
Computers & Graphics (2023)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

CloudWalker: Random walks for 3D point cloud shape analysis

Adi Mesikaa,∗, Yizhak Ben-Shabata,b,1, Ayellet Tala,2

aTechnion - Israel Institute of Technology, Haifa, Israel
bAustralian National University, Canberra, Austrlaia

A R T I C L E I N F O

Article history:

Keywords: point cloud, neural networks,
3d shape classification, 3d shape retrieval

A B S T R A C T

Point clouds are gaining prominence as a method for representing 3D shapes, but their
irregular structure poses a challenge for deep learning methods. In this paper we pro-
pose CloudWalker, a novel method for learning 3D shapes using random walks. Previ-
ous works attempt to adapt Convolutional Neural Networks (CNNs) or impose a grid
or mesh structure to 3D point clouds. This work presents a different approach for rep-
resenting and learning the shape from a given point set. The key idea is to impose
structure on the point set by multiple random walks through the cloud for exploring dif-
ferent regions of the 3D object. Then we learn a per-point and per-walk representation
and aggregate multiple walk predictions at inference. Our approach achieves state-of-
the-art results for two 3D shape analysis tasks: classification and retrieval.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Three dimensional data acquired by sensors provides rich ge-
ometric information. Various formats are used to represent this
data, including meshes, volumetric grids, multi-view images,
implicit functions and point clouds [1, 2, 3]. Our focus is on
point cloud representation, which is a sampling of a continuous
surface. It is often the rawest form of data obtained by modern
3D scanners.

Point clouds manage to preserve the original geometric in-
formation in 3D space without the need of discretization. How-
ever, there are challenges associated with this representation,
particularly in the context of deep learning approaches. These
include the lack of connectivity information, structure and or-
der, the varied number of points, and corruptions such as noise,
incompleteness, and density variations. An additional difficulty
is the lack of large-scale datasets.

Several approaches have been recently proposed for point
cloud deep learning. Point-wise Multilayer perceptron (MLP)

∗Corresponding author: E-mail: sadim@campus.technion.ac.il;
1E-mail: sitzikbs@technion.ac.il
2E-mail: ayellet@ee.technion.ac.il

methods explore global/local structures to enhance feature
learning and overcome the permutation variance (order) us-
ing a symmetric function [4, 5, 6] . Others propose convo-
lutional based methods, which can be divided into continu-
ous [7, 8, 9, 10, 11] and discrete [12, 13]. These methods over-
come some of the structural challenges using local connectiv-
ity information. Some works consider each point as a vertex
of the graph, by adding edges that connect points, and apply
graph networks [14], while others construct a hierarchical data
structures (e.g., Octree and KD-tree) [15, 16]. While all of the
above works handle the challenges of lack of structure and or-
der, none has shown to be as effective as CNNs are for images.
Therefore, the challenge of learning a representation for point
clouds remains an active field of research.

Our work, illustrated in Figure 1, takes a different avenue.
We propose to represent a point cloud by random walks through
the cloud, which ”explore” the shape. Intuitively, such a walk
moves from point to point, through the cloud’s valleys and
ridges, and on its way discovers the geometry of the underly-
ing surface. A walk is essentially a sequence of points. In
a way, this sequence imposes some structure, which is essen-
tial for deep learning. A point cloud is represented by multiple
walks, which partially cover the underlying surface. Due to

ar
X

iv
:2

11
2.

01
05

0v
4 

 [
cs

.C
V

] 
 1

7 
M

ay
 2

02
3

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag


2 Preprint Submitted for review / Computers & Graphics (2023)

Fig. 1: CloudWalker’s pipeline. A set of random walks is generated for a given point cloud. Each walk explores the object (walk points are color-coded according
to the walk sequence, from blue to yellow). We use CloudWalker for two tasks: 3D object retrieval and classification and achieve SOTA results.

their randomness, some walks provide a more global view of
the object, whereas others are local and focus on specific parts.

Recently, random walks were used for a variety of 3D model
representations. MeshWalker [17] proposed to use random
walks on meshes, however, random walks on point clouds is
significantly different and poses several challenges, addressed
in our work. First, point clouds lack the connectivity informa-
tion that is inherently available in meshes, therefore there is no
notion of local environment for each point. We solve this is-
sue using a KD-tree data structure that uses spatial proximity to
propose local points as candidates for walk generation. More-
over, since a mesh vertex differs from a point (due to connectiv-
ity information), our per-point representation is somewhat dif-
ferent from MeshWalker’s vertex representation, by adding pa-
rameters, layers and additional possible neighbour connections.
Lastly, the walks for each shape are aggregated differently than
the walks for each mesh, as we are less certain regarding con-
secutive points than in the case of vertices. The fact that our
local environment is not unequivocal has an impact on perfor-
mance, which we demonstrate in the ablation study.

Xiagn et al. [18] proposed to use guided walks on point
clouds. They generated curves based on a given set of rules
and heuristics and then learn the shape representation, for that
purpose, they get the entire point set as input. Our approach is
significantly different and simpler since we only get part of the
data (walk per shape) and utilize the power of randomness. In
spite of the simplicity of our approach, we show that we can
produce good results.

We show how to overcome major challenges in deep learn-
ing based point cloud processing: First, we address the gener-
ation of walks despite the lack of connectivity information and
show how to do that efficiently. Furthermore, unlike some pre-
vious algorithms [4, 5, 8], our approach does not require normal
vectors as inputs to improve performance. This is an impor-
tant property since normal estimation is particularly inaccurate
for the available datasets that contain synthetic CAD models
or noisy real-world point clouds without normal [19, 20, 21].
Moreover, we learn a per walk and per point representation and
propose an effective cross-walk aggregation module to produce
a global shape representation.

Our approach is general in the sense that it can be used for
various shape analysis tasks. We demonstrate its performance
on two tasks: 3D object classification and 3D object retrieval.
Our results are compared against the reported SOTA results for

commonly-used datasets 3D-Future [22], ScanObjectNN [23],
and ModelNet40 [24].
This paper makes two main contributions:

• We propose a novel representation for point clouds using
random walks. The walks impose order and overcome the
lack of connectivity and structure.

