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A B S T R A C T

Neural material representations are becoming a popular way to represent materials for
rendering. They are more expressive than analytic models and occupy less memory
than tabulated BTFs. However, existing neural materials are immutable, meaning that
their output for a certain query of UVs, camera, and light vector is fixed once they
are trained. While this is practical when there is no need to edit the material, it can
become very limiting when the fragment of the material used for training is too small
or not tileable, which frequently happens when the material has been captured with a
gonioreflectometer. In this paper, we propose a novel neural material representation
which jointly tackles the problems of BTF compression, tiling, and extrapolation. At
test time, our method uses a guidance image as input to condition the neural BTF to
the structural features of this input image. Then, the neural BTF can be queried as a
regular BTF using UVs, camera, and light vectors. Every component in our framework
is purposefully designed to maximize BTF encoding quality at minimal parameter count
and computational complexity, achieving competitive compression rates compared with
previous work. We demonstrate the results of our method on a variety of synthetic
and captured materials, showing its generality and capacity to learn to represent many
optical properties.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

A common approach to modeling real-world spatially-
varying materials in computer graphics is through the use of
Bidirectional Texture Functions (BTFs). This type of represen-
tation models the dense optical response of the material, and is
more general than analytic representations such as microfacet
SVBRDF. However, BTFs can occupy large amounts of mem-
ory. Recently, neural material representations are being pro-
posed as a learning-based alternative to tabulated BTFs, pro-
viding a more compact solution while keeping the flexibility
and generality of BTFs.

∗Corresponding author
e-mail: carlos.rodriguezpardo.jimenez@gmail.com

(Carlos Rodriguez-Pardo)

Creating digital representations of real material samples re-
quires using an optical capture device, such as a gonioreflec-
tometer, a smartphone [1], or a flatbed scanner [2]. During the
process, several choices must be made. First, it is important to
select a patch of the material that contains enough spatial vari-
ability. Second, a process –automatic or manual– must be found
to produce a tileable material that can be used to create seam-
less 3D renders. Finally, resources must be allocated for storage
as needed. Making these choices when dealing with implicit or
tabulated representations, such as in BTFs or neural materials,
is particularly crucial. Once these representations are trained or
captured, they cannot be easily modified and it is only possible
to query them using the UVs, light, and camera vectors.

In this paper, we propose a novel neural material represen-
tation that addresses these issues. Unlike existing neural ap-
proaches that are immutable once trained [3, 4, 5, 6], our model
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can be queried at test time with a guidance image that condi-
tions the neural BTF to the structure provided by the guidance
image. Our approach resembles synthesis by example and pro-
cedural processes, and can be used to extrapolate BTFs to large
material samples, as well as to easily create tileable ones. Fur-
thermore, our method achieves better compression rates than
previous work on neural BTF representations.

To achieve this, we present a novel method that works at two
steps. In the first step, we condition the neural BTF using a
guidance image as input. To this end, we use an autoencoder
that outputs a high-dimensional latent representation of the ma-
terial, a neural texture, which jointly encodes reflectance and
structural properties. In the second step, the UV position of the
latent representation, along with the camera and light vectors,
are decoded by a fully-convolutional sinusoidal decoder, a neu-
ral renderer to obtain the RGB values. Using a single BTF as
input, we train the network end-to-end using a custom training
procedure, loss function, and data augmentation policy. This
policy, inspired by recent work on attribute transfer [7], allows
the autoencoder to encode the relationship between structural
features and reflectance, enabling the propagation of the BTF
to novel input guidances. Once trained, the novel input guid-
ances may come from the same material, a different material,
or a structural pattern. An input guidance of the same material
can be used to extrapolate the BTF to larger samples or create
tileable BTFs, provided the input guidance is tileable. If the in-
put guidace is a structural pattern, the local features can be used
to synthesize novel materials.

In summary, we propose the following contributions:

• The first neural BTF representation with conditional input
that can be used to extrapolate BTF measurements, easily
create tileable BTFs, and synthesize novel materials.

• We show how to leverage our system for rendering large-
scale and tileable neural BTF generation using measure-
ments captured with small portions of the material.

• We demonstrate that our method works with synthetic and
captured materials of diverse optical properties, including
colored specular or anisotropy.

