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A B S T R A C T

3D object retrieval is an important yet challenging task that has drawn more and
more attention in recent years. While existing approaches have made strides in ad-
dressing this issue, they are often limited to restricted settings such as image and sketch
queries, which are often unfriendly interactions for common users. In order to over-
come these limitations, this paper presents a novel SHREC challenge track focusing on
text-based fine-grained retrieval of 3D animal models. Unlike previous SHREC chal-
lenge tracks, the proposed task is considerably more challenging, requiring participants
to develop innovative approaches to tackle the problem of text-based retrieval. Despite
the increased difficulty, we believe this task can potentially drive useful applications in
practice and facilitate more intuitive interactions with 3D objects. Five groups partic-
ipated in our competition, submitting a total of 114 runs. While the results obtained
in our competition are satisfactory, we note that the challenges presented by this task
are far from fully solved. As such, we provide insights into potential areas for future
research and improvements. We believe we can help push the boundaries of 3D object
retrieval and facilitate more user-friendly interactions via vision-language technologies.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The rapid growth and advancement of 3D technologies have
significantly expanded the availability and abundance of 3D ob-
jects. As a result, 3D object retrieval has emerged as a promi-
nent and interesting research area, with substantial practical ap-
plications [1, 2, 3, 4, 5] across diverse domains, including video

∗Corresponding author
e-mail: tmtriet@fit.hcmus.edu.vn (Minh-Triet Tran )

games, creative arts, motion picture production, and virtual re-
ality.

In real-world scenarios, obtaining a 3D model as a query
typically demands significant effort and resources. As a solu-
tion, content-based 3D object retrieval techniques [6, 7, 8] have
been developed, which provide a more accessible approach
to query collection. These techniques aim to retrieve 3D ob-
jects from a database based on their visual content, encom-
passing color, texture, shape, and geometric features. Among
the various retrieval methods, image-based and sketch-based
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approaches [9, 10, 11, 12] have gained popularity. Image-
based retrieval methods leverage RGB images captured from
the real world to extract relevant visual features, facilitating
the retrieval of similar 3D models. This approach is advan-
tageous as it allows users to access valuable 3D models con-
veniently through readily available 2D images. In contrast,
sketch-based retrieval [13, 14, 15, 16] employs hand-drawn
sketches as queries. The intuitive nature of freehand drawings
allows for a more effective capture of the essential features of
3D objects while filtering out irrelevant information. Neverthe-
less, image-based and sketch-based approaches introduce no-
table challenges in 3D object retrieval research. The substantial
disparities between 2D and 3D modalities present a significant
obstacle, as 2D images or sketches differ considerably from
their corresponding 3D counterparts and perspectives. More-
over, sketches are prone to ambiguity and errors, which can
detrimentally affect the accuracy of the retrieval process.

We have introduced a novel challenge track called Text-
based 3D ANIMAl model fine-grained Retrieval (TextANI-
MAR)1 aiming to enhance the effectiveness of content-based
3D object retrieval. The primary objective of this track is to
retrieve relevant 3D animal models from a dataset using tex-
tual queries. This SHREC challenge track poses significantly
greater challenges and provides a more effective simulation of
real-life scenarios than previous SHREC challenge tracks. We
also note that after the challenge concluded, the dataset has been
made publicly available for academic purposes.

Firstly, in conventional 3D object retrieval tasks, the primary
focus is typically on the object category. These approaches of-
ten involve training and testing with samples from the same
category. While this leads to feature extraction methods spe-
cialized for known categories, it may limit their effectiveness
with unseen categories in practice. Their efficacy should be
evaluated only within specific contexts. Nevertheless, alter-
native approaches, such as open-set 3D object retrieval, have
emerged as promising solutions for effectively addressing the
retrieval of unseen categories. These approaches involve train-
ing models on known-category 3D objects and incorporating
unseen-category data, offering potential avenues to overcome
the challenges posed by classification-based methods. Regard-
less, our fine-grained retrieval task requires participants to ac-
curately search 3D animal models whose shapes correspond to
a given query, necessitating consideration of unseen categories
and poses (cf . Table 1). This task poses a more significant
challenge than traditional category-based retrieval, which re-
quires handling the substantial discrepancies in animal breeds
and poses.