• We present an end-to-end learning framework that realizes
this representation. We show that it works well even when
the dataset has few unique objects and lacks normals. We
achieves SOTA results for 3D shape classification and re-
trieval.

2. Related work

A variety of representations of 3D point cloud have been pro-
posed in the context of deep learning. The main challenge is
how to re-organize the set description such that it could be pro-
cessed within deep learning frameworks. Hereafter we briefly
review the main representations; see [1] for a recent thorough
survey.

Generally, 3D data for shape classification methods is rep-
resented using one of the following representations: (a) Multi-
view, (b) Volumetric grid, (c) Mesh, (d) Point clouds. Each
representation requires a different approach for modifying the
data to the form required by deep learning methods.

Multi-view approaches. Multi-view-based methods project
the 3D data into 2D images and extract view-wise features,
and then fuse these features for accurate shape classification.
MVCNN [25] is a pioneering work, which essentially max-
pools multi-view features into a global descriptor. Some in-
formation is lost in the projection process, but using multiple
projections partially compensates. In addition, View-GCN [26]
represented multiple views of a 3D shape by a view-graph. The
view-graph representation enables to design Graph Convolu-
tional Neural Network (GCN) to aggregate multi-view features
by investigating relations of views.

Volumetric grid approaches. An alternative approach to
transforming irregular point clouds to regular representations is
3D voxelization [27, 28, 24], followed by 3D Convolution Neu-
ral Network (CNN). If applied naively, this strategy can incur
massive computation and memory costs due to the cubic growth
of the number of voxels as a function of resolution. Since most



Preprint Submitted for review / Computers & Graphics (2023) 3

voxels are empty, the solution is to take advantage of sparsity.
For example, OctNet [29] uses unbalanced octrees with hier-
archical partitions. An approach based on sparse convolutions
that only evaluate occupied voxels would significantly reduce
computation and memory requirements.

Triangle mesh approaches. A mesh is represented as a set
of vertices, edges and faces. To handle meshes directly, novel
convolutions vertex neighborhoods have been defined [30, 31].
Other works parameterize the mesh in 2D [32, 33, 34]. In
MeshCNN [35], a unique idea of using the edges of the mesh
to perform pooling and convolution, is introduced. Our work
is inspired by MeshWalker, which takes a different approach of
representing a mesh by a set of random walks over its vertices,
along the edges [17].

Point Cloud approaches. The point cloud representation
is challenging because it is both unstructured and point-wise
unordered. To overcome these challenges, PointNet [4, 5] uti-
lizes permutation-invariant operators such as pointwise MLPs
and pooling layers to aggregate features across a set. A num-
ber of approaches connect the point set into a graph and con-
duct message passing on this graph. DGCNN [36] performs
graph convolutions on kNN graphs. KCNet [37] utilizes ker-
nel correlation and graph pooling. DeepGCNs [38] explore
the advantages of depth in graph convolutional networks for
3D scene understanding. GDANet [39] use an attention net-
work and introduces a Geometry-Disentangle Module to dy-
namically disentangle point clouds into the contour and flat part
of 3D objects. A voxel-based point cloud transformer, PVTNet
[40], introduced a Sparse Window Attention module to allevi-
ate the problem of expensive computations In addition, many
other schemes have also been proposed. PCEDNet [41] fo-
cused on classification of edges in point clouds. They proposed
a new parameterization for each point in a set containing mil-
lions of points. RCNet [42] utilizes standard RNN to construct
a permutation-invariant network for 3D point cloud process-
ing. Point2Sequences [43] is another RNN-based model that
captures correlations between different areas in local regions of
point clouds. Here we proposed the CloudWalker which is di-
rectly linked to the point cloud representation and can be used
as input for a neural network.

Traditional random walks methods. Several methods uti-
lized random walks for shape analysis in both the computer vi-
sion and graphics communities. Prior to the deep learning era
they were frequently used for image clustering and segmenta-
tion [44, 45, 46, 47, 48, 49]. They were also used for generating
super-pixels [50] and for visual tracking [51]. For a comprehen-
sive survey of random walks applications see [52].

3. CloudWalker

Given a point cloud, our goal is to learn a representation
that will capture both global and local geometric information
about the underlying shape, for analysis tasks. Previous works
showed that learning 3D object’s representation is improved
by combining both local and global features [5]. As dis-
cussed above, point clouds are challenging for deep learning
approaches, due to the lack of spatial structure, which prohibits

the use of spatial filters on a 3D lattice. Furthermore, point
clouds come in various sizes.

We propose to address these challenges by using multiple
random walks through the clouds. Each walk wanders through
the object and ”explores” it on the way. Jointly, multiple walks
provide both local shape information, as well as global shape
information; the very same region can be visited multiple times
from different directions. This satisfies the above desired prop-
erties since the walk length is independent w.r.t. the number of
points in the cloud (up to full coverage) and the points have a
sequential order, that covers both local and global information.

Our proposed model consists of three modules, as illustrated
in Figure 2: The Random Walk Generator Module generates
multiple random walks per point set. The CloudWalker Core
module extracts a single walk representation. It consists of
two sub-modules: the Point Representation Sub-module (PRM)
learns a shared, per-point representation, and the Walk Repre-
sentation sub-module (WRM) combines the information along
the walk and learns the relations between the points. Finally, the
Multi-walk Aggregation Module produces the final shape repre-
sentation, by aggregating multiple walk representations. This
representation can then be used for shape analysis tasks. Here-
after we elaborate on each of these modules.
Random walk generator. The concept of randomness is very
powerful [53, 54, 55]. This module generates multiple random
walks for a given point set. In our setup, thanks to randomness
some walks explore a single region of the point set and learn its
fine details alongside some broader context, while other walks
cover more regions and provide the model with additional in-
formation, not seen by other walks.

A walk is a sequence of points, where each point is associated
with basic local geometric information. Should the underlying
surface of the point cloud existed, it would be possible to utilize
the adjacency information to determine, for each point, the next
point on the walk. However, since connectivity information is
unavailable, we propose a fast and simple approach to generate
random walks.