We provide additional results, supplementary materials, and
implementation details at our project website.

2. Related Work

An accurate method for representing the optical properties
of materials is through Bidirectional Texture Functions (BTFs)
[8]. BTFs are 6D functions that characterize all possible com-
binations of incoming and outgoing light and camera direc-
tions for the 2D spatial extent of a material. Although they
are successful in representing materials, they have a major
drawback in terms of memory requirements. Therefore, BTF
compression has been a major research topic [9]. Non-neural
approaches used dimensionality reduction techniques such as
Principal Component Analysis (PCA) [10, 11, 12], vector quan-
tization [13], or clustering [14]. However, these approaches
were recently surpassed by neural models [15] due to their flex-
ibility and superior capacity to learn non-linear functions.

Neural BTFs. Rainer et al. [3] proposed the first method to
use deep autoencoders to compress BTFs, surpassing PCA [12]
on captured BTFs. However, this approach required training a
single neural network per material. To address this limitation,
a later work by the same authors [5] proposed a generalization
of this idea in which a single network was able to generalize
to a variety of materials. Although these methods were very
effective for compressing flat materials, they had some limi-
tations when it came to modeling materials with volume. In
their work, Kuznetsov et al. [4] improved the quality of neural
materials by introducing a neural offset module that captures
parallax effects. Further, they method also allowed for level-
of-detail though MIP mapping by training a multi-resolution
neural representation. However, grazing angles and silhouette
effects remained a challenge for this approach. In a subsequent
work, Kuznetsov et al. [6] explicitly trained the network us-
ing queries that span surface curvatures, effectively handling
these cases. Representing fur, fabrics, and grass with neural re-
flectance fields was explored by Baatz et al. [16] who proposed
a representation that jointly models reflectance and geometry.

All of these approaches share the idea of querying neural ma-
terial using UVs, camera, and lighting vectors, but do not pro-
vide any functionality for modifying the material once the net-
work is trained. In contrast, our approach can take a guidance
image as input, which conditions the output to generate material
variability.

Material synthesis and tiling. Texture synthesis is a long-
standing problem in the field of computer graphics. The goal
is to reconstruct a larger image given a small sample, leverag-
ing the structural content and internal statistics of the input im-
age. This concept has been used for synthesizing single images,
BTFs, and full material models. For images, the most com-
mon strategies include PatchMatch [17], texture transport [18],
point processes [19, 20], or neural networks [21, 22, 23, 24].
BTF synthesis, however, has received less attention. Stein-
hausen et al. [25, 26] extrapolated BTF captures to larger mate-
rial samples using non-neural texture synthesis methods. For
full materials, Li et al. [27] captured the appearance of ma-
terials by first estimating their BRDF and then synthesizing
the high-resolution micro-structure from a dataset of measured
SVBRDFs. Nagano et al. [28] measured microscopic patches
of the skin and used a convolutional filter to propagate the mea-
surements to a spatially-varying texture. Deschaintre et al. [29]
used an autoencoder to propagate SVBRDFs to large material
samples. Also recently, Rodriguez-Pardo and Garces [7] prop-
agated any kind of visual attribute having a single image as
guidance. Their approach shares some similarity to ours, al-
though they transfer 2D image attributes, while we transfer the
full BTF.

Procedural models [30, 31, 32] are nowadays very successful
for generating tileable materials. Thanks to the use of a tileable
template, these methods adjust the generated image to the fea-
tures available in the template. As we show, our approach can
also work with a binary template as input. However, guaran-
teeing predictable outputs given this kind of input is out of the
scope of our technique, which can transfer BTF measurements
having as input a guidance image of the same material.

https://carlosrodriguezpardo.es/projects/NeuBTF/
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Fig. 1: An overview of our neural BTF inference and training processes. Top-Inference: Using a guidance image G ∈ RH×W×3, we use our trained autoencoder
to generate the Neural Texture A(G) = TG ∈ RH×W×D, which preserves the spatial resolution of the input image but represents a higher-dimensional learned
representation. This Neural Texture TG, along with the trained renderer R, can be queried as a regular BTF, using UVs, and target camera and light positions for
regular rendering. Bottom-Train: During training, following previous work on photometric data augmentation [7], we randomly select an input view Vω̃o ,ω̃i and
a target Vωo ,ωi . This allows the model to generalize to novel light or camera conditions and acts as a regularizer. To both views, we apply random rescale and
cropping. Then, only to Vω̃o ,ω̃i , we randomly apply hue variations, gaussian blur, and noise, and feed it to the autoencoder, which returns a 2D latent representation
of the material. A fully-convolutional decoder with sinusoidal activations receives both this latent space and the target ωo, ωi camera and light angles, and estimates
V̂ωo ,ωi . This output is compared with Vωo ,ωi using a multifaceted loss function.