Second, the quality and resolution of the input image can im-
pact the performance of image-based 3D object retrieval. How-
ever, controlling these factors requires additional effort. It is
also worth noting that image queries may encounter challenges
in effectively handling variations in object scale, orientation,
and perspective, potentially impacting retrieval performance.
Conversely, sketches trained on existing datasets often exhibit
semi-photorealistic qualities and are expertly created, posing

1https://aichallenge.hcmus.edu.vn/textanimar

Table 1: SHREC challenge tracks for 3D object retrieval.

SHREC
Challenge Year Query

Type
Training
Category

Testing
Category

Pratikakis et al. [17] 2016 3D Shape Seen Seen
Sipiran et al. [18] 2021 3D Shape Seen Seen
Juefei et al. [19] 2018 Sketch Seen Seen
Juefei et al. [20] 2019 Sketch Seen Seen
Qin et al. [13] 2022 Sketch Seen Seen
Hameed et al. [21] 2018 Image Seen Seen
Hameed et al. [22] 2019 Image Seen Seen
Li et al. [23] 2019 Image Seen Seen
Li et al. [24] 2020 Image Seen Seen
Feng et al. [25] 2022 Image Seen Unseen
TextANIMAR 2023 Text Unseen Unseen

challenges for regular users to reproduce them in real-world
scenarios. Last but not least, text-based queries are consider-
ably easier to generate than image capture or sketching, making
them a more user-friendly alternative. We anticipate that the
text-based 3D animal fine-grained retrieval task will stimulate
new research directions and find practical applications.

The structure of this paper is as follows. Section 2 discusses
the literature review and previous works relevant to 3D object
retrieval. Section 3 presents the ANIMAR dataset and the eval-
uation metrics used in this SHREC challenge track. The par-
ticipant statistics are reported in Section 4. In Section 5, we
describe the methods employed by the participating teams. Sec-
tion 6 contains the evaluation results, including a detailed anal-
ysis of the performance of the different methods. Finally, in
Section 7, we summarize the key points of the paper and dis-
cuss the implications for future research in this field.

2. Related Benchmark

Content-based 3D object retrieval aims to retrieve 3D objects
from a database by analyzing the visual contents of the objects,
including color, texture, shape, and geometric features. In order
to facilitate research in this field, previous SHREC challenges
have included various tracks dedicated to related tasks (see Ta-
ble 1).

Few SHREC tracks focus on retrieving 3D objects from
a database similar in shape to a given query 3D objects.
Pratikakis et al. [17] introduced the concept of partial 3D object
retrieval, which addresses scenarios where the available infor-
mation about the query object is incomplete. These techniques
help build digital libraries of cultural heritage objects, which
require partial 3D object retrieval capabilities. In a related di-
rection, Sipiran et al. [18] also held a competition to evaluate
the ability of retrieval methods to discriminate cultural heritage
objects by overall shape.

In contrast, the appeal of sketch-based 3D object retrieval
was based on the natural and intuitive nature of freehand
sketches and has attracted significant attention in recent years.
This area of research has been actively promoted through
SHREC tracks organized by Juefei et al. [19, 20] focused on 2D
scene sketch-based 3D scene retrieval. To address the domains
shift between the sketch and 3D object, domain adaptation (e.g.,

https://aichallenge.hcmus.edu.vn/textanimar
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A bear is roaring and 
lunging forward

An angry cat is in defense and 
holding its tail straight up

A crow is standing on a branch A dog is sitting and holding 
a bone in its mouth

A young Indian peafowl is foraging 
for food on the ground

Fig. 1: Text ground-truth in ANIMAR dataset, including the text query and the corresponding 3D animal model.

two-stream CNN with triplet loss, adversarial training, and var-
ious data augmentation methods) was employed. In addition,
Qin et al. [13] further advanced the task by organizing a compe-
tition for sketch-based 3D shape retrieval in real-world settings.
This competition involved a large-scale collection of sketches
drawn by amateurs with varying levels of drawing skills as well
as a diverse set of 3D shapes, including models scanned from
natural objects. Solutions were developed to simulate realis-
tic retrieval scenarios, incorporating techniques like point cloud
and multi-view learning using different deep learning architec-
tures.