For an input point set S i we generate the walk Wi j of length
l as follows. First, the walk’s origin point po ∈ S i is randomly
selected from the set. Then, points are iteratively added to the
walk by selecting a random point from the set of k nearest
neighbors of the last point in the sequence (excluding neigh-
bors that were added at an earlier stage). In the rare case where
all k nearest neighbors were already added to the walk, a new
random un-visited point is chosen and the walk generation pro-
ceeds as before. Choosing the closest neighbor might seem like
a straight-forward solution, however, this imposes a strong con-
straint on the generation process and reduces the randomness
and the ability to visit sparser regions.

Since a point cloud may contain many points, an efficient
nearest neighbor search is required to get a sense of the en-
vironment and propose point candidates to generate the walk.
In contrast to meshes, where this information is inherently
available, point clouds require this critical step to generate the
walks. We propose to construct a KDtree [56] as a preprocess-
ing step. Briefly, a KDtree is a hierarchical space partitioning
data structure, in which every node represents an axis-aligned



4 Preprint Submitted for review / Computers & Graphics (2023)

Fig. 2: CloudWalker’s pipline. For an input point set S i, the Random Walks Generator generates several walks Wi j. Our model learns a representation for each
walk by learning a shared, per-point representation, which are then aggregated along the walk by the Walk Representation sub-module. This sub-module consists
of three RNN layers and produces a walk representation ri j. The Multi-Walk Aggregation module is used at inference time to combine several walks into either the
final class prediction for classification or an average representation for retrieval.

hyper-rectangle and contains the set of points in it. This is a
very efficient data structure for nearest neighbor queries. Using
the nearest neighbors to construct the walk makes it possible
to move between underlying connected components along the
walk, which works to our advantage since it allows our model
to learn such crossings.
CloudWalker Core. Given an input walk, CloudWalker core
is the main learned part of our pipeline. It is designed to learn
an informative representation for a single walk. it consists of
two sub-modules, Point Representation sub-module and Walk
Representation sub-module. Details for each sub-module are
provided below.
Point representation sub-module. Given an input walk Wi j

(the jth walk for point cloud S i), each point pt along the walk is
embedded onto a high-dimensional feature space φPRM(pt). We
convert each point to a 512-dimension vector using a three lay-
ered Multi-Layer Perceptron (MLP) that shares weights across
points. This module is different from MeshWalker’s vertex rep-
resentation module by an additional MLP layer. The additional
parameters give the network more capacity to compensate for
the lack of connectivity information and learn a distinctive per-
point representation. Then, we perform instance normalization
and ReLU nonlinear activation. We preserve the original point
context by concatenating the input coordinate to the per-point
representation and then feeding it into the next sub-module
(WRM); see Figure 2. The module’s output is a sequence of
vectors per walk, ΦPRM(Wi j).
Walk representation sub-module. The input to this stage is
a sequence of high-dimensional feature vectors, a single vector
for each point in the walk. The output of this module is the walk
representation ri j = ΦWRM(ΦPRM(Wi j)) in the form of a single

feature vector for the walk.
Similarly to [17], we use three Gated Recurrent Units

(GRU) [57]. Briefly, a GRU is able to ”remember” and accu-
mulate knowledge in a sequence. In our setup, each GRU layer
receives all the embedded features from all points of the walk
until the current point. It outputs the last hidden state, which
captures an abstract representation of the input sequence. In a
sense, this is the descriptor that describes the entire walk. This
architecture allows walk information to persist. It is especially
powerful since the local geometric detail as well as global geo-
metric context are critical for describing the shape.

Finally, the walk representation ri j is fed into a fully con-
nected (FC) classifier to produce the prediction vector r̃i j. The
number of elements in r̃i j is equal to the number of classes.
Multi-walk aggregation module. This module gets as input
multiple walk predictions r̃i j, j ∈ [1,m] of a single shape S i.
To compute the probability vector we apply a softmax: Pi j =

so f tmax(r̃i j).
Then, we apply a symmetric aggregation function over all

of the input walks. For the symmetric function we chose the
majority vote: Thus, for a given S i, the output prediction yi is:

yi = Ma jority(Ci1, . . . ,Ci j, . . . ,Cim), (1)

where Ci j = argmax(Pi j) is the class prediction.
We have experimented with alternative options for symmet-

ric function, including max and mean, and found the majority
vote to work best. This is attributed to its robustness to cases
where the network is overconfident in a small subset of walks.
A quantitative ablation study is presented in Section 5.
Implementation details. At inference, we use m = 48 walks
per object S i, the length of the walk is l = 800, and k = 20 near-



Preprint Submitted for review / Computers & Graphics (2023) 5

est neighbors. In training, we use Adam optimizer with cyclic
learning rate; the initial and the maximum learning rates are set
to 10−6 and 5 · 10−4 respectively. The cycle size is 20K itera-
tions and we train for a total of 100K iterations. We record the
number of parameters and time using TensorFlow2.4 on a sin-
gle NVIDIA GeForce RTX 3090. The total number of network
parameters is 13.5M and training process takes 100 epochs that
last 97 seconds each on average (on ModelNet40 [24]). The
average inference time is 0.22 second per shape. The distances
between predictions and ground truth labels were minimized
through cross entropy loss. Note that sometimes (e.g. Model-
Net40) the shape scale is available and may be informative. In
this case we add the shape’s bounding box diagonal length to
the feature vector and feed it to the classifier for a minor im-
provement. Code will be released upon acceptance.

4. Applications

We evaluate the performance of our model on two main tasks:
3D shape classification and 3D object retrieval.