Other neural representations in rendering. Limited to BRDFs,
neural networks trained with adaptive angular sampling have
been explored to enable importance sampling [33], needed for
Monte Carlo integration. Deep latent representations also allow
for BRDF editions. For example, Hu et al. [34] demonstrate
that autoencoders can outperform classic PCA for the purpose
of editing. Other applications of neural encodings in render-
ing are numerous. For instance, they have been used for scene
prefiltering [35], where geometry and materials are simplified
to accommodate the LoD of the scene using a voxel-based rep-
resentation and trained latent encodings. For anisotropic mi-
crofacets, Gauthier et al. [36] propose a cascaded architecture
able to adjust the material parameters to the MIP mapping level.
Encoding light transport using neural networks for real-time
global illumination has also been explored [37, 38], showcas-
ing promising results.

3. Method

We present an overview of our approach in Figure 1, where
we show our inference and training pipelines. Our goal is
twofold: First, find a compact representation for a BTF through
the use of neural networks. Second, enable the extrapolation of
the BTF according to guidance images used as input. In Sec-
tion 3.1 we describe our inference pipeline and neural network,
and in Section 3.2 our training process. Section 4 contains spe-
cific implementation details and design of the neural networks.

3.1. Inference
Our neural network is composed of three modules: an au-

toencoder A, a neural texture T ∈ RH×W×D, and a renderer

R. The renderer R(T (u, v), ωo, ωi) = RGB takes as input the
feature vector at the (u, v) coordinates of the neural texture T ,
the view ωo and light ωi positions, and returns an RGB value.
R acts as a conventional BTF and can be used as such in any
render engine.

An input guidance image, G ∈ RH×W×3, is used during infer-
ence to condition the generation of the neural texture T . This
conditioning allows us to propagate the learned reflectance to
novel guidance images that can be: a larger sample of the same
material, a different material, or a structural image. In the sim-
pler case, the guidance image comes from the BTF used for
training, and our process is equivalent to previous work [3, 4].

The autoencoderA takes the guidance image G ∈ RH×W×3 as
input and outputs a neural texture T ∈ RH×W×D with the same
size H × W as the input guidance image but with more latent
dimensions D. As a result, each pixel in the guidance image
has a higher-dimensional neural representation in T . Because
it is trained without explicit supervision, this latent representa-
tion can capture the reflectance and structural patterns automat-
ically. Kuznetsov et al. [4] also used a latent neural represen-
tation of the material, however, lacking the initial autoencoder
their approach cannot synthesize novel BTFs without retrain-
ing, while our conditioning module allow us to generate novel
BTFs during test time. The autoencoder and the renderer are
neural networks trained jointly, using an end-to-end image-to-
image approach describe below.

3.2. Training

Figure 1 (bottom) illustrates our training process. It has two
objectives: First, equivalent to regular BTF encoding, we aim
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Fig. 2: Some tileable neural materials achieved with our method. On the top row, we show a slice of the BTF used to train a NeuBTF representation. With the
tileable guidance images shown on the second row, we propagate the neural texture using our autoencoders. These neural textures can be rendered to generate
realistic images (third). We provide closeups on the bottom row. In the cases where the guidance image covers a larger area than the training crop, we highlight the
training surface area as a green inset.

to find the mapping between camera direction ωo, light direc-
tion ωi, and output slices of the BTF: (ωo, ωi)→ Vωo,ωi ∈ BTF.
Second, we aim to condition the synthesis process with an in-
put guidance image, G. To this end, for training, we feed the
model with images, Vω̃o,ω̃i , which are randomly sampled from
the BTF, and are subject to additional data augmentation pro-
cesses. This extensive augmentation process guarantees invari-
ance to different input variations during test time, like camera or
illumination conditions, while keeps consistency of the outputs.

