑀 is defined as: 

𝐿𝑂𝑀 = 𝑁𝑊𝑖𝑑𝑡ℎ.𝑁𝐻𝑒𝑖𝑔ℎ𝑡 . 𝑁𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠                      (13) 

Compute Shader (CS) is considered as a tool for General-

purpose computing on GPUs (GPGPU). This shader has an 

independent logical pipeline dedicated to general computations. 

Although CS is not part of the main pipeline and it is absent in 

Figure 2, this shader should be considered in the performance 

model, following the same rule for input size, 𝑁𝐼𝑛𝑝𝑢𝑡 , and code 

complexity, 𝐶𝐶𝑆. Hence, the load of CS, 𝐿𝐶𝑆, is calculated as: 

𝐿𝐶𝑆 = 𝐶𝐶𝑆.𝑁𝐼𝑛𝑝𝑢𝑡                (14) 

3.1.1. Model parameters 

The parameter estimation method aims to minimize the least 

squares problem produced by the 𝑀 observations that are 

recorded by the benchmark. Considering (2), let 𝑦𝑚 represent the 

actual output of the 𝑚𝑡ℎ observation in the benchmark and 𝜀𝑚 

represent the estimation error for the 𝑚𝑡ℎ observation, then the 

following linear system is obtained:   

{
 
 

 
 
𝑦0     = β0 + 𝛽1𝑤1

0       +  … +  𝛽9𝑤9
0       + ε0    

𝑦1     = β0 + 𝛽1𝑤1
1       +  … +  𝛽9𝑤9

1       + ε1    .
.
.

𝑦𝑀−1 = β0 + 𝛽1𝑤1
𝑀−1 + … +  𝛽9𝑤9

𝑀−1 + εM−1

            (15) 

To obtain the matrix form of the system, similar to (3), let Y 

be the vector containing 𝑦𝑚 values, 𝑊 be the matrix that holds 

the explanatory variables values and 𝐸 be the vector for error 

values, then the linear system in (17) can be written as: 

𝑌 = 𝛽𝑊 + 𝐸                             (16) 

where 

𝑌 = [𝑦0, 𝑦1, … , 𝑦𝑀−1]
   

𝑊 =

[
 
 
 
 
 
𝑤0
0 𝑤0

1

𝑤1
0 𝑤1

1

⋯
⋯

𝑤0
M−2 𝑤0

M−1
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M−2 𝑤1

M−1

⋮     ⋮ ⋱ ⋮         ⋮  
𝑤8
0 𝑤8

1

𝑤9
0 𝑤9

1

⋯
⋯

𝑤8
M−2 𝑤8

M−1

𝑤9
M−2 𝑤9

M−1]
 
 
 
 
 

  

𝐸 = [ε0, ε1, … , ε𝑀−1]
                             (17) 

The solution to this linear system minimizes the L2 norm of 

𝐸 formulated as: 

min ‖𝐸‖2
2 = min‖𝑌 − 𝛽𝑊‖2

2 = min 𝐽(𝛽0, … , 𝛽9)                (18) 

where 𝐽(𝛽) represents the cost function. 

SVD uses orthogonal transformations to reduce the problem 

to a diagonal system. If 𝑈 is an 𝑀 ×𝑀 orthogonal matrix, 𝑆 is 

an 𝑀 × 10 diagonal matrix and 𝑉 is a 10 × 10 orthogonal 

matrix, then in this method: 

𝑊𝑀 = 𝑈𝑆𝑉𝑇                (19) 

Considering the above equation, 𝛽 can be formulated as: 

𝛽 = ((𝑈𝑆𝑉𝑇)𝑇𝑈𝑆𝑉𝑇)−1(𝑈𝑆𝑉𝑇)𝑇𝑌 = 𝑉𝑆−1𝑈𝑇𝑌             (20) 

3.2. Training the model 

An offline training is performed before each rendering 

session based on a set of frames that use the graphical data of the 

current scene that is going to be rendered. An offline-only 

training scheme can be used for some simpler games that do not 

have aggressive variations in their workload. However, it is not 

possible to cover all types of workload variations in offline 

training for modern games that might have over 100 hours of 

gameplay and heavily variant and dynamic environments. on the 

other hand, an online only training scheme can lead to long 



 

initiation times before a set of acceptable and accurate set of 

weights is obtained. In such cases, using offline training is 

beneficial to provide the model with acceptable initial weight 

values to avoid long initiation times of online training. 

Additionally, huge variations in consecutive frametimes that are 

not caused by the workload of the frames can make the 

estimation error during online training to raise beyond an 

acceptable value. Resetting the model weights to weights 

obtained by the offline training in such cases can be beneficial, 

until the error of the offline mode becomes unacceptable as well. 

Hence, a hybrid offline/online training technique is used to take 

advantage of both training methods.  

Initially, the model starts in offline mode which uses the 

weights that were obtained through offline training. If the Root 

Mean Squared Error (RMSE) value for frame 𝑛 during the 

offline mode (𝑅𝑀𝑆𝐸𝑛
𝑜𝑓𝑓

) increases beyond a predetermined 

threshold (𝑅𝑀𝑆𝐸𝑇ℎ), the model switches to online mode. The 

value of 𝑅𝑀𝑆𝐸𝑇ℎ determines the amount of acceptable 

estimation error. The acceptable 𝑅𝑀𝑆𝐸 value is generally under 

0.5 for this metric which is also used as the value for 𝑅𝑀𝑆𝐸𝑇ℎ 

in the experiments as well. However, tuning this parameter per 

game can have a positive impact on the overall accuracy. Setting 

the value of this parameter too high reduces the sensitivity of the 

system to estimation error, while too small values make the 

system constantly switch between online and offline modes.  

