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ABSTRACT
In this paper, we present FaceTuneGAN, a new 3D face model representation decomposing and
encoding separately facial identity and facial expression. We propose a first adaptation of image-to-
image translation networks, that have successfully been used in the 2D domain, to 3D face geometry.
Leveraging recently released large face scan databases, a neural network has been trained to decouple
factors of variations with a better knowledge of the face, enabling facial expressions transfer and
neutralization of expressive faces. Specifically, we design an adversarial architecture adapting the
base architecture of FUNIT and using SpiralNet++ for our convolutional and sampling operations.
Using two publicly available datasets (FaceScape and CoMA), FaceTuneGAN has a better identity
decomposition and face neutralization than state-of-the-art techniques. It also outperforms classical
deformation transfer approach by predicting blendshapes closer to ground-truth data and with less of
undesired artifacts due to too different facial morphologies between source and target.

1. Introduction
Acquiring, modeling, simulating and rendering the 3D

geometry of the human face have remained key challenges
in computer graphics for decades. Lately, 3D digital char-
acters have sparked more and more interest in numerous
domains, with recent research enabling higher fidelity and
realism. While the modeling of actors was made available
years ago [2], 3D realistic faces can now be generated from
scratch [30], and thus ease the population of digital worlds.
With capture technology becoming available to the mass-
market, realistic digital doubles enable seamless telecom-
munication between individuals within virtual worlds [51].
They also find use outside of the entertainment and telecom-
munication industries, e.g. sports, education, health and
security. For instance, they have been used for the pre-visua-
lization of plastic surgeries [5].

However, achieving a convincing representation of the
3D human face is still a difficult task. Countless attempts
have resulted in appearances that, while technically impres-
sive, fall just short of fooling the audience and end up in
the so-called uncanny valley. This is due to our considerable
ability to effortlessly infer social cues and gather information
when looking at human faces [33]. Variations of the 3D
face shape are based on several factors, including identity,
pose, expression and age. An approach that is successfully
able to decompose faces into these factors of variations
would bring a better understanding of the face semantic, and
eventually improve many applications such as expression
transfer, expression extrapolation, performance retargeting,
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Figure 1: Blendshape transfer compared to our method. Re-
sults for the expressions mouth_stretch (row 2) and lip_funneler
(row 3) expressions for two subjects of the FaceScape dataset
are shown.

avatar creation [10] and personalization [41], facial recog-
nition, or aging and de-aging. This work focuses on two
factors: the identity and the expression. Our goal is to add
expressions to a given 3D face model while preserving its
identity and respecting its morphological constraints.

Current methods for bringing facial expressions to 3D
faces often involve a lot of manual artistic work. While
some high-budget productions can afford to have expressions
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manually sculpted by artists, this is a limiting factor for
many applications and it is hardly scalable. Tools have been
developed to adapt expressions automatically from one face
to another. Blendshape transfer is a typical example [47].
However, most of these automatic methods fail to appro-
priately take into account the specific morphology of the
person, resulting in inaccurate depictions.

Recently, the performance of style transfer and image-
to-image translation networks has seen major performance
improvements thanks to developments in deep learning.
Style transfer is the task of separating a given data into
a content part, and a style part, in order to stylize it by
replacing its style part with another. The advent of gener-
ative adversarial networks [16] and their many variations
[37, 43, 24] have opened the door to new architectures
that outperform past approaches for style transfer in various
domains [20, 57, 35]. Also, 2D generative models [25, 8]
have come a long way in synthesizing convincing faces from
compact latent representations while keeping some control
on the semantics of the generated image. In this work, we
apply style transfer techniques to the 3D domain in order
to decompose face geometries into structural and stylistic
features. Adopting the language of image-to-image transla-
tion methods, we designate content as the identity dependent
features of the face, and style as the elements that vary with
facial expressions. We apply this approach to decompose
identity and expression using only expression labels, allow-
ing morphology aware expression transfer between a face
with a given identity (content), and another with a given
expression (style). We present an architecture that is able to
decompose a given 3D face into decoupled content (identity)
and style (expression) latent codes, and map these latent
representations back into a face. Using the SpiralNet++ con-
volution operator [15], we adapt successful image-to-image
translations techniques, such as the multitask adversarial
discriminator introduced by Liu et al. [35] to the 3D domain.
Limiting ourselves to geometry (i.e. no texture), we achieve
state-of-the-art results for decomposition and reconstruction
of expressive 3D faces with a flexible approach that could
be applied to other domains. This allows us to accurately
transfer expressions in a morphology aware manner.

Following a review of related work in Section 2, our
approach is presented in Section 3. Results and compari-
son against state-of-the-art methods are then detailed and
discussed in Section 4. Finally, limitations and conclusions
are provided in Section 5 and 6 respectively. Additional
technical details are available in the appendices.

2. Related Work
Due to the prominence of face modeling as a computer

graphics problem, there exists many methods for manipulat-
ing 3D geometry that are specifically tailored for the human
face. These approaches aim to map raw geometries to more
semantic spaces, in order to manipulate them in a more
meaningful manner than directly displacing vertices. In this
section, we first review the literature for 3D facial expression

modeling to assess the limitations of current methods. We
then explore the state of image-to-image translation net-
works. Next, we introduce common 3D mesh convolution
operators used in learning-based methods. Finally, we inves-
tigate how similar approaches have been developed in the 3D
domain.
2.1. 3D Face Modeling

Methods for modeling expressions of 3D human face
have historically been largely linear or multilinear. The
reader interested in this topic can refer to the survey pub-
lished by Egger et al. [12]. We first consider these two
categories of models, before reviewing recent nonlinear
approaches.
2.1.1. Linear and Multilinear 3D Face Models

Blanz and Veter originally presented an approach for
creating a 3D Morphable Model of the human face [3].
They used principal component analysis (PCA) to infer the
distribution of facial geometry for a finite set of face scans.
This method allows for manipulation of face features by
manually mapping attributes to vectors in the parameter
space. Rudimentary expression transfer is achieved by apply-
ing the deformation of one subject’s expressive mesh onto
another. One major limitation of this first naive approach
is that the expression is not adapted to the target face.
For instance, when applying a mouth-opening expression
from one subject to another with a larger jaw, the vertex
displacements should not be the same (example on Figure 1).

To alleviate the issue of PCA components mixing iden-
tity and expression, Vlasic et al. extend the PCA into a
multilinear model which can decorrelate shape variations
caused by identity and expression [49]. Li et al. introduce
the FLAME model, which combines a linear shape spaces,
articulated parts (jaw, neck, eyeballs) and blendshapes for
expressions and pose [31]. This allows to further disentangle
identity, pose, and expression. Despite several improvements
over time (e.g. [50, 4]), these approaches fall short when it
comes to modelling subtle facial details. Because variations
of the face shape in the real world are nonlinear in nature,
we now look at architectures that introduce nonlinearities for
more accurate representations of the face shape.
2.1.2. Nonlinear 3D Face Models

In recent years, nonlinear approaches to modeling the
human face have outperformed previous methods. In 2017,
Li et al. present the linear FLAME model. Since then,
new models that make use of recent developments in deep
learning have outperformed FLAME. Ranjan et al. manage
to represent 3D faces with 75% fewer model parameters
than previous attempts, and outperform previous approaches
for reconstruction and interpolation of expressions, in ad-
dition to demonstrating the ability to synthesize new faces
[44]. Adopting a multi-scale autoencoder approach, they
use graph convolutions on face meshes and introduce new
efficient down-sampling and up-sampling operators. Abre-
vaya et al. use an Auxiliary Classifier GAN [40] to model
non-linear variations of 3D face geometry while decoupling
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identity and expression factors [1]. Given an identity vector,
an expression vector and noise, the generator outputs 3D
coordinates of the mesh. These coordinates are mapped to
a two-dimensional image, which is fed to a discriminator
that classifies it into an identity class, an expression class
and real/fake classes using standard 2D Convolutional Neu-
ral Networks (CNN) techniques. Although these models
achieve state-of-the-art reconstruction results and a decou-
pled face representation, they require optimizing an input
noise vector to fit a given face. Jiang et al. address this by
adopting an autoencoder architecture, similar to CoMA’s
[44], with the added ability to decompose the input face
into identity and expression latent representations [21]. A
fusion module then reconstructs these representations into
a face. Zhang et al. extend this decomposition approach
with an architecture that enforces distributional indepen-
dence between identity and expression attributes by design
[54]. They obtain great performance on the task of neu-
tralizing the expression or identity of a given mesh. Their
method consists in extracting both an identity mesh and
an expression mesh from the given face, and adding them
together for reconstruction. However, the decoded identity
and expression mesh are respectively expression-agnostic
and identity-agnostic by design. Thus, their sum cannot
accurately capture the coupling between the two factors. This
limits the performance of expression transfer for expressions
that differ substantially from the neutral expression.
2.2. Style Transfer and Image-to-Image

