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Highlights
Feature-assisted interactive geometry reconstruction in 3D point clouds using incremental region
growing
Attila Szabo,Georg Haaser,Harald Steinlechner,Andreas Walch,Stefan Maierhofer,Thomas Ortner,Eduard Gröller

• Real-world point clouds show strong heterogeneity in size, density, and quality
• Fully automated geometry reconstruction almost always requires human intervention or quality control
• Human-in-the-loop approach avoids cumbersome filter-and-repair post-processing
• Guided technique effectively utilizes human intent to navigate difficult reconstruction scenarios
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ABSTRACT
Reconstructing geometric shapes from point clouds is a common task that is often accomplished by
experts manually modeling geometries in CAD-capable software. State-of-the-art workflows based on
fully automatic geometry extraction are limited by point cloud density and memory constraints, and
require pre- and post-processing by the user. In this work, we present a framework for interactive, user-
driven, feature-assisted geometry reconstruction from arbitrarily sized point clouds. Based on seeded
region-growing point cloud segmentation, the user interactively extracts planar pieces of geometry
and utilizes contextual suggestions to point out plane surfaces, normal and tangential directions,
and edges and corners. We implement a set of feature-assisted tools for high-precision modeling
tasks in architecture and urban surveying scenarios, enabling instant-feedback interactive point cloud
manipulation on large-scale data collected from real-world building interiors and facades.We evaluate
our results through systematic measurement of the reconstruction accuracy, and interviews with
domain experts who deploy our framework in a commercial setting and give both structured and
subjective feedback.

1. Introduction
A major goal in the field of surveying and mapping is

to create Computer Aided Design (CAD)-ready geometrical
models that accurately describe the as-built conditions of
buildings’ inside and outside structures. It is important to
represent walls, but also more intricate features, such as,
roofs, window sills, or a flight of stairs, as shown in Figure
1.

As a means to this end, surveyors capture real-world
buildings with terrestrial laser scanners producing 3D point
clouds. Depending on the size of the building these typically
range from tens of millions to billions of points. This high-
detail representation is bulky and impractical for CADwork-
flows, construction documentation, and as-designed com-
parisons. To create abstracted, CAD-ready models, for in-
stance an accurately measured 3D plan, surveyors strive to
derive edges and corners from point clouds.

Several properties of real-world laser scans make feature
derivation challenging: relevant edges and corners are not
well captured due to either sampling constraints or scanning
occlusions. Further, real-world laser scans contain unwanted
points, captured from vegetation, furniture, appliances, or
people walking through the scan (can be seen in Figure 1).
Finally, high-precision scanning leads to large point clouds
generally requiring an out-of-core approach.
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Since a majority of human-made structures can be de-
scribed as piece-wise planar objects, off-the-shelf tools typ-
ically allow users to globally fit plane primitives [25] to
a point cloud, so the resulting planes may act as shape
proxies to support reconstruction in orthographic views. Au-
tomatic algorithms often incur over- or undersegmentation
due to global scope and parametrization. This requires prior
cleaning and subsampling, as well as post-processing to
exclude unwanted results and to manually construct missing
results. Previous approaches typically do not go far enough
in supporting the human operator in these tasks, which we
aim to rectify in this work. Our system also focuses on build-
ings consisting of planar structures. More complex support
shapes are considered future work, which is discussed in
Section 6.

We propose a novel interaction-based framework that
does not require any global pre-segmentation or point clean-
ing steps (Figures 2,3 left), while offering users a construc-
tive approach to reconstructing corners and edges despite
the presence of missing data and unwanted points (Figures
2,3 right). Our human-in-the-loop approach provides algo-
rithmic assistance to the user through on-demand region-
growing plane-segmentation with instant feedback enabled
by an adaptive point cloud resolution scheme and robust
edge and corner detection. Region growing as well as prim-
itive fitting operate locally and are evaluated incrementally.

Our work is an extension of Steinlechner et al. [26].
There the authors fit plane segments to point clouds and sup-
port user interactions, for instance, to prevent pick-through
when measuring distances. In this work we use a similar out-
of-core-strategy. Our technique supports a full range of tools
for reconstruction at any detail level, as seen in Figure 4. Ex-
isting interactive reconstruction-based tools require a global
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Figure 1: Reconstructing stairs in a real-world point cloud. From left to right, the human operator first zooms in on the stairs and
reconstructs the side of a step in detail. Then they zoom out and copy the reconstructed geometry into where points are missing.
Finally, they extrude the stair geometry along the tangential direction of the step’s face. The reconstruction of the staircase’s
shape is then complete.

Figure 2: Left: Occlusions cause holes in the automatic segmentation (yellow). The desired corner is missing (red circle). Right:
The corner of interest (red arrow) is at the intersection of the walls and the floor.

pre-segmentation of the point cloud [12], [2]. Our approach
is orthogonal as all segmentation is local, on-demand, and
user-driven with a tightly integrated interaction loop.

An overview of our system is shown in Figure 5.
1.1. Contributions

In summary, we present the following contributions:
• A robust on-the-fly density normalization scheme

permitting level-of-detail reconstruction of arbitrary-
sized out-of-core point clouds (Section 3.7),

• A novel point cloud interaction framework integrated
with on-demand incremental plane segmentation (Sec-
tions 3.5), and

• A user-driven workflow for feature-assisted high-
precision geometry reconstruction in non-preprocessed
point clouds (Sections 4).