Image-based approaches have dominated the field of content-
based 3D object retrieval. The SHREC competitions organized
by Hameed et al. [21, 22] have significantly advanced 3D scene
retrieval from 2D scene image queries. These methods capture
different views of 3D scenes for feature learning, incorporat-
ing saliency algorithms to select the most promising views for
each 3D model. Feature extraction techniques such as Bag of
Visual Words have been employed for extracting features from
2D images. Furthermore, VGG, ResNet50, Two-stream CNN,
and Conditional Variational autoencoder combined data aug-
mentation demonstrate their effectiveness in this task. Li et
al. [23, 24] organized SHREC tracks focused on searching
for relevant 3D everyday objects using monocular images cap-
tured in real-world settings. In these competitions, various deep
learning architectures were utilized to learn captured 2D views
of 3D objects.

In conventional 3D object retrieval tasks, all 3D models are
categorized, which may not fully capture the diversity present
in real-world objects. To address this limitation, recent SHREC
tracks proposed by Feng et al. [25] have evaluated the per-
formance of different retrieval algorithms under the open-set
setting and modality-missing setting. The submitted methods,
such as multi-modal learning, have shown promising results in
retrieving 3D objects from unknown categories, where the re-
trieval sets include categories not seen in the training set. How-
ever, the open-set retrieval setting still needs to fully simulate
the real world when models are trained on known categories.
Different from other 3D object retrieval tasks, our TextAN-
IMAR competition stands out by fully simulating real-world
scenarios. This is accomplished by utilizing unseen categories
for both the train and test 3D objects, providing a more chal-
lenging and realistic evaluation setting.

Fig. 2: The text query comprises two main components: a description of the
animal and a context.

3. Dataset and Evaluation

3.1. Dataset

In this competition, we constructed a new dataset, namely
ANIMAR, which encompasses a corpus of 711 distinct 3D an-
imal models along with 150 text queries.

We collected 186 mesh models representing over 50 diverse
animal categories from Planet Zoo2 [26], a publicly available
online resource and video games. Our main objective for this
competition track is to imitate real-world scenarios where users
seek to explore and identify various types of animals. To
this end, we intentionally concealed categorical information
throughout the training and retrieval stages. Additionally, we
created a simplified set of watertight mesh models by reducing
the number of faces by 25%, 50%,, and 75%, resulting in a total
of 525 models. Following the approach of Douze et al. [27],
our 3D animal model database is utilized for both the training
and retrieval phases.

We manually curated 150 English sentences, each incorpo-
rating two fundamental constituents: an explicit depiction of the
animal’s natural shape, focusing on breed-specific attributes,
and a context-driven description to match the desired pose for
model utilization (see Fig. 2). For instance, when searching
for a tiger model suitable for a hunting action, the correspond-
ing description, ”a tiger is hunting,” ensures the retrieved model
possesses the most appropriate pose. Furthermore, we empha-
size searching single-animal models where only single-animal
descriptions are utilized to optimize the search process. Lever-
aging these context-aware descriptions enables more accurate
and efficient retrieval of 3D animal models, fostering an en-
hanced user experience in virtual environments. We expect this
to facilitate interactive search, whereby users can effortlessly
explore and identify 3D animal models based on their species,
actions, or even environmental contexts.