4.1. 3D shape Classification
Given a 3D point set, the goal is to classify it into one of pre-

defined classes. Our model outputs a classification prediction
probability vector for each walk. At inference, a majority pre-
diction of the walks’ prediction vectors is calculated to produce
the final result.
Evaluation measures. For each dataset we report both in-
stance accuracy (IA) and class accuracy (CA). Instance accu-
racy is defined as the percentage of the correctly-classified ob-
jects,

IA =
#correctly classi f ied

#test instances
(2)

Class accuracy is the mean of per-class instance accuracy,

CA =
1
C

∑
i∈C

IA(i), (3)

where C is the number of classes.
Datasets. We present our results on three commonly-used
datasets, where each contains different types of objects, differ-
ent numbers of classes, a different number of objects per class,
and different challenges. Figure 3 presents some examples from
the datasets.
3D-FUTURE [22] is a recent dataset that contains 9, 992 indus-
trial CAD models of furniture . It consists of 7 super-categories,
with 1-12 sub-categories each, for a total of 34 categories. The
train/test split is 6, 699/3, 293. This dataset is challenging both
due to the objects it contains and its hierarchical structure, as
objects in the same category but different sub-categories may
resemble each other, requiring fine-grained information in the
shape representation.
ScanObjectNN [23] is a real-world dataset that contains 2902
unique object scans from 15 classes. The objects are corrupted
in various ways to create a set of ∼15k objects that are used for
training and testing. We follow the official data split provided in
[23]. This dataset is highly challenging due to the data corrup-
tions found in scans which include: background points, object

(a) Examples from 3D-FUTURE dataset [22]

(b) Examples from ScanObjectNN dataset [23]

(c) Examples from ModelNet40 dataset [24]

Fig. 3: Datasets snapshot. Datasets vary in density, noise and available
classes. Presented here are typical objects from a 3D-FUTURE which contains
uniformly sampled industrial CAD models (chair and lamp classes), b ScanOb-
jectNN which contains real-world objects, with their background in cyan (chair
and table classes), and c ModelNet40 which contains CAD models (guitar and
airplane classes).

partiality, and different transformation variants (translation, ro-
tation, and scale). We performed our experiment on its most
challenging variant, PB T50 RS, with and without background
points.
ModelNet40 [24] contains CAD models. There are 12, 311
meshes divided into 40 classes, with 9, 843/2, 468 shapes for
training/testing. Corresponding point clouds are generated by
uniformly sampling, following the sampling protocol of [5].
Quantitative results. The results for 3D-FUTURE [22] are
presented in Table 1. It shows that our method outperforms
not only previous point-based, but also multi-view methods, re-
ported for this dataset. We followed the same training protocol
for point-based methods as specified by [22] and trained our
model with 1K points per object. In particular, we uniformly
sampled 1024 points for each shape. Our results outperform



6 Preprint Submitted for review / Computers & Graphics (2023)

Table 1: Classification results on 3D-FUTURE dataset. Our results outper-
form those reported in [22] using both multi-view and point clouds as input. We
note PointNet++ uses normals while we only use points. (* Our reproduction,
the orginal paper did not report on this dataset)

Method Input IA (%) CA (%)
MVCNN [25] Multi-views 69.2 65.4

CurveNet* [18] Point cloud 69.6 65.1
PointNet++ [5] Point cloud 69.9 66.0

Ours Point cloud 70.6 67.8

Fig. 4: ModelNet40 [24] difficult examples. Objects from different classes
have similar geometric properties.

the others in both IA and CA evaluation measures.
Table 2 presents quantitative result for classification on 3D-

FUTURE for each category. It shows that our method outper-
forms both, point-based and multi-view methods reported for
this dataset. Our model leads on average and in 18/32 cate-
gories. It shows how challenging this dataset is because of its
similar sub-categories. We note that while [5] uses normals as
additional information, we do not. The mere vertices locations
suffice for our method. This is especially important in cases
where normals are unavailable, as normals are not outputs of
most scanners and normal estimation is possible, but is not a
trivial problem [19, 20, 21]. After all, normal estimation is ”al-
most” surface reconstruction, and the reconstruction of a sur-
face is exactly what we wish to avoid.

For ScanObjectNN, Table 3 presents the results with and
without background points of real-world scans. It shows that
the overall accuracy is better compared to state of the art meth-
ods [23]. When trained and tested without the background
points, our average class accuracy 78.5% is higher than all re-
ported results while maintaining competitiveness on the overall
accuracy.

Table 4 reports the results on the ModelNet40 [24] dataset.
For this dataset we achieved competitive results. Model-
Net40 is known to be a difficult and saturated dataset, par-
tially because of cross-labeled classes (desk/table, plant/flower-
pot/vase, night-stand/dresser), as illustrated in Figure 4.

We report that when we choose the second best prediction for
the mis-classified objects in Modelnet40 dataset, 97% of the test
instances are correctly classified. Similarly, for the 3DFuture
dataset we get 89% accuracy (∼19% improvement). This find-

Table 2: Classification results for each category of 3D-FUTURE. We note
PointNet++ (PN++) uses normals and Multi-scale grouping (MSG) and we do
not, while we use only the points. MVCNN uses 12 view.

Category Ours (%) PN++ (%) MVCNN (%)
Children Cabinet 16.0 32.1 72.0

Nightstand 83.5 71.8 75.0
Bookcase 58.7 52.3 66.7
Wardrobe 85.0 82.0 56.7

Coffee Table 83.7 82.6 67.9
Corner/Side Table 73.0 74.7 64.5

Side Cabinet 69.5 65.2 47.9
Wine Cabinet 44.3 67.1 62.9

TV Stand 80.5 73.6 73.5
Drawer Chest 44.8 55.2 67.5

Shelf 48.4 48.4 51.9
Round End Table 93.7 75.0 52.2

King-size Bed 89.6 91.2 78.6
Bunk Bed 88.8 77.8 57.1
Bed Frame 95.4 93.8 93.8
Single bed 68.9 68.9 67.7
Kids Bed 00.0 14.3 12.5

Dining Chair 76.8 63.9 50.5
Lounge/Office Chair 54.0 60.5 60.3

Classic Chinese Chair 62.5 62.5 57.1
Barstool 88.8 66.7 32.0

Dressing Table 77.3 68.2 73.7
Dining Table 76.0 61.1 84.8

Desk 30.9 20.4 54.0
Three-seat Sofa 83.1 82.6 71.7

armchair 74.9 68.0 72.5
Loveseat Sofa 45.5 64.5 62.9
L-shaped Sofa 92.9 85.9 83.3

Lazy Sofa 42.8 50.0 66.7
Stool 70.9 75.8 91.9

Pendant Lamp 92.8 90.9 89.8
Ceiling Lamp 72.0 70.7 63.0

Average Class Accuracy 67.8 66.0 65.2
Instance Accuracy 70.6 69.9 69.2

ing further shows that some categories have fine-grained differ-
ences that are difficult to discriminate.

