

GAMORRA: An API-Level Workload Model for Rasterization-based

Graphics Pipeline Architecture

Abstract

The performance of applications that require frame rendering time estimation or dynamic frequency scaling, rely on the accuracy of the workload

model that is utilized within these applications. Existing models lack sufficient accuracy in their core model. Hence, they require changes to the

target application or the hardware to produce accurate results. This paper introduces a mathematical workload model for a rasterization-based

graphics Application Programming Interface (API) pipeline, named GAMORRA, which works based on the load and complexity of each stage

of the pipeline. Firstly, GAMORRA models each stage of the pipeline based on their operation complexity and the input data size. Then, the

calculated workloads of the stages are fed to a Multiple Linear Regression (MLR) model as explanatory variables. A hybrid offline/online training

scheme is proposed as well to train the model. A suite of benchmarks is also designed to tune the model parameters based on the performance of

the target system. The experiments were performed on Direct3D 11 and on two different rendering platforms comparing GAMORRA to an

AutoRegressive (AR) model, a Frame Complexity Model (FCM) and a frequency-based (FRQ) model. The experiments show an average of 1.27

ms frame rendering time estimation error (9.45%) compared to an average of 1.87 ms error (13.23%) for FCM which is the best method among

the three chosen methods. However, this comes at the cost of 0.54 ms (4.58%) increase in time complexity compared to FCM. Furthermore,

GAMMORA improves frametime underestimations by 1.1% compared to FCM.

Keywords: Workload modeling, rendering time estimation, graphics API, pipeline architecture

1. INTRODUCTION

In traditional Cloud Gaming (CG) [1], rendering is

performed at the server side while in graphics streaming-based

CG [2, 3] all the frames are rendered at client side. As a

compromise between these two methods, hybrid graphics/video

streaming CG [4, 5] has been proposed in which there is a

potential for some frames to be rendered at client side. The latter

two CG methods require to estimate the rendering time of each

frame to make sure that the client device can handle the

workload of the game for every frame that needs to be rendered

at client side. In addition, real time collaborative rendering

platforms like Kahawai [6] and other similar platforms [7],

require a reliable workload model to set the graphical level of

details of every frame based on the computational power of the

thin client before rendering is carried out. Also, Dynamic

Voltage and Frequency Scaling (DVFS)-based power

management systems for mobile games, which reduce the power

consumption of a processor by dynamically adjusting its voltage

and frequency, need to take into account the amount of workload

of each frame [8-11]. These studies usually rely on simple

workload models based on the number of triangles [12] or

mostly focus on predicting the upcoming frames’ workload by

using a simple linear model [13]. These models try to

compensate for their lack of sufficient detail in their core model

by operating at hardware level.

Due to the high variety of GPU architectures among

vendors, a hardware level model effectively limits the

applicability of such a model to a specific hardware device.

1 School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran (e-mail: soltani.m@ut.ac.ir)
2 School of Electrical and Computer Engineering, University of Tehran, Iran (e-mail: ghan@ut.ac.ir) as well as an Emeritus Professor at the School of Computer

Science and Electronic Engineering, University of Essex, Colchester, UK (e-mail: ghan@essex.ac.uk)
3 School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran (e-mail: rhashemi@ut.ac.ir)

Although each graphics driver covers a certain range of

hardware models, they also differ significantly from each other

due to their hardware dependent nature and the frequent updates

they receive. But graphics APIs usually follow a certain model

for their rendering pipeline with minor differences between

different APIs’ pipeline architectures. Hence, designing a

mathematical model to estimate frame rendering times

(frametime) at the graphics API level covers a much wider range

of applications compared to a hardware architecture or driver

level model. Additionally, other proposed methods [14, 15]

usually require changes to the hardware or software to provide

an accurate estimation. Utilizing an API-level model avoids the

need for game engine modifications or hardware-level changes

that are not possible in case of commercial off-the-shelf

products. Therefore, a Graphics API-level Model of Rendering

workload for Rasterization-based graphics pipeline

Architecture, GAMORRA, is proposed in this paper. However,

to compensate for this high-level approach which would

inevitably lead to loss of accuracy, three components are devised

for GAMORRA to ensure an accurate prediction: (i) a detailed

regression core model, (ii) a customized training scheme to train

the core model weights, and (iii) a suite of benchmarks to tune

the model parameters based on the performance of the target

hardware.

Modern API pipelines consist of fixed-function and

programmable stages as opposed to the fully fixed-function

pipelines of old rendering systems. The early experiments to

determine the proper core model, as well as the benchmark

results in Section 4.1., indicate a linear relation between the

Iman Soltani Mohammadi1, Mohammad Ghanbari2, Life Fellow, IEEE and Mahmoud Reza Hashemi3

mailto:soltani.m@ut.ac.ir
mailto:ghan@ut.ac.ir
mailto:ghan@essex.ac.uk
mailto:rhashemi@ut.ac.ir

performance of each stage of the pipeline and the overall

rendering time of each frame. The results of these experiments

show that each stage of the pipeline contributes differently to the

final rendering time. This difference which stems from the

difference in the computational complexity of the stages, despite

the same underlying hardware, indicates their independence as

explanatory (independent) variables. Also, the linear relation

between the performance of each stage and the overall

processing time of the pipeline which acts as the response

(dependent) variable, suggests that a Multiple Linear Regression

(MLR) [16] technique has the potential to serve as a core for the

proposed model. Hence, as opposed to previous studies such as

[9] that consider only one explanatory variable, in GAMORRA

which takes advantage of MLR at its core, an explanatory

variable is dedicated to each stage of the graphics API pipeline.

This approach provides more flexibility and a better imitation of

the rendering process of a rasterization-based application which

leads to more accurate frametime estimations.

Using an offline training scheme to train model weights

helps with avoiding the need to train the weights from scratch

during runtime which can compromise the real-time

functionality of the model especially at the start of a rendering

session. However, only a limited number of samples can be used

to train the model weights prior to a rendering session, which

would not be representative of the whole gameplay. Online

training [17] can be used to adapt the weights to the changes

during runtime, on the fly. Hence, a new hybrid offline/online

training method is proposed to train the model prior to a

rendering session (offline) to obtain an acceptable set of initial

weight values while updating the weights during runtime

(online). This approach also helps with avoiding overfitting

which might be experienced in case of an overly complicated

model and an extensive offline-only training scheme.

Additionally, to accurately tune the model parameters based

on the performance of the target rendering system, a suite of

benchmarks is designed to assess the performance of each stage

of the pipeline according to GAMORRA’s workload model.

In summary, the primary contributions of this study are as

follows:

- A reliable and practical model for frametime estimation

of rasterization-based commercially off-the-shelf

software and hardware

- A hybrid offline/online training scheme to train the

proposed model

- A benchmark suite to evaluate the performance of the

target rendering system and tune the model parameters

accordingly

The rest of the paper is organized as follows. The next

section discusses notable works in this field and how

GAMORRA differs from them. Section 3 explains the core

design and functionality of GAMORRA in detail. Section 4

focuses on the implementation details of the proposed method

and the experimental results. And finally, the paper is concluded

in Section 5.

2. RELATED WORK

A limited number of studies have focused on estimating

frametimes by targeting different applications for their proposed

methods. Some of the studies in this field require hardware and

software changes to perform properly which is not desired in the

case of closed source software and already available hardware.

Wimmer et al. [14] proposed to use the number of

transformed vertices and the number of projected pixels for each

object to estimate frametime. They propose a hardware

extension to further improve the estimation accuracy.

Mochocki et al. [18] proposed a signature-based model for

workload estimation in which each signature is calculated based

on the number of triangles and the transformations that are

performed on the vertex data. Focusing on the number of

triangles and geometrical transformations is not sufficient for a

programmable pipeline in a realistic scenario and results in

reduced precision.

Gu et al. [19] proposed a hybrid workload prediction

method that switches between a Proportional-Integral-

Derivative (PID) [20] controller-based and a frame structure-

based prediction scheme. This method is mainly used to predict

the workload of an upcoming frame to be used in a Dynamic

Voltage Scaling (DVS) power management system. In this

work, rasterization workload is considered as the most

significant contributing source of processing time in rendering.

Similarly, Zhang-Jian et al. [8] proposed to use the number of

triangles as a measure of workload complexity and a PID

controller to predict the workload of each frame. Dietrich et al.

[13] further expanded PID-based methods and proposed to use

the Least Mean Squares (LMS) method for controller parameter

identification to avoid the need to hand-tune the parameters.

Dietrich et al [21] also proposed to predict each frame’s

workload using an autoregressive model by considering the

previous frames’ number of cycles as the explanatory variable.

They further expanded their work by proposing a self-tuning

LMS linear predictor to estimate the parameters of an

AutoRegressive (AR) moving average model for workload

(number of cycles) prediction [9]. Solely relying on the previous

frames’ workload without taking the characteristics of the frame

into account is severely misleading due to the heavily variant

workload of graphical scenes even in consecutive frames. These

methods usually fail to react in time to the workload variations

of frames.

Cheng et al. [22] proposed a behavior-aware power

management system for mobile games which estimates each

frame’s workload based on the number of game application’s

API calls and texture processing load.