1.2. Structure of the Paper
Section 2 reviews recent works in the field of interactive

point cloud geometry reconstruction. Sections 3 and 4 detail
our incremental region growing and robust interaction loop,
respectively. In Section 5 we evaluate our three contributions

with synthetic tests, example showcases, and real-world
expert user interviews, respectively. Section 6 discusses
strengths and shortcomings of our approach.

2. Related Work
We structure the body of related work into two sections,

automatic methods (Section 2.1), and user-driven (Section
2.2) methods that ingest point clouds with real-world arti-
facts capturing piece-wise planar objects. For an extensive
review of surface reconstruction from, and geometric prim-
itives detection in, point clouds, we refer to Berger et al. [4]
and Kaiser et al. [11], respectively.
2.1. Automatic Methods

Automatic methods have a longer history of research
than user-driven ones. Common approaches attempt to re-
construct a plausible surface model, often planes, either
through RANSAC [25] or region growing [22]. Both are
available in off-the-shelf tools [23, 20]. RANSAC requires
careful parameter tuning to achieve the desired level of
detail representation and region growing is sensitive to initial
conditions, noise, and outliers [11].
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Figure 3: Left: Automatic segmentation (yellow) contains unwanted segments, e.g. whiteboard or desk (red circles). Right:
Segments of interest are the two walls (red outlines).

Figure 4: Interactive reconstruction at different degrees of detail. Cloud has 1 billion points. (a) large building (∼ 20m long). (b)
sidewalk structure (∼ 1m high). (c) roadside curb (∼ 0.15m high).

Tuning automatic shape detection represents a trade-off
between missing important geometric detail versus receiv-
ing a large number of primitives, which requires manual
cleanup. More advanced methods detect planes and then
automatically prune or merge them according to different
criteria, such as principal orientations, parallelism, orthog-
onality, or coplanarity [13, 16, 19, 18]. Since processing a
large number of detected shapes is computationally inten-
sive, Bauchet et al. [3] employ a kinetic polyhedral approach
after shape detection that performs well for large amounts of
measurement data.
2.1.1. Level of Detail

Level-of-detail-aware approaches employ structuredmeta-
data to cut down on operations or memory consumption.
Real-time point-cloud renderers typically use octree-based
data structures to subdivide space into cells of equal point
density. They dynamically fill the limited graphics memory
with a uniformly distributed subset of points to guarantee
optimal image quality. Region-growing segmentation tech-
niques in particular utilize spatial indexing schemes to group
points, typically voxel grids or octree-equivalents. Deschaud
et al. [6] decompose the point cloud into a voxel grid as a
means of batch-processing the region growing algorithm and
avoiding costly point-neighborhood searches. Vo et al. [27]
use an octree based on point planarity rather than density.

They sidestep the need for point operations almost entirely
by comparing representative plane segments instead. For our
work we chose a region-growing algorithm equivalent to the
implementation in the Point Cloud Library [23]. Extending
it with our ad-hoc density normalization scheme does not
require a specifically crafted data structure, thus enabling a
minimal-effort implementation into existing point renderers.

More recently, Mercier et al. [15] present a level-of-
detail-aware reconstruction technique for algebraic surfaces.
It uses an octree to store intermediate surface computations
and an adaptive traversal scheme to obtain appropriate res-
olutions for different regions. Their octree traversal is in
principle comparable to our adaptive resolution selection
(Section 3.7), and could be adapted for planar surfaces.
2.1.2. Feature Detection

2D feature detectors are long-standing image processing
steps, including the Canny edge detector and Harris corner
detector. They do not generalize straightforwardly, since
point clouds exhibit highly irregular sampling patterns and
scan artifacts, as compared to regular pixel grids, serving as
motivation for much research.

Filter-based approaches exist in 3D, and overcome the
aforementioned problems by applying rule-based constraints
(e.g. merge close line segments, make lines parallel/orthogonal).
Hackel et al. [9] use classifiers to assign points to contour
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Figure 5: System overview. From left to right, the four labeled boxes represent the major components of our approach. Input: In
a point cloud a seed point is picked by the human operator from a specific view. Plane segmentation: The point cloud is locally
segmented into planar regions starting from the seed point. Segmentation parameters are automatically estimated from the user’s
view. Our adaptive density normalization scheme ensures consistent convergence across regions of too low or too high density.
Assisted CAD tools: High-precision planes, edges and corners are synthesized from planar regions and previously-reconstructed
geometries, which assist the user in drawing the real shape represented by the point cloud. These support geometries are available
to the user instantly after picking the seed point, and progressively get more refined in subsequent iterations. Output: Repeated
reconstruction of different parts of the point cloud yields the desired final high-precision geometry.

lines and select consistent contour sets as plausible complete
outlines of structures. More recently, Wang et al. [28] use
deep learning to infer the parameters of contour curves from
classified points. Himeur et al. [10] further distinguish edge
types (hard/smooth). They provide an interactive element
for user-specified edge definitions, being able to handle
compromised real-world point clouds. We, in comparison,
specifically understand edges as being delineated by large
planes, which are commonly used in building planning. Even
more sophisticated feature extraction techniques could be
used in our system if required by the application.