Translation
Style transfer methods traditionally transform an input

image so that it preserves its content while adopting stylistic
features of another input [14]. Image-to-image translation
networks are a generalization of these procedures. Such
networks have been able to successfully map between the
specific local attributes of multiple sets of images [57, 35]. In
other words, they can transfer an image from one class to an-
other while keeping the content intact. Typical examples in-
clude translating between animal classes, changing the sea-
son of a photographed landscape or altering specific features
of a human face (e.g. hair color, morphology, age). Isola et
al. released the pix2pix framework, outperforming previous
methods [29, 28, 56] by applying Conditional GANs to
the image translation problem [20]. Furthermore, they have
demonstrated outstanding performance in a large variety
of domains, even compared to domain-specific methods.
Unsupervised image-to-image translation methods have ob-
tained competitive results without requiring pair supervision
[48, 34, 35, 57]. This opens the door to wider applications,
since less time needs to be spent manually annotating the
data. These methods use specific constraints to preserve
features of the input data in the absence of a target ground
truth while training. If we consider a face’s identity to be
the content, and its expression to be a style, they appear to
be good candidates to solve our problem. They are although
limited to 2D domains.

2.3. Mesh Convolution Operators
Adapting successful image-to-image translation tech-

niques to 3D geometry could enable better accuracy in
transferring attributes from one shape to another. To tackle
this ill-posed problem, one of the challenges is to extract
style features from the shape structure. Analogous to the
convolutional layers that are used to extract style information
from images, several approaches have been developed for
performing convolutions on 3D meshes over the past few
years. Many papers apply spectral graph convolutions [6]
to 3D faces [21, 54, 44]. Others map geometries to the
2D domain and apply standard 2D convolution operators
[46, 1, 38].

In 2018, Lim et al. introduced SpiralNet, a new convo-
lution operator specialized for 3D meshes [32]. Gong et al.
later released SpiralNet++ to refine the approach [15]. This
new operator captures local geometric features by using pre-
computed spiral sequences on themesh surface. Their results
are competitive with previous state-of-the-art methods for
reconstruction on 3D face datasets. With the same number
of parameters, they outperform previous methods while run-
ning several times faster.
2.4. 3D Style Transfer

While there is a growth in approaches to apply con-
volutions to the 3D domain, there currently exist few at-
tempts at 3D shape-to-shape style transfer. Recently, Segu
et al. developed a 3D style transfer architecture that uses a
PointNet [42] encoder and a decoder with Adaptive Instance
normalization (AdaNorm) [52] to perform shape translation
on static objects [45]. In 2019, Moschoglou et al. introduced
3DFaceGAN for representation, generation and translation
of 3D facial surfaces allowing to transfer expression and res-
olution levels between facial scans.[38].While they obtained
state-of-the-art results at the time for the task of reconstruc-
tion, the expression transfer capabilities are limited. Their
approach to multi-label face translation considers mapping
neutral faces to a limited amount of discrete expressions.
However, the identity and expression factors are not explic-
itly decoupled, as they share the same latent space.

Our aim is to create a model that can take arbitrary
faces as input, and can disentangle identity and expression
to perform expression transfer. This analysis of the literature
suggests that techniques from recent image-to-image trans-
lation networks could be adapted to the 3D domain.

3. Proposed Method
We propose an architecture that adapts successful image-

to-image translation techniques to 3D geometry in order to
map local features of a 3D face shape (content) from one
facial expression to another (style). Specifically, we adapt
the base architecture of FUNIT [35], using SpiralNet++ [15]
for our convolution and sampling operators. First, we define
several terms and notations used in our approach. We then
present our architecture and the objectives that are optimized
during training.
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Figure 2: Our network architecture. The encoders extract
and compress the features of their input into low-dimensional
content and style vectors. A decoder reconstructs a mesh
from these compact representations. The style information is
passed to the decoder through AdaIN normalization layers.
More details of the architecture are given in the Appendix
(Section A).

3.1. Notations and Definitions
In our approach, we adopt language analogous to style

transfer and image-to-image translations papers. We desig-
nate the content of the faces as their identity: these are the
structural features of the face that do not depend on the facial
expressions and should be preserved when performing style
transfer. The term style corresponds to the features that vary
with facial expressions.

Let � denote a domain of 3D shape, defined as triangular
meshes. All shapes within these domains have previously
been fitted to the same topology. Thus, any sample x ∈ �
is represented by a matrix of 3D coordinates of shape (V , 3),
V being the number of vertices in our topology.

We propose to learn encoding functions Ec and Es thatmap a sample x ∈ � to its respective content and style
latent codesEc(x) andEs(x). We also learn a corresponding
decoding functionDec that reconstructs a 3D geometry from
the latent codes. These functions should ideally satisfy the
reconstruction constraint Dec(Ec(x), Es(x)) = x, meaning
that we are able to encode and decode our geometry in a
lossless manner. To achieve expression transfer, we use the
common method of encoding a source mesh, swapping its
style code with one that corresponds to a different expres-
sion, then decode to reconstruct a mesh.

Average vertex distance: we use average vertex distance
to measure distances between two geometries. Given two
triangle meshes x and y with V vertices under the same
topology, the average vertex distance is defined as:

AVD(x, y) = 1
V

V
∑

i=1
||xi − yi||2 (1)

where xi and yi respectively denote the ith vertex of x and yand || ⋅ ||2 is the L2 Euclidean distance.
3.2. Architecture

We introduce an autoencoder that is able to separate
the content (identity) and style (expression) features of the

(a) SpiralBlock (the layers de-
picted in light blue are all op-
tional)

(b) SpiralResBlock

Figure 3: The building blocks of the network.

input facial shapes. The complete architecture is presented
in Figure 2. The specific composition of the modules is
given in the appendix (Section A, Figures 9 and 10), with
tweaks depending on the dataset used for training. We adopt
SpiralNet++ [15] for all of our convolutions and pooling
[13] layers and use SpiralBlock as the main building block
of our mapping functions. A SpiralBlock (Figure 3a) is
composed of an optional up-sampling pooling layer, fol-
lowed by a convolutional layer, normalization, activation and
an optional down-sampling layer. Additionally, we use the
SpiralResBlock variant described in Figure 3b.
3.2.1. SpiralNet-based Autoencoder for 3D Faces

The autoencoder is composed of 3 parts: The content
encoder, that takes a face as input, and extract its content
(identity), the style encoder, that takes another face and
extract its style (expression), and finally the decoder, which
generates a face from the outputs of the content and style
encoders (see Figure 2).

Content Encoder: the content encoder is composed of
several downscaling SpiralBlocks (the exact number de-
pends on the dataset, see appendix A), two SpiralResBlocks
and aMulti-Layer Perceptron (MLP). The SpiralBlocks cap-
ture local information in the geometry. We then flatten the
spatial and feature dimensions together and use the MLP to
compress the information into the content representation.

Style Encoder: similarly, the style encoder is made up
of a series of downscaling SpiralBlocks. However, as style
information must be global in nature, instead of flattening
the spatial and feature dimensions together, we compute the
mean along the spatial dimension. Similarly to the content
encoder, the resulting vector is then fed to a MLP in order to
control the size of the latent space.