Song et al. [23] proposed a fine-grained GPU power

management called Frame Complexity Model (FCM) for closed

source mobile games which works based on the number of

vertices, the number of API commands and the size of textures.

This approach does not take the impact of other contributing

factors such as the complexity of shader programs or the

structure and performance of the graphics API that processes all

the aforementioned data, into account. This causes such a model

to produce the same results for different APIs.

Gupta et al. [10] proposed a light-weight adaptive runtime

performance model to estimate the sensitivity of frametimes to

the current GPU frequency. This method consists of two steps:

first, an offline data collection process is performed where the

required data on frametimes and GPU performance counters are

collected. Second, the collected data are used to tune a

differential frametime model and predict the frametimes. This

method considers the overall frametime of the previous frames

to predict future frametimes based on the changes that are made

to the GPU frequency and GPU counters. Also, an online

learning scheme is employed to update the parameters at

runtime. In this work, the graphical structure of a frame is

ignored. Also, GPU counter values are unknown when a batch

[24] is not yet processed which can be problematic for practical

use.

Cheng et al. [15] proposed to use the changes in frequency

and the number of active GPU computational slices for power

management in mobile games. This method requires to be

implemented in GPU firmware to achieve sufficient accuracy.

Choi et al. [25] proposed a predictive method for frametime

estimation based on previous frametimes and the frequency at

which they were rendered. This study, similar to other more

recent studies [26], focuses on big.LITTLE architecture in

mobile devices.

To summarize, some of the proposed methods on workload

modeling require modifications in the application or the target

hardware [14, 15, 27]. GAMORRA attempts to avoid such

requirements by operating at an API-level. In order to

compensate for its high-level approach, GAMORRA considers

the workload of all the stages of the pipeline and the pipeline

architecture, unlike numerous studies [8, 10, 11, 19, 28] that

focus on a limited number of contributing factors. Additionally,

as opposed to multiple studies that are designed for a specific

hardware [25, 26], GAMORRA is independent of the underlying

architecture.

3. PROPOSED MODEL

GAMORRA acts as a middleware that resides between the

application and the graphics API software, capturing the output

API commands produced by the application’s rendering engine.

Figure 1 shows the placement of GAMORRA in a computer

system. GAMORRA analyzes the graphics data stream to obtain

the value of the contributing factors to the workload so that they

are fed to the MLR model as the explanatory variables. The

overall workload of the model and the workload of each stage is

discussed in subsection 3.1. Then, the training process is

explained in subsection 3.2 followed by some notes on the

benchmark suite in subsection 3.3.

3.1. Workload model

The overall architecture of a modern graphics API pipeline

(Direct3D 11 in this case) is shown in Figure 2. Direct3D 11’s

graphics pipeline consists of 4 fixed-function stages (marked by

rectangle containers) and 5 shader stages (marked by oval-

shaped containers), a total of 9 stages: Input Assembler (IA),

Vertex Shader (VS), Hull Shader (HS), Tessellator Stage (TS),

Domain Shader (DS), Geometry Shader (GS), Rasterizer (Ras),

Pixel Shader (PS), and Output Merger (OM).

A frame is broken down into multiple rendering batches.

Each batch has a different pipeline state that result in one or more

drawcalls which draw the pixels prepared by the current batch

[24]. Batches are rendered sequentially. Each batch can contain

multiple drawcalls as long as these drawcalls do not cause any

state changes to the pipeline. Since there are no state changes in

this case, GAMORRA considers the drawcalls in a batch as a

single drawcall. Hence, the proposed frametime model

formulates the overall estimated processing time of the 𝑖𝑡ℎ

frame, 𝑇𝑖 , as in (1) where 𝐵𝑖 is the number of batches for the 𝑖𝑡ℎ

frame and 𝐵𝑎𝑡𝑐ℎ𝑏 shows the estimated processing time of the

𝑏𝑡ℎ batch:

𝑇𝑖 = ∑ 𝐵𝑎𝑡𝑐ℎ𝑏
𝐵𝑖−1
𝑏=0 (1)

In the case of Direct3D 11, there are 9 explanatory variables

required which are represented by 𝑤𝑛
𝑏 for the 𝑏𝑡ℎ batch with 𝑛 =

1,… ,9. Let 𝛽𝑛 represent the model parameter of each stage with

𝑛 = 1,… ,9, 𝛽0 represent the minimum processing time of the

pipeline and 𝜀 be the overall model error, then the MLR model

of the rendering pipeline is defined as:

Figure 1 GAMORRA’s placement in a rendering system

Figure 2 The overall architecture of the Direct3d 11 pipeline

𝐵𝑎𝑡𝑐ℎ𝑏 = β0 + ∑ 𝑤𝑛
𝑏𝛽𝑛

9
𝑛=1 + 𝜀 (2)

To simplify (2), 𝑤0
𝑏 is defined and set to 1 for all the

batches. Then (2) can be written as:

𝐵𝑎𝑡𝑐ℎ𝑏 = ∑ 𝑤𝑛
𝑏𝛽𝑛 + 𝜀

9
𝑛=0 = β𝑤 + 𝜀 (3)

where 𝑊 and β are vectors containing explanatory variables of

the model and model parameters respectively which are defined

as:

𝑤 = [1, 𝑤1
𝑏 , 𝑤2

𝑏 , 𝑤3
𝑏 , 𝑤4

𝑏 , 𝑤5
𝑏 , 𝑤6

𝑏 , 𝑤7
𝑏 , 𝑤8

𝑏 , 𝑤9
𝑏]𝑇

𝛽 = [𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽8, 𝛽9]
 (4)

Since 𝑤 is actually a 1 × 10 matrix, the 𝑇 superscript in the

above equation represents the transpose operation. The values in

𝛽 are obtained by using the Singular Value Decomposition

(SVD) [29, 30]. But before obtaining the model parameters, the

explanatory variables 𝑊 should be known. These variables

represent the load of each stage in time unit and they are

calculated as discussed in the next sub-section.

3.1.1. Stage workload

To model the workload of each stage, a generic formula is

proposed. The formula is able to incorporate the details that may

differ in various stages of the pipeline due to their unique

characteristics. Let us assume that 𝑃𝑒𝑟𝑓𝑛
 represents the

performance function of the 𝑛𝑡ℎ stage in time unit, 𝐿𝑛
𝑏 stands for

the load of the 𝑛𝑡ℎ stage and Ƞ determines the number of cores

of the GPU, then the workload of each stage is modeled as:

𝑤𝑛
𝑏 = 𝑃𝑒𝑟𝑓𝑛

 (𝐿𝑛
𝑏)/Ƞ (5)

𝑃𝑒𝑟𝑓𝑛 maps the amount of load of the 𝑛𝑡ℎ stage which is the

number of input elements (number of vertices or pixels) to the

performance weight of the stage for that specific amount of load.

The value of this performance weight roughly estimates the

overall processing load of each stage compared to the other

stages of the pipeline. 𝑃𝑒𝑟𝑓𝑛 is determined by the custom

graphics benchmarks that are designed specifically for

GAMORRA and are discussed in Section 3.2.

For a fixed function stage, 𝐿𝑛 mainly depends on the number

of inputs or outputs of that stage. But, the overall processing load

of shaders is strongly affected by their shader program as well.

The shader compilation is performed in 2 stages: first a tool

compiles the HLSL code into the GPU agnostic Intermediate

Language (IL). Then the GPU driver converts the IL into the

final shader assembly (ISA) that can be executed on a specific

GPU. The complexity of the shader program is obtained through

analyzing its Intermediate Language (IL) assembly code which

comprises a series of instructions each of which performs a

specific operation based on its opcode. To obtain the overall time

complexity of a shader, the time complexity of each IL opcode

needs to be determined through benchmarking. Let the number

of assembly operators be shown by 𝑁𝑜𝑝, the processing time of

the 𝑗𝑡ℎ operator be represented by 𝑜𝑝𝑗, the number of its

occurrences in the current shader be represented by 𝑥𝑗 and 𝑁𝑖

represent the number of times that the shader is invoked, then

the complexity of a programmable stage, 𝐶𝑖, and consequently,

𝐿𝑖 is calculated as follows:

𝐶𝑛
𝑏 = ∑ 𝑜𝑝𝑗

𝑛.𝑥𝑗
𝑛𝑁𝑂𝑃−1

𝑗=0

𝐿𝑛
𝑏 = {

𝑁𝑛
𝑏 , if fixed function

𝐶𝑛
𝑏 . 𝑁𝑛

𝑏 , if Programmable
 (6)

It should be noted that the shader complexity model is not

meant to act as an accurate stand-alone model for shader

processing time estimation. The goal of this model is to provide

the core model of GAMORRA with a rough estimate of the

overall complexity of each shader and still perform with enough

accuracy while ensuring real-time functionality of the overall

model. Since shaders are invoked per input, 𝑁𝑖 represents the

number of vertices for VS, HS, DS, and GS and it represents the

number of pixels for PS. The IA stage reads and prepares the

vertex data that are required for the current batch by determining

their attributes and topology. For the IA stage, since the data is

read from resource buffers, the available memory bandwidth

becomes the potential bottleneck. Hence, the load of the IA stage

(LIA) is chosen to be the size of the input vertex data which might

vary based on the number of vertices and their attributes

(#𝐴𝑡𝑡𝑟).