Upon switching to the online mode, the online training starts 

and the model weights, which are initialized to the offline 

weights every time this mode starts, get updated for each frame. 

During the online mode, if the RMSE value (𝑅𝑀𝑆𝐸𝑛
𝑜𝑛) violates 

𝑅𝑀𝑆𝐸𝑇ℎ, a validation step with a predetermined patience value 

(𝑃) is performed based on the offline weights. If the comparison 

of 𝑅𝑀𝑆𝐸𝑛
𝑜𝑛 with 𝑅𝑀𝑆𝐸𝑛

𝑜𝑓
 indicates that the online training 

process has reduced the accuracy in comparison to the offline 

trained model, a counter variable that holds the number of 

violated frames (𝑛𝑣) is increased by one. If 𝑛𝑣 reaches the 

predetermined value of 𝑃, the model switches to offline mode 

which means the weights are reset back to the values obtained 

by the offline training and the online training stops temporarily, 

until 𝑅𝑀𝑆𝐸𝑛
𝑜𝑓

 violates 𝑅𝑀𝑆𝐸𝑇ℎ again and the need for using the 

online training arises. The mode decision algorithm which 

handles the switching between the online and offline modes and 

invokes the online training phase, is described in Algorithm 1, 

with 𝑁 being the total number of frames in the current rendering 

session.  

3.3. Benchmark notes 

GAMORRA’s benchmark suite also operates at an API 

level. This is the only component in GAMORRA that interacts 

with the underlying hardware and the graphics driver. Since the 

graphics API’s structure is not affected by the updates that the 

graphics driver receives, GAMORRA needs to rerun the 

benchmarks to capture the performance changes that these new 

functionalities cause. Hence, the core model of GAMORRA 

needs no changes in such scenarios and is the same for all the 

GPUs that use a certain graphics API. To perform the 

benchmarks and obtain the performance function of each stage 

of the pipeline, the number of input elements and the number of 

assembly operations for shaders is increased gradually until an 

upper bound is reached. The theoretical upper bound on the 

number of input elements is defined as the resource limits of 

Direct3D 11 [32]. However, running the benchmarks with the 

number of inputs close to the resource limits causes the 

frametimes to be much higher than the normal and acceptable 

values in modern applications (e.g. 30 fps).  As a trade-off 

between frame rate generality and benchmark speed, 100 ms (or 

10 fps) is chosen as the maximum acceptable frametime (or 

minimum acceptable frame rate) in the benchmarks. By 

choosing 100 ms, the benchmark would not run for the input load 

values that cause the frame rate to drop under 10 fps which 

effectively improves the benchmarking time. Since 10 fps is a 

fairly low frame rate for modern real-time applications, 100 ms 

is a reasonable choice in terms of generality. 

The benchmarks to obtain the time complexity of IL shader 

assembly operators are designed such that only one opcode (e.g., 

add) is tested in each benchmark for a certain number of 

iterations. The recorded time for each benchmark is then divided 

by the number of iterations to obtain a rough estimate of the time 

complexity for the tested operator and stage, i.e., 𝑂𝑃𝑗 in (6). 

In addition to each stage’s functionality, other pipeline 

states, such as the presentation model or blend mode, directly 

affect the final performance and need to be addressed in the 

benchmarks. For example, in Direct3D 11, 

Algorithm 1 Mode decision algorithm 

Input: Current frametime, predicted frametime using online and 

offline model weights 

  1:  𝒏 = 𝟎,   𝒏𝒗 = 𝟎,  

𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑴𝒐𝒅𝒆 = 𝑶𝒇𝒇𝒍𝒊𝒏𝒆 

  2:  Run GAMORRA’s benchmark according to 

  3:  while 𝒏 < 𝑵 

  4:     if 𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑴𝒐𝒅𝒆 == 𝑶𝒏𝒍𝒊𝒏𝒆 

  5:          Calculate 𝑹𝑴𝑺𝑬𝒏
𝒐𝒏 

  6:          if 𝑹𝑴𝑺𝑬𝒏
𝒐𝒏 > 𝑹𝑴𝑺𝑬𝑻𝒉 

  7:            Calculate 𝑹𝑴𝑺𝑬𝒏
𝒐𝒇𝒇

 

  8:            if 𝑹𝑴𝑺𝑬𝒏
𝒐𝒏 > 𝑹𝑴𝑺𝑬𝒏

𝒐𝒇𝒇
 

  9:                 𝒏𝒗 = 𝒏𝒗 + 𝟏 

10:               if 𝒏𝒗 > 𝒑𝒂𝒕𝒊𝒆𝒏𝒄𝒆 

11:                  Stop online training 

12:                  Use offline training weights 

13:                   𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑴𝒐𝒅𝒆 = 𝑶𝒇𝒇𝒍𝒊𝒏𝒆 