Decoder: the decoder upscales the content code into a
3D geometry using SpiralBlocks that are conditioned by the
style code using Adaptive Instance normalization (AdaIN)
[18]. Given a sample x that is passing through the network,
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AdaIN first normalizes the activations in each channel of x
to a zero mean and unit variance. The activations are then
scaled on a per-channel basis. We use a mapping function
M that maps a style code y into (�, �) parameters for every
channel of each AdaIN layer. Hence the following equation:

AdaIN(x, y) =M�(y)
x − �(x)
�(x)

+M�(y) (2)

M is a learned affine function composed of multiple fully
connected layers, taking the style latent code as input. Since
the AdaIN transformation operates on whole channels, the
style code alters global appearance information while the
local features (e.g. the shape of the chin) are determined by
the content code. The mapping function and decoder are not
conditioned by a discrete class label. As a result, style codes
are not domain-specific, in contrast with several existing
methods for image translation [19], image generation [8] and
shape transfer [45]. Having a single style space allows us to
interpolate between style codes.

Together, the content encoder, style encoder, style map-
ping and decoder make up the generatorG of our adversarial
network.
3.2.2. Discriminator

Similar to FUNIT [35], we implement a multi-task ad-
versarial discriminator D. Its role is to both enforce that the
output mesh belongs to the distribution of the target style
class, and that its geometry cannot be distinguished from a
real scan. D solves as many binary classification tasks as
there are style classes in the dataset. For each of these style
classes, D outputs a classification of whether the geometry
is a real sample of that class, or a translation output from the
generator.

Let s denote a style class.
• When updating the discriminator with a translation

output of class s from the generator, we penalize D
if and only if its s-th output is positive and ignore the
predictions for other classes. Given a real geometry of
style class s, we penalize it if its s-th output is negative.
This way, the discriminator learns to distinguish real
from generated meshes.

• When updating the generator, we perform a style
translation using a sample of style class s. We then
penalizeG if the s-th prediction output fromD is neg-
ative. This encourages the generator to output realistic
meshes.

Similarly to our encoders, the discriminator is composed
of SpiralBlocks that gradually downscale its input mesh in
the vertex dimension while adding features, followed by a
linear layer for classification. More details can be found in
Appendix A.
3.3. Loss Functions

In this section, we define the loss functions that are used
for training our network. Let x and s denote two samples

respectively taken from our content and style sets. Let xrdenote the reconstructed mesh obtained by encoding and
decoding x:

xr = Dec(Ec(x), Es(x)) (3)
We also define xt, the mesh obtained after translating x into
the style class of s:

xt = Dec(Ec(x), Es(s)) (4)
Reconstruction loss: we define the reconstruction loss

for our generator as the following:
Lrec(G) = ||xr − x||2 (5)

By minimizing this loss, we force the encoders and decoder
to extract relevant information in order to compress to and
from our latent spaces with the least possible loss.

Cycle consistency loss: we adopt the cycle consistency
loss [55] [57], defined as:

Lcycle(G) = ||Dec(Ec(xt), Es(x)) − x||2 (6)
Its purpose is to ensure that the generator is able to translate
x to the style class of s and back to its original style class
with minimal content information loss.

Style reconstruction loss: we introduce a novel style
reconstruction loss to encourage G to preserve the specific
style features of the input style mesh in the style latent space:

Lsrec(G) = ||Es(xt) − Es(x)||1 (7)
Adversarial loss: our adversarial loss is a conditional

loss given by:
Ladv(G,D) = E [ − log(Ds(s))

]

+E [ log(1 −Ds(xt))
] (8)

where Ds(⋅) denotes the discriminator output for the style
class of s and E[⋅] the mean over the current batch.

Feature matching loss: we use a feature matching loss
that leverages our multi-task adversarial discriminator to
encourage our generator to output meshes that belong to the
correct style class:

Lfeat(G) =E
[

||Df (xr) −Df (x)||1
]

+ E [ ||Df (xt) −Df (s)||1
] (9)

where Df (⋅) denotes the last feature layer of the discrim-
inator, prior to classification. By minimizing this loss, we
enforce that the generator preserves style features when
reconstructing the input and includes style features of the
target when translating.

Discriminator regularization loss: we regularize the
training by adopting the gradient penalty regularization loss
Lreg introduced by Mescheder et al. [36] and used in FU-
NIT [35].

Laplacian Smoothing loss: finally, we use a Laplacian
Smoothing loss on the translated mesh [11] [39]. Specifi-
cally, we use Pytorch3D’s implementation of uniform mesh
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Laplacian Smoothing, which consists in minimizing the dis-
tance between every vertex and the centroid of its neighbors
[22]. Empirically, we have determined that this constraint
makes the generator perform better at reconstruction at the
cost of some high frequency resolution.

Full objective: our network is trained by solving the
following minimax optimization problem:

min
D

max
G
Lreg(D) + �advLadv(G,D) + �featLfeat(G)

+�srecLsrec(G) + Lrec(G) + Lcycle(G)
(10)

where �adv, �feat and �srec, are hyper-parameters. The dis-
criminator is trained for one iteration every time we train the
generator.

4. Results
This section reports the evaluation of our proposed

method. We first describe the datasets that were used. Then,
we give details for the implementation with which the
evaluation was conducted. Finally, our results are evaluated
in a series of experiments and compared to existingmethods.
4.1. Datasets

We evaluate the capabilities of our approach on two
publicly available datasets:

FaceScape [53]: this dataset includes 16,940 topologi-
cally uniformed 3D face models, captured from 847 subjects
performing 20 facial expressions. Displacement and texture
maps are also available, though they are not used in this
work. Out of the 847 subjects, we discard 40 due to issues
with some of the scans. We select 10% of the remaining
scans as our test set.

CoMA [44]: this dataset contains dynamic sequences
of 12 subjects, each performing 12 facial expressions. In
total, it comprises 144 sequences which add up to more than
20k face scans. While the small number of subjects does
not allow for great generalization of identity features, the
facial expressions are more extreme and asymmetrical than
those of FaceScape. In our case, we need discrete expression
labels for training. First, we select the first frame of each
sequence as samples of neutral expression for the subject.
Then, on each sequence, we select the frame with the largest
average vertex distance to the first (neutral) frame. Since it
is not always the best match to represent the expression, we
manually verify all sequences and adjust this selection. We
also split up the mouth_up, mouth_middle and mouth_down
expressions into their left and right variants, adding up to
a total of 17 expressions, though some do not exist for all
subjects (see Figure 11). Finally, we sample 10 frames before
and after the selected one in each sequence to add diversity
and noise. We obtain a total of 3, 720 scans, which we
randomly split into train and test sets by a 9:1 ratio.

For fair comparison, we limit the dimensionality of
our latent space. On the CoMA dataset, both our content
and style spaces have 4 dimensions, adding up to a total
dimensionality of 8. On the FaceScape dataset, Kacem et al.

[23], use a single latent space of 25 dimensions. However,
this latent space is only used to represent neutral faces.
Nonetheless, we limit ourselves to 20 content dimensions
and 5 style dimensions for these comparisons.
4.2. Implementation Details

We set the weights in Equation (10) to �adv = 1.0,
�feat = 1.0, �srec = 0.4. All of our spiral convolutions use
a sequence length of 9 with no dilation (see [15] for more
information).We train our generator and discriminator using
ADAM optimizers [26], with a learning rate of 1 × 10−4
and a weight decay of 5 × 10−5. All weights are initialized
using the Kaiming method [17]. We train with a batch size
of 8, until no significant improvements are seen on our
reconstruction, neutralization and style transfer metrics. The
training duration depends on the dataset. On FaceScape,
we train for 70 epochs over a duration of approximately 36
hours. On CoMA, the network is trained for 480 epochs over
8 hours. Fine-tuning was done on a NVIDIA GeForce RTX
2080 Ti, a Tesla P100 GPU and a Tesla V100. The final
training runs were done on the 2080 Ti for CoMA, Tesla
V100 for FaceScape.
4.3. Experiments

First, we assess our autoencoder’s ability to reconstruct
an input mesh and compare it with state-of-the-art methods.
Second, we conduct the expression neutralization task and
compare our results with several baselines. Third, we evalu-
ate our performance on the more general expression transfer
task, and we compare the results to a blendshape transfer
method.
4.3.1. Reconstruction

In order to ensure that our autoencoder is able to com-
press the information with as little information loss as pos-
sible, we calculate the reconstruction error as follows:

Erec =
1
|S|

∑

x∈S
AVD(x,Dec(Ec(x), Es(x))) (11)

where S is a testing set of face geometries.
Figure 5 shows error maps of reconstruction samples on

the CoMA dataset. In Table 1, we list quantitative results
compared with other methods for both reconstruction and
disentanglement of identity and expression. All methods
use a total latent space size of 8. On CoMA, we attain
reconstruction results in the range of other disentanglement
methods: we perform better than FLAME [31] and Jiang
et al. [21] but worse than Zhang et al. [54]. Note that the
latter benefits from being able to use the entire CoMA
database, while we only select a few frames per sequence
to fit discrete expression labels. We also do not require each
mesh to be paired with its neutral ground truth for training.
For comparison, we include the results of the original Spiral-
Net++ [15] architecture, which obtains better performance
on the reconstruction but does not disentangle identity and
expression.