Loss Function Design. Our loss function, that com-
pares ground truth slices Vωo,ωi with generated ones
R(A( f (Vω̃o,ω̃i )), ωo, ωi), is a weighted sum of three terms:
a pixel-wise loss, a style loss, and a frequency loss,

L = λL1L1 + λstyleLstyle + λ f reqL f req (1)

The main driver of our loss is the pixel-wise norm L1. L1
produces sharper results than higher-order alternatives, such as
L2 [39, 7]. Following [4], we apply a log(x+1) compression to
improve the model results on high dynamic range. This com-
pression is only done to the pixel-wise component of the loss
function. Inspired by recent work on texture synthesis, capture
and transfer [40, 41, 24, 2, 32], we introduce a Lstyle loss to
help the model generate higher quality and sharper results. Fur-
ther, to mitigate the spectral bias of convolutional neural net-
works and help ameliorate the results further, we also introduce
a focal frequency loss into our learning framework [42]. This
combination of loss functions proves effective for our problem,
without the need for complex adversarial losses which could
reduce efficiency or destabilize training.

Data Augmentation. We train our models using a comprehen-
sive data augmentation policy aimed at achieving high quality
reflectance propagation, increasing performance and general-
ization, and allowing for generation of multiple resolution ma-
terials at test time. We build upon recent work on material trans-
fer [7] and use images of the material taken under different illu-
mination and viewing conditions as inputs to our autoencoder.
This helps it generalize to novel capture setups, which allows
for multiple applications we describe on Section 6. In particu-
lar, we use every image available on the input BTF, selected uni-
formly at random for each element in each batch during train-
ing. As in [7], we also use random rescaling, which helps the
model generalize to new scales, and build neural materials of
multiple resolutions at test time, as we describe on Section 6.3.
Inspired by recent work on image synthesis [7, 43, 24], we use
random cropping, which helps generalization by effectively in-
creasing the dataset size. Finally, we extend the color augmen-
tation policy in [7] with random hue changes across the entire
color wheel, and introduce random Gaussian noise and blurs
to the input images, to help it generalize further, as proposed
in [2].

4. Model Design and Implementation

We provide extensive implementation details for model sizes,
training and data generation on the supplementary material.

Autoencoder. For the autoencoder, we use a lightweight U-
Net [45] with a few modifications to tailor it for our problem.
Inspired by recent work on CNN design, we leverage Con-
vNext [46] Blocks across our model, with depth-wise convolu-
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Fig. 3: Qualitative results on a variety of BTFs, from different sources. From
left to right, we show results on a material from the UBO [12] BTF dataset, the
UTIA [44] BTF dataset and two synthetic materials rendered from Substance
SVBRDFs.

tions using 5×5 kernels. We empirically observe that ConvNext
blocks achieve higher quality structural editions at a lower pa-
rameter count than vanilla U-Net blocks. To further help con-
vergence and preserve details in the input images, we use resid-
ual connections [47, 48, 2] in every convolutional block of the
model. We use 1 × 1 convolutions on the skip connections
and residual scaling [49]. As in [46], we use Layer Normal-
ization [50] and GELU non-linearities [51]. On the bottleneck
of the model, we introduce an attention module [52] to help
the model learn longer-range dependencies. To avoid checker-
board artifacts [53], we use nearest neighbors interpolation for
upsampling. Inspired by recent work on tileable material gener-
ation [32], we use circular padding throughout the model. We
initialize its weights using orthogonal initialization [54], which
helps avoiding exploding gradients.

Renderer. For the renderer, we build upon SIREN [55] MLPs,
with additional modifications to enhance its performance for
our problem. We use 1×1 convolutions instead of vanilla linear
layers, to allow for end-to-end training using 2D images. Fur-
ther, we introduce Layer Normalization [50] before each sinu-
soidal non-linearity, which stabilizes training. Finally, inspired
by [56], we use residual connections [47], to help preserve
the information of the input vector across the decoder layers.
Model weight initialization follows [55]. With sinusoidal acti-
vations, we observe significantly higher reconstruction quality
and training dynamics than with ReLU [57] MLPs, which are
common for BTF compression [3, 5, 4]. Because the network
is fully-convolutional, it can take as input feature vectors of any
size. This is very convenient for our use cases when the input
guidance image have a size different from the size of the orig-
inal BTF used to train it. The renderer can be evaluated very
efficiently in GPU, at an average of 2.514e−4 ± 4.48e−5 ms per
sample.