14:                  𝒏𝒗𝒊 = 𝟎 

15:               end if 

16:            end if 
17:         end if  

18:     else if 𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑴𝒐𝒅𝒆 == 𝑶𝒇𝒇𝒍𝒊𝒏𝒆 

19:          Calculate 𝑹𝑴𝑺𝑬𝒏
𝒐𝒇𝒇

 

20:          if 𝑹𝑴𝑺𝑬𝒏
𝒐𝒇𝒇

> 𝑹𝑴𝑺𝑬𝑻𝒉 

21:            Start online training  

22:             𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑴𝒐𝒅𝒆 = 𝑶𝒏𝒍𝒊𝒏𝒆 

23:         end if 
24:     end if 

25:     n = n+1 

26: end while 

 



 

DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL and 

DXGI_SWAP_EFFECT_DISCARD presentation models 

would give two very different performance results based on the 

rendering resolution, which need to be taken into account while 

designing the benchmarks. 

Also, the benchmarks should account for techniques such as 

the post transform cache [33] and the early-z implemented in 

GPUs. The post transform cache causes the VS to be invoked 

less frequently for indexed draw calls. Hence, to properly have 

a 1:1 relation between the vertices and the number of times that 

a VS is invoked, indexed draws should be avoided unless the 

goal is to benchmark the post transform cache performance. The 

early-z test, also referred to as the early fragment test, depends 

on the functionality of the graphics driver and the GPU itself and 

they are not controlled explicitly by the API commands in 

Direct3D. Hence, a depth-only benchmark is used to determine 

the performance of the early-z process.  

Table 1 shows a summary of all the requirements for each 

stage of the pipeline. The model parameters are the number of 

vertices (#Vtx), the number of assembly operations (#Ops), the 

number of patches (#Patch), the number of tessellations (#Tess), 

the number of primitives (#Prim), the number of target pixels or 

resolution (Res), the number of fragments (#Frg) and the number 

of input elements (#Element). It should be noted that for the 

Rasterizer and its following stages, the rasterization should be 

performed. Hence, to map a rectangular texture to the screen, at 

least 4 vertices are required. Also, the Res value determines the 

maximum resource resolution (texture, depth buffer, stencil 

buffer and etc.) of the current batch. 

4. IMPLEMENATION AND RESULTS 

APITrace [34] is used to intercept API commands that are 

produced by the rendering engine. Since computer games are the 

most computationally intensive applications that use 

rasterization-based graphics APIs to their maximum capacity, all 

the tests are done on modern AAA games. Also, the proposed 

model and all the mathematical calculations, including the 

matrix multiplications, are implemented using Tensorflow-GPU 

[35]. Nine computer games were chosen for the tests, namely, 

Dirt 3 (D3), Splinter Cell: Blacklist (SC), Battlefield Bad 

Company 2 (BC2), Far Cry 3 (FC3), Rocket League (RL), Trine 

4 (RL), Sniper Elite 4 (SE4), Mortal Shell (MSh), and Fast and 

Furious Spy Racers: Rise of SH1FT3R (FF). Table 2 shows the 

game sequence characteristics such as genre, resolution, average 

frametime and the standard deviation of frametimes on two 

tested rendering systems. Since GAMORRA is designed to be 

independent of the underlying hardware, it is mandatory to 

perform the experiments on more than one rendering platform. 

The configurations of these tested devices are listed in Table 3.  

The configurations of both training phases, which were 

determined through experimentation, are reported in Table 4. 

The offline training process uses the data of 720 frames of 

different sections of each level to train the model based on the 

graphics data of that level. Hence, the total number of samples 

would equal the average number of drawcalls (#DC) in a frame, 

times the number of frames. Also, the train-test ratio (Train/Test) 

Table 2: Sequence characteristics for the experimented games 

Game Abbrv. Genre Resolution 
S1 Average 

frametime (ms) 

S1 Standard 

deviation (ms) 

S2 Average 

frametime (ms) 

S2 Standard 

deviation (ms) 

Bad Company 2 (2010) BC2 FPS 1280x720 12.22 0.943 07.47 0.624 

Dirt 3 (2011) D3 Racing 1280x720 07.97 0.588 04.78 0.298 

Far Cry 3 (2012) FC3 FPS 1920x1080 24.51 1.213 10.27 0.743 

Rocket League (2015) RL Racing/sport 1280x720 16.13 1.247 09.76 0.987 

Splinter Cell (2013) SC Third Person 1280x720 14.74 3.093 07.90 2.253 

Trine 4 (2019) T4 Side scroller 1920x1080 16.42 2.582 09.45 2.012 

Sniper Elite 4 (2017) SE4 FPS 1280x720 16.78 2.056 10.66 1.596 

Mortal Shell (2020) MSh Third Person 1280x720 17.95 2.485 07.33 1.825 

Fast and Furious (2021) FF Racing 1920x1080 16.37 1.991 08.28 1.371 

 
 

Table 1: Model parameters and important notes 

Stage Model parameter Notes 

IA #Vtx VS, HS, DS, GS, PS set to pass through, No rasterization 

VS #Vtx, #Ops HS, DS, GS, PS set to pass through, No rasterization 

HS #Vtx, #Ops VS, DS, GS, PS set to pass through, No rasterization 

Tessellation #Patches, #Tess VS, DS, GS, PS set to pass through, No rasterization 