In contrast to global optimization methods, we propose
an efficient local technique for reconstructing planes, edges,
and corners on-demand in a limited spatial region around a
user-picked seed point. Our workflow’s constructive nature
avoids any prior processing (beyond octree construction),
removal of artifacts, time-consuming parameter tuning, or
manual clean-up of segmentation results. Furthermore, the
user is given a set of tools to deal with noise, missing
points, and unwanted portions of a scan based on human
decision-making and contextual awareness. Since our inter-
active approach is tightly coupled with point rendering, the
density-based octree re-uses existing infrastructure. Limit-
ing reconstruction space makes the process independent of
point cloud size while retaining full-detail accuracy.
2.2. User-driven Methods

Commercial point processing tools, such as ArcGIS or
AutoCAD, include user-driven surface reconstruction tai-
lored to the domain of CAD. Workflows consist of a non-
interactive and an interactive part, where a global algo-
rithm first finds dominant planes in the subsampled point
cloud automatically. Subsequently, the user iterates through
orthographic projections on planes of interest. Polygonal

geometry is built in mixed 2D and 3D views using classic
construction tools. In comparison, our approach lets the user
manipulate the point cloud directly. This avoids the loss of
locality caused by multiple views and leverages contextual
awareness and semantic information provided by the three
dimensional viewpoint.

Chen and Chen [5] recover planar segments and their
connectivity through edges and corners automatically. They
assist the user in repairing holes through topological rea-
soning on regularity and symmetry of the polygons. This
approach combines multiple global processing steps, with
user interaction at the end to complete the result. Our pro-
posed on-demand reconstruction does not require global pre-
segmentation and incorporates user interaction directly into
the segmentation algorithm.

Many user-driven methods seek a balance between the
level of intuition and user feedback that is useful for the re-
construction application. Successful methods tend to tightly
integrate the reconstruction algorithm with the form of user
interaction [4].

The technique by Nan et al. [17] allows the user to
approximately draw shape primitives comprised of axis-
aligned boxes. These are compounded and repeated to form
complex shapes, which are then iteratively fit to the point
cloud. ‘Smartboxes’ is geared towards the reconstruction of
large urban environments exploiting regularities and sym-
metries.

With O-Snap, Arikan et al. [2] propose a shape-assisted
interactive reconstruction system. The user’s construction
tools use best-fit plane segments recovered from the point
cloud in a preprocessing step as work area. In a back-
ground optimization process, the user’s corrections and con-
structions are constantly refitted to the point cloud. Edges
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and corners of polygons are snapped together if they are
close enough. O-Snap reconstructs best-fit results based on
a global optimization process. In contrast, our technique
fundamentally aims at high-precision reconstruction of local
point cloud features based on measured data. However, in
principle, O-Snap’s continuous polygon optimization loop
could be integrated into our approach if required by the
application.

Similar to our method, Steinlechner et al. [26] use shape
detection on level-of-detail point data to locally extract
support geometry. They apply a RANSAC-based method on
the rendering data structure. In their approach, segmented
planes only assist selection-related point interactions such
as picking, brushing, or measurements.

Lejemble et al. [12] find all stable planar features and
relationship information through multi-scale analysis of the
point cloud. They give the user the ability to query for
desired plane segments through brushing gestures. Lejemble
et al. provide an integrated reconstruction workflow sim-
ilar to ours. Conceivably, their global-segmentation based
approach could be placed in the same system as our local
ad-hoc reconstruction, combining their powerful segment
browsing capabilities with our segment-assisted construc-
tion tooling.

Following the categorization provided by Berger et al.
[4], our approach does not require data-priors, apart from the
construction of an octree data structure that most renderers
also use for level-of-detail rendering. Our approach applies
to shape classes of buildings indoor and outdoor, robustly
deals with the artifacts of missing data, outliers, and non-
uniform sampling, and outputs corners and edges. The arti-
fact of misalignment does not play a role in survey quality
laser scans, where precise manual alignment is commonly
performed beforehand.

3. Incremental Region-Growing Point-Cloud
Segmentation
In this section we present a segmentation technique

based on incremental seeded planar region growing. It
works on a density-homogenized representation of a point
cloud achieved through an octree-based adaptive resolu-
tion scheme. Automatic parameter estimation, allows for
intuitive user-driven control of the algorithm. A graphical
overview is shown in Figure 5.

The notation (⋅, ⋅, ⋅, ⋅) denotes a tuple of values. The
boldfaced variable name p = (px, py, pz) stands for the threedimensional point p and its three components px, py and pz.
3.1. Spatial Subdivision Scheme

Octrees, or equivalent spatial subdivision data structures,
are commonly used for level of detail rendering and point
cloud editing [24]. In our out-of-core implementation, the
leaf cells store references to point data, while the inner
cells store references to subsampled representations of the
contained cells. Apart from creating the octree, no further
preprocessing on the point cloud is needed. We use a simple

cell indexing scheme similar to Yoder et al. [29] to find
adjacent cells and traverse cell neighborhoods.
3.2. Incremental Plane Regression

A prerequisite for our region growing method is the
availability of an plane regression. It is later used to define
plane segments and incrementally updated given a user-
defined seed point (Section 3.4).

LetR = (S,Sq, c,D) be an incremental plane regression
(Equation 1),

S =
c
∑

i=0
pi

Sq =
c
∑

i=0
(p2xi , p

2
yi
, p2zi ) (1)

D =
c
∑

i=0
(pyi ∗ pzi , pxi ∗ pzi , pxi ∗ pyi )

where S is the sum of point coordinates, Sq is the sum
of squared point coordinates, c is the point count and D
is the vector of sums of products between different pairs
of point coordinates. Let p = (px, py, pz) be a point, and
R′ = (S′,Sq′, c′,D′) = update(R,p) be the incrementally
updated planar regression produced by adding p to R. Then
R′ is calculated as (Equation 2):

S′ = S + p
Sq′ = Sq + (p2x, p

2
y, p

2
z) (2)

c′ = c + 1
D′ = D + (py ∗ pz, px ∗ pz, px ∗ py)

Given a plane regression R = (S,Sq, c,D), we compute
the associated covariance matrix C . It represents the distri-
bution of points in space, and later yields the parameters of
the best-fit plane. Using the identity p̄ = S∕c, the equation
is (Equation 3):

C =
⎡

⎢

⎢

⎣

Sqx − p̄x ∗ Sx Dz − p̄x ∗ Sy Dy − p̄x ∗ Sz
Dz − p̄x ∗ Sy Sqy − p̄y ∗ Sy Dx − p̄y ∗ Sz
Dy − p̄x ∗ Sz Dx − p̄y ∗ Sz Sqz − p̄z ∗ Sz

⎤

⎥

⎥

⎦

∗ 1
c − 1

(3)
The incremental formulation permits calculating the co-

variance matrix without having to recalculate the point cen-
troid after every point addition. The actual set of included
points does not need to be maintained and the memory and
calculation overhead for adding a point to the regression is
always constant.