On the FaceScape dataset, we obtain a mean reconstruc-
tion error of 0.81mm, with a standard deviation of 0.25mm
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Figure 4: Reconstruction examples on FaceScape, with latent dimensions (20, 5). The first row shows the input mesh. The
reconstruction is displayed in the second row, while the third row shows an error map relative to the input. Values are in
millimeters.

Model Mean Median

SpiralNet++ [15]0.54 ± 0.66 0.32

FLAME [31] 1.45 ± 1.65 0.87

Jiang et al. [21] 1.41 ± 1.64 1.02

Zhang et al. [54]0.67 ± 0.75 0.43

Our method 0.83 ± 0.21 0.77

Table 1
Reconstruction error on the CoMA dataset (mm). The Spiral-
Net++ method does not disentangle identity and expression.

and a median of 0.76mm. Metrics from other work are not
available for comparison. Examples of reconstructions are
given in Figure 4. We can observe that the error is spread
over the face, with notable patches on the neck, eyebrows,
lips and cheeks. On themouth_stretch expression (columns 5
and 7), the network visibly struggles to capture the geometry
and position of the lower lip.
4.3.2. Expression Neutralization

We evaluate our method on the expression neutralization
task using two metrics. We first adapt the identity decom-
position error introduced by Jiang et al. [21] (and adopted
by Zhang et al. [54]) to our approach. Let xc,s denote a
mesh of content class c and style class s. We compute the
identity decomposition as follows: for each content class
c, we randomly select another content class c′ and apply
its neutral style onto each (xc,s)s∈S . Then, we calculate thestandard deviation of the resulting meshes using AVD :

Figure 5: Reconstruction examples on CoMA. The first row
shows the input mesh. The reconstruction is displayed in the
second row, while the third row shows an error map relative to
the input. Values are in millimeters.

�c = std
s∈S

Dec(Ec(xc,s), Es(xc′,neutral)). Since we are effec-
tively applying the same neutral style on meshes (xc,s)s∈S ,which only differ in style, a successfully trained network
is supposed to yield identical outputs. A visualization for a
subject of the CoMA dataset is given in Figure 6. We report
the mean of these deviations as our identity decomposition
metric (Equation (12)). For quantitative results, see Table 2.

Eid_decomp =
1
|C|

∑

c∈C
�c (12)

In addition, we compare our results to existing methods
on the FaceScape dataset by reporting the mean error be-
tween neutralized faces and the corresponding ground truth
neutral. More precisely, we apply the following process: we
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Figure 6: Variations of neutralized meshes for one subject of CoMA. The error map is relative to the mean of the outputs. Values
are in millimeters. The identity decomposition error is the mean of this standard deviation computed for each subject.

Model MeanMedian

FLAME [31] 0.599 0.591

Jiang et al. [21] 0.102 0.096

Zhang et al. [54]0.019 0.020

Our method 0.018 0.018

Table 2
Identity decomposition error on the CoMA dataset (mm).

Model Dataset mean ± std (median)

Ranjan et al. [44]FaceScape 2.88

Kacem et al. [23]FaceScape 2.02

Our method FaceScape 1.47 ± 1.43 (1.31)

Ranjan et al. [44] CoMA 3.28

Kacem et al. [23] CoMA 2.73

Our method CoMA 0.98 ± 0.46 (0.81)

Table 3
Neutralization error (mm). Standard deviations and medians
for other methods are not provided.

randomly draw n triplets (c, c′, s)c∈C, c′∈C⧵{c}, s∈S⧵{neutral},i.e. two different content classes and a non-neutral style
class. For each triplet (c, c′, s), we apply the style of xc′,neutralonto xc,s and compare the output with ground truth xc,neutral(Equation (13)). Results are presented in Table 3.

Eneu =
1
n

∑

(c,c′,s)
AVD(xc,neutral, Dec(Ec(xc,s), Es(xc′,neutral)))

(13)
Note that our model is trained in the unpaired setting.

We do not explicitly pair expressive faces with their neutral

counterpart, contrary to the compared methods. These met-
rics allow us to evaluate our method against the state of the
art for expression neutralization. However, this task is only
one particular case of our network’s capabilities.
4.3.3. Expression Transfer

We now evaluate our model on the more general ex-
pression transfer task. We introduce a metric similar to
the neutralization error above and provide a baseline. We
randomly draw n triplets exactly as described above: each
triplet (c, c′, s) contains two different content classes and a
non-neutral style class. This time, the style of xc′,s is appliedonto xc,neutral: xt = Dec(Ec(xc,neutral), Es(xc′,s)). The output
xt is compared to the ground truth xc,s.

Etransfer =
1
n

∑

(c,c′,s)
AVD(xc,s, xt) (14)

In Table 4, we report our expression transfer error on the
FaceScape dataset for each style class s. It can be observed
that some expressions are associated withmuch higher trans-
fer errors than others. The most difficult expressions seem
to be the ones farthest apart from neutral. Figure 7 shows
visual examples for smile andmouth_stretch, the expressions
with the lowest and highest error. It illustrates one of the
challenges of the task particularly well. The first subject in
the mouth_stretch expression opens his jaw less than most
subjects in the dataset. In the transfer output, the lower part
of the face is lower than it should be, because the correspond-
ing xc′,s (not shown) whose style is transferred has a more
open jaw. During training, this would penalize the network.
However, this difference could perhaps be attributed to a
different interpretation of the expression by the subject (i.e.
for the same expression, two scans can be different due to
factors other than identity).

Finally we compare ourmethod to traditional blendshape
transfer [47]. Results are depicted in Figure 8. A visual
comparison to our method is shown on Figure 1. For the two
selected expressions, the blendshape transfer method applies
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Figure 7: Expression transfer results for two expressions (smile on the left, mouth_stretch on the right). The transfer outputs are
computed as described in Section 4.3.3.

ExpressionOur MethodBs transfer

smile 1.23 2.11
anger 1.32 3.25

sadness 1.45 4.10
grin 1.57 2.60

mouth_stretch 2.02 3.26
mouth_left 1.61 2.78

mouth_right 1.54 2.45
dimpler 1.42 2.20
jaw_left 1.53 2.24

jaw_right 1.63 2.59
jaw_forward 1.62 2.43
chin_raiser 1.65 2.82

lip_puckerer 1.56 2.36
lip_funneler 1.80 2.64

lip_roll 1.52 2.50
cheek_blowing 1.77 3.55

eye_closed 1.23 1.86
brow_raiser 1.30 3.06
brow_lower 1.41 3.27

all 1.54 2.74

Table 4
Expression transfer errors on FaceScape (mm) with our method
and the blendshape transfer.

the expression geometry to the target as it is on the source
face, without taking into account the target morphology. Our
method leads to more realistic outputs that look closer to
the ground truth. Objective measurements shows that our
method has smaller errors, as reported in Table 4.

Figure 8: Blendshape transfer results. Expressions are tranfered
from a source (not shown) to the target

5. Limitations and Future Work
We have developed a network architecture that adapts

style transfer techniques to 3D faces and demonstrated re-
sults that are competitive with the state of the art reconstruc-
tion, neutralization and expression transfer. However, there
are several ways in which this work could be extended.