DS #Vtx, #Ops VS, GS, PS set to pass through, No rasterization 

GS #Vtx, #Ops VS, HS, DS, PS set to pass through, No rasterization 

Rasterizer #Frg VS, HS, DS, GS, PS set to pass through, 4 vertices required to map a texture for rasterization 

PS #Frg, #Ops VS, HS, DS, GS, PS set to pass through, 4 vertices required to map a texture for rasterization 

OM #Frg VS, HS, DS, GS, PS set to pass through, 4 vertices required to map a texture in each layer for rasterization 

CS #Element VS, HS, DS, GS, PS set to pass through, No rasterization 

 
 

Table 4: Training configuration 

 Offline Online  

Initial LR 0.01 0.01 

#Samples 720*#DC #DC 

Batch size 32 #DC 

#Epochs 200 1 

Train/Test 0.3 - 

Patience 10 10 

RMSETh 0.5 0.5 

 
 

Table 3: System configuration 

 S1 S2 

CPU 
i7- 

7500U 

i5-

7300HQ 

GPU 
950m 

2GB 

RX 560 

2GB 

RAM 

8 GB 

DDR4 

1200MHz 

8 GB 

DDR4 

1200MHz 

 
 



 

of the offline training is set to 0.3. 

The proposed method in this paper focuses on GPUs. 

However, the main CPU also affects frametimes immensely and 

can potentially become the bottleneck in a rendering session. 

Using APITrace makes sure that a lot of CPU intensive tasks like 

processing the IA is already carried out and the CPU is only 

dedicated to render-related processes. Many CPU performance 

models have been discussed in the literature [36] from as late as 

1977 and is much simpler to obtain. For the purposes of this 

paper, the proposed method in [37] is used for CPU time 

complexity modeling. This model uses a deep neural network 

specifically for Intel CPUs based on available benchmarks such 

as the SPEC CPU2006 and Geekbench 3.  

Three methods are chosen to compare to GAMORRA. 

These methods are the AutoRegressive (AR) moving average 

[9], Frame Complexity Model (FCM) [23], and a frequency-

based method (FRQ)  [10]. All these methods are independent 

of the underlying architecture and do not require any changes to 

the target software or hardware. Five metrics are considered in 

the experiments: Missed frames ratio (MFR) in percentage (%), 

frametime estimation error in milliseconds (ms), time 

complexity (ms), frametime overhead (%), and system memory 

usage in megabytes (MB). MFR reports the percentage of the 

frames that are falsely estimated to have a frametime smaller 

than the actual time they require to be rendered. In an application 

that relies on accurate frametime estimations to prevent frame 

losses like a hybrid CG system, this type of false estimation leads 

to frame loss and have a negative impact on the quality of 

experience. Estimation error reports the maximum, minimum 

and mean of the absolute difference between estimated and the 

actual frametimes. Too much overestimation of frametimes, as 

well as underestimation, leads to a negative impact on the target 

application’s performance and should be accounted for in the 

experiments. Time complexity determines the amount of time 

overhead that GAMORRA forces upon the system which is 

mostly comprised of the MLR’s parameter estimation 

processing time. The frametime overhead determines the 

percentage of the overall frametime that is due to GAMORRA’s 

time complexity. And finally, system memory usage determines 

the amount of RAM in megabytes, required to run the model.  

It should be noted that AR requires to consider the 

frametimes of a certain number of previous frames to predict the 

current frametime, referred to as the sequence length, which 

directly affects the performance of the model. The sequence 

length of AR is set to 10 in the experiments, which is reported to 

yield the best results in [9].  Also, FCM uses three weight 

coefficients for the number of vertices, the number of textures 

and the number of commands which are all set to 1 3⁄  as per 

FCM’s original design [23]. And finally, FRQ [10] does not 

require any specific configurations for the experiments.  

Before experimenting on the games, the performance 

function of the target hardware should be known.  

4.1. Obtaining performance functions and model 

parameters 

The results of benchmarking S1 are shown in Figure 3. With 
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Figure 3 The performance charts of IA, VS, HS, Tessellation, DS, GS, 

Rasterization, PS and OM stages 
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a 𝛽0 of 6.966 ms, Figure 3 (IA) shows the result of the 

performance benchmark of the IA stage. Since loading about 

1500 MBs of vertex data causes the pipeline to take more than 

100 ms, it is evident that GTX950m is struggling to load them.  

After being prepared by the IA stage, the vertices go through 

the VS stage. Tens of opcodes are available to be used by 

developers at this stage and all the other programmable stages 

and all of them should be benchmarked. As an example, the 

performance chart of the add operator of the VS stage is shown 

in Figure 3 (VS). This benchmark shows that a VS can perform 

of up to 130 million Add operations under a 100-ms time 

interval. Normally, the performance function of this stage would 

be a 3D chart, but, for simplicity and more comprehensible 

output, the number of attributes and the number of vertices is 

fixed and set to 1. For illustration purposes, the only attribute 

considered in the test in Figure 3 (VS), is position which is a 3-

component floating point variable.  

The results for the Tessellation stages are depicted in Figure 

3 (HS), (Tess) and (DS). The results of the HS and DS stages for 

add operator are more similar to the VS stage in comparison to 

the Tessellator stage which is a fixed-function stage. For the 

Tessellator stage, level 3 tessellation was used and a total of 

6.5*106 tessellations make the rendering time to surpass 100 ms 

as depicted in Figure 3 (Tess).   