Although our formulation is mathematically correct,
real-world point clouds can exhibit very large point coor-
dinates. These may lead to numerical problems, mainly due
to the involved sum of squares. We shift all points by the
coordinates of the first added point, such that the first point
has the relative coordinate (0, 0, 0). The covariance matrix
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can be rebased accordingly after its computation. For this
optional improvement, we use an equivalent implementation
as published in Ponca [14]. Our formulas can be found in
Appendix A.

The evaluation in Section 5.1 shows that this improve-
ment allows us to achieve an accuracy similar to standard
approaches on real-world data sets, while maintaining the
single-pass character of the approach.
3.3. Plane Synthesis

Given the covariance matrix C , we synthesize the asso-
ciated regression plane using the eigendecomposition of C
into its principal components, i.e. finding the roots of the
characteristic polynomial

det(C − � ∗ I) = 0
to obtain the eigenvalues �i, i ∈ {0, 1, 2}, sorted by de-

scending magnitude. Solving the specific eigenvalue equa-
tion

(C − � ∗ I) ∗ v = 0
yield the three associated eigenvectors

vi, i ∈ {0, 1, 2} , vi ≠ 0.
We obtain the unsigned plane normal as the eigenvector

v2 associated with the smallest eigenvalue �2, tangential andbitangential directions as v0 and v1, and the plane origin as
the last added point.
3.4. Initial Seed

An incremental plane regression R0 is initialized from
a seed point p0 plus neighboring points. The seed point is
chosen by the human operator via point picking. In case of
an edge or corner seed, two or three plane regressions are
initialized for the participating planes.

In order to find the participating planes, we place a
spherical seed region of radius rs around p0. Within the
seed region, seed points are chosen from the point cloud at a
specific resolution, corresponding to octree cells at a certain
level. We suggest an adaptive resolution technique, which
is further described in Section 3.7. It ensures an appropriate
subsampling rate for constant point density, even in the pres-
ence of severe anisotropy (e.g., floor around scanner). The
absolute subsampling rate, i.e., the desired point density d, is
chosen with our automatic parameter estimation technique,
further described in Section 3.8. We apply RANSAC plane
fitting [25] to find the initial planes, ranking them by inlier
counts as stability measure. A plane regression is initialized
for each plane. Optionally we discard the least stable planes
in case of noisy scans using a variance-minimizing thresh-
old [21]. The combination of these systems gives control
over the degree of detail, i.e., the size and complexity of
the desired reconstruction results. This is independent of
heterogeneity in point density or actual complexity of the
scanned region.
3.5. An Interactive Region Growing Loop

A point’s distance to a regression is its minimal Eu-
clidean distance to the regression’s associated plane. The
decision to add a newly encountered point p to a regression
R is made if the point’s distance distance(R,p) to the

Figure 6: Interactive region growing loop. Steps (a) through
(d) happen in sequence.

regression is less than the plane threshold tp. If true, wecall the point an inlier point. tp represents the maximum
acceptable point distance and controls the precision of the
reconstruction. We refer to a regression together with its
inlier points as a segment.

Given initial seed regressions, the core reconstruction
loop essentially consists of repeatedly adding neighboring
points to the regressions if they lie within the plane threshold
tp. We thereby gradually expand outwards the set of border
points (inlier points that have unvisited points in their neigh-
borhood). After the current octree cell is exhausted, and if
any points were added to a regression, we communicate the
current result using a progress callback (Section 3.6). Then
repeat the process for all bordering cells. In summary, the
region growing algorithm is as follows:

1. With increasing distance to the seed point, find un-
visited point p closer to a regression R’s border than
the search radius r, and, if distance(R,p) < tp,
update(R,p). Repeat until all candidate points in the
current cell have been visited. Update the average
neighbor distance davg with the actual distance be-
tween p and R’s border.

2. Run the progress callback.
3. If any point was added to any regression, repeat steps

1 through 3 for this cell’s neighboring cells, with
increasing distance to the seed point. Optionally, if
davg differs considerably from the desired density d,
adjust the levels of neighboring cells according to our
adaptive resolution scheme (Section 3.7).

4. The algorithm terminates after all candidate cells have
been visited. The first few iterations of the algorithm
are illustrated in Figure 6.

3.6. Progress Callback
Leveraging incrementality, i.e. every intermediate result

is also a valid final result, we return the current regression
plane and regression polygon, i.e. a flat polygon showing
the outline of the border points projected onto the regres-
sion plane. We use a space carving technique equivalent
to Alpha Shapes [7] to triangulate the regression polygon.
We also preserve some useful per-segment statistics from
the algorithm as output: point count, polygon area, and the
regression variance �2. �2 was calculated in Section 3.3, andrepresents the mean squared error of the regression inliers
along the plane’s normal direction.