Interpolation : we visually investigated our model’s
ability to interpolate between two faces. Leveraging our low-
dimensional representations, we perform linear interpola-
tions in the content and style spaces. LetA andB denote two
style codes obtained by encoding two scans of the same sub-
ject in a different facial expression. To interpolate, we move
along the style vector ⃖⃖⃖⃖⃖⃗AB in fixed increments of s × ||

⃖⃖⃖⃖⃖⃗AB||
in the style space. Similarly, we can interpolate in content
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space. Figure 12 shows results of interpolating between
expressions of the same subject on the FaceScape dataset. In
Figure 13, we interpolate between different subjects in their
neutral expression.

Geometric approaches (e.g. blendshapes) have explicit
control over the intensity of the expression being applied.
On the contrary, our method in its current state does not
have any additional constraint on the latent spaces. Hence
the results of these interpolations are completely dependent
on the structure of the data on which the network was
trained. We find that the network learns a much more regular
representation for the content space than the style space. We
attribute this to the large amount of subjects in the FaceScape
dataset, in comparison to the more limited variation of the 20
expressions.

Extrapolation : the previous interpolation method was
extended to investigate the network’s ability to extrapolate
from the training distribution. In Figure 14, we extrapolate
in style space along a vector going from the neutral code
of a subject to its style code for another expression. We find
that while the network can sometimes succeed in amplifying
the expression (e.g. mouth_stretch and cheek_blowing on
Figure 14), it is also susceptible to changing some features
in unexpected ways (e.g. the dimpler expression on Figure
14).

Figure 15 shows extrapolation in the content space. Our
method is able to amplify the differences between two faces.
Similarly to our findings for interpolation, we can observe
that the extrapolations in content space are less prone to
adding noise and warping unwanted features than those
in the style space. These interpolation and extrapolation
experiments are only preliminary tests. Due to the subjective
nature of this task, a user study would need to be conducted
to validate these results.

Increased realism : while we currently only predict
geometry, one could use the data available in FaceScape
to learn prediction of displacement maps and textures from
the latent codes and generate much more realistic faces. Our
network’s ability to decouple identity and expression factors
could be well-suited to modelling the subtle expression-
specific texture variations, a capability demonstrated by
Chandran et al. [7].

Investigate bias : it is common for deep learning meth-
ods to display biases in the output distribution. While the
gender of the subjects in the FaceScape dataset is distributed
quite evenly, there is a clear bias toward 18 to 24 year-
old Asians. It would be beneficial to study how this bias is
reflected in the outputs and whether the network is able to
generalize to more diverse faces.

Generative model : currently, sampling random content
or style codes is very unlikely to provide satisfying results.
In order to add this generative ability to the network, our
autoencoder could be turned into a Variational Autoen-
coder [27] by adding a regularization term (e.g. Kullback-
Leibler divergence loss) and encoding distributions instead
of single points. This could also improve our ability to
interpolate in latent space.

Unseen expressions : we could take a step further toward
adapting the performance of image translation networks to
the 3D domain by adding few-shot inference for unseen style
classes. Given a few samples of a new style class, the model
would be able to translate meshes to that new class. This
capability is demonstrated in 2D by the FUNIT model [35].

Application to other domains : finally, while our ap-
proach was only tested on face datasets, applying it to data
from other domains could yield interesting results. The
image-to-image translation models from which it is inspired
have been able to operate on animals, shapes of shoes and
handbags, seasonal variations of landscapes, painting styles,
etc. The challenge here will be the availability of large,
labeled 3D datasets.

6. Conclusion
We have presented FaceTuneGAN, a novel 3D face

model representation decomposing and encoding separately
facial identity and facial expression. The proposed method
is a first adaptation to the 3D domain of existing work
for transferring features of images from one style class to
another. Adapting several existing techniques to the 3D
domain, this new style-based adversarial autoencoder archi-
tecture can capture identity and expression features of the
input 3D face in separated low-dimensional spaces. Two
encoders respectively extract the content (identity) and style
(expression) information, which the decoder takes as inputs
to reconstruct a 3D face. Additionally, a discriminator is
used in an adversarial training scheme to regularize the
training, enforcing the output to be realistic and of the correct
style class. This method is shown to be better with previous
state-of-the-art approaches on several tasks, outperforming
them on several metrics, such as identity decomposition and
neutralisation.

This method could bolster the creation of digital char-
acters, allowing to accurately transfer expressions between
various facial morphologies. The architecture of the method
containing nothing specific to expressions, it also has the
potential to be adapted to applied to other style transfer
applications for 3D models.

7. Acknowledgments
This project has received funding from the Association

Nationale de la Recherche et de la Technologie under CIFRE
agreement No 2018/1656, and from the European Union’s
Horizon 2020 research and innovation program under grant
agreement No 952147.

References
[1] Abrevaya, V.F., Boukhayma, A., Wuhrer, S., Boyer, E., 2019. A

decoupled 3D facial shape model by adversarial training, in: Pro-
ceedings of the IEEE International Conference on Computer Vision,
IEEE. pp. 9418–9427. URL: https://hal.archives-ouvertes.fr/

hal-02064711, doi:10.1109/ICCV.2019.00951, arXiv:1902.03619.
[2] Alexander, O., Rogers, M., Lambeth, W., Chiang, J.Y., Ma, W.C.,

Wang, C.C., Debevec, P., 2010. The Digital Emily Project: Achieving

Olivier et al.: Preprint submitted to Elsevier Page 10 of 13

https://hal.archives-ouvertes.fr/hal-02064711
https://hal.archives-ouvertes.fr/hal-02064711
http://dx.doi.org/10.1109/ICCV.2019.00951
http://arxiv.org/abs/1902.03619


FaceTuneGAN: Face Autoencoder for Convolutional Expression Transfer Using Neural Generative Adversarial Networks

a photorealistic digital actor. IEEE Computer Graphics and Applica-
tions 30, 20–31. doi:10.1109/MCG.2010.65.

[3] Blanz, V., Vetter, T., 1999. A morphable model for the synthesis of
3D faces, in: Proceedings of the 26thAnnual Conference onComputer
Graphics and Interactive Techniques, SIGGRAPH 1999, ACM Press.
pp. 187–194. doi:10.1145/311535.311556.

[4] Bolkart, T., Wuhrer, S., 2016. A robust multilinear model learning
framework for 3D faces, in: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp.
4911–4919. doi:10.1109/CVPR.2016.531.

[5] Bottino, A., De Simone,M., Laurentini, A., Sforza, C., 2012. A new 3-
D tool for planning plastic surgery. IEEE Transactions on Biomedical
Engineering 59, 3439–3449. doi:10.1109/TBME.2012.2217496.

[6] Bruna, J., Zaremba, W., Szlam, A., LeCun, Y., 2014. Spectral
networks and deep locally connected networks on graphs. 2nd
International Conference on Learning Representations, ICLR 2014
- Conference Track Proceedings URL: http://arxiv.org/abs/1312.

6203, arXiv:1312.6203.
[7] Chandran, P., Bradley, D., Gross,M., Beeler, T., 2020. Semantic Deep

Face Models. Proceedings - 2020 International Conference on 3D
Vision, 3DV 2020 , 345–354doi:10.1109/3DV50981.2020.00044.

[8] Choi, Y., Uh, Y., Yoo, J., Ha, J.W., 2020. StarGAN v2: Diverse Image
Synthesis for Multiple Domains. Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recog-
nition , 8185–8194URL: http://arxiv.org/abs/1912.01865, doi:10.
1109/CVPR42600.2020.00821, arXiv:1912.01865.

[9] Clevert, D.A., Unterthiner, T., Hochreiter, S., 2016. Fast and accurate
deep network learning by exponential linear units (ELUs), in: 4th
International Conference on Learning Representations, ICLR 2016 -
Conference Track Proceedings. arXiv:1511.07289.