The performance chart of the GS stage for add operator is 

depicted in Figure 3 (GS). This stage is also somewhat similar 

to the VS stage, albeit more demanding due to the fact that it 

operates on whole primitives instead of individual vertices.  

Figure 3 (Ras) shows the benchmark results for the 

Rasterizer. As the number of fragments increase over 20 million, 

the Rasterizer starts to impose larger overhead on the pipeline 

and the GTX950m starts to struggle with the rasterization 

process. When the rasterization benchmark is 3 million pixels 

short of the 30 million, the rendering time gets closer enough to 

the unacceptable 100 ms.  

The result of the PS stage benchmark for add operator is 

depicted in Figure 3 (PS). Performing 108 operations would 

practically increase the processing time of the pipeline to well 

over 100 ms.    

Finally, the performance chart of the OM stage is depicted 

in Figure 3 (OM). The load size of the OM stage is highly 

dependent upon the number of fragments and reaching 25*106 

would violate the 100-ms limit that is chosen for the 

benchmarks. 

These benchmarks show a roughly linear relation between 

the load of the pipeline and the processing time that this load 

imposes on the system. If the input load is light enough (e.g., 

less than 5 million pixels and 10 million primitives in the case 

of rasterization), then the overall processing time of the pipeline 

would be roughly close to the value of 𝛽0 . So, it is safe to assume 

that an MLR-based model is flexible enough to model an API’s 

pipeline and as will be discussed later on, it is not too 

complicated and computationally expensive to have a negative 

impact on the performance of the system.  

If any of the tested games utilizes any of the optional stages, 

they should be also taken into account. Table 5 represents the 

active (✓) and pass-through or inactive () shaders for the tested 

games with VS and PS always active for all the games. Also, 

some of the important graphics characteristics of the tested 

games are represented in Table 6. The number of vertices (#Vtx) 

determines the minimum, maximum and average values of the 

number of input vertices to a VS. The number of attributes 

(#Attr.) also determines the minimum, maximum and average 

values of the number of attributes of vertices. The minimum, 

maximum and average number of operations (#Ops) in shaders 

are also reported in Table 6. 

4.2. Estimating frametimes 

After establishing the performance functions of the target 

graphics card and training the model parameters, GAMORRA is 

ready to be used to estimate frametimes. To experiment on the 

games, a 5-minute gameplay sequence of each game was 

recorded using API Trace so it can be replayed multiple times to 

Table 6: The values of some of the model parameters obtained from tested 

game sequences 

Game 
#Vtx #Attr #Ops 

Min Max Mean Min Max Mean Min Max Mean 

BC2 8 2134 752 1 7 3.5 7 192 32.7 

D3 4 2066 615 1 7 1.8 5 204 45.1 

FC3 4 2796 802 1 8 3.9 9 217 49.3 

RL 4 1954 945 1 9 6.4 8 269 57.8 

SC 8 2378 743 1 9 7.3 5 187 37.2 

T4 16 3072 1040 1 9 5.0 6 228 41.5 

SE4 12 3198 1816 1 13 3.7 7 236 31.4 

MSh 12 3564 1792 1 16 10.4 9 253 48.3 

FF 12 2974 1605 1 16 9.8 7 291 52.7 

 
Table 7: The experimental results on MFR (%) 

Game 
S1 S2 

AR FCM FRQ GM AR FCM FRQ GM 

BC2 11.54 3.08 12.32 2.35 11.39 3.21 11.42 2.46 

D3 08.79 3.69 09.35 2.16 09.76 3.62 09.16 2.33 

FC3 10.38 4.53 11.47 3.07 10.16 2.94 10.76 2.91 

RL 09.21 3.24 08.44 2.58 10.09 2.86 09.49 2.27 

SC 12.06 5.22 12.25 3.90 11.69 4.90 11.83 3.26 

T4 10.94 3.27 11.16 2.83 09.83 2.68 11.78 2.69 

SE4 11.92 4.75 12.13 3.24 12.78 5.11 12.66 2.70 

MSh 10.87 4.20 11.04 3.06 11.80 4.28 11.47 2.72 

FF 09.32 4.68 10.51 3.11 09.17 4.06 10.42 2.84 

 
 

Table 5: Active and inactive shaders for the tested games 

Game VS Tess. GS PS CS 

BC2 ✓   ✓  

D3 ✓ ✓  ✓ ✓ 

FC3 ✓ ✓ ✓ ✓ ✓ 

RL ✓ ✓  ✓ ✓ 

SC ✓ ✓  ✓  

T4 ✓   ✓ ✓ 

SE4 ✓ ✓  ✓ ✓ 

MSh ✓ ✓ ✓ ✓ ✓ 

FF ✓  ✓ ✓ ✓ 

 
 



 

replicate the exact sequence of the gameplay.  