Since Vertex Shader (VS) is a programmable stage, its

performance depends on the complexity of its code and should

be reflected in 𝐿𝑉𝑆. VS program is invoked individually for each

vertex, so 𝐿𝑉𝑆 is also affected by the number of vertices. Let 𝐶𝑉𝑆

be the assembly code’s complexity, then 𝐿𝑉𝑆 is defined as:

𝐿𝑉𝑆 = 𝐶𝑉𝑆.𝑁𝑉𝑒𝑟𝑡𝑒𝑥 (7)

For shaders, the assembly operators are profiled separately

and a performance function is derived for each operator. Some

operators are used exclusively in a specific stage (e.g., sampling

operator for PS).

Tessellation stages consist of three separate stages, HS, the

Tessellator and DS that act as a single unit and turning off

tessellation disables all the underlying stages. These stages are

programmed differently but they all work together and they

manipulate the vertices in a patch. HS consists of a main shader

program and a patch constant function (PCF) that are executed

once per output control point and once per patch respectively.

Hence, the load of this stage can be simply considered as the

number of vertices (𝑁𝑉𝑒𝑟𝑡𝑒𝑥) along with the number of patches

(𝑁𝑃𝐶𝐹) as the input to the PCF which is treated like a complete

shader stage. The complexity of HS’s main shader and PCF are

shown by 𝐶𝐻𝑆 and 𝐶𝑃𝐶𝐹 respectively while the load for each one

is represented by 𝐿𝐻𝑆 and 𝐿𝑃𝐶𝐹 . 𝑃𝑒𝑟𝑓𝐻𝑆 and 𝑃𝑒𝑟𝑓𝑃𝐶𝐹 are

calculated as:

𝐿𝐻𝑆 = 𝐶𝐻𝑆.𝑁𝑉𝑒𝑟𝑡𝑒𝑥

𝐿𝑃𝐶𝐹 = 𝐶𝑃𝐶𝐹.𝑁𝑃𝐶𝐹

𝑃𝑒𝑟𝑓𝑇𝐻𝑆 = 𝑃𝑒𝑟𝑓𝐻𝑆(𝐿𝐻𝑆) + 𝑃𝑒𝑟𝑓𝑃𝐶𝐹(𝐿𝑃𝐶𝐹) (8)

The Tessellator stage is also a fixed function unit and its

inputs are the tessellation factors and patch constant data that are

produced by PCF. For this stage, 𝐿𝑇𝑒𝑠𝑠 mainly depends on the

total number of newly generated points in each patch where the

total number of patches is shown by 𝑃 and the number of

tessellations in the 𝑝𝑡ℎ patch by 𝑁𝑇𝑒𝑠𝑠
𝑝

:

𝐿𝑇𝑒𝑠𝑠 = ∑ 𝑁𝑇𝑒𝑠𝑠
𝑝𝑃−1

𝑝=0
 (9)

DS stage is fed with the output of the Tessellator and HS

stages, namely UVW coordinates of every point in a patch from

the Tessellator along with control points and patch constants

from the HS stage. The DS stage produces a single tessellated

vertex per input vertex, so 𝐿𝐷𝑆 depends on the number of vertices

as well as the complexity of DS’s code, 𝐶𝐷𝑆, and is calculated

as:

𝐿𝐷𝑆 = 𝐶𝐷𝑆. 𝑁𝐷𝑆 (10)

GS is an optional stage which handles complete primitives

instead of a single vertex. In addition to the complexity of GS’s

code, 𝐶𝐺𝑆, the load of this stage, LGS, is also dependent upon the

number of vertices which might be different from the input of

VS due to being processed in tessellation stages (if tessellation

is on). Hence, 𝐿𝐺𝑆 is calculated as:

𝐿𝐺𝑆 = 𝐶𝐺𝑆. 𝑁𝐺𝑆 (11)

Rasterizer generates fragments that might end up on screen

as pixels. Hence, 𝐿𝑅𝑎𝑠 which represents the load of the

Rasterization stage is considered to be equal to the number of

fragments that are produced in this stage, 𝑁𝐹𝑟𝑎𝑔.

PS or fragment shader is the last programmable stage that

manipulates each input fragment’s color [31]. As the number of

fragments 𝑁𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡 that are produced by the Rasterizer

increases, the number of times that a PS is invoked increases as

well. Also, the PS code complexity 𝐶𝑃𝑆 should be considered in

the model. hence, 𝐿𝑃𝑆 is calculated as:

𝐿𝑃𝑆 = 𝐶𝑃𝑆.𝑁𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡 (12)

OM is the last stage of the pipeline and the fragments that

are processed by the PS are fed to this stage. Reading and writing

to the render targets are the main cause of the performance issues

related to the OM stage when blending is utilized. Hence, this

stage is mostly bandwidth limited and is affected by the number

of fragments, 𝑁𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 along with the render target resolution,

𝑁𝑊𝑖𝑑𝑡ℎ × 𝑁𝐻𝑒𝑖𝑔ℎ𝑡 . 𝐿𝑂𝑀 is defined as:

𝐿𝑂𝑀 = 𝑁𝑊𝑖𝑑𝑡ℎ.𝑁𝐻𝑒𝑖𝑔ℎ𝑡 . 𝑁𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 (13)

Compute Shader (CS) is considered as a tool for General-

purpose computing on GPUs (GPGPU). This shader has an

independent logical pipeline dedicated to general computations.

Although CS is not part of the main pipeline and it is absent in

Figure 2, this shader should be considered in the performance

model, following the same rule for input size, 𝑁𝐼𝑛𝑝𝑢𝑡 , and code

complexity, 𝐶𝐶𝑆. Hence, the load of CS, 𝐿𝐶𝑆, is calculated as:

𝐿𝐶𝑆 = 𝐶𝐶𝑆.𝑁𝐼𝑛𝑝𝑢𝑡 (14)

3.1.1. Model parameters

The parameter estimation method aims to minimize the least

squares problem produced by the 𝑀 observations that are

recorded by the benchmark. Considering (2), let 𝑦𝑚 represent the

actual output of the 𝑚𝑡ℎ observation in the benchmark and 𝜀𝑚

represent the estimation error for the 𝑚𝑡ℎ observation, then the

following linear system is obtained:

{

𝑦0 = β0 + 𝛽1𝑤1

0 + … + 𝛽9𝑤9
0 + ε0

𝑦1 = β0 + 𝛽1𝑤1
1 + … + 𝛽9𝑤9

1 + ε1 .
.
.

𝑦𝑀−1 = β0 + 𝛽1𝑤1
𝑀−1 + … + 𝛽9𝑤9

𝑀−1 + εM−1

 (15)

To obtain the matrix form of the system, similar to (3), let Y

be the vector containing 𝑦𝑚 values, 𝑊 be the matrix that holds

the explanatory variables values and 𝐸 be the vector for error

values, then the linear system in (17) can be written as:

𝑌 = 𝛽𝑊 + 𝐸 (16)

where

𝑌 = [𝑦0, 𝑦1, … , 𝑦𝑀−1]

𝑊 =

[

𝑤0
0 𝑤0

1

𝑤1
0 𝑤1

1

⋯
⋯

𝑤0
M−2 𝑤0

M−1

𝑤1
M−2 𝑤1

M−1

⋮ ⋮ ⋱ ⋮ ⋮
𝑤8
0 𝑤8

1

𝑤9
0 𝑤9

1

⋯
⋯

𝑤8
M−2 𝑤8

M−1

𝑤9
M−2 𝑤9

M−1]

𝐸 = [ε0, ε1, … , ε𝑀−1]
 (17)

The solution to this linear system minimizes the L2 norm of

𝐸 formulated as:

min ‖𝐸‖2
2 = min‖𝑌 − 𝛽𝑊‖2

2 = min 𝐽(𝛽0, … , 𝛽9) (18)

where 𝐽(𝛽) represents the cost function.

SVD uses orthogonal transformations to reduce the problem

to a diagonal system. If 𝑈 is an 𝑀 ×𝑀 orthogonal matrix, 𝑆 is

an 𝑀 × 10 diagonal matrix and 𝑉 is a 10 × 10 orthogonal

matrix, then in this method:

𝑊𝑀 = 𝑈𝑆𝑉𝑇 (19)

Considering the above equation, 𝛽 can be formulated as:

𝛽 = ((𝑈𝑆𝑉𝑇)𝑇𝑈𝑆𝑉𝑇)−1(𝑈𝑆𝑉𝑇)𝑇𝑌 = 𝑉𝑆−1𝑈𝑇𝑌 (20)

3.2. Training the model

An offline training is performed before each rendering

session based on a set of frames that use the graphical data of the

current scene that is going to be rendered. An offline-only

training scheme can be used for some simpler games that do not

have aggressive variations in their workload. However, it is not

possible to cover all types of workload variations in offline

training for modern games that might have over 100 hours of

gameplay and heavily variant and dynamic environments. on the

other hand, an online only training scheme can lead to long

initiation times before a set of acceptable and accurate set of

weights is obtained. In such cases, using offline training is

beneficial to provide the model with acceptable initial weight

values to avoid long initiation times of online training.