If multiple regression planes exist in the current plane
segmentation, we facilitate additional user interactions by
finding stable edges and corners (Section 4.1).
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3.7. Adaptive Resolution
Point clouds are typically captured at different densities,

depending on environmental factors such as size, distance
to the scanner, and so on. Variations in point density have
significant implications on performance and termination be-
havior of segmentation algorithms. Parameters like the point
search radius r lose their meaning across regions with dif-
ferent densities. Globally downsampling the point cloud to
a constant density is undesirable for reconstructing detailed
structures, such as staircases, whose shapes would be lost.
We propose an adaptive resolution approach. It dynamically
adjusts cell levels during the region growing process, based
on the observed point density davg and the desired point
density d.

Octree cells correspond to regions in space, and parent
cells contain downsampled versions of its eight contained
children cells. The region growing algorithm places cells in
a processing queue, in order of distance to the seed point.
If davg significantly differs from d, these cells are replaced
in the queue by cells of higher or lower level, representing
lower or higher sampling rates and point densities, respec-
tively.

A cell can simply be replaced by its children since
they describe the same three dimensional space. Placing
a cell’s parent in the queue, however, is more involved.
The parent comprises regions that have potentially already
been processed, and should not be visited a second time. To
avoid discarding information, we lock the current level. We
completely finish processing the cells inside partially visited
cells, and delay the transition to the parent level until this is
complete. Our per-cell scheme is not optimal in speed since
the reconstruction happens at a too fine detail level during
the delay period. An alternative would incrementally remove
already-processed areas from the regression and reconstruct
them anew on a coarser level. The benefits of this additional
optimization were negligible for our use case.

Figure 7: Adaptive resolution switch to a lower cell level. Steps
(a) through (d) happen in sequence.

In summary, the adaptive resolution algorithm consists
of two cases:

Increase point density, in case davg ≪ d. Remove the
current cell from the queue and replace it with its eight
children. The cell level is now increased by 1. Continue
processing the queue as usual.

Decrease point density, in case davg ≫ d. Identify all
cells inside the parents of completed cells or parents of
cells in the queue.Mark those cells. Continue processing the
queue only for cells that are marked, until all marked cells
have been visited. For all remaining cells in the queue, if
davg ≫ d is still true, replace them with their parents. The

cell level is now decreased by 1. Continue processing the
queue as usual. This second case is illustrated in Figure 7.

The thresholds for the level switch comparisons are free
parameters. We used davg < 0.5 ∗ d for density increase,
and davg > 4.0 ∗ d for density decrease, which worked
reasonably well in our test setups. Our choice is based on the
observation that planes are roughly split into four equal parts
in the octree level transition. In the case of density increase,
we err on the side of caution. A too-fine point sampling
is preferable to a too-coarse one in terms of accuracy. The
introduced sampling errors are further analyzed in Section
5.1.
3.8. Automatic Parameter Estimation

Our incremental region growing point cloud segmen-
tation depends on the following parameters. We derive in-
tuitive controls for the parameters, primarily based on the
concept of moving the cursor and the camera closer to
the site of reconstruction. This automatically increases the
degree of reconstruction detail:

• p0: seed point. p0 is chosen by picking a point from
the point cloud using the cursor.

• rs: seed radius in [m]. rs is approximately 10% of the
screen width at the depth of p0.

• d: desired point density (degree of detail) for the
plane segmentation. Measured in [points per m3]. d
is proportional to the projected size of a pixel around
p0. Experimental values are between 10000 (closest
to camera) and 100 (farthest away from camera), with
a logarithmic falloff.

• r: point neighbor search radius in [m]. r is twice the
estimated average point distance, depending on the
point cloud’s overall scale.

• tp: plane distance threshold measured in [m]. tp re-
mains as a free user parameter representing the desired
precision of the plane regression.

Our objective is to provide human operators with direct
and intuitive ways of controlling the algorithm. In particular,
the initial seed selection (Section 3.4) heavily determines the
reconstruction and can be chosen to fit a user’s particular
needs. By moving the camera and zooming in, the users de-
cide what constitutes a "good" or "bad" initialization. They
are guaranteed to obtain the most salient planar features at
the degree of detail they are currently viewing the point
cloud at. Figure 8 gives an example.

4. Assisted Geometry Construction Tools
In this section we present our methodology of robust

edge and corner reconstruction (Section 4.1) and assemble
feature-assisted modeling tools for interactive geometry re-
construction (Section 4.2).
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Figure 8: Zoom out (left) to obtain a planar regression of the entire house wall. Zoom in (right) to capture details in a local part
of the wall.

Figure 9: Stable edge support (red) between two plane
segments (green and blue) where both segments have inlier
border points (inside dotted lines).

4.1. Edge and Corner Reconstruction
We automatically reconstruct the maximum likelihood

edges and corners as intersections between regressions.
Given a region growing result, all two- and threefold selec-
tions of regressions are intersected if:

• the regression planes are not parallel,
• the regression polygons have non-vanishing areas, and
• after intersecting the regression planes, all regression

polygons have vertices in proximity to the intersection
line/point.

The resulting set of intersections has elements of two
categories, which receive stability measures called supports:

Corners. The intersection between three planes results
in a corner. The viable corner’s support is comprised of the
three regression variances.

Edges. The intersection between two planes results in
an edge. For a viable edge, the participating segments have
border points closer than 2 ∗ r to the intersection line.
Projecting these border points onto the line gives a 1D
distribution. The 95th percentile of it is the support range
and produces the stable start- and endpoints of the line
segment describing the edge (illustrated in Figure 9).