4.2.1. Missed Frames Ratio (MFR) 

Table 7 shows the MFR values for each method and each 

game. Higher MFR values indicate more frametime 

underestimations which can negatively impact the quality of 

experience of frame loss sensitive applications such as computer 

games [38]. Table 7 compares the result of GAMORRA (GM) 

with AR, FCM, and FRQ. The results show that GAMORRA 

outperforms all three methods from an MFR perspective on both 

S1 and S2 platforms. Among the tested methods, GAMORRA 

has the lowest MFR values with an average of 2.80% followed 

by FCM, AR, and FRQ with average miss rate values of 3.91%, 

10.65%, and 10.98%, for both S1 and S2 platforms. FCM which 

takes a more fine-grained approach compared to AR and FRQ 

that rely only on the previous frames’ rendering times, 

demonstrates closer results to GAMORRA. This is due to the 

fact that FCM considers the frame structure in the form the 

number of drawcalls, the texture size and the number of vertices 

which is still a coarse-grained approach compared to 

GAMORRA. Hence, it is outperformed by the proposed model. 

Moreover, FCM neither uses an online training method nor a 

comprehensive benchmark like GAMORRA does. This puts 

FCM at more of a disadvantage which leads to the loss of 

accuracy that is evident in Table 7.   

Figure 4 and Figure 5 show the results of frametime 

estimation for D3 and SC on S1 in comparison to the actual 

frametimes (FT) in a 30-frame sequence of gameplay for each 

game. GAMORRA is tested for both offline-only (GM-Of) and 

hybrid (GM-H) training configurations to demonstrate the 

impact of the online training scheme. D3 and SC are chosen as 

the best-case and worst-case scenarios since they have the lowest 

and highest MFR values, respectively. To keep the charts 

simple, AR and FRQ methods are discarded in these figures. 

D3 utilizes Ego engine [39] which is specifically designed 

and used for racing games, thus, performs efficiently on a mid-

range GPU. On the other hand, SC uses a pretty much outdated 

unreal engine 2.5 [40] which is pushed to its limits for the best 

visual output leading to a somewhat unstable rendering 

performance. Hence, although GAMORRA outperforms FCM, 

still, a drop in accuracy is experienced for both GM-H and GM-

Of. Figure 4 shows that GM-H excels at modeling the rendering 

times in comparison to FCM that does not utilize a hybrid 

training scheme. In this chart, GAMORRA switches to online 

training on frame 13 which leads to a divergence in GM-H and 

GM-Of estimations. It is evident on frames 19 and 23 that GM-

Of fails to react in time to frametime variations that are caused 

by changes other than workload variations. This also applies to 

FCM as well.  

Figure 5 shows the frametime results for SC. This chart 

shows that GM-H reacts faster to the fluctuations in frametimes 

which is a result of both the more detailed core model and the 

more sophisticated training scheme in comparison to FCM. In 

this chart, the system switches to online training on the second 

frame. FCM and GM-Of react to workload variations to some 

extent, like frame 10. However, GM-H can mimic more 

aggressive variations better than GM-Of and FCM, like frames 

24 and 27. Using frame workload structure in conjunction with 

a hybrid training scheme results in faster and more accurate 

reactions to frametime variations that are caused by both 

workload variations and changes in runtime conditions.  

4.2.2. Estimation error 

The results of the estimation error are reported for each of 

the tested methods for both tested platforms in Table 8. Also, the 

percentage of the estimation error is reported in Table 9. The 

percentage of estimation error is highly dependent upon the 

value of frame rate and as the frame rate increases, this 

percentage increases proportionally.  

The average estimation error reported in Table 8 shows the 

 
Figure 4 Frametime estimation results for D3 on S1 

 
 

6.5

7.5

8.5

9.5

10.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

F
ra

m
e 

ti
m

e 
(m

s)

Frame number

FT GM-H GM-Of FCM

 
Figure 5 Frametime estimation results for SC on S1 
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dominance of GM-H for all the tested games on both S1 and S2 

platforms. On S1, GM-H has an average of 4.13% less 

estimation error for the tested games compared to FCM. This 

value for S2 drops to 3.47%. This indicates that GM-H is capable 

of handling a less stable rendering session on weaker devices 

such as S1 compared to a more powerful machine like S2. The 

estimation error gap between GM-H and the other two methods 

on S1 equals 9.74% and 14.79% for AR and FRQ, respectively. 

These values on S2 drop to 9.57% and 13.5% for AR and FRQ, 

respectively. Although GM-Of does not take advantage of 

GAMORRA’s hybrid training scheme, it still manages to 

outperform all the other methods other than GM-H. GM-Of is 

outperformed by GM-H by 1.81% and 1.64% on S1 and S2, 

respectively. The larger estimation gap between GM-H and MG-

Of on S2 compared to S1 indicates that GM-H’s online training 

scheme is responsible for the larger estimation gap between GM-

H and the other models that do not utilize an online training 

method.       

4.2.3. Time complexity and overhead 

The time complexity of the tested methods is reported in 

Table 10. FRQ only relies on the previous frametimes and the 

GPU frequency in a simple linear method which leads to the 

lowest complexity among the tested methods. FCM, which uses 

a scheme based on frame structure similar to GAMORRA, yet 

with a simpler model, has lower time complexity than the 

proposed model. This is due to the simpler nature of its core 

model and the absence of any online training scheme. AR relies 

on an iterative process to obtain its model parameters. Hence, it 

is expected to have a larger time complexity compared to the 

other two methods. GAMORRA has the largest time complexity 

among the tested models. In addition to its more complex core 

model, the online training scheme of the proposed model is 

expected to have a slight negative impact on its time complexity. 