Additionally, huge variations in consecutive frametimes that are

not caused by the workload of the frames can make the

estimation error during online training to raise beyond an

acceptable value. Resetting the model weights to weights

obtained by the offline training in such cases can be beneficial,

until the error of the offline mode becomes unacceptable as well.

Hence, a hybrid offline/online training technique is used to take

advantage of both training methods.

Initially, the model starts in offline mode which uses the

weights that were obtained through offline training. If the Root

Mean Squared Error (RMSE) value for frame 𝑛 during the

offline mode (𝑅𝑀𝑆𝐸𝑛
𝑜𝑓𝑓

) increases beyond a predetermined

threshold (𝑅𝑀𝑆𝐸𝑇ℎ), the model switches to online mode. The

value of 𝑅𝑀𝑆𝐸𝑇ℎ determines the amount of acceptable

estimation error. The acceptable 𝑅𝑀𝑆𝐸 value is generally under

0.5 for this metric which is also used as the value for 𝑅𝑀𝑆𝐸𝑇ℎ

in the experiments as well. However, tuning this parameter per

game can have a positive impact on the overall accuracy. Setting

the value of this parameter too high reduces the sensitivity of the

system to estimation error, while too small values make the

system constantly switch between online and offline modes.

Upon switching to the online mode, the online training starts

and the model weights, which are initialized to the offline

weights every time this mode starts, get updated for each frame.

During the online mode, if the RMSE value (𝑅𝑀𝑆𝐸𝑛
𝑜𝑛) violates

𝑅𝑀𝑆𝐸𝑇ℎ, a validation step with a predetermined patience value

(𝑃) is performed based on the offline weights. If the comparison

of 𝑅𝑀𝑆𝐸𝑛
𝑜𝑛 with 𝑅𝑀𝑆𝐸𝑛

𝑜𝑓
 indicates that the online training

process has reduced the accuracy in comparison to the offline

trained model, a counter variable that holds the number of

violated frames (𝑛𝑣) is increased by one. If 𝑛𝑣 reaches the

predetermined value of 𝑃, the model switches to offline mode

which means the weights are reset back to the values obtained

by the offline training and the online training stops temporarily,

until 𝑅𝑀𝑆𝐸𝑛
𝑜𝑓

 violates 𝑅𝑀𝑆𝐸𝑇ℎ again and the need for using the

online training arises. The mode decision algorithm which

handles the switching between the online and offline modes and

invokes the online training phase, is described in Algorithm 1,

with 𝑁 being the total number of frames in the current rendering

session.

3.3. Benchmark notes

GAMORRA’s benchmark suite also operates at an API

level. This is the only component in GAMORRA that interacts

with the underlying hardware and the graphics driver. Since the

graphics API’s structure is not affected by the updates that the

graphics driver receives, GAMORRA needs to rerun the

benchmarks to capture the performance changes that these new

functionalities cause. Hence, the core model of GAMORRA

needs no changes in such scenarios and is the same for all the

GPUs that use a certain graphics API. To perform the

benchmarks and obtain the performance function of each stage

of the pipeline, the number of input elements and the number of

assembly operations for shaders is increased gradually until an

upper bound is reached. The theoretical upper bound on the

number of input elements is defined as the resource limits of

Direct3D 11 [32]. However, running the benchmarks with the

number of inputs close to the resource limits causes the

frametimes to be much higher than the normal and acceptable

values in modern applications (e.g. 30 fps). As a trade-off

between frame rate generality and benchmark speed, 100 ms (or

10 fps) is chosen as the maximum acceptable frametime (or

minimum acceptable frame rate) in the benchmarks. By

choosing 100 ms, the benchmark would not run for the input load

values that cause the frame rate to drop under 10 fps which

effectively improves the benchmarking time. Since 10 fps is a

fairly low frame rate for modern real-time applications, 100 ms

is a reasonable choice in terms of generality.

The benchmarks to obtain the time complexity of IL shader

assembly operators are designed such that only one opcode (e.g.,

add) is tested in each benchmark for a certain number of

iterations. The recorded time for each benchmark is then divided

by the number of iterations to obtain a rough estimate of the time

complexity for the tested operator and stage, i.e., 𝑂𝑃𝑗 in (6).

In addition to each stage’s functionality, other pipeline

states, such as the presentation model or blend mode, directly

affect the final performance and need to be addressed in the

benchmarks. For example, in Direct3D 11,

Algorithm 1 Mode decision algorithm

Input: Current frametime, predicted frametime using online and

offline model weights

 1: 𝒏 = 𝟎, 𝒏𝒗 = 𝟎,

𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑴𝒐𝒅𝒆 = 𝑶𝒇𝒇𝒍𝒊𝒏𝒆

 2: Run GAMORRA’s benchmark according to

 3: while 𝒏 < 𝑵

 4: if 𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑴𝒐𝒅𝒆 == 𝑶𝒏𝒍𝒊𝒏𝒆

 5: Calculate 𝑹𝑴𝑺𝑬𝒏
𝒐𝒏

 6: if 𝑹𝑴𝑺𝑬𝒏
𝒐𝒏 > 𝑹𝑴𝑺𝑬𝑻𝒉

 7: Calculate 𝑹𝑴𝑺𝑬𝒏
𝒐𝒇𝒇

 8: if 𝑹𝑴𝑺𝑬𝒏
𝒐𝒏 > 𝑹𝑴𝑺𝑬𝒏

𝒐𝒇𝒇

 9: 𝒏𝒗 = 𝒏𝒗 + 𝟏

10: if 𝒏𝒗 > 𝒑𝒂𝒕𝒊𝒆𝒏𝒄𝒆

11: Stop online training

12: Use offline training weights

13: 𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑴𝒐𝒅𝒆 = 𝑶𝒇𝒇𝒍𝒊𝒏𝒆

14: 𝒏𝒗𝒊 = 𝟎

15: end if

16: end if
17: end if

18: else if 𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑴𝒐𝒅𝒆 == 𝑶𝒇𝒇𝒍𝒊𝒏𝒆

19: Calculate 𝑹𝑴𝑺𝑬𝒏
𝒐𝒇𝒇

20: if 𝑹𝑴𝑺𝑬𝒏
𝒐𝒇𝒇

> 𝑹𝑴𝑺𝑬𝑻𝒉

21: Start online training

22: 𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑴𝒐𝒅𝒆 = 𝑶𝒏𝒍𝒊𝒏𝒆

23: end if
24: end if

25: n = n+1

26: end while

DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL and

DXGI_SWAP_EFFECT_DISCARD presentation models

would give two very different performance results based on the

rendering resolution, which need to be taken into account while

designing the benchmarks.

Also, the benchmarks should account for techniques such as

the post transform cache [33] and the early-z implemented in

GPUs. The post transform cache causes the VS to be invoked

less frequently for indexed draw calls. Hence, to properly have

a 1:1 relation between the vertices and the number of times that

a VS is invoked, indexed draws should be avoided unless the

goal is to benchmark the post transform cache performance. The

early-z test, also referred to as the early fragment test, depends

on the functionality of the graphics driver and the GPU itself and

they are not controlled explicitly by the API commands in

Direct3D. Hence, a depth-only benchmark is used to determine

the performance of the early-z process.

Table 1 shows a summary of all the requirements for each

stage of the pipeline. The model parameters are the number of

vertices (#Vtx), the number of assembly operations (#Ops), the

number of patches (#Patch), the number of tessellations (#Tess),

the number of primitives (#Prim), the number of target pixels or

resolution (Res), the number of fragments (#Frg) and the number

of input elements (#Element). It should be noted that for the

Rasterizer and its following stages, the rasterization should be

performed. Hence, to map a rectangular texture to the screen, at

least 4 vertices are required. Also, the Res value determines the

maximum resource resolution (texture, depth buffer, stencil

buffer and etc.) of the current batch.

4. IMPLEMENATION AND RESULTS

APITrace [34] is used to intercept API commands that are

produced by the rendering engine. Since computer games are the

most computationally intensive applications that use

rasterization-based graphics APIs to their maximum capacity, all

the tests are done on modern AAA games. Also, the proposed

model and all the mathematical calculations, including the

matrix multiplications, are implemented using Tensorflow-GPU

[35]. Nine computer games were chosen for the tests, namely,

Dirt 3 (D3), Splinter Cell: Blacklist (SC), Battlefield Bad

Company 2 (BC2), Far Cry 3 (FC3), Rocket League (RL), Trine

4 (RL), Sniper Elite 4 (SE4), Mortal Shell (MSh), and Fast and

Furious Spy Racers: Rise of SH1FT3R (FF). Table 2 shows the

game sequence characteristics such as genre, resolution, average

frametime and the standard deviation of frametimes on two

tested rendering systems. Since GAMORRA is designed to be

independent of the underlying hardware, it is mandatory to

perform the experiments on more than one rendering platform.

The configurations of these tested devices are listed in Table 3.

The configurations of both training phases, which were

determined through experimentation, are reported in Table 4.