4.2. Feature-Assisted Modeling Tools
Based on our experience with experts and novice users,

we identify two principal modes of shape assistance for
reconstruction workflows: Cursor snapping and direction
finding.

Cursor Snapping enables the human to point out dom-
inant structures: maximum likelihood edges and corners
(Figure 10(a)).

Direction finding allows the user to select directions in
three dimensional space. The human operator chooses a
direction by simply pointing at a plane to select the plane
normal. Alternatively, pointing at an edge or a corner selects
one of the planes’ tangents through subtle pointer movement.
This interaction is shown in Figure 10(b) and 10(c). We
aim at offering easy-to-understand tools for the user by only
adhering to simple pointing-based selection techniques.

Leveraging the described support mechanisms, we im-
plement an essential set of feature-assisted CAD tools (shown
in Figure 11):

• Free polygon construction assisted by pointer snap-
ping (Figure 11(a)).

• Moving and copying polygons assisted by pointer
snapping and optional direction constraining (Figure
11(b)).

• Polygon extrusion constrained along a fixed direction,
further assisted by polygon snapping (Figure 11(c)).

5. Evaluation
We assess our technique in three different ways by deter-

mining the:
• reconstruction accuracy of our out-of-core incremen-

tal region growing algorithm with synthetic test cases,
• effectiveness of our workflow and interactions with

example use cases and time measurements, and
• applicability in real-world scenarios through inter-

views with surveying experts based on a version of
our framework implemented in their application.
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a b c
Figure 10: Shape-assisted interactions. (a) corner snapping. (b) selecting plane normal. (c) selecting plane tangent.

a b c
Figure 11: Plane-assisted CAD tools. (a) polygon construction. (b) polygon movement. (c) polygon extrusion.

The performance of the region growing method is cru-
cial for interactivity. While our incremental region growing
formulation (Section 3.2) is independent of the point cloud
size, interactions depend on the chosen level of subsampling
(Section 5.1). On consumer-level hardware (Intel i5-4690K,
Nvidia GTX 1080) the extraction of geometrical features and
region growing typically took between 0.1 and 1 seconds
depending on plane size and never slowed down interaction,
especially since the first results appear immediately and
refinement happens until full convergence.
5.1. Reconstruction Accuracy

We evaluate two kinds of reconstruction accuracies for
our proposed technique: The absolute reconstruction error
measured as a function of input noise to the precision of
reconstructed features, and the effect of subsampling as the
loss of precision if lower point densities are chosen.

The absolute reconstruction error (as Root Mean Square
Error of inlier points to their regression planes) is evaluated
in comparison to the well-established robust RANSACplane
detection algorithm by Schnabel et al. [25]. We chose this
particular algorithm as baseline because our collaboration
partners work with it regularly and deem it sufficiently ac-
curate for real-world scenarios. Implementations are freely
included in open-source point cloud processing tools such
as CloudCompare [1]. We create a synthetic scenario with
known input noise, and process the input by both algorithms
in a controlled fashion. Our synthetic scenario is generated
using a simulated laser scanner that is placed inside a room-
sized box. It scans its surroundings in regular patterns,
introducing depth measurement errors ranging between one

millimeter and a few centimeters. The measurement error
is simulated in a realistic way, i.e., the virtual laser scanner
produces angular and depth measurement errors similar to a
real one, leading to realistic anisotropy and error-to-distance
behaviors. All tests produce between 105 and 106 points,
which is small enough to fit into the core on typical hardware,
and are repeated at least 200 times. Pre-defined user inputs
are simulated to reconstruct the corners of the synthetic
room. The accuracy of them is then compared to that of the
RANSACplane detection and the subsequent recovery of the
same corners.

The evaluation results are illustrated in Figure 12. The
graph clearly shows that our incremental region growing
algorithm is roughly in line with the established technique.
Both approaches produce reconstructions approximately an
order of magnitude more precise to the ground truth than the
scale of the point cloud noise. This evaluation shows that our
incremental reconstruction approach suffers no compromise
in accuracy if applied to the base case (in-core point cloud
and no user input).

The use of subsampling in our level-of-detail region
growing leads to a certain loss of precision. To evaluate
this in a real-world context, we chose a high-resolution (1
mm - 2 mm point distance) laser scan of a building interior
and selected a well-captured corner. As opposed to the
previous analysis, we now recover a feature of a scan with a
known, fixed noise level at different subsampling rates. We
repeatedly reconstructed the corner with our plane segmen-
tation at different point densities (segmentation parameter
d). This measures the impact of our adaptive resolution
scheme on the reconstruction accuracy. The point densities
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Figure 12: Input noise vs. reconstruction error at maximum
detail. Lower is better. Our proposed system in blue, RANSAC
plane detection by Schnabel et al. [25] in red. Synthetic data
set.
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Figure 13: Degree of point detail vs. reconstruction error.
Lower is better. Red area shows the approximate scanner noise.
Our detail levels are: low (>2cm resolution), medium (1mm-
2cm), and high (<1mm). Real-world data set, dimensions:
approx. 7m x 5m x 2.5m.

are categorized into low detail cases with more than 2 cm
between points, medium detail cases ranging from 1 mm to
2 cm between points, and high detail with less than 1 mm
between scan points. The values correspond to detail levels
commonly referenced in the domain of urban surveying.

Figure 13 shows the results. The input scanner noise is
highlighted as red area and lies between 1 mm and 2 mm. In
the low detail reconstruction, the output error lies between
1.5 mm and 3 mm. In the medium detail reconstruction, the
output error is roughly equal to the input noise. In the high
detail reconstruction, the output error lies below the input
noise, at approximately 0.5 mm to 1 mm. These results show
that the loss of precision introduced by subsampling in our
technique stays within tolerable bounds. The domain experts
found these accuracy ranges appropriate for typical recon-
struction workflows that involve multiple levels of detail.