5. Evaluation

5.1. Qualitative and Quantitative Analysis

We evaluate our method on materials from different sources
including acquired BTFs from [12, 44], and rendered BTFs

Material fabric01 [12] fabric03 [44] ceramic (Subst.) embroidery (Subst.)

PSNR ↑ 26.58±1.820 27.73±4.711 29.19±2.111 28.79±1.831
SSIM [58] ↑ 0.710±0.108 0.729±0.142 0.819±0.110 0.652±0.156

LPIPS [59] ↓ 0.451±0.041 0.404±0.054 0.270±0.075 0.341±0.135
FLIP [60] ↓ 0.391±0.047 0.426±0.105 0.365±0.065 0.391±0.115

Table 1: Average (± std.) reconstruction error across the full dimensional
space for materials of different datasets, measured using pixel-wise and per-
ceptual metrics.

from procedurally generated and scanned SVBRDFs. In Fig-
ure 2, we show examples of the results of NeuBTF for a vari-
ety of materials with highly complex structures and reflectance
properties, like colored specular (first column) or anisotropy
(last). We show some additional results in Figure 3 for mate-
rials of different datasets. As shown, our model achieves high
quality reconstructions regardless on the type of data source. In
Table 1, we show the reconstruction error for the same materi-
als, averaged across the full directional space, for a variety of
pixel-wise and perceptual metrics.

Finally, in Figure 4, we show a colored visualization for a
few channels of the latent neural texture T found for a vari-
ety of materials. Because the values for the neural texture are
unbounded, to each channel c ∈ T , we standardize them to 0
mean and unit variance, and apply a sigmoid(c) = 1

e1−c+1 non-
linearity to make the maps comparable. Without any explicit
training, the models learn to separate distinct parts of the ma-
terial. For example, the model finds distinct latent spaces for
warp and weft yarns on woven fabrics, or separation between
color and geometric patterns. This disentanglement provides
clues on why the material propagation is possible, and suggests
potential future research directions for fine-grained neural ma-
terial edition.

5.2. Compression comparisons with previous work

In Table 2, we show the number of trainable parameters on
the decoders of different neural BTF compression algorithms.
As shown, our model is competitive with previous work in
terms of trainable parameters. This is achieved as we use more
complex loss functions than previous work, which help regu-
larize the models, and because our sinusoidal MLP achieves
higher quality reconstructions for natural signals than ReLU
MLPs, as shown in [55]. NeuMIP [4] uses smaller MLPs, how-
ever, they require an additional decoder for their neural offset
module, which helps them encode parallax effects (See Fig-
ure 5), for which our model struggles. Our decoder has one
order of magnitude fewer parameters than [3, 5], however, the
method in [5] provides the benefit of fast encoding of new ma-
terials, while ours requires a different model for each new ma-
terial.

5.3. Limitations

As we show in Figure 5, our model struggles with materi-
als with strong displacement. While our method provides ac-
curate encodings on viewing angles close to the material sur-
face, it cannot accurately encode grazing angles for such ex-
treme cases. Displacement maps translate the geometric po-
sition of the points over the surface, breaking the underlying
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Render Latent Channels Render Latent Channels

Fig. 4: A selection of latent channels learned by NeuBTF for a variety of materials. We use a colorspace to help visualization. Without explicit supervision, the
model internally learns semantically meaningful latent spaces. For instance, in the second example on the left, the two leftmost latent spaces encode geometry, while
the other two encode the two distinct colors of the printed pattern over the yarns.