The offline training process uses the data of 720 frames of

different sections of each level to train the model based on the

graphics data of that level. Hence, the total number of samples

would equal the average number of drawcalls (#DC) in a frame,

times the number of frames. Also, the train-test ratio (Train/Test)

Table 2: Sequence characteristics for the experimented games

Game Abbrv. Genre Resolution
S1 Average

frametime (ms)

S1 Standard

deviation (ms)

S2 Average

frametime (ms)

S2 Standard

deviation (ms)

Bad Company 2 (2010) BC2 FPS 1280x720 12.22 0.943 07.47 0.624

Dirt 3 (2011) D3 Racing 1280x720 07.97 0.588 04.78 0.298

Far Cry 3 (2012) FC3 FPS 1920x1080 24.51 1.213 10.27 0.743

Rocket League (2015) RL Racing/sport 1280x720 16.13 1.247 09.76 0.987

Splinter Cell (2013) SC Third Person 1280x720 14.74 3.093 07.90 2.253

Trine 4 (2019) T4 Side scroller 1920x1080 16.42 2.582 09.45 2.012

Sniper Elite 4 (2017) SE4 FPS 1280x720 16.78 2.056 10.66 1.596

Mortal Shell (2020) MSh Third Person 1280x720 17.95 2.485 07.33 1.825

Fast and Furious (2021) FF Racing 1920x1080 16.37 1.991 08.28 1.371

Table 1: Model parameters and important notes

Stage Model parameter Notes

IA #Vtx VS, HS, DS, GS, PS set to pass through, No rasterization

VS #Vtx, #Ops HS, DS, GS, PS set to pass through, No rasterization

HS #Vtx, #Ops VS, DS, GS, PS set to pass through, No rasterization

Tessellation #Patches, #Tess VS, DS, GS, PS set to pass through, No rasterization

DS #Vtx, #Ops VS, GS, PS set to pass through, No rasterization

GS #Vtx, #Ops VS, HS, DS, PS set to pass through, No rasterization

Rasterizer #Frg VS, HS, DS, GS, PS set to pass through, 4 vertices required to map a texture for rasterization

PS #Frg, #Ops VS, HS, DS, GS, PS set to pass through, 4 vertices required to map a texture for rasterization

OM #Frg VS, HS, DS, GS, PS set to pass through, 4 vertices required to map a texture in each layer for rasterization

CS #Element VS, HS, DS, GS, PS set to pass through, No rasterization

Table 4: Training configuration

 Offline Online

Initial LR 0.01 0.01

#Samples 720*#DC #DC

Batch size 32 #DC

#Epochs 200 1

Train/Test 0.3 -

Patience 10 10

RMSETh 0.5 0.5

Table 3: System configuration

 S1 S2

CPU
i7-

7500U

i5-

7300HQ

GPU
950m

2GB

RX 560

2GB

RAM

8 GB

DDR4

1200MHz

8 GB

DDR4

1200MHz

of the offline training is set to 0.3.

The proposed method in this paper focuses on GPUs.

However, the main CPU also affects frametimes immensely and

can potentially become the bottleneck in a rendering session.

Using APITrace makes sure that a lot of CPU intensive tasks like

processing the IA is already carried out and the CPU is only

dedicated to render-related processes. Many CPU performance

models have been discussed in the literature [36] from as late as

1977 and is much simpler to obtain. For the purposes of this

paper, the proposed method in [37] is used for CPU time

complexity modeling. This model uses a deep neural network

specifically for Intel CPUs based on available benchmarks such

as the SPEC CPU2006 and Geekbench 3.

Three methods are chosen to compare to GAMORRA.

These methods are the AutoRegressive (AR) moving average

[9], Frame Complexity Model (FCM) [23], and a frequency-

based method (FRQ) [10]. All these methods are independent

of the underlying architecture and do not require any changes to

the target software or hardware. Five metrics are considered in

the experiments: Missed frames ratio (MFR) in percentage (%),

frametime estimation error in milliseconds (ms), time

complexity (ms), frametime overhead (%), and system memory

usage in megabytes (MB). MFR reports the percentage of the

frames that are falsely estimated to have a frametime smaller

than the actual time they require to be rendered. In an application

that relies on accurate frametime estimations to prevent frame

losses like a hybrid CG system, this type of false estimation leads

to frame loss and have a negative impact on the quality of

experience. Estimation error reports the maximum, minimum

and mean of the absolute difference between estimated and the

actual frametimes. Too much overestimation of frametimes, as

well as underestimation, leads to a negative impact on the target

application’s performance and should be accounted for in the

experiments. Time complexity determines the amount of time

overhead that GAMORRA forces upon the system which is

mostly comprised of the MLR’s parameter estimation

processing time. The frametime overhead determines the

percentage of the overall frametime that is due to GAMORRA’s

time complexity. And finally, system memory usage determines

the amount of RAM in megabytes, required to run the model.

It should be noted that AR requires to consider the

frametimes of a certain number of previous frames to predict the

current frametime, referred to as the sequence length, which

directly affects the performance of the model. The sequence

length of AR is set to 10 in the experiments, which is reported to

yield the best results in [9]. Also, FCM uses three weight

coefficients for the number of vertices, the number of textures

and the number of commands which are all set to 1 3⁄ as per

FCM’s original design [23]. And finally, FRQ [10] does not

require any specific configurations for the experiments.

Before experimenting on the games, the performance

function of the target hardware should be known.

4.1. Obtaining performance functions and model

parameters

The results of benchmarking S1 are shown in Figure 3. With

(OM)

(VS)

(DS)

(GS)

Figure 3 The performance charts of IA, VS, HS, Tessellation, DS, GS,

Rasterization, PS and OM stages

(IA)

0

20

40

60

80

100

0 50 100150200

T
im

e
(m

s)

#Fragments (x105)

0

20

40

60

80

100

0 30 60 90 120

T
im

e
(m

s)

#Operations (x106)

0

20

40

60

80

100

0 30 60 90 120

T
im

e
(m

s)

#Operations (x106)

0

20

40

60

80

100

0 20 40 60 80

T
im

e
(m

s)

#Operations(x106)

0

20

40

60

80

100

0 480 960 1440

T
im

e
(m

s)

Input Size (Mbytes)

(Tess)

(HS)

(PS)

(Ras)

0

20

40

60

80

100

0 10 20 30 40 50 60

T
im

e
(m

s)

#Tessellations (x105)

0

20

40

60

80

100

0 30 60 90 120

T
im

e
(m

s)

#Operations (x106)

0

20

40

60

80

100

0 25 50 75 100

T
im

e
(m

s)

#Operations (x106)

0

20

40

60

80

100

0 50 100 150 200

Ti
m

e
(m

s)

#Fragments (x105)

a 𝛽0 of 6.966 ms, Figure 3 (IA) shows the result of the

performance benchmark of the IA stage. Since loading about

1500 MBs of vertex data causes the pipeline to take more than

100 ms, it is evident that GTX950m is struggling to load them.

After being prepared by the IA stage, the vertices go through

the VS stage. Tens of opcodes are available to be used by

developers at this stage and all the other programmable stages

and all of them should be benchmarked. As an example, the

performance chart of the add operator of the VS stage is shown

in Figure 3 (VS). This benchmark shows that a VS can perform

of up to 130 million Add operations under a 100-ms time

interval. Normally, the performance function of this stage would

be a 3D chart, but, for simplicity and more comprehensible

output, the number of attributes and the number of vertices is

fixed and set to 1. For illustration purposes, the only attribute

considered in the test in Figure 3 (VS), is position which is a 3-

component floating point variable.

The results for the Tessellation stages are depicted in Figure

3 (HS), (Tess) and (DS). The results of the HS and DS stages for

add operator are more similar to the VS stage in comparison to

the Tessellator stage which is a fixed-function stage. For the

Tessellator stage, level 3 tessellation was used and a total of

6.5*106 tessellations make the rendering time to surpass 100 ms

as depicted in Figure 3 (Tess).

The performance chart of the GS stage for add operator is

depicted in Figure 3 (GS). This stage is also somewhat similar

to the VS stage, albeit more demanding due to the fact that it

operates on whole primitives instead of individual vertices.

Figure 3 (Ras) shows the benchmark results for the

Rasterizer. As the number of fragments increase over 20 million,

the Rasterizer starts to impose larger overhead on the pipeline

and the GTX950m starts to struggle with the rasterization

process. When the rasterization benchmark is 3 million pixels

short of the 30 million, the rendering time gets closer enough to

the unacceptable 100 ms.

The result of the PS stage benchmark for add operator is

depicted in Figure 3 (PS). Performing 108 operations would

practically increase the processing time of the pipeline to well

over 100 ms.

Finally, the performance chart of the OM stage is depicted

in Figure 3 (OM). The load size of the OM stage is highly

dependent upon the number of fragments and reaching 25*106

would violate the 100-ms limit that is chosen for the

benchmarks.

These benchmarks show a roughly linear relation between

the load of the pipeline and the processing time that this load

imposes on the system. If the input load is light enough (e.g.,

less than 5 million pixels and 10 million primitives in the case

of rasterization), then the overall processing time of the pipeline

would be roughly close to the value of 𝛽0 . So, it is safe to assume

that an MLR-based model is flexible enough to model an API’s

pipeline and as will be discussed later on, it is not too

complicated and computationally expensive to have a negative

impact on the performance of the system.

If any of the tested games utilizes any of the optional stages,

they should be also taken into account. Table 5 represents the

active (✓) and pass-through or inactive () shaders for the tested

games with VS and PS always active for all the games. Also,

some of the important graphics characteristics of the tested

games are represented in Table 6. The number of vertices (#Vtx)

determines the minimum, maximum and average values of the

number of input vertices to a VS. The number of attributes

(#Attr.) also determines the minimum, maximum and average

values of the number of attributes of vertices. The minimum,

maximum and average number of operations (#Ops) in shaders

are also reported in Table 6.