However, although GAMORRA has a larger time complexity 

compared to the other tested methods, it still manages to perform 

acceptably and in real-time, especially considering its superior 

accuracy.   

Table 11 shows the overhead of GAMORRA in comparison 

to the three tested methods for both S1 and S2 platforms. As 

expected from the time complexity results represented in Table 

10, FRQ which is the least computationally complex method 

Table 10: The experimental results on average time complexity (ms) 

Game 
S1 S2 

AR FCM FRQ GM AR FCM FRQ GM 

BC2 1.63 1.54 1.47 2.15 0.94 0.66 0.59 1.23 

D3 1.37 1.17 1.01 2.02 0.72 0.47 0.40 1.18 

FC3 1.46 1.19 1.08 1.79 0.64 0.52 0.43 1.03 

RL 1.54 1.26 1.10 2.11 0.86 0.68 0.53 1.31 

SC 1.82 1.74 1.65 1.83 1.02 0.83 0.67 1.16 

T4 1.70 1.41 1.29 2.04 0.81 0.59 0.46 1.22 

SE4 1.51 1.43 1.24 1.99 0.62 0.52 0.45 1.19 

MSh 1.67 1.41 1.35 2.03 1.02 0.61 0.49 1.20 

FF 1.49 1.18 1.01 1.67 1.01 0.44 0.40 1.01 

 

 

Table 11: The experimental results on estimation overhead (%) 

Game 
S1 S2 

AR FCM FRQ GM AR FCM FRQ GM 

BC2 11.769 11.192 10.738 14.962 11.177 8.118 07.32 14.138 

D3 14.668 12.801 11.247 20.220 13.091 8.952 7.722 19.799 

FC3 05.622 04.630 04.220 06.806 05.866 4.819 4.019 09.115 

RL 08.715 07.246 06.384 11.568 08.098 6.513 5.151 11.834 

SC 10.990 10.558 10.067 11.044 11.435 9.507 7.818 12.804 

T4 09.382 07.908 07.284 11.051 07.895 5.876 4.642 11.434 

SE4 08.256 07.853 06.881 10.602 05.496 4.651 4.050 10.042 

MSh 08.512 07.283 06.995 10.160 12.216 7.683 6.266 14.068 

FF 08.343 06.724 05.811 09.257 10.872 5.046 4.608 10.872 

 

Table 8: The experimental results on estimation error (ms) 

Game 
S1 S2 

AR FCM FRQ GM-H GM-Of AR FCM FRQ GM-H GM-Of 

BC2 2.425 1.941 3.847 1.248 1.495 2.375 1.713 2.906 1.093 1.217 

D3 0.810 0.682 1.614 0.576 0.638 0.752 0.626 1.292 0.45 0.583 

FC3 3.167 1.859 3.991 1.108 1.793 2.954 1.451 3.293 0.801 1.141 

RL 1.403 1.316 2.753 1.017 1.211 1.312 1.235 2.626 0.743 1.094 

SC 4.104 2.991 4.280 1.564 2.074 3.761 2.021 4.086 1.276 1.569 

T4 1.938 1.853 2.494 1.460 1.798 1.828 1.420 2.132 1.143 1.31 

SE4 5.742 3.076 6.059 1.953 2.231 5.390 2.708 5.597 1.621 1.917 

MSh 3.906 2.244 4.271 1.786 2.002 3.158 1.870 4.034 1.463 1.866 

FF 3.436 2.473 4.005 1.831 2.013 2.782 2.146 3.519 1.695 1.954 

 
 Table 9: The experimental results on estimation error (%) 

Game 
S1 S2 

AR FCM FRQ GM-H GM-Of AR FCM FRQ GM-H GM-Of 

BC2 19.84 15.88 31.48 10.21 12.23 31.79 22.93 38.9 14.63 16.29 

D3 10.16 8.56 20.25 7.23 8.01 15.73 13.1 27.03 9.41 12.2 

FC3 12.92 7.58 16.28 4.52 7.32 28.76 14.13 32.06 7.8 11.11 

RL 8.7 8.16 17.07 6.31 7.51 13.44 12.65 26.91 7.61 11.21 

SC 27.84 20.29 29.04 10.61 14.07 47.61 25.58 51.72 16.15 19.86 

T4 11.8 11.29 15.19 8.89 10.95 19.34 15.03 22.56 12.1 13.86 

SE4 34.22 18.33 36.11 11.64 13.3 50.56 25.4 52.5 15.21 17.98 

MSh 21.76 12.5 23.79 9.95 11.15 43.08 25.51 55.03 19.96 25.46 

FF 20.99 15.11 24.47 11.19 12.3 33.6 25.92 42.5 20.47 23.6 

 



 

among all the tested methods, outperforms the other methods 

from an estimation overhead standpoint. An average overhead 

of 7.74%, 8.47%, 9.58% and 11.74% is experienced for FRQ, 

FCM, AR and GM, respectively, on S1, and 5.73%, 6.80%, 

9.57% and 12.68% for FRQ, FCM, AR and GM, respectively, 

on S2. The results of S1 are mostly similar to the results of S2. 

However, there are cases in which there is a wider gap between 

the overhead of S1 and S2, which indicates that extra processing 

power of S2 has a larger impact on the performance of the target 

game than it has on the performance of the workload model. 