Method NeuBTF (ours) NeuMIP [4] Rainer 2019 [3] Rainer 2020 [5]

Decoder Parameters 3011 3332 35725 38269

Texture Channels 14 14 14 38

Table 2: Number of trainable parameters in the decoders and amount of la-
tent texture channels for different neural BTF compression algorithms. We use
Torchinfo [61] for this analysis. Note that exact comparisons are challenging,
as [4] optimizes a multi-level texture pyramid and [5] learns a latent vector
which can encode novel materials. For neither our method nor [3, 5], we count
the parameters in the encoders, as they are not needed for using the materials
on rendering systems.

assumptions behind our neural texture. NeuMIP [4] solves this
issue by explicitly modelling parallax effects with a neural off-
set module. While we did not observe that such extension was
needed for acquired BTF data, like the UBO2014 [62] dataset,
introducing a similar module into our editable neural material
framework is an interesting future research direction to increase
its generality.

6. Applications

6.1. Reflectance Propagation and Tileable Neural BTFs

Many material reflectance acquisition devices are limited in
the surface dimensions they can digitize. This hinders their ap-
plicability to many real-world materials, which exhibit varia-
tions that cannot be captured at such small scales. Further, in
many applications like SVBRDF acquisition, obtaining larger
samples of the material improves realism and helps tileable
texture synthesis. In this context, previous work on BTF re-
flectance compression inherit the surface area limitations of the
capture devices used to generate their training data. Our method
can easily be applied for reflectance propagation. We build
upon the work of Rodriguez-Pardo and Garces [7] and leverage
our encoder to propagate the neural texture optimized using a
small portion of the material (e.g. a 1×1 cm capture) to a larger

GT NeuMIP NeuBTF

Fig. 5: A failure case of our method. Compared to NeuMIP [4], which explictly
models parallax effects, our model struggles to accurately encode materials
with strong displacements, as this synthetic cable knit from Substance3D. For
this type of materials, NeuBTF accurately encodes orthogonal viewing angles
(top row), however, it struggles at grazing angles (bottom row).

portion of the same material, represented with a guidance im-
age captured using a commodity device like a flatbed scanner.
Because our model is trained using a large amount of lighting
conditions, as in [7], the propagation is invariant to how the im-
ages are illuminated. We show results of such pipeline in Fig-
ure 2. For instance, on the last row, we show an anisotropic and
specular SILVER JACQUARD fabric, for which we generated a
BTF by rendering a 1 × 1 cm SVBRDF. This small crop cannot
represent the complex pattern in the fabric, which we show on
the guidance image, which covers a 10 × 10 cm area. Using
our encoder, we propagate the neural material to this guidance
image, generating a new, high-resolution, latent space which
we can render, enabling realistic material representations with
a reduced digitization cost. This propagated neural material has
a 2000 × 2000 texels resolution, and it requires no re-training
during test time.
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Relatedly, our propagation framework can also be easily
leveraged for generating tileable BTFs. Given any guidance
image of the material, we can generate a tileable version of
it, either using manual editions by artists or automatic algo-
rithms [63, 64, 65, 24]. With this tileable input guidance, we
can use our autoencoder A to propagate the neural texture T ,
effectively generating tileable BTFs, as we show in Figure 2.
This propagation algorithm can leverage state-of-the-art algo-
rithms for tileable texture synthesis without any modification of
our material model or training framework. Tileable BTFs were
not achievable with previous approximations and this simple
pipeline has the potential of enabling novel applications of this
type of material representation in rendering scenarios.

6.2. Structural Material Edition
Besides propagating BTF measurements to larger portions of

the material, NeuBTF allows for generating novel materials us-
ing structural editions. Given a trained NeuBTF and a guid-
ance image representing some particular target structure, we
can propagate the neural texture to this guidance image, gen-
erating high-quality neural materials which preserve the struc-
ture of the guidance image and the reflectance properties of the
trained neural material. This pipeline allows for easily gener-
ating multiple different neural materials without the need for
retraining. As we show in Figure 6, this propagation method
works for many types of input guidances, including vector black
and white images, procedurally generated textures, or real pho-
tographs of materials and textures. We show results on ac-
quired BTFs and from synthetic BTFs, rendered from scanned
and manually generated SVBRDFs. As shown, our propaga-
tion frameworks provides high-quality material editions, even
for very challenging cases, like the circles pattern.