4.2. Estimating frametimes

After establishing the performance functions of the target

graphics card and training the model parameters, GAMORRA is

ready to be used to estimate frametimes. To experiment on the

games, a 5-minute gameplay sequence of each game was

recorded using API Trace so it can be replayed multiple times to

Table 6: The values of some of the model parameters obtained from tested

game sequences

Game
#Vtx #Attr #Ops

Min Max Mean Min Max Mean Min Max Mean

BC2 8 2134 752 1 7 3.5 7 192 32.7

D3 4 2066 615 1 7 1.8 5 204 45.1

FC3 4 2796 802 1 8 3.9 9 217 49.3

RL 4 1954 945 1 9 6.4 8 269 57.8

SC 8 2378 743 1 9 7.3 5 187 37.2

T4 16 3072 1040 1 9 5.0 6 228 41.5

SE4 12 3198 1816 1 13 3.7 7 236 31.4

MSh 12 3564 1792 1 16 10.4 9 253 48.3

FF 12 2974 1605 1 16 9.8 7 291 52.7

Table 7: The experimental results on MFR (%)

Game
S1 S2

AR FCM FRQ GM AR FCM FRQ GM

BC2 11.54 3.08 12.32 2.35 11.39 3.21 11.42 2.46

D3 08.79 3.69 09.35 2.16 09.76 3.62 09.16 2.33

FC3 10.38 4.53 11.47 3.07 10.16 2.94 10.76 2.91

RL 09.21 3.24 08.44 2.58 10.09 2.86 09.49 2.27

SC 12.06 5.22 12.25 3.90 11.69 4.90 11.83 3.26

T4 10.94 3.27 11.16 2.83 09.83 2.68 11.78 2.69

SE4 11.92 4.75 12.13 3.24 12.78 5.11 12.66 2.70

MSh 10.87 4.20 11.04 3.06 11.80 4.28 11.47 2.72

FF 09.32 4.68 10.51 3.11 09.17 4.06 10.42 2.84

Table 5: Active and inactive shaders for the tested games

Game VS Tess. GS PS CS

BC2 ✓   ✓ 

D3 ✓ ✓  ✓ ✓

FC3 ✓ ✓ ✓ ✓ ✓

RL ✓ ✓  ✓ ✓

SC ✓ ✓  ✓ 

T4 ✓   ✓ ✓

SE4 ✓ ✓  ✓ ✓

MSh ✓ ✓ ✓ ✓ ✓

FF ✓  ✓ ✓ ✓

replicate the exact sequence of the gameplay.

4.2.1. Missed Frames Ratio (MFR)

Table 7 shows the MFR values for each method and each

game. Higher MFR values indicate more frametime

underestimations which can negatively impact the quality of

experience of frame loss sensitive applications such as computer

games [38]. Table 7 compares the result of GAMORRA (GM)

with AR, FCM, and FRQ. The results show that GAMORRA

outperforms all three methods from an MFR perspective on both

S1 and S2 platforms. Among the tested methods, GAMORRA

has the lowest MFR values with an average of 2.80% followed

by FCM, AR, and FRQ with average miss rate values of 3.91%,

10.65%, and 10.98%, for both S1 and S2 platforms. FCM which

takes a more fine-grained approach compared to AR and FRQ

that rely only on the previous frames’ rendering times,

demonstrates closer results to GAMORRA. This is due to the

fact that FCM considers the frame structure in the form the

number of drawcalls, the texture size and the number of vertices

which is still a coarse-grained approach compared to

GAMORRA. Hence, it is outperformed by the proposed model.

Moreover, FCM neither uses an online training method nor a

comprehensive benchmark like GAMORRA does. This puts

FCM at more of a disadvantage which leads to the loss of

accuracy that is evident in Table 7.

Figure 4 and Figure 5 show the results of frametime

estimation for D3 and SC on S1 in comparison to the actual

frametimes (FT) in a 30-frame sequence of gameplay for each

game. GAMORRA is tested for both offline-only (GM-Of) and

hybrid (GM-H) training configurations to demonstrate the

impact of the online training scheme. D3 and SC are chosen as

the best-case and worst-case scenarios since they have the lowest

and highest MFR values, respectively. To keep the charts

simple, AR and FRQ methods are discarded in these figures.

D3 utilizes Ego engine [39] which is specifically designed

and used for racing games, thus, performs efficiently on a mid-

range GPU. On the other hand, SC uses a pretty much outdated

unreal engine 2.5 [40] which is pushed to its limits for the best

visual output leading to a somewhat unstable rendering

performance. Hence, although GAMORRA outperforms FCM,

still, a drop in accuracy is experienced for both GM-H and GM-

Of. Figure 4 shows that GM-H excels at modeling the rendering

times in comparison to FCM that does not utilize a hybrid

training scheme. In this chart, GAMORRA switches to online

training on frame 13 which leads to a divergence in GM-H and

GM-Of estimations. It is evident on frames 19 and 23 that GM-

Of fails to react in time to frametime variations that are caused

by changes other than workload variations. This also applies to

FCM as well.

Figure 5 shows the frametime results for SC. This chart

shows that GM-H reacts faster to the fluctuations in frametimes

which is a result of both the more detailed core model and the

more sophisticated training scheme in comparison to FCM. In

this chart, the system switches to online training on the second

frame. FCM and GM-Of react to workload variations to some

extent, like frame 10. However, GM-H can mimic more

aggressive variations better than GM-Of and FCM, like frames

24 and 27. Using frame workload structure in conjunction with

a hybrid training scheme results in faster and more accurate

reactions to frametime variations that are caused by both

workload variations and changes in runtime conditions.

4.2.2. Estimation error

The results of the estimation error are reported for each of

the tested methods for both tested platforms in Table 8. Also, the

percentage of the estimation error is reported in Table 9. The

percentage of estimation error is highly dependent upon the

value of frame rate and as the frame rate increases, this

percentage increases proportionally.

The average estimation error reported in Table 8 shows the

Figure 4 Frametime estimation results for D3 on S1

6.5

7.5

8.5

9.5

10.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

F
ra

m
e

ti
m

e
(m

s)

Frame number

FT GM-H GM-Of FCM

Figure 5 Frametime estimation results for SC on S1

11

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

F
ra

m
e

ti
m

e
(m

s)

Frame number

FT GM-H GM-Of FCM

dominance of GM-H for all the tested games on both S1 and S2

platforms. On S1, GM-H has an average of 4.13% less

estimation error for the tested games compared to FCM. This

value for S2 drops to 3.47%. This indicates that GM-H is capable

of handling a less stable rendering session on weaker devices

such as S1 compared to a more powerful machine like S2. The

estimation error gap between GM-H and the other two methods

on S1 equals 9.74% and 14.79% for AR and FRQ, respectively.

These values on S2 drop to 9.57% and 13.5% for AR and FRQ,

respectively. Although GM-Of does not take advantage of

GAMORRA’s hybrid training scheme, it still manages to

outperform all the other methods other than GM-H. GM-Of is

outperformed by GM-H by 1.81% and 1.64% on S1 and S2,

respectively. The larger estimation gap between GM-H and MG-

Of on S2 compared to S1 indicates that GM-H’s online training

scheme is responsible for the larger estimation gap between GM-

H and the other models that do not utilize an online training

method.

4.2.3. Time complexity and overhead

The time complexity of the tested methods is reported in

Table 10. FRQ only relies on the previous frametimes and the

GPU frequency in a simple linear method which leads to the

lowest complexity among the tested methods. FCM, which uses

a scheme based on frame structure similar to GAMORRA, yet

with a simpler model, has lower time complexity than the

proposed model. This is due to the simpler nature of its core

model and the absence of any online training scheme. AR relies

on an iterative process to obtain its model parameters. Hence, it

is expected to have a larger time complexity compared to the

other two methods. GAMORRA has the largest time complexity

among the tested models. In addition to its more complex core

model, the online training scheme of the proposed model is

expected to have a slight negative impact on its time complexity.

However, although GAMORRA has a larger time complexity

compared to the other tested methods, it still manages to perform

acceptably and in real-time, especially considering its superior

accuracy.