2https://www.planetzoogame.com

https://www.planetzoogame.com
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In our dataset, 100 sentences are aligned with their corre-
sponding models in the database resulting in 382 pairs of query-
model for training, while the remaining 50 sentences are uti-
lized as queries, corresponding to 188 pairs of query-model,
during the retrieval phase. Figure 1 illustrates examples in
our ANIMAR dataset, including the text queries and the cor-
responding 3D animal models.

3.2. Evaluation Metrics
We provide a comprehensive evaluation of the performance

of different methods in this track. The following metrics are
utilized:

• Nearest Neighbor (NN) evaluates top-1 retrieval accu-
racy.

• Precision-at-10 (P@10) is the ratio of relevant items in
the top-10 returned results.

• Normalized Discounted Cumulative Gain (NDCG) is a
measure of ranking quality defined as

∑p
i=1

reli
log2(i+1) , where

p is the length of the returned rank list, and reli denotes
the relevance of the i-th item.

• Mean Average Precision (mAP) is the area under the
precision-recall curve that measures the precision of meth-
ods at different levels and then takes the average. mAP is
calculated as 1

r
∑r

i=1 P(i)(R(i) − R(i − 1)), where r is the
number of retrieved relevant items, P(i) and R(i) are the
precision and recall at the position of the ith relevant item,
respectively.

• First Tier (FT) indicates the recall of the top m retrieval
results, where m represents the number of relevant images
present in the entire database. It quantifies the accuracy
of retrieving the most relevant images among all possible
matches. The FT score is calculated by dividing the num-
ber of relevant images retrieved in the top m by m.

• Second Tier (ST) measures the recall of the top 2m re-
trieval results, where m represents the number of relevant
images in the entire database. It assesses the system’s abil-
ity to retrieve relevant images within a broader set of re-
sults. The ST score is calculated by dividing the number
of relevant images retrieved in the top 2m by m.

• Fallout Rate (FR) reflects the ratio of non-relevant re-
trieved items to the total number of non-relevant items
available. It evaluates the system’s effectiveness in avoid-
ing the retrieval of non-relevant items. The FR score
is calculated using the formula: dividing the number of
non-relevant items retrieved by the total number of non-
relevant items.

4. Participants

Five groups participated in the TextANIMAR challenge
track, collectively submitting 114 runs. The contest had a three-
week duration for participants to complete their submissions.
To participate, each group was required to register and submit

View Set

Ring 1

Ring  5

Ring 6

Ring 2

Ring 3

Ring 4

Ring 7

2D View 
Representation

View Rings

OR

Fig. 3: For the 3D object representation, the set of images generated is R = 7
rings with V = 12 views on each ring. The chosen latitudes were 0 (the equator),
±90 (the poles), and ±30,±60.

their results, including a description of the methods employed.
It is worth noting that the organizers did not participate in this
challenge. Below are the details of the participating groups
(team members will be added upon acceptance):

• Polars team submitted by Minh-Khoi Nguyen-Nhat, Tuan-
An To, Trung-Truc Huynh-Le, Nham-Tan Nguyen, and
Hoang-Chau Luong (see Section 5.2).

• TikTorch team submitted by Nhat-Quynh Le-Pham, Huu-
Phuc Pham, Trong-Vu Hoang, Quang-Binh Nguyen, and
Hai-Dang Nguyen (see Section 5.3).

• Etinifni team submitted by Tuong-Nghiem Diep, Khanh-
Duy Ho, Xuan-Hieu Nguyen, Thien-Phuc Tran, Tuan-Anh
Yang, Kim-Phat Tran, Nhu-Vinh Hoang, and Minh-Quang
Nguyen (see Section 5.4).

• THP team submitted by Truong Hoai Phong (see Section
5.5).

• Nero team submitted by E-Ro Nguyen (see Section 5.6).

5. Methods

5.1. Overview of Submitted Solutions
The solutions submitted to our track can be categorized into

two distinct groups; each uses different techniques for repre-
senting 3D objects. The former group (i.e., model-based learn-
ing approach) directly learns point cloud, while the latter group
(i.e., view-based learning) captures the 3D object as a set of
random images.