4.2. Retrieval

Given a query object, the goal is to retrieve objects from
the dataset, ordered by their relevancy (similarity) to the query.
There are various ways to evaluate shape retrieval. The most
common evaluation is the mean Average Precision (mAP) over
test queries:

mAP =
1
Q

Q∑
i=1

AP(S i), (4)

where Q is the number of queries in the set. AP is defined
as AP = 1

GT P
∑N

k P@k × rel@k, where GT P is the number of
ground truth positives, N is the size of the ordered set, P@k
refers to the precision at k and rel@k is an indicator function
which equals 1 if the object at rank k is from the same class as



Preprint Submitted for review / Computers & Graphics (2023) 7

Table 3: Classification results on ScanObjectNN [23]. We use the difficult
variant of the dataset, PB T50 RS, with (w/) and without (w/o) background
(BG) points. We achieve SOTA results on the variant without the background;
(CA results were not reported for objects without background). we achieve CA
SOTA results on the variant with the background and competitive IA results.
The second best is underlined. (*concurrent work)

Methods w/o BG (%) w/ BG (%)
IA CA IA CA

PointNet [4] 74.4 - 68.2 63.4
PointNet++ [5] 80.2 - 77.9 75.4

3DmFV [58] 69.8 - 63.0 58.1
SpiderCNN [8] 76.9 - 73.7 69.8

SimpleView [59] - - 79.5 -
DGCNN [36] 81.5 - 78.1 73.6

PointCNN [12] 80.8 - 78.5 75.1
DRNet [60] - - 80.3 78.0
GBNet [61] - - 80.5 77.8

DeltaConv* [62] - - 84.7 -
BGA-PN++ [23] - - 80.2 77.5

BGA-DGCNN [23] - - 79.7 75.7
Ours 82.2 79.5 80.3 78.5

Table 4: Classification results on ModelNet40 [24] For this dataset we show
competitive results.

Method IA (%) CA (%)
PointNet [4] 89.2 86

PointNet++ [5] 90.7 -
PointCNN [12] 92.2 88.1
SpiderCNN [8] 92.4 -

KPConv [7] 92.9 -
SimpleView [59] 93.6 90.5

PAConv [63] 93.6 -
PointTrans. [64] 93.7 90.6
CurveNet [18] 93.8 -

GBNet [61] 93.8 91
PVT [40] 94.0 -

RPNet [65] 94.1 -
Ours 93.1 90.1

query S i and 0 otherwise. Note that significantly fewer methods
report their performance on this task than for classification.

We present our results on commonly used datasets for shape
retrieval task, ModelNet40 and ModelNet10 [24]. We use the
most common train/test splits: 9, 843/2, 468 for ModelNet40
and 3, 991/908 for ModelNet10. We used the output feature
vector from our classification network by averaging all walks
probability vectors for each object and get a global feature vec-
tor P̄i; see Figure 2.

Table 5 shows that our method achieves SOTA results on
both ModelNet40 and ModelNet10 [24]. It outperforms ap-
proaches that use a variety of 3D representations, including
meshes, multi-views, and point clouds.

Figure 5 presents qualitative results for object retrieval on
ModelNet40 [24] dataset. It shows the top five retrieved objects
by our model. As can be seen, the retrieved objects are indeed
similar and thus belong to the same class. In the bottom row

Table 5: 3D Shape Retrieval results. This table shows the mAP on Model-
Net40 & ModelNet10 [24], sorted by the input type (Point Cloud, Multi-view,
and mesh). Our CloudWalker outperforms other methods.

Method input ModelNet40 ModelNet10
GWCNN [33] Mesh 59.0 74.0
MeshNet [30] Mesh 81.9 -
MVCNN [25] MV 79.5 -
SeqViews [66] MV 89.1 -
PointNet [4] PC 70.5 -

PointCNN [12] PC 83.8 -
DGCNN [36] PC 85.3 -

DensePoint [11] PC 88.5 93.2
Ours PC 92.9 93.7

Fig. 5: Qualitative results for Object Retrieval. The query test objects are
on the left, where the top five retrieved objects are on the right. The falsely
retrieved object is highlighted.

we show a particularly interesting case where the query object
belongs to the plants category, but the highlighted model be-
longs to a different category and thus considered to be an error.
However, this is in fact the exact same object with different set
of points. This example demonstrates some of the challenges in
the dataset.

5. Ablation study

Walk length. In this experiment we explore the effects of walk
length, i.e. the number of points in each walk, on the per-
formance of classification. Table 6 shows that a longer walk
improves performance up to a certain length. This can be ex-
plained by the fact that longer walks are likely to have better
coverage of the object, and thus better distinguish between dif-
ferent categories. However, when the walk is too long, the
GRUs’ ability to ”remember” points in the sequences is re-
duced, which negatively impacts performance. For example,
on ScanObjectNN [23], we get improvement when using up to
40% of the total number of vertices per walk. This quantity
is dataset dependant, however we found 40% to perform well
across multiple datasets.
Aggregation method. In our model, we aggregate predictions
from multiple walks on the shape. Table 7 compares three
symmetric aggregation functions. While the results are simi-
lar, there is a slight advantage to majority voting.



8 Preprint Submitted for review / Computers & Graphics (2023)

Table 6: Walk length ablation. Performance improves as length increases, up
to a certain length. Tested on ScanObjectNN [23].