6.3. Multi Resolution Neural Materials
Another useful application enabled by our method is the gen-

eration of materials at different resolutions. Unlike previous
work [4], which explicitly optimizes a pyramid of levels of de-
tail during training, we can generate materials at any resolu-
tion at test time without introducing any additional complexi-
ties to our material representation. Because we train our mod-
els using random rescales as a data augmentation policy, they
are equivariant to rescales of its input guidance images G ↓:
R(A(G)) ↓= R(A(G ↓)). As such, we can generate any con-
tinuous resolution for a particular BTF by downsampling the
guidance image to the target resolution and propagating its neu-
ral texture, as we illustrate in Figure 7. Note that this algorithm
only guarantees accurate results for the rescaling ranges that we
use during data augmentation.

7. Conclusions

We have presented a learning based representation for mate-
rial reflectance which provides efficient encoding and powerful
propagation capabilities. Our method introduces input condi-
tioning into neural BTF representations. This allows for mul-
tiple applications which were not possible with previous neu-
ral models, including BTF extrapolation, tiling and novel mate-
rial synthesis through structure propagation. Our method builds

Structure

Training 
Material

leather11 carpet07 fabric01 linen ceramic

St
on

es
Pa

tt
er

n
K

ni
tP

at
te

rn
B

ri
ck

s
Pa

tt
er

n
C

ir
cl

es
Pa

tt
er

n
Fl

oo
r 

G
ui

da
nc

e

Fig. 6: Examples of structural editions allowed by our method on a variety of
materials. On the leftmost column, we show guidance images, which represent
structures into which we transfer the neural BTF measurements illustrated on
the top row. As shown, our method can effectively propagate BTF measurements
into many material and structure types, using as guidances either synthetic or
real images. The first three materials (leather11, carpet07, fabric01) are taken
from UBO 2014 [62], the linen material is rendered from a captured SVBRDF,
while the ceramic material is rendered from an artistic material taken from
Substance3D. We show renders generated using θv = θl = 0. Additional results
are provided on the supplementary material.

Input

Target

1 0.75 0.5 0.25   0.1      

ℛ

Fig. 7: Our method naturally enables for the generation of different resolutions
for the neural materials. We show the input to the autoencoder (top row), the
rendered material at θc = 75, θl = 60, ϕc = ϕl = 0 (middle row), and the ground
truth image at those positions (bottom), at different resolutions (columns). We
achieve this by downsampling the guidance image G fed into the autoencoder
module, which returns an accurately downsampled latent space, thanks to our
data augmentation policy applied during training. The rightmost column lies
beyond the ranges in which we train the model, however, the results are still
somewhat plausible.

upon recent work on neural fields, network design and data aug-
mentation, showing competitive compression capabilities with
previous work on neural BTF representation. Through multiple
analyses, we have shown the capabilities of our method on a va-
riety of materials with different reflectance properties, includ-
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ing anisotropy or specularity, as well as effectively handling
either synthetic and acquired BTFs.

Our method can be extended in several ways. The most im-
mediate extension is to allow for materials with strong parallax
effects due to displacement mapping or curvature, as in [4, 6].
Our representation is limited to opaque materials. Extending
them to handle translucent or holed surfaces would increase
their realism in materials like thin fabrics or meshes. Further,
our method could be extended to allow for hyperspectral BTF
data [66], but captured data is scarce. Besides, recent work
on neural BRDF representations [33, 37, 67] and generative
models [68] suggests a promising research direction: Learn-
ing to sample from neural BTFs, using invertible neural net-
works. While these may introduce challenging complexities
to the models, they could provide efficient representations for
Monte Carlo rendering using importance sampling. Further,
building upon recent work on SVBRDF capture [2, 32], BRDF
sampling [69] and BTF compression [5], it could be possible
to learn a prior over neural BTFs with a generative model.
This should help in capturing more efficiently the data needed
for generating these assets, as well as generating new materi-
als and interpolating between them. Finally, editing semantic
and reflectance properties in neural fields is an active area of
research [70, 71, 72, 73, 74]. While our method introduces
structural edition into neural BTF representations, it is not ca-
pable of editing particular semantic properties, such as albedo
or specularity. Extending our edition capabilities to more fine-
grained parameters is an interesting research avenue. We hope
our method inspires future research on neural material repre-
sentations.
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