The model-based learning approach is exemplified by the Po-
lars team. This approach directly learns point clouds via Point-
Net [28] and PointMLP [29] to facilitate the representation of
3D animal objects (as shown in Section 5.2).

The view-based learning approach involves the collaboration
of multiple teams, namely TikTorch, Etinifni, THP, and Nero.
This approach represents each 3D object using a series of ring
images, as illustrated in Fig. 3. These images are captured by
moving a camera around the object along a predefined path,
with each ring including a collection of images. The effective-
ness of the multi-view technique is particularly notable when
the camera follows a trajectory parallel to the ground plane
about the object. This approach provides valuable images for
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Fig. 4: Overview of proposed text-cloud contrastive learning framework of Polars team.

learning the distinctive features of 3D objects. Although shar-
ing similar concepts, the TikTorch team has developed novel
encoders (as depicted in Section 5.3). In contrast, the other
teams rely on CLIP models [30] (as shown in Sections 5.4, 5.5,
and 5.6) to support their research efforts.

5.2. Polars Team

5.2.1. Proposed Framework
As illustrated in Fig. 4, their proposed framework consists of

a query encode branch and a point cloud encode branch. The
former encodes the query in natural language into a vector in a
joint embedding space, while the latter does the same work for
point cloud input.

The query encoder uses pre-trained BERT [31] to extract the
text query’s raw embedding feature. The point cloud encoder
employs PointNet [28] and CurveNet [32] to extract the raw
embedding feature. Each raw embedding feature is then for-
warded into a projection module (i.e., multi-layer perception)
in order to map the feature into a joint latent space Rd.

In addition, they employ the InfoNCE loss [33] to enhance
the learning representation. Specifically, given a pair of em-
beddings, (ytext) for the text query and (ypc) for the point cloud,
they convert the text query index into an integer (l). This allows
them to generate two positive pairs for optimization: (ytext, l)
and (ypc, l). By utilizing these positive pairs, they aim to opti-
mize the representation learning process and improve the over-
all performance of the system.

5.2.2. Training Details
The based learning rate was 0.001 and was scheduled by a

MultiStepLR at steps 120, 250, 350, and 500, respectively. A
target embedding space dimension d was 128. In training, they
froze the BERT parameters and trained on the remaining part of
the model.

5.3. TikTorch Team

5.3.1. Contrastive Learning Solution
Figure 5 illustrates their proposed contrastive learning frame-

work for text-based 3D animal fine-grained retrieval. From two
different domains (3D objects and sentences), they try to learn
embedding vectors for objects and texts in a common vector
space, in which the embedding vectors of similar objects and
texts will be closer to each other and vice versa.

To achieve this goal, the team constructs two feature extrac-
tors: a 3D Object Feature Extractor and a Text Feature Extrac-
tor. These extractors generate two feature vectors, one with U
dimensions and the other with V dimensions. Subsequently,
these feature vectors are embedded in a shared vector space
with P dimensions using two Multi-layer Perceptron (MLP)
networks. The contrastive loss [34] is applied to facilitate the
simultaneous learning of parameters for both models.

3D object feature extractor. Each 3D object is represented
by a collection of seven rings, with each ring consisting of 12
images (cf . Fig. 3). The team focuses on optimizing the fea-
tures extracted from the equator ring, as it offers the most sig-
nificant potential for distinguishing between objects. The ex-
tractor module operates a ring extractor extracting the features
of the images within each ring and then combining these image
features to obtain the overall features of the object.