Walk length IA (%) CA (%)
0.1V 75.3 72.1
0.2V 78.0 75.2
0.4V 82.2 79.5
0.5V 79.3 76.4

Table 7: Aggregation method ablation. Majority voting is slightly better than
other symmetric functions. Tested on ModelNet40 [24].

Aggregation method IA (%) CA (%)
Average 92.8 89.9

Max 92.4 89.2
Majority 93.1 90.1

Number of walks. We study how the number of walks (used
at inference) influences classification accuracy. Table 8 shows
that as the number of walks increases, the accuracy improves
up to 48 walks where it saturates. Note that above 48 walks
most points in the point cloud are visited at least once (∼full
coverage). Note that, even very few walks result in very good
accuracy. This means that the number of walks may be a tune-
able parameter that balances the trade-off between computa-
tional power and accuracy. In our method, we chose to use
48 walks.
Random walk generation method. Generating random walks
can be performed in various ways. In the following we explore
several options, in all of which the first point is randomly cho-
sen and the next points are sequentially added from the last
point’s neighbors. The options are: (1) Random—randomly
choosing among the point’s unvisited neighbors with a uni-
form distribution. (2) High variance—calculating the change
in variance for each neighbor of the most recently added point
and selecting the one that increases the variance the most. (3)
Combined—combining both random and high variance meth-
ods by choosing a neighbor who increases the variance 30% of
the times and randomly otherwise. Note that the heuristic based
on the walk variance is effective, but it is not sufficient since it
reduces randomness. The results are presented in Table 9. We
found that the random strategy is the best, reinforcing our claim
of the power of randomness.
Stability. Cloudwalker relies on the power of randomness. To
evaluate the consistency across different random seeds (stabil-
ity), we evaluate our model 100 times, each time, we generate a

Table 8: Number of walks ablation. The accuracy improves with the number
of walks per shape. Tested on 3D-FUTURE [22].

Number of walks Coverage (%) IA (%) CA (%)
4 76 68.6 65.5

16 82 69.7 67.1
32 92 69.8 67.5
48 99 70.6 67.8
64 99 70.5 67.5
96 100 70.3 67.9

Table 9: Walk generation ablation. Random walk generation performs better
than hand-crafted heuristics. Tested on ModelNet40 [24].

Generation method IA (%) CA (%)
Random 93.1 90.1

High variance 90.2 86.5
Combined 91.7 87.9

Fig. 6: Walk comparison. CloudWalker and CurveNet walks on three different
shapes. Top row: A single CloudWalker walk of length 500 points (color-coded
according to the walk sequence, from blue to yellow), bottom row: A single
CurveNet walk, composed of 100 curves of length 5 points (different color for
each curve).

different set of random walks. We found that the average over-
all accuracy for ModelNet40 dataset is 92.8%, with a standard
deviation of 0.1% and a maximum value of 93.1%.
Comparison of random and guided walks. Figure 6 com-
pares our random walks to the guided walks generated by Cur-
veNet [18] on the same object. It is evident that each method
explores different parts of the model. Interestingly, although the
walks are distinctly different, both methods manage to success-
fully classify the shape. Note that we restrict our walks from re-
visiting vertices, which is different from CurveNet, where there
is no such hard restriction and curves may overlap in accor-
dance with a crossover suppression strategy.
Limitations. Figure 7 shows failure cases in the retrieval task.
In (a), the 5th retrieved object is a vase, rather than a bottle. This
vase is geometrically similar to a bottle, however the top differs.
Most of the walks provide the geometry of a vase. There is a
lower probability of capturing this particular geometry which
distinguishes it from a bottle due to the few points in that region.
In (b) we present five of the top ten objects retrieved for the
leftmost nightstand. A dresser is placed at the 10th spot. These
objects belong to different classes but have similar geometry.

Furthermore, our random walk generator process might be
negatively impacted by strong anisotropic sampling, as occurs
in 360 lidar acquisition. We have not explored this challenge
and it will be an interesting direction for future work.

6. Conclusions

This paper introduces a novel approach for representing point
clouds suited for deep learning architectures. The key idea is to
represent the point cloud using multiple random walks on the
shape. The randomness of the walks can be viewed as a form



Preprint Submitted for review / Computers & Graphics (2023) 9

(a) Same geometry with a different small detail (top cap).

(b) Geometrically similar objects are in different categories.

Fig. 7: Limitation. When objects are geometrically similar, yet belong to dif-
ferent classes, our method might err.

of data augmentation that does not require explicit manipula-
tion of the point cloud. We utilize this representation and intro-
duce CloudWalker, an end-to-end shape representation learning
pipeline. The approach is general, yet simple, and relies on the
power of randomness. We have shown our approach to be very
effective for the tasks of classification and retrieval. An inter-
esting avenue for future work may provide confidence measures
for model’s predictions based on cross-walk correlations. Ad-
ditionally, random walks in scenes would be another interesting
extension of our paper. Furthermore, alternative random walk
generation processes and their use in other geometrical tasks is
another path to explore.
Acknowledgments. This work was partially supported by the
Israel Science Foundation (ISF) 1083/18, ADRI 117632, and
the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curiegrant agreement
No 893465.

References

[1] Guo, Y, Wang, H, Hu, Q, Liu, H, Liu, L, Bennamoun, M. Deep
learning for 3d point clouds: A survey. IEEE TPAMI 2020;.

[2] Forsyth, D, Ponce, J. Computer vision: A modern approach. Prentice
hall; 2011.

[3] Marschner, S, Shirley, P. Fundamentals of computer graphics. CRC
Press; 2018.

[4] Qi, CR, Su, H, Mo, K, Guibas, LJ. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In: CVPR. 2017, p. 652–660.

[5] Qi, CR, Yi, L, Su, H, Guibas, LJ. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In: Advances in Neural
Information Processing Systems (NeurIPS); vol. 30. 2017,.

[6] Zaheer, M, Kottur, S, Ravanbakhsh, S, Poczos, B, Salakhutdinov, RR,
Smola, AJ. Deep sets. In: Advances in Neural Information Processing
Systems (NeurIPS). 2017,.