Table 11 shows the overhead of GAMORRA in comparison

to the three tested methods for both S1 and S2 platforms. As

expected from the time complexity results represented in Table

10, FRQ which is the least computationally complex method

Table 10: The experimental results on average time complexity (ms)

Game
S1 S2

AR FCM FRQ GM AR FCM FRQ GM

BC2 1.63 1.54 1.47 2.15 0.94 0.66 0.59 1.23

D3 1.37 1.17 1.01 2.02 0.72 0.47 0.40 1.18

FC3 1.46 1.19 1.08 1.79 0.64 0.52 0.43 1.03

RL 1.54 1.26 1.10 2.11 0.86 0.68 0.53 1.31

SC 1.82 1.74 1.65 1.83 1.02 0.83 0.67 1.16

T4 1.70 1.41 1.29 2.04 0.81 0.59 0.46 1.22

SE4 1.51 1.43 1.24 1.99 0.62 0.52 0.45 1.19

MSh 1.67 1.41 1.35 2.03 1.02 0.61 0.49 1.20

FF 1.49 1.18 1.01 1.67 1.01 0.44 0.40 1.01

Table 11: The experimental results on estimation overhead (%)

Game
S1 S2

AR FCM FRQ GM AR FCM FRQ GM

BC2 11.769 11.192 10.738 14.962 11.177 8.118 07.32 14.138

D3 14.668 12.801 11.247 20.220 13.091 8.952 7.722 19.799

FC3 05.622 04.630 04.220 06.806 05.866 4.819 4.019 09.115

RL 08.715 07.246 06.384 11.568 08.098 6.513 5.151 11.834

SC 10.990 10.558 10.067 11.044 11.435 9.507 7.818 12.804

T4 09.382 07.908 07.284 11.051 07.895 5.876 4.642 11.434

SE4 08.256 07.853 06.881 10.602 05.496 4.651 4.050 10.042

MSh 08.512 07.283 06.995 10.160 12.216 7.683 6.266 14.068

FF 08.343 06.724 05.811 09.257 10.872 5.046 4.608 10.872

Table 8: The experimental results on estimation error (ms)

Game
S1 S2

AR FCM FRQ GM-H GM-Of AR FCM FRQ GM-H GM-Of

BC2 2.425 1.941 3.847 1.248 1.495 2.375 1.713 2.906 1.093 1.217

D3 0.810 0.682 1.614 0.576 0.638 0.752 0.626 1.292 0.45 0.583

FC3 3.167 1.859 3.991 1.108 1.793 2.954 1.451 3.293 0.801 1.141

RL 1.403 1.316 2.753 1.017 1.211 1.312 1.235 2.626 0.743 1.094

SC 4.104 2.991 4.280 1.564 2.074 3.761 2.021 4.086 1.276 1.569

T4 1.938 1.853 2.494 1.460 1.798 1.828 1.420 2.132 1.143 1.31

SE4 5.742 3.076 6.059 1.953 2.231 5.390 2.708 5.597 1.621 1.917

MSh 3.906 2.244 4.271 1.786 2.002 3.158 1.870 4.034 1.463 1.866

FF 3.436 2.473 4.005 1.831 2.013 2.782 2.146 3.519 1.695 1.954

 Table 9: The experimental results on estimation error (%)

Game
S1 S2

AR FCM FRQ GM-H GM-Of AR FCM FRQ GM-H GM-Of

BC2 19.84 15.88 31.48 10.21 12.23 31.79 22.93 38.9 14.63 16.29

D3 10.16 8.56 20.25 7.23 8.01 15.73 13.1 27.03 9.41 12.2

FC3 12.92 7.58 16.28 4.52 7.32 28.76 14.13 32.06 7.8 11.11

RL 8.7 8.16 17.07 6.31 7.51 13.44 12.65 26.91 7.61 11.21

SC 27.84 20.29 29.04 10.61 14.07 47.61 25.58 51.72 16.15 19.86

T4 11.8 11.29 15.19 8.89 10.95 19.34 15.03 22.56 12.1 13.86

SE4 34.22 18.33 36.11 11.64 13.3 50.56 25.4 52.5 15.21 17.98

MSh 21.76 12.5 23.79 9.95 11.15 43.08 25.51 55.03 19.96 25.46

FF 20.99 15.11 24.47 11.19 12.3 33.6 25.92 42.5 20.47 23.6

among all the tested methods, outperforms the other methods

from an estimation overhead standpoint. An average overhead

of 7.74%, 8.47%, 9.58% and 11.74% is experienced for FRQ,

FCM, AR and GM, respectively, on S1, and 5.73%, 6.80%,

9.57% and 12.68% for FRQ, FCM, AR and GM, respectively,

on S2. The results of S1 are mostly similar to the results of S2.

However, there are cases in which there is a wider gap between

the overhead of S1 and S2, which indicates that extra processing

power of S2 has a larger impact on the performance of the target

game than it has on the performance of the workload model.

Since a large portion of GAMORRA’s time complexity is

caused by a serial analysis of the shader code complexity, the

overhead does not scale with the processing power of the target

device as much as the other methods. This also applies to AR

which uses an iterative parameter estimation method.

It should be noted that these games are designed to be

rendered in 60 fps and the overhead is highly affected by the

value of the frametimes. As the average frametime increases, the

overhead would decrease. For example, if the experimented

game runs at 30 fps and the frame rate is not capped artificially,

each frame would take about 33 ms to be rendered. Hence, the

overhead values would almost be cut in half.

4.3. System resource usage

GAMORRA’s implementation is comprised of two distinct

parts: the analyzer and the core model. The analyzer analyzes

the intercepted graphics API commands and stores the required

data (e.g., pointers and properties of buffers, textures, and

resource views like size, resolution and usage). After analyzing

the graphics data, the core model is fed with the required input

parameters to be trained and used to predict frametimes.

Table 12 reports the system memory usage of all the tested

methods along with the analyzers of GAMORRA (GMA) and

FCM (FCMA) in megabytes (MB). FRQ which is the simplest

model among the tested models, requires at most 1.0 MB of

system memory. FCM also requires a frame analyzer similar to

GAMORRA, albeit much simpler, as is evident from the results

in Table 12. FCMA requires 15.67 MB of memory on average

while GMA which needs to consider more parameters than

FCMA requires an average of 56.78 MB of system memory.

While neural networks are known to demand large amount of

system memory as their number of layers increase, the choice of

MLR for the core model of GAMORRA ensures a limited and

small amount of memory requirement while it uses 32-bit

floating point precision for its weights. The reported results in

Table 12 shows that the memory usage of the core model of

GAMORRA will not surpass 3 MB at most. FCM uses a simpler

core model compared to GAMORRA which has led to 0.87 MB

less memory usage on average. Since AR only needs to consider

the frametime of a limited number of previous frames, it does

not need to use an analyzer like GAMORRA and FCM. The

memory usage of the AR is directly impacted by the sequence

length of the model. With the sequence length set to 10, the AR’s

memory usage is almost similar to GAMORRA. It should be

noted that the training session’s memory usage is different from

the memory usage of the model during prediction. For both AR

and GAMORRA (offline), the training session’s memory is

almost similar and it is equal to 1.32 gigabytes on average.

4.4. Overall verdict

The experimental results from the previous subsections

reveals that GAMORRA can outperform the other three tested

methods in terms of accuracy. This comes at the cost of more

time complexity and more memory usage compared to FRQ and

FCM. However, the time complexity and the memory usage are

reasonable for a real-time application and do not compromise

the model’s performance. For less varied graphical workloads,

GAMORRA and FCM perform similarly with a slight edge in

accuracy for the proposed model. As the graphical workload of

the games and the system conditions become more varied,

GAMORRA tends to provide better estimations compared to the

other methods and adapts to frametime variations more

accurately. The results for GAMORRA with an the offline-only

training scheme indicates that it has some of the flaws of FCM

in adapting to changes in system conditions during runtime.

However, it still achieves less estimation error compared to

FCM due to its detailed core model.

5. CONCLUDING REMARKS

This paper proposes GAMORRA, an API-level workload

model for rasterization-based graphics pipeline architectures.

Modeling the workload of a game’s frames proves useful in

different applications like DVFS-based power management

schemes in smartphones or estimation of performance measures

like frametimes in a graphics streaming-based CG system. The

API-level approach lets GAMORRA to work without the need

to modify the source code of the target application and the

rendering hardware which is an essential part of previous studies

to compensate for the lack of sufficient depth in their core model.

To account for the high-level approach of GAMORRA and its

lack of accuracy, an MLR-based core model, a hybrid

online/offline training method to train the model and a

benchmark suite to tune the model parameters according to the

performance of the target rendering system are proposed.

GAMORRA takes into account the overall structure of a

graphics rendering pipeline using an MLR model along with the

size of the input data, i.e., vertex numbers and texture resolution

as the explanatory variables. Also, the complexity of each shader

Table 12: System memory usage (MB) of the analyzer and the core

model of GAMORRA in comparison to AR, FCM, and FRQ

Game AR FCM FCMA FRQ GM GMA

BC2 0.9 1.4 18 0.7 2.4 64

D3 1.2 1.5 13 0.9 2.1 46

FC3 1.4 1.8 19 1.0 2.5 67

RL 0.8 1.3 10 0.5 2.3 29

SC 1.1 1.7 15 0.8 2.5 48

T4 0.6 1.2 16 0.4 2.2 62

SE4 0.9 1.5 21 0.5 2.4 78

MSh 1.2 1.7 17 0.9 2.6 63

FF 1.0 1.6 12 0.7 2.5 54

is taken into account as well. The experiments were performed

on two different rendering platforms with three other workload

models. The experimental results show a meaningful estimation

error reduction in comparison to previously proposed methods

while keeping the time complexity and the time overhead

imposed on the system within an acceptable range. Also, the

miss rate for underestimated frames is reduced significantly.

References

[1] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H. Hsu,
"GamingAnywhere: The first open source cloud gaming system," ACM

Trans. Multimedia Comput. Commun. Appl., vol. 10, no. 1s, p. Article 10,

2014.
[2] X. Liao, L. Lin, G. Tan, H. Jin, X. Yang, W. Zhang, and B. Li,

"LiveRender: A Cloud Gaming System Based on Compressed Graphics

Streaming," IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp.
2128-2139, 2016.