[10] Danieau, F., Gubins, I., Olivier, N., Dumas, O., Denis, B., Lopez,
T., Mollet, N., Frager, B., Avril, Q., 2019. Automatic gen-
eration and stylization of 3d facial rigs. 26th IEEE Confer-
ence on Virtual Reality and 3D User Interfaces, VR 2019 -
Proceedings , 784–792URL: https://ieeexplore.ieee.org/document/
8798208/, doi:10.1109/VR.2019.8798208.

[11] Desbrun, M., Meyer, M., Schröder, P., Barr, A.H., 1999. Implicit
fairing of irregular meshes using diffusion and curvature flow, in:
Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1999, ACM Press. pp. 317–
324. URL: http://portal.acm.org/citation.cfm?doid=311535.311576,
doi:10.1145/311535.311576.

[12] Egger, B., Smith, W.A., Tewari, A., Wuhrer, S., Zollhoefer, M.,
Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani,
S., Theobalt, C., Blanz, V., Vetter, T., 2020. 3D Morphable Face
Modelsa-Past, Present, and Future. ACM Transactions on Graphics
39. URL: http://arxiv.org/abs/1909.01815, doi:10.1145/3395208,
arXiv:1909.01815.

[13] Garland, M., Heckbert, P.S., 1997. Surface simplification using
quadric error metrics, in: Proceedings of the 24th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH
1997, ACM Press. pp. 209–216. doi:10.1145/258734.258849.

[14] Gatys, L.A., Ecker, A.S., Bethge, M., 2016. Image Style Trans-
fer Using Convolutional Neural Networks, in: Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, IEEE. pp. 2414–2423. URL: http://ieeexplore.ieee.
org/document/7780634/, doi:10.1109/CVPR.2016.265.

[15] Gong, S., Chen, L., Bronstein, M., Zafeiriou, S., 2019. SpiralNet++:
A fast and highly efficient mesh convolution operator. Proceedings
- 2019 International Conference on Computer Vision Workshop,
ICCVW 2019 , 4141–4148URL: http://arxiv.org/abs/1911.05856,
doi:10.1109/ICCVW.2019.00509, arXiv:1911.05856.

[16] Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Gener-
ative adversarial nets, in: Ghahramani, Z., Welling, M., Cortes,
C., Lawrence, N., Weinberger, K.Q. (Eds.), Advances in Neu-
ral Information Processing Systems, Curran Associates, Inc.. pp.
2672–2680. URL: https://proceedings.neurips.cc/paper/2014/file/

5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf, doi:10.3156/jsoft.29.
5_177_2.

[17] He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification, in:
Proceedings of the IEEE International Conference on Computer
Vision, IEEE. pp. 1026–1034. URL: http://ieeexplore.ieee.org/

document/7410480/, doi:10.1109/ICCV.2015.123, arXiv:1502.01852.
[18] Huang, X., Belongie, S., 2017. Arbitrary Style Transfer in Real-

Time with Adaptive Instance Normalization, in: Proceedings of the
IEEE International Conference on Computer Vision, IEEE. pp. 1510–
1519. URL: http://ieeexplore.ieee.org/document/8237429/, doi:10.
1109/ICCV.2017.167, arXiv:1703.06868.

[19] Hui, L., Li, X., Chen, J., He, H., Yang, J., 2018. Unsuper-
vised Multi-Domain Image Translation with Domain-Specific En-
coders/Decoders, in: Proceedings - International Conference on Pat-
tern Recognition, pp. 2044–2049. doi:10.1109/ICPR.2018.8545169,
arXiv:1712.02050.

[20] Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., 2017. Image-to-image
translation with conditional adversarial networks. Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017 2017-Janua, 5967–5976. URL: http://arxiv.org/abs/
1611.07004, doi:10.1109/CVPR.2017.632, arXiv:1611.07004.

[21] Jiang, Z.H., Wu, Q., Chen, K., Zhang, J., 2019. Disentangled
representation learning for 3D face shape, in: Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 11949–11958. URL: http://arxiv.org/abs/1902.

09887, doi:10.1109/CVPR.2019.01223, arXiv:1902.09887.
[22] Johnson, J., Ravi, N., Reizenstein, J., Novotny, D., Tulsiani, S.,

Lassner, C., Branson, S., 2020. Accelerating 3D deep learning
with PyTorch3D. SIGGRAPH Asia 2020 Courses , 1–1doi:10.1145/
3415263.3419160, arXiv:2007.08501.

[23] Kacem, A., Cherenkova, K., Aouada, D., 2021. Disentangled
Face Identity Representations for joint 3D Face Recognition and
Expression Neutralisation URL: http://arxiv.org/abs/2104.10273,
arXiv:2104.10273.

[24] Karras, T., Aila, T., Laine, S., Lehtinen, J., 2018. Progressive
growing of GANs for improved quality, stability, and variation. 6th
International Conference on Learning Representations, ICLR 2018
- Conference Track Proceedings URL: http://arxiv.org/abs/1710.

10196, arXiv:1710.10196.
[25] Karras, T., Laine, S., Aila, T., 2019. A style-based generator ar-

chitecture for generative adversarial networks. Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition 2019-June, 4396–4405. URL: http://arxiv.org/abs/

1812.04948, doi:10.1109/CVPR.2019.00453, arXiv:1812.04948.
[26] Kingma, D.P., Ba, J.L., 2015. Adam: A method for stochastic opti-

mization. 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings arXiv:1412.6980.

[27] Kingma, D.P., Welling, M., 2014. Auto-encoding variational bayes,
in: 2nd International Conference on Learning Representations, ICLR
2014 - Conference Track Proceedings. arXiv:1312.6114.

[28] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A.,
Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W.,
2017. Photo-realistic single image super-resolution using a generative
adversarial network, in: Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, pp. 105–114.
doi:10.1109/CVPR.2017.19, arXiv:1609.04802.

[29] Li, C., Wand, M., 2016. Precomputed real-time texture synthesis
with markovian generative adversarial networks. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 9907 LNCS, 702–
716. doi:10.1007/978-3-319-46487-9_43, arXiv:1604.04382.

[30] Li, R., Bladin, K., Zhao, Y., Chinara, C., Ingraham, O., Xiang, P.,
Ren, X., Prasad, P., Kishore, B., Xing, J., Li, H., 2020. Learn-
ing formation of physically-based face attributes. Proceedings of
the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition , 3407–3416URL: http://arxiv.org/abs/2004.

03458, doi:10.1109/CVPR42600.2020.00347, arXiv:2004.03458.

Olivier et al.: Preprint submitted to Elsevier Page 11 of 13

http://dx.doi.org/10.1109/MCG.2010.65
http://dx.doi.org/10.1145/311535.311556
http://dx.doi.org/10.1109/CVPR.2016.531
http://dx.doi.org/10.1109/TBME.2012.2217496
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1312.6203
http://dx.doi.org/10.1109/3DV50981.2020.00044
http://arxiv.org/abs/1912.01865
http://dx.doi.org/10.1109/CVPR42600.2020.00821
http://dx.doi.org/10.1109/CVPR42600.2020.00821
http://arxiv.org/abs/1912.01865
http://arxiv.org/abs/1511.07289
https://ieeexplore.ieee.org/document/8798208/
https://ieeexplore.ieee.org/document/8798208/
http://dx.doi.org/10.1109/VR.2019.8798208
http://portal.acm.org/citation.cfm?doid=311535.311576
http://dx.doi.org/10.1145/311535.311576
http://arxiv.org/abs/1909.01815
http://dx.doi.org/10.1145/3395208
http://arxiv.org/abs/1909.01815
http://dx.doi.org/10.1145/258734.258849
http://ieeexplore.ieee.org/document/7780634/
http://ieeexplore.ieee.org/document/7780634/
http://dx.doi.org/10.1109/CVPR.2016.265
http://arxiv.org/abs/1911.05856
http://dx.doi.org/10.1109/ICCVW.2019.00509
http://arxiv.org/abs/1911.05856
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://dx.doi.org/10.3156/jsoft.29.5_177_2
http://dx.doi.org/10.3156/jsoft.29.5_177_2
http://ieeexplore.ieee.org/document/7410480/
http://ieeexplore.ieee.org/document/7410480/
http://dx.doi.org/10.1109/ICCV.2015.123
http://arxiv.org/abs/1502.01852
http://ieeexplore.ieee.org/document/8237429/
http://dx.doi.org/10.1109/ICCV.2017.167
http://dx.doi.org/10.1109/ICCV.2017.167
http://arxiv.org/abs/1703.06868
http://dx.doi.org/10.1109/ICPR.2018.8545169
http://arxiv.org/abs/1712.02050
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
http://dx.doi.org/10.1109/CVPR.2017.632
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1902.09887
http://arxiv.org/abs/1902.09887
http://dx.doi.org/10.1109/CVPR.2019.01223
http://arxiv.org/abs/1902.09887
http://dx.doi.org/10.1145/3415263.3419160
http://dx.doi.org/10.1145/3415263.3419160
http://arxiv.org/abs/2007.08501
http://arxiv.org/abs/2104.10273
http://arxiv.org/abs/2104.10273
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://dx.doi.org/10.1109/CVPR.2019.00453
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://dx.doi.org/10.1109/CVPR.2017.19
http://arxiv.org/abs/1609.04802
http://dx.doi.org/10.1007/978-3-319-46487-9_43
http://arxiv.org/abs/1604.04382
http://arxiv.org/abs/2004.03458
http://arxiv.org/abs/2004.03458
http://dx.doi.org/10.1109/CVPR42600.2020.00347
http://arxiv.org/abs/2004.03458