[7] Thomas, H, Qi, CR, Deschaud, JE, Marcotegui, B, Goulette, F, Guibas,
LJ. Kpconv: Flexible and deformable convolution for point clouds. In:
ICCV. 2019, p. 6411–6420.

[8] Xu, Y, Fan, T, Xu, M, Zeng, L, Qiao, Y. Spidercnn: Deep learning
on point sets with parameterized convolutional filters. In: ECCV. 2018,
p. 87–102.

[9] Liu, Y, Fan, B, Xiang, S, Pan, C. Relation-shape convolutional neural
network for point cloud analysis. In: CVPR. 2019, p. 8895–8904.

[10] Wu, W, Qi, Z, Fuxin, L. Pointconv: Deep convolutional networks on 3d
point clouds. In: CVPR. 2019, p. 9621–9630.

[11] Liu, Y, Fan, B, Meng, G, Lu, J, Xiang, S, Pan, C. Densepoint: Learning
densely contextual representation for efficient point cloud processing. In:
ICCV. 2019, p. 5239–5248.

[12] Li, Y, Bu, R, Sun, M, Wu, W, Di, X, Chen, B. PointCNN: Convolu-
tion on x-transformed points. Advances in Neural Information Processing
Systems (NeurIPS) 2018;31:820–830.

[13] Rao, Y, Lu, J, Zhou, J. Spherical fractal convolutional neural networks
for point cloud recognition. In: CVPR. 2019, p. 452–460.

[14] Simonovsky, M, Komodakis, N. Dynamic edge-conditioned filters in
convolutional neural networks on graphs. In: CVPR. 2017, p. 3693–3702.

[15] Lei, H, Akhtar, N, Mian, A. Octree guided cnn with spherical kernels
for 3d point clouds. In: CVPR. 2019, p. 9631–9640.

[16] Klokov, R, Lempitsky, V. Escape from cells: Deep kd-networks for the
recognition of 3d point cloud models. In: ICCV. 2017, p. 863–872.

[17] Lahav, A, Tal, A. MeshWalker: Deep mesh understanding by random
walks. ACM TOG 2020;39:1–13.

[18] Xiang, T, Zhang, C, Song, Y, Yu, J, Cai, W. Walk in the cloud:
Learning curves for point clouds shape analysis. In: ICCV. 2021,.

[19] Guerrero, P, Kleiman, Y, Ovsjanikov, M, Mitra, NJ. Pcpnet learning
local shape properties from raw point clouds. In: Computer Graphics
Forum; vol. 37. Wiley Online Library; 2018, p. 75–85.

[20] Ben-Shabat, Y, Gould, S. Deepfit: 3d surface fitting via neural network
weighted least squares. In: ECCV. Springer; 2020, p. 20–34.

[21] Lenssen, JE, Osendorfer, C, Masci, J. Deep iterative surface normal
estimation. In: CVPR. 2020, p. 11247–11256.

[22] Fu, H, Jia, R, Gao, L, Gong, M, Zhao, B, Maybank, S, et al. 3d-future:
3d furniture shape with texture. International Journal of Computer Vision
2021;129(12):3313–3337.

[23] Uy, MA, Pham, QH, Hua, BS, Nguyen, DT, Yeung, SK. Revisiting
point cloud classification: A new benchmark dataset and classification
model on real-world data. In: ICCV. 2019,.

[24] Wu, Z, Song, S, Khosla, A, Yu, F, Zhang, L, Tang, X, et al. 3d
shapenets: A deep representation for volumetric shapes. In: CVPR. 2015,
p. 1912–1920.

[25] Su, H, Maji, S, Kalogerakis, E, Learned-Miller, E. Multi-view con-
volutional neural networks for 3d shape recognition. In: ICCV. 2015, p.
945–953.

[26] Wei, X, Yu, R, Sun, J. View-gcn: View-based graph convolutional net-
work for 3d shape analysis. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2020, p. 1850–1859.

[27] Maturana, D, Scherer, S. Voxnet: A 3d convolutional neural network for
real-time object recognition. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE; 2015, p. 922–928.

[28] Qi, CR, Su, H, Nießner, M, Dai, A, Yan, M, Guibas, LJ. Volumetric
and multi-view cnns for object classification on 3d data. In: CVPR. 2016,
p. 5648–5656.

[29] Riegler, G, Osman Ulusoy, A, Geiger, A. Octnet: Learning deep 3d
representations at high resolutions. In: CVPR. 2017, p. 3577–3586.

[30] Feng, Y, Feng, Y, You, H, Zhao, X, Gao, Y. Meshnet: Mesh neural
network for 3d shape representation. In: AAAI; vol. 33. 2019, p. 8279–
8286.

[31] Verma, N, Boyer, E, Verbeek, J. Feastnet: Feature-steered graph con-
volutions for 3d shape analysis. In: CVPR. 2018, p. 2598–2606.

[32] Boscaini, D, Masci, J, Rodolà, E, Bronstein, M. Learning shape corre-
spondence with anisotropic convolutional neural networks. Advances in
Neural Information Processing Systems (NeurIPS) 2016;29.

[33] Ezuz, D, Solomon, J, Kim, VG, Ben-Chen, M. GWCNN: A metric
alignment layer for deep shape analysis. In: Computer Graphics Forum;
vol. 36. Wiley Online Library; 2017, p. 49–57.

[34] Sinha, A, Bai, J, Ramani, K. Deep learning 3d shape surfaces using
geometry images. In: ECCV. Springer; 2016, p. 223–240.

[35] Hanocka, R, Hertz, A, Fish, N, Giryes, R, Fleishman, S, Cohen-Or,
D. MeshCNN: a network with an edge. ACM TOG 2019;38:1–12.

[36] Wang, Y, Sun, Y, Liu, Z, Sarma, SE, Bronstein, MM, Solomon, JM.
Dynamic graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog) 2019;38:1–12.

[37] Shen, Y, Feng, C, Yang, Y, Tian, D. Mining point cloud local structures
by kernel correlation and graph pooling. In: CVPR. 2018, p. 4548–4557.