[3] I. Nave, H. David, A. Shani, Y. Tzruya, A. Laikari, P. Eisert, and P.

Fechteler, "Games@large graphics streaming architecture," in 2008 IEEE
International Symposium on Consumer Electronics, 2008, pp. 1-4.

[4] X. Nan, X. Guo, Y. Lu, Y. He, L. Guan, S. Li, and B. Guo, "A novel cloud

gaming framework using joint video and graphics streaming," in 2014
IEEE International Conference on Multimedia and Expo (ICME), 2014,

pp. 1-6.

[5] I. Soltani Mohammadi, M. Ghanbari, and M. R. Hashemi, "A hybrid
graphics/video rate control method based on graphical assets for cloud

gaming," Journal of Real-Time Image Processing, pp. 1-19, 2021.

[6] E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen, S. Saroiu, and
M. Musuvathi, "Kahawai: High-Quality Mobile Gaming Using GPU

Offload," presented at the Proceedings of the 13th Annual International

Conference on Mobile Systems, Applications, and Services, Florence,
Italy, 2015. [Online]. Available:

https://doi.org/10.1145/2742647.2742657.

[7] D.-Y. Chen and M. El-Zarki, "A Framework for Adaptive Residual
Streaming for Single-Player Cloud Gaming," ACM Trans. Multimedia

Comput. Commun. Appl., vol. 15, no. 2s, p. Article 66, 2019.

[8] D.-J. Zhang-Jian, C.-N. Lee, C.-Y. Huang, and S.-R. Kuang, "Power
Estimation for Interactive 3D Game Using an Efficient Hierarchical-

Based Frame Workload Prediction," in Proceedings of 2009 APSIPA

Annual Summit and Conference, 2009, pp. 208-215.
[9] B. Dietrich, D. Goswami, S. Chakraborty, A. Guha, and M. Gries, "Time

Series Characterization of Gaming Workload for Runtime Power

Management," IEEE Transactions on Computers, vol. 64, no. 1, pp. 260-
273, 2015.

[10] U. Gupta, J. Campbell, U. Y. Ogras, R. Ayoub, M. Kishinevsky, F.

Paterna, and S. Gumussoy, "Adaptive Performance Prediction for
Integrated GPUs," in 2016 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2016, IEEE, pp. 1-8.
[11] B. Dietrich, S. Nunna, D. Goswami, S. Chakraborty, and M. Gries,

"LMS-based Low-Complexity Game Workload Prediction for DVFS," in

IEEE International Conference on Computer Design, 2010, pp. 417-424.

[12] H. Li, M. Li, and B. Prabhakaran, "Middleware for streaming 3D

progressive meshes over lossy networks," ACM Trans. Multimedia

Comput. Commun. Appl., vol. 2, no. 4, pp. 282–317, 2006.
[13] B. Dietrich, S. Nunna, D. Goswami, S. Chakraborty, and M. Gries,

"LMS-based low-complexity game workload prediction for DVFS," in

2010 IEEE International Conference on Computer Design, 2010, pp. 417-
424.

[14] M. Wimmer and P. Wonka, "Rendering Time Estimation for Real-Time

Rendering," in Eurographics Symposium on Rendering, 2003, Goslar,
DEU, Eurographics Association, 2003, pp. 118-129.

[15] P. Mercati, R. Ayoub, M. Kishinevsky, E. Samson, M. Beuchat, F.

Paterna, and T. Š. Rosing, "Multi-variable dynamic power management
for the GPU subsystem," in Design Automation Conference, 2017, IEEE,

pp. 1-6.

[16] J. D. Jobson, "Multiple Linear Regression," in Applied Multivariate Data
Analysis: Springer New York, 1991, pp. 219-398.

[17] D. Sahoo, Q. Pham, J. Lu, and S. C. Hoi, "Online deep learning: Learning

deep neural networks on the fly," arXiv preprint arXiv:1711.03705, 2017.

[18] B. C. Mochocki, K. Lahiri, S. Cadambi, and X. S. Hu, "Signature-based

workload estimation for mobile 3D graphics," in 2006 43rd ACM/IEEE

Design Automation Conference, 2006, pp. 592-597.
[19] Y. Gu and S. Chakraborty, "A Hybrid DVS Scheme for Interactive 3D

Games," in 2008 IEEE Real-Time and Embedded Technology and

Applications Symposium, 2008, IEEE, pp. 3-12.
[20] A. Visioli, Practical PID Control. 2006.

[21] B. Dietrich and S. Chakraborty, "Lightweight graphics instrumentation

for game state-specific power management in Android," Multimedia
Systems, vol. 20, no. 5, pp. 563-578, 2014.

[22] Z. Cheng, X. Li, B. Sun, J. Song, C. Wang, and X. Zhou, "Behavior-

Aware Integrated CPU-GPU Power Management for Mobile Games," in
2016 IEEE 24th International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems (MASCOTS),

2016, pp. 439-444.
[23] J. Song, X. Li, B. Sun, Z. Cheng, C. Wang, and X. Zhou, "FCM: Towards

fine-grained GPU power management for closed source mobile games,"

in 2016 International Great Lakes Symposium on VLSI (GLSVLSI), 2016,

pp. 353-356.

[24] M. Wloka, "Batch, Batch, Batch: What Does It Really Mean?," Game

Developers Conference.
[25] Y. Choi, S. Park, and H. Cha, "Graphics-aware power governing for

mobile devices," in Proceedings of the 17th Annual International

Conference on Mobile Systems, Applications, and Services, 2019, pp. 469-
481.

[26] X. Li and G. Li, "An Adaptive CPU-GPU Governing Framework for
Mobile Games on big. LITTLE Architectures," IEEE Transactions on

Computers, vol. 70, no. 9, pp. 1472-1483, 2020.

[27] B. C. Mochockitt, K. Lahiri, S. Cadambi, and X. S. Hu, "Signature-based
workload estimation for mobile 3D graphics," in 2006 43rd ACM/IEEE

Design Automation Conference, 2006, IEEE, pp. 592-597.

[28] J. Song, X. Li, B. Sun, Z. Cheng, C. Wang, and X. Zhou, "FCM: Towards
Fine-Grained GPU Power Management for Closed Source Mobile

Games," in International Great Lakes Symposium on VLSI, 2016, IEEE,

pp. 353-356.
[29] L. N. Trefethen and I. David Ba, Numerical Linear Algebra. USA: Society

for Industrial and Applied Mathematics, 1997, p. 373.

[30] Y. Zhang, Q. Li, G. Dai, and H. Zhang, "A new recursive least-squares
identification algorithm based on singular value decomposition," in

Proceedings of 1994 33rd IEEE Conference on Decision and Control,

1994, vol. 2, IEEE, pp. 1733-1734.
[31] "DirectX Graphics and Gaming | Microsoft Docs," September 2018.

[Online]. Available: https://docs.microsoft.com/en-

us/windows/desktop/directx
[32] M. Satran and M. Jacobs. "Resource Limits (Direct3D 11) - Win32 apps |

Microsoft Docs." Microsoft. https://docs.microsoft.com/en-

us/windows/win32/direct3d11/overviews-direct3d-11-resources-limits
(accessed 2020).

[33] B. Kerbl, M. Kenzel, E. Ivanchenko, D. Schmalstieg, and M. Steinberger,

"Revisiting The Vertex Cache: Understanding and Optimizing Vertex
Processing on the modern GPU," Proceedings of the ACM on Computer

Graphics and Interactive Techniques, vol. 1, no. 2, pp. 1-16, 2018.

[34] "APITrace." https://github.com/apitrace (accessed 2020).
[35] TensorFlow. (2021). Zenodo. [Online]. Available:

https://doi.org/10.5281/zenodo.5189249

[36] B. L. Peuto and L. J. Shustek, "An Instruction Timing Model of CPU
Performance," ACM SIGARCH Computer Architecture News, vol. 5, no.

7, pp. 165-178, 1977.

[37] Y. Wang, V. Lee, G. Wei, and D. Michae, "Predicting New Workload or
CPU Performance by Analyzing Public Datasets," ACM Transactions on

Architecture and Code Optimization, vol. 15, no. 4, p. 21, 2019.

[38] S. Zadtootaghaj, S. Schmidt, and S. Möller, "Modeling Gaming QoE:
Towards the Impact of Frame Rate and Bit Rate on Cloud Gaming," in

2018 Tenth International Conference on Quality of Multimedia

Experience (QoMEX), 2018, IEEE, pp. 1-6.
[39] "Ego (game engine)." Codemasters. http://www.codemasters.com/

(accessed 2020).

[40] "Unreal Engine." Epic Games. https://www.unrealengine.com/en-US/
(accessed 2020).

https://doi.org/10.1145/2742647.2742657
https://docs.microsoft.com/en-us/windows/desktop/directx
https://docs.microsoft.com/en-us/windows/desktop/directx
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-resources-limits
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-resources-limits
https://github.com/apitrace
https://doi.org/10.5281/zenodo.5189249
http://www.codemasters.com/
https://www.unrealengine.com/en-US/