FaceTuneGAN: Face Autoencoder for Convolutional Expression Transfer Using Neural Generative Adversarial Networks

[31] Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J., 2017. Learning
a model of facial shape and expression from 4D scans, in: ACM
Transactions on Graphics, pp. 1–17. URL: https://dl.acm.org/doi/
10.1145/3130800.3130813, doi:10.1145/3130800.3130813.

[32] Lim, I., Dielen, A., Campen, M., Kobbelt, L., 2019. A simple
approach to intrinsic correspondence learning on unstructured 3D
meshes, in: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), pp. 349–362. URL: http://arxiv.org/abs/1809.06664,
doi:10.1007/978-3-030-11015-4_26, arXiv:1809.06664.

[33] Little, A.C., Jones, B.C., Debruine, L.M., 2011. The many
faces of research on face perception. Philosophical Transac-
tions of the Royal Society B: Biological Sciences 366, 1634–
1637. URL: https://royalsocietypublishing.org/doi/10.1098/rstb.
2010.0386, doi:10.1098/rstb.2010.0386.

[34] Liu, M.Y., Breuel, T., Kautz, J., 2017. Unsupervised image-to-image
translation networks. Advances in Neural Information Processing
Systems 2017-Decem, 701–709. URL: http://arxiv.org/abs/1703.
00848, arXiv:1703.00848.

[35] Liu, M.Y., Huang, X., Mallya, A., Karras, T., Aila, T., Lehtinen, J.,
Kautz, J., 2019. Few-Shot Unsupervised Image-to-Image Translation.
IEEE/CVF International Conference on Computer Vision (ICCV)
URL: http://arxiv.org/abs/1905.01723.

[36] Mescheder, L., Geiger, A., Nowozin, S., 2018. Which training meth-
ods for GANs do actually converge? 35th International Conference on
Machine Learning, ICML 2018 8, 5589–5626. URL: http://arxiv.
org/abs/1801.04406, arXiv:1801.04406.

[37] Mirza, M., Osindero, S., 2014. Conditional Generative Adversarial
Nets URL: http://arxiv.org/abs/1411.1784, arXiv:1411.1784.

[38] Moschoglou, S., Ploumpis, S., Nicolaou, M.A., Papaioannou, A.,
Zafeiriou, S., 2020. 3DFaceGAN: Adversarial Nets for 3D Face
Representation, Generation, and Translation. International Journal
of Computer Vision 128, 2534–2551. URL: http://arxiv.org/abs/
1905.00307, doi:10.1007/s11263-020-01329-8, arXiv:1905.00307.

[39] Nealen, A., Igarashi, T., Sorkine, O., Alexa, M., 2006. Laplacian
mesh optimization. Proceedings - GRAPHITE 2006: 4th
International Conference on Computer Graphics and Interactive
Techniques in Australasia and Southeast Asia , 381–389URL:
http://portal.acm.org/citation.cfm?doid=1174429.1174494http:

//dl.acm.org/citation.cfm?id=1174494, doi:10.1145/1174429.1174494.
[40] Odena, A., Olah, C., Shlens, J., 2017. Conditional image synthesis

with auxiliary classifier gans, in: 34th International Conference on
Machine Learning, ICML 2017, pp. 4043–4055. URL: http://arxiv.
org/abs/1610.09585, arXiv:1610.09585.

[41] Olivier, N., Hoyet, L., Danieau, F., Argelaguet, F., Avril, Q., Lecuyer,
A., Guillotel, P., Multon, F., 2020. The impact of stylization on
face recognition, in: Proceedings - SAP 2020: ACM Symposium on
Applied Perception, ACM. pp. 1–9. URL: https://dl.acm.org/doi/
10.1145/3385955.3407930, doi:10.1145/3385955.3407930.

[42] Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017. PointNet: Deep learning
on point sets for 3D classification and segmentation. Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017 2017-Janua, 77–85. URL: http://arxiv.org/abs/1612.
00593, doi:10.1109/CVPR.2017.16, arXiv:1612.00593.

[43] Radford, A., Metz, L., Chintala, S., 2016. Unsupervised repre-
sentation learning with deep convolutional generative adversarial
networks. 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings URL: http://arxiv.org/
abs/1511.06434, arXiv:1511.06434.

[44] Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J., 2018. Generating
3D Faces Using Convolutional Mesh Autoencoders. URL:
http://arxiv.org/abs/1807.10267http://link.springer.com/10.

1007/978-3-030-01219-9_43, doi:10.1007/978-3-030-01219-9_43,
arXiv:1807.10267.

[45] Segu, M., Grinvald, M., Siegwart, R., Tombari, F., 2020. 3DSNet:
Unsupervised Shape-to-Shape 3D Style Transfer URL: http://arxiv.
org/abs/2011.13388, arXiv:2011.13388.

[46] Sinha, A., Bai, J., Ramani, K., 2016. Deep learning 3D shape
surfaces using geometry images, in: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), pp. 223–240. doi:10.1007/
978-3-319-46466-4_14.

[47] Sumner, R.W., Popović, J., 2004. Deformation transfer for triangle
meshes. ACM Transactions on Graphics 23, 399–405. URL: https:
//doi.org/10.1145/1015706.1015736, doi:10.1145/1015706.1015736.

[48] Taigman, Y., Polyak, A.,Wolf, L., 2017. Unsupervised Cross-Domain
Image Generation. ICLR (Poster) URL: http://arxiv.org/abs/1611.
02200.

[49] Vlasic, D., Brand,M., Pfister, H., Popović, J., 2005. Face transfer with
multilinear models, in: ACM Transactions on Graphics, pp. 426–433.
doi:10.1145/1073204.1073209.

[50] Wang, M., Panagakis, Y., Snape, P., Zafeiriou, S., 2017. Learning
the multilinear structure of visual data, in: Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2017, pp. 6053–6061. doi:10.1109/CVPR.2017.641.

[51] Wei, S.E., Saragih, J., Simon, T., Harley, A.W., Lombardi, S., Per-
doch, M., Hypes, A., Wang, D., Badino, H., Sheikh, Y., 2019. VR
facial animation via multiview image translation. ACM Transactions
on Graphics 38, 1–16. doi:10.1145/3306346.3323030.

[52] Xu, J., Sun, X., Zhang, Z., Zhao, G., Lin, J., 2019. Understanding
and improving layer normalization. Advances in Neural Information
Processing Systems 32. URL: http://arxiv.org/abs/1911.07013,
arXiv:1911.07013.

[53] Yang, H., Zhu, H., Wang, Y., Huang, M., Shen, Q., Yang, R., Cao, X.,
2020. FaceScape: A large-scale high quality 3D face dataset and de-
tailed riggable 3D face prediction. Proceedings of the IEEEComputer
Society Conference on Computer Vision and Pattern Recognition ,
598–607doi:10.1109/CVPR42600.2020.00068, arXiv:2003.13989.