[38] Li, G, Muller, M, Thabet, A, Ghanem, B. Deepgcns: Can gcns go as
deep as cnns? In: ICCV. 2019, p. 9267–9276.

[39] Xu, M, Zhang, J, Zhou, Z, Xu, M, Qi, X, Qiao, Y. Learning geometry-
disentangled representation for complementary understanding of 3d ob-
ject point cloud. arXiv preprint arXiv:201210921 2021;2.

[40] Zhang, C, Wan, H, Liu, S, Shen, X, Wu, Z. Pvt: Point-voxel trans-
former for 3d deep learning. arXiv preprint arXiv:210806076 2021;.



10 Preprint Submitted for review / Computers & Graphics (2023)

[41] Himeur, CE, Lejemble, T, Pellegrini, T, Paulin, M, Barthe, L, Mel-
lado, N. Pcednet: A lightweight neural network for fast and interactive
edge detection in 3d point clouds. ACM Transactions on Graphics (TOG)
2021;41(1):1–21.

[42] Wu, P, Chen, C, Yi, J, Metaxas, D. Point cloud processing via recur-
rent set encoding. In: Proceedings of the AAAI Conference on Artificial
Intelligence; vol. 33. 2019, p. 5441–5449.

[43] Liu, X, Han, Z, Liu, YS, Zwicker, M. Point2sequence: Learning the
shape representation of 3d point clouds with an attention-based sequence
to sequence network. In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence; vol. 33. 2019, p. 8778–8785.

[44] Meilă, M, Shi, J. A random walks view of spectral segmentation. In:
International Workshop on Artificial Intelligence and Statistics. PMLR;
2001, p. 203–208.

[45] Gorelick, L, Galun, M, Sharon, E, Basri, R, Brandt, A. Shape represen-
tation and classification using the poisson equation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 2006;28(12):1991–2005.

[46] Grady, L. Random walks for image segmentation. IEEE transactions on
pattern analysis and machine intelligence 2006;28(11):1768–1783.

[47] Grady, L, Funka-Lea, G. Multi-label image segmentation for medi-
cal applications based on graph-theoretic electrical potentials. In: Com-
puter Vision and Mathematical Methods in Medical and Biomedical Im-
age Analysis. Springer; 2004, p. 230–245.

[48] Grady, L. Multilabel random walker image segmentation using prior
models. In: 2005 IEEE computer society conference on computer vision
and pattern recognition (CVPR’05); vol. 1. IEEE; 2005, p. 763–770.

[49] Lai, YK, Hu, SM, Martin, RR, Rosin, PL. Fast mesh segmentation
using random walks. In: Proceedings of the 2008 ACM symposium on
Solid and physical modeling. 2008, p. 183–191.

[50] Shen, J, Du, Y, Wang, W, Li, X. Lazy random walks for superpixel
segmentation. IEEE Transactions on Image Processing 2014;23(4):1451–
1462.

[51] Li, X, Han, Z, Wang, L, Lu, H. Visual tracking via random walks on
graph model. IEEE transactions on Cybernetics 2015;46(9):2144–2155.

[52] Xia, F, Liu, J, Nie, H, Fu, Y, Wan, L, Kong, X. Random walks: A
review of algorithms and applications. IEEE Transactions on Emerging
Topics in Computational Intelligence 2019;4(2):95–107.

[53] Motwani, R, Raghavan, P. Randomized algorithms. Cambridge univer-
sity press; 1995.

[54] Chazelle, B. The discrepancy method: randomness and complexity.
Cambridge University Press; 2001.

[55] Sawhney, R, Crane, K. Monte carlo geometry processing: A grid-free
approach to pde-based methods on volumetric domains. ACM Transac-
tions on Graphics 2020;39(4).

[56] De Berg, M, Van Kreveld, M, Overmars, M, Schwarzkopf, O. Compu-
tational geometry. In: Computational geometry. Springer; 1997, p. 1–17.

[57] Cho, K, Van Merriënboer, B, Gulcehre, C, Bahdanau, D, Bougares, F,
Schwenk, H, et al. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP)
2014;.

[58] Ben-Shabat, Y, Lindenbaum, M, Fischer, A. 3DMFV: Three-
dimensional point cloud classification in real-time using convolutional
neural networks 2018;3:3145–3152.

[59] Goyal, A, Law, H, Liu, B, Newell, A, Deng, J. Revisiting point cloud
classification with a simple and effective baseline. In: ICML. 2020,.

[60] Qiu, S, Anwar, S, Barnes, N. Dense-resolution network for point cloud
classification and segmentation. In: Proc. of the IEEE Winter Conference
on Applications of Computer Vision (WACV). 2021, p. 3813–3822.

[61] Qiu, S, Anwar, S, Barnes, N. Geometric back-projection net-
work for point cloud classification. IEEE Transactions on Multimedia
2021;doi:10.1109/TMM.2021.3074240.

[62] Wiersma, R, Nasikun, A, Eisemann, E, Hildebrandt, K. Deltaconv:
Anisotropic point cloud learning with exterior calculus. arXiv preprint
arXiv:211108799 2021;.

[63] Xu, M, Ding, R, Zhao, H, Qi, X. Paconv: Position adaptive convolu-
tion with dynamic kernel assembling on point clouds. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, p. 3173–3182.

[64] Zhao, H, Jiang, L, Jia, J, Torr, PH, Koltun, V. Point transformer. In:
ICCV. 2021, p. 16259–16268.

[65] Ran, H, Zhuo, W, Liu, J, Lu, L. Learning inner-group relations on

point clouds. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2021, p. 15477–15487.

[66] Han, Z, Shang, M, Liu, Z, Vong, CM, Liu, YS, Zwicker, M, et al. Se-
qViews2SeqLabels: Learning 3d global features via aggregating sequen-
tial views by rnn with attention. IEEE Transactions on Image Processing
2018;28:658–672.

http://dx.doi.org/10.1109/TMM.2021.3074240

	1 Introduction
	2 Related work
	3 CloudWalker
	4 Applications
	4.1 3D shape Classification
	4.2 Retrieval

	5 Ablation study
	6 Conclusions