5.2. Example Use Cases
To demonstrate the capabilities of our technique, we

reconstructed example scenarios from real-world use cases.
The examples’ scopes are similar to that of common tasks
in the domain of as-built surveying. The point clouds were
supplied by our collaboration partners and were not cleaned
or downsampled beforehand. These data sets range from
approx. 10 million to over 1 billion (and, in real applications,
up to 10+ billion) points.

To put this number into perspective, we found it only
possible to load up to 50 million points into comparable
interactive systems like Arikan et al. [2] and Lejemble et
al. [12]. Beyond 50 million points, memory and runtime
constraints of global pre-processing proved prohibitive. Our
local technique, with adaptive subsampling, keeps memory
and runtime proportional to the size and detail of the recon-
struction, rather than the size of the point cloud.

All tests were done on average consumer hardware, i.e.,
Intel i5-4690K, Nvidia GTX 1080.

The first scenario, ‘office interior’, was reconstructed by
an expert user. They are an industrial provider of surveying
services, with more than five years of experience and famil-
iar with the traditional reconstruction workflow. The expert
is not affiliated with this paper. The expert reconstructed the
inside layout of an office building, using our demonstrator
GUI. It uses our interactive technique. They compared it
with an expert tool that is being employed by our collab-
oration partners and has limited interaction assistance. The
expert tool uses RANSAC-based global plane segmentation
and allows the user to select and intersect planes to find
edges. The user ended up reconstructing approximately 92
polygons. The result is visible in Figure 14(c). It took them
approximately 20 minutes with our technique. Using the
comparison tool with limited shape assistance, they required
approximately 105 minutes. The main reason for this longer
time is that the user had to run the global RANSAC seg-
mentation repeatedly with different parameters. They were
unable to find one set of parameters that was appropriate for
the dense parts as well as the sparse parts of the point cloud.
The user did not have this problem with our technique, since
our instant feedback interaction allowed them to find locally
appropriate segmentation parameters on the fly.

The remaining example reconstruction scenarios are
shown in Table 1, with screenshots in Figure 14 and de-
scriptions in the caption. Scenarios were selected to be rep-
resentative of various real-world architectural disciplines:
building layouts, building facade reconstruction, outdoor
and indoor details, and varying sampling rates and oc-
clusions/noise. The selection of three plane segments to
identify the corner point at their intersection has been an
interaction that was used particularly often, especially in
cases of scanning shadows due to occlusion. Whenever the
users encountered a hole in the point cloud, they usually
decided to extrapolate surrounding plane segments, or guess
the missed shape from a different, symmetrical part of the
building. This showcases the value of human understanding
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scenario #points polygons time taken

spiral staircase (14a) ∼15 million 45 ∼15 min.
house facade (14b) ∼50 million 49 ∼12 min.
office interior (14c) ∼150 million 92 ∼20 min.
factory layout (14d) ∼1 billion 22 ∼8 min.

Table 1
Example scenarios reconstructed with our technique. Screen-
shots are shown in Figure 14.

and contextual awareness to infer shapes from missing point
data.

The reconstruction example scenarios resulted in ap-
proximately 20-40 polygons and were completed in a matter
ofminutes. Users subjectively estimated the theywould need
more than an hour for similar reconstructions without shape
assistance. They could navigate towards their reconstruction
targets, and then invoke our on-demand plane segmentation.
They quickly found reconstruction parameters appropriate
for the current local region and reconstruction goal, regard-
less of the point cloud size and complexity.
5.3. Expert Interviews

We conducted interviews with users who have varying
degrees of experience: two domain experts who work with
point clouds professionally, three intermediate users who
had some point cloud experience, and two novice users who
had no prior experience in this domain. The two domain
experts work in terrestrial and building surveying, with more
than three years of experience. The intermediate users apply
point cloud tools regularly (at least two years of experience),
but are not familiar with high-precision reconstruction. The
novice users have no professional experience with point
clouds or reconstruction. None of the respondents are co-
authors of this paper. We asked them to complete minimal
reconstruction tasks, answer usability questions, and give
their subjective opinions on our technique.

The domain experts are accustomed to a workflow that
involves manually drawing a polygon on an orthographic
projection of a part of the point cloud. This is supported
by coarse global pre-segmentation and direct point picking.
Common usability issues of this workflow stem from the
abrupt viewpoint switches between different orthographic
depictions and the high cognitive load of selecting and
repairing the output of global segmentation.

All respondents reported a strong feeling of presence
in the data set, always being aware which part of the point
cloud they were currently viewing. They zoomed the camera
in and out of the point sets to switch between coarse and
fine-grained reconstruction parameters. Consequently, they
alternated between overview and detail views of the data on
their screens. Our automatic parameter estimation naturally
supports such focus-and-context interaction types.

One task was to reconstruct a rectangular wall on a
building facade, of which one corner was missing due to a
scan shadow. The intermediate and expert users intuitively
selected surrounding planes and found the missing corner as

the intersection point. All participants stated that they were
confident in the interaction and that they felt the resulting
geometry was identical to what they had intended. In the
previous workflow, this task is more difficult. The automatic
plane pre-segmentation needs to be adjusted to specific
parameters to correctly select the participating planes for
intersection.