[54] Zhang, Z., Yu, C., Li, H., Sun, J., Liu, F., 2020. Learning Distribution
Independent Latent Representation for 3D Face Disentanglement, in:
Proceedings - 2020 International Conference on 3D Vision, 3DV
2020, pp. 848–857. doi:10.1109/3DV50981.2020.00095.

[55] Zhou, T., Krähenbühl, P., Aubry, M., Huang, Q., Efros, A.A.,
2016. Learning dense correspondence via 3D-guided cycle con-
sistency. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition 2016-Decem, 117–
126. URL: http://arxiv.org/abs/1604.05383, doi:10.1109/CVPR.2016.
20, arXiv:1604.05383.

[56] Zhu, J.Y., Krähenbühl, P., Shechtman, E., Efros, A.A., 2016. Gen-
erative visual manipulation on the natural image manifold. Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 9909
LNCS, 597–613. URL: http://arxiv.org/abs/1609.03552, doi:10.
1007/978-3-319-46454-1_36, arXiv:1609.03552.

[57] Zhu, J.Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired Image-
to-Image Translation Using Cycle-Consistent Adversarial Networks.
Proceedings of the IEEE International Conference on Computer
Vision 2017-Octob, 2242–2251. URL: http://arxiv.org/abs/1703.
10593, doi:10.1109/ICCV.2017.244, arXiv:1703.10593.

A. Architecture Details
This section details the specific layers of our network.

Due to the different amount of vertices in the datasets (27k
in FaceScape, 5k in CoMA), the architecture is tweaked
differently for each. Figure 9 and 10 respectively depict
the composition of our network modules for training on
CoMA and FaceScape. All linear layers use ReLU activa-
tions, except for the final discriminator layer which uses a
Softmax activation. All SpiralBlocks and SpiralResBlocks
use Exponential Linear Unit (ELU) activations [9]. The style
encoder and discriminator use no normalization. The content

Olivier et al.: Preprint submitted to Elsevier Page 12 of 13

https://dl.acm.org/doi/10.1145/3130800.3130813
https://dl.acm.org/doi/10.1145/3130800.3130813
http://dx.doi.org/10.1145/3130800.3130813
http://arxiv.org/abs/1809.06664
http://dx.doi.org/10.1007/978-3-030-11015-4_26
http://arxiv.org/abs/1809.06664
https://royalsocietypublishing.org/doi/10.1098/rstb.2010.0386
https://royalsocietypublishing.org/doi/10.1098/rstb.2010.0386
http://dx.doi.org/10.1098/rstb.2010.0386
http://arxiv.org/abs/1703.00848
http://arxiv.org/abs/1703.00848
http://arxiv.org/abs/1703.00848
http://arxiv.org/abs/1905.01723
http://arxiv.org/abs/1801.04406
http://arxiv.org/abs/1801.04406
http://arxiv.org/abs/1801.04406
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1905.00307
http://arxiv.org/abs/1905.00307
http://dx.doi.org/10.1007/s11263-020-01329-8
http://arxiv.org/abs/1905.00307
http://portal.acm.org/citation.cfm?doid=1174429.1174494 http://dl.acm.org/citation.cfm?id=1174494
http://portal.acm.org/citation.cfm?doid=1174429.1174494 http://dl.acm.org/citation.cfm?id=1174494
http://dx.doi.org/10.1145/1174429.1174494
http://arxiv.org/abs/1610.09585
http://arxiv.org/abs/1610.09585
http://arxiv.org/abs/1610.09585
https://dl.acm.org/doi/10.1145/3385955.3407930
https://dl.acm.org/doi/10.1145/3385955.3407930
http://dx.doi.org/10.1145/3385955.3407930
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
http://dx.doi.org/10.1109/CVPR.2017.16
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1807.10267 http://link.springer.com/10.1007/978-3-030-01219-9_43
http://arxiv.org/abs/1807.10267 http://link.springer.com/10.1007/978-3-030-01219-9_43
http://dx.doi.org/10.1007/978-3-030-01219-9_43
http://arxiv.org/abs/1807.10267
http://arxiv.org/abs/2011.13388
http://arxiv.org/abs/2011.13388
http://arxiv.org/abs/2011.13388
http://dx.doi.org/10.1007/978-3-319-46466-4_14
http://dx.doi.org/10.1007/978-3-319-46466-4_14
https://doi.org/10.1145/1015706.1015736
https://doi.org/10.1145/1015706.1015736
http://dx.doi.org/10.1145/1015706.1015736
http://arxiv.org/abs/1611.02200
http://arxiv.org/abs/1611.02200
http://dx.doi.org/10.1145/1073204.1073209
http://dx.doi.org/10.1109/CVPR.2017.641
http://dx.doi.org/10.1145/3306346.3323030
http://arxiv.org/abs/1911.07013
http://arxiv.org/abs/1911.07013
http://dx.doi.org/10.1109/CVPR42600.2020.00068
http://arxiv.org/abs/2003.13989
http://dx.doi.org/10.1109/3DV50981.2020.00095
http://arxiv.org/abs/1604.05383
http://dx.doi.org/10.1109/CVPR.2016.20
http://dx.doi.org/10.1109/CVPR.2016.20
http://arxiv.org/abs/1604.05383
http://arxiv.org/abs/1609.03552
http://dx.doi.org/10.1007/978-3-319-46454-1_36
http://dx.doi.org/10.1007/978-3-319-46454-1_36
http://arxiv.org/abs/1609.03552
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593
http://dx.doi.org/10.1109/ICCV.2017.244
http://arxiv.org/abs/1703.10593


FaceTuneGAN: Face Autoencoder for Convolutional Expression Transfer Using Neural Generative Adversarial Networks

Figure 9: Composition of each module for training on
FaceScape. The down/up arrows respectively indicate down-
sampling and up-sampling layers, always by a factor of 4.

Figure 10: Network modules for training on CoMA. The
down/up arrows respectively indicate down-sampling and up-
sampling layers, always by a factor of 4.

encoder uses Instance Normalization layers on all Spiral-
Blocks and SpiralResBlocks. The decoder uses Adaptive
Instance Normalization on its two first SpiralResBlocks and
first SpiralBlock to inject the style information.

The mapping function M that converts the style codes
into parameters for the AdaIN normalization layers of the
decoder is composed of fully-connected layers. No normal-
ization is used, and all layers use ReLU activations except for
the last one. On CoMA, we use the following configuration:
4 → 128 → 128 → 16 → NAdaIN where NAdaIN is the
number of AdaIN parameters in the decoder. On FaceScape,
we use more layers and a larger size: 5 → 256 → 256 →
256 → 256 → 256 → 256 → 16 → NAdaIN.

B. CoMA dataset
Figure 11 shows one selected frame for each (subject,

expression) pair of the CoMA [44] dataset.

Figure 11: Selected frames on CoMA. Entries are missing when
the expression performed by the subject varies significantly
from the rest.

C. Interpolations
Expressions and identities interpolations are provided in

Figures 12 and 13 respectively.

D. Expression Extrapolations
Expressions and identities extrapolations are provided in

Figures 14 and 15 respectively.
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Figure 12: Expression interpolation results on FaceScape
(style space). The ground truth scans are provided on the
leftmost and rightmost columns. The second and second-to-
last columns show their reconstruction. In the middle three
columns, we interpolate along the style vector (s = 0.25).

Figure 13: Identity interpolation results on FaceScape (con-
tent space). The ground truth scans are provided on the
leftmost and rightmost columns. The second and second-to-
last columns show their reconstruction. In the middle three
columns, we interpolate along the content vector (s = 0.25).

Figure 14: Extrapolation in style space. The two leftmost
columns are reconstructions of the neutral and expression
scans. We gradually extrapolate along the style vector (s =
0.5).
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Figure 15: Extrapolation in content space. The reconstructions of two neutral scans are shown in the columns marked "Rec.".
We move along their relative content vector from the middle to the outer columns (s = 0.5).
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