Since a large portion of GAMORRA’s time complexity is 

caused by a serial analysis of the shader code complexity, the 

overhead does not scale with the processing power of the target 

device as much as the other methods. This also applies to AR 

which uses an iterative parameter estimation method.   

It should be noted that these games are designed to be 

rendered in 60 fps and the overhead is highly affected by the 

value of the frametimes. As the average frametime increases, the 

overhead would decrease. For example, if the experimented 

game runs at 30 fps and the frame rate is not capped artificially, 

each frame would take about 33 ms to be rendered. Hence, the 

overhead values would almost be cut in half.  

4.3. System resource usage 

GAMORRA’s implementation is comprised of two distinct 

parts: the analyzer and the core model. The analyzer analyzes 

the intercepted graphics API commands and stores the required 

data (e.g., pointers and properties of buffers, textures, and 

resource views like size, resolution and usage). After analyzing 

the graphics data, the core model is fed with the required input 

parameters to be trained and used to predict frametimes.  

Table 12 reports the system memory usage of all the tested 

methods along with the analyzers of GAMORRA (GMA) and 

FCM (FCMA) in megabytes (MB). FRQ which is the simplest 

model among the tested models, requires at most 1.0 MB of 

system memory. FCM also requires a frame analyzer similar to 

GAMORRA, albeit much simpler, as is evident from the results 

in Table 12. FCMA requires 15.67 MB of memory on average 

while GMA which needs to consider more parameters than 

FCMA requires an average of 56.78 MB of system memory. 

While neural networks are known to demand large amount of 

system memory as their number of layers increase, the choice of 

MLR for the core model of GAMORRA ensures a limited and 

small amount of memory requirement while it uses 32-bit 

floating point precision for its weights. The reported results in 

Table 12 shows that the memory usage of the core model of 

GAMORRA will not surpass 3 MB at most. FCM uses a simpler 

core model compared to GAMORRA which has led to 0.87 MB 

less memory usage on average. Since AR only needs to consider 

the frametime of a limited number of previous frames, it does 

not need to use an analyzer like GAMORRA and FCM. The 

memory usage of the AR is directly impacted by the sequence 

length of the model. With the sequence length set to 10, the AR’s 

memory usage is almost similar to GAMORRA. It should be 

noted that the training session’s memory usage is different from 

the memory usage of the model during prediction. For both AR 

and GAMORRA (offline), the training session’s memory is 

almost similar and it is equal to 1.32 gigabytes on average.  

4.4. Overall verdict 

The experimental results from the previous subsections 

reveals that GAMORRA can outperform the other three tested 

methods in terms of accuracy. This comes at the cost of more 

time complexity and more memory usage compared to FRQ and 

FCM. However, the time complexity and the memory usage are 

reasonable for a real-time application and do not compromise 

the model’s performance. For less varied graphical workloads, 

GAMORRA and FCM perform similarly with a slight edge in 

accuracy for the proposed model. As the graphical workload of 

the games and the system conditions become more varied, 

GAMORRA tends to provide better estimations compared to the 

other methods and adapts to frametime variations more 

accurately. The results for GAMORRA with an the offline-only 

training scheme indicates that it has some of the flaws of FCM 

in adapting to changes in system conditions during runtime. 

However, it still achieves less estimation error compared to 

FCM due to its detailed core model.  

5. CONCLUDING REMARKS 

This paper proposes GAMORRA, an API-level workload 

model for rasterization-based graphics pipeline architectures. 

Modeling the workload of a game’s frames proves useful in 

different applications like DVFS-based power management 

schemes in smartphones or estimation of performance measures 

like frametimes in a graphics streaming-based CG system. The 

API-level approach lets GAMORRA to work without the need 

to modify the source code of the target application and the 

rendering hardware which is an essential part of previous studies 

to compensate for the lack of sufficient depth in their core model. 

To account for the high-level approach of GAMORRA and its 

lack of accuracy, an MLR-based core model, a hybrid 

online/offline training method to train the model and a 

benchmark suite to tune the model parameters according to the 

performance of the target rendering system are proposed. 

GAMORRA takes into account the overall structure of a 

graphics rendering pipeline using an MLR model along with the 

size of the input data, i.e., vertex numbers and texture resolution 

as the explanatory variables. Also, the complexity of each shader 

Table 12: System memory usage (MB) of the analyzer and the core 

model of GAMORRA in comparison to AR, FCM, and FRQ 

Game AR FCM FCMA FRQ GM GMA 

BC2 0.9 1.4 18 0.7 2.4 64 

D3 1.2 1.5 13 0.9 2.1 46 

FC3 1.4 1.8 19 1.0 2.5 67 

RL 0.8 1.3 10 0.5 2.3 29 

SC 1.1 1.7 15 0.8 2.5 48 

T4 0.6 1.2 16 0.4 2.2 62 

SE4 0.9 1.5 21 0.5 2.4 78 

MSh 1.2 1.7 17 0.9 2.6 63 

FF 1.0 1.6 12 0.7 2.5 54 

 
 



 

is taken into account as well. The experiments were performed 

on two different rendering platforms with three other workload 

models. The experimental results show a meaningful estimation 

error reduction in comparison to previously proposed methods 

while keeping the time complexity and the time overhead 

imposed on the system within an acceptable range. Also, the 

miss rate for underestimated frames is reduced significantly.  
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