Another task was to reconstruct the volume of a window
reveal, of which the bottom side was missing. The partic-
ipants applied the extrusion tool to construct the volume
starting from the top side and snapping to the bottom. The
participants positively commented on the simplicity of the
interaction, being able to complete it from a single view-
point. In the previous workflow, this task requires multiple
viewpoint switches to capture the entire three-dimensional
volume.

Ultimately, the novice and intermediate users found our
approach to be a novel and interesting way of interacting
with point clouds. This was evident from most of them
staying to explore and reconstruct more point sets after the
interview was over. The expert users welcomed our inter-
action techniques for being able to handle common tasks
with ease that are otherwise cumbersome without feature
support. An example isthe ability to select plane normals
or tangential directions with a single click. They found our
ability to interact with point clouds of arbitrary size without
compromising reconstruction accuracy an essential asset for
modern high-resolution laser scanners.
5.4. Real-world Application

To indicate the usability of our approach, we briefly
touch on usage of our interaction system in real-world ap-
plications. We implemented our technique in an out-of-core
octree and point cloud rendering system, which can handle
point clouds of arbitrary size, in our experiments up to tens
of billions of points. This exemplifies how our approach can
be integrated in existing point cloud tooling.

The project partners and domain experts in urban survey-
ing at rmDATA use our system in their commercial product
rmDATA 3DWorx [8]. They deploy it to expert users in the
domains of as-built surveying and urban reconstruction. A
domain expert independently measured lengths on buildings
fromwhich we have laser scans. Our reconstructed measure-
ments agree with their precise surveying, showing 0.35 mm
of difference on average on a length of 1 m.
5.5. Comparison with Interactive Tools

For completeness, we briefly compare the reconstruction
experience using our tool compared to similar published
work, O-Snap (Arikan et al. [2]) and Lejemble et al. [12],
applied to their publicly available demonstration data sets.

The clear advantage of O-Snap lies in a fast reconstruc-
tion as long as the data is available. As noted in their evalu-
ation, reconstruction takes longer in regions where building
parts are not included in the original data. Furthermore, their
global automatic optimization focuses on creating a water-
tight mesh, which makes the precision of the reconstructed
geometry difficult to comprehend.
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a b

Figure 14: Reconstructed scenarios from Table 1. (a) Indoor spiral staircase. (b) House facade. (c) Indoor hull of an office
building that was scanned both from inside and outside. Traditionally prone to severe oversegmentation, this frequent scenario
was straightforwardly reconstructed using our method by moving the camera through the rooms and clicking on the corners.
(d) Factory layout. The facade is severely obscured by trees, cars, and moving people, which are common artifacts in mobile
mapping. This scenario was reconstructed using our method by clicking on the dominant planes from a zoomed-out view, and
ad-hoc filtering the noise.

Lejemble et al.’s technique is more similar to ours in
terms of user interaction. It is also unable to use missing
regions for modeling, but their effective segment-browsing
toolset notably speeds up the process. Their tooling could be
adapted to work within our local reconstruction loop.

In summary, all three approaches provided adequate
ways to obtain the desired geometry, but each one is funda-
mentally motivated by different reconstruction scenarios and
requirements. In comparison, our technique took approx. 5-
10 minutes longer than in the compared works. It, however,
had a clear focus on completing reconstructions where oth-
ers failed, and on modeling the geometry as accurately as
possible.

6. Discussion and Future Work
Our interactive and localized approach to point cloud

reconstruction makes for lightweight interactions. These
are intuitively clear to humans and produce little cognitive
load. Further, they interface directly with a point cloud. All
of these are valuable properties. Novice and expert users
quickly adapted to our technique due to its intuitive nature
and reported gaining new insight into the structure of point
clouds they interacted with.

Currently, in our technique, shapes other than plane seg-
ments are not considered. An interesting research direction

is the integration of other support geometries, such as para-
metric surfaces, or the automatic detection of different kinds
of edges [9], [10] or parametric curves [28]. It remains to be
investigated whether they could be assembled into sensible
user interactions outside of highly specialized contexts.

Our feature-assisted CAD tooling requires no specialized
point cloud infrastructure and can easily be integrated with
existing interaction systems, such as O-Snap [2]. As future
work, a mesh optimization loop similar to O-Snap’s could be
used to evolve our loose collection of reconstructed polygons
into watertight meshes on-the-fly.

7. Conclusion
In this paper we present an interaction framework for

feature-assisted point cloud geometry reconstruction using
on-demand planar region growing. The core contributions
are a density-normalized out-of-core point cloud recon-
struction technique, an on-demand plane-segmentation in-
teraction framework, and a feature-assisted high-precision
geometry reconstruction workflow. Our evaluation shows
that we achieve the stated goal of providing reconstruction
capabilities at arbitrary precision and level of detail on large
out-of-core point clouds without preprocessing.
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A. Rebasing Incremental Plane Regression
Given an incremental plane regression R = (S,Sq, c,D)

as defined in Section 3.2, and a new reference point r, with
the previous reference point denoted as r0. Let d = r0 − r,
we calculate the rebased incremental plane regression
RR = (SR,SqR, c,DR)which re-centers the synthesized val-
ues around r using the following Equations 4:

SR = S + c ∗ d
SqR = Sq + 2 ∗ (dx ∗ Sx, dy ∗ Sy, dz ∗ Sz) + c ∗ (d2

x , d
2
y , d

2
z )

vx = dx ∗ Sy + dy ∗ Sx + c ∗ dx ∗ dy (4)
vy = dx ∗ Sz + dz ∗ Sx + c ∗ dx ∗ dz
vz = dy ∗ Sz + dz ∗ Sy + c ∗ dy ∗ dz
DR = D + (vx, vy, vz)
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