In the ring extractor, the team performs fine-tuning of
EfficientNetV2-Small [35] to extract features from the 12 im-
ages within each ring. These extracted feature vectors undergo
encoding using the T-Encoder, a part of the Transformer’s en-
coder [36]. The T-Encoder captures the relationship among the
images within the same ring, determining their relative signifi-
cance. Subsequently, the feature vectors are combined by tak-
ing their average, resulting in a single feature vector for each
ring. After obtaining the feature vectors for the three rings,
they pass through two T-encoder blocks. Finally, these feature
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EfficientNetV2 
Small

CLIP

T-Encoder

x2

T-Encoder

T-Encoder

T-Encoder MLP

MLP

3D object

Text

Common space

Cosine 
similarity

Multi-head
Attention

Add & Norm

Feed
Forward

Add & Norm

Embedding vectors

T-Encoder

: averaging the vectors

Similarity
 score

An Indian Elephant is drinking 
water from the lake

Ring image

Fig. 5: Proposed contrastive learning solution of TikTorch team.

Rotate

Fig. 6: Example of rotating a 3D object whose axis is not aligned with the
majority of objects.

vectors are averaged to derive the overall feature vector repre-
senting the 3D object.

Data pre-processing.
In order to maintain consistency in the resulting multi-view

images and their corresponding camera angles, it is crucial to
synchronize the axial orientation of the 3D objects before gen-
erating batch images. To accomplish this, the team comprehen-
sively examined the available dataset, identifying several ob-
jects rotated at a 90-degree angle along the Ox axis. Subse-
quently, these objects are consistently rotated to align with the
majority of the dataset, as illustrated in Fig. 6. They capture im-
ages of the objects using a camera angle set to capture images
from bottom to top (ring 0 to ring 6), as shown in Fig. 3. They
find that the most informative views are captured from ring 3,
which provides a direct side perspective from the object. Hence,
they focus on processing the images from ring 3 to extract the
relevant features and information.

Text feature extractor. To extract the features of the prompt,
they fine-tune the CLIP text encoder [30], a masked self-
attention Transformer. This encoder was pre-trained to maxi-
mize the similarity of pairs of image and text via a contrastive
loss. The models in the CLIP family reduce the parameter
size significantly while maintaining competitive accuracy, es-
pecially in optimizing text-image similarity tasks.

Common space embedding. To calculate the similarity be-
tween 3D objects and prompts, the team employs feature vec-
tor embedding in a shared space. Since the feature vectors of

3D objects and prompts have different dimensions, they utilize
two MLP networks with two layers, where the output layer has
the same number of units, to align them in the common vec-
tor space. They incorporate a Dropout layer [37] to mitigate
overfitting in each network. In this shared space, the similarity
between two embedding vectors, denoted as u and v, is com-
puted using the cosine similarity metric:

sim (u, v) =
u · v
∥u∥ ∥v∥

(1)

Loss function. The team employs the Normalized
Temperature-scaled Cross Entropy Loss (NT-Xent) [34] as the
contrastive loss function. For a mini-batch of 2N samples {xi},
consisting of N objects and N queries, they denote zi as the em-
bedding vector of sample xi in the common vector space. Let Pi

be the set of indices of samples that are similar to xi in the cur-
rent mini-batch, excluding i, i.e., (xi, xj) forms a positive pair
for j ∈ Pi. It should be noted that xi can belong to multiple pos-
itive pairs, such as when two 3D objects are similar to the same
query. The loss function for a positive pair (xi, xj) is defined as:

li, j = − log
exp
(
sim
(
zi, z j

)
/τ
)

∑2N
k=1 I[k,i,k<Pi] exp (sim (zi, zk) /τ)

. (2)

Training phase. To train the proposed network, they used
AdamW [38] optimizer, along with the StepLR, to reduce the
learning during the training process. They also applied the k-
fold cross-validation technique with k = 5.

Retrieval phase. They ensemble the results of models
trained on k-fold by majority vote. The similarity between a
3D object and a prompt is the max value of the similarity score
computed by the five models.

5.3.2. Data Augmentation
They find that there are animal models in the ANIMAR

dataset with similar appearance (e.g., animals in near families,
different granularity versions of a model). Therefore, they aim
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Fig. 7: Proposed framework of Etinifni team.

Fig. 8: Clustering results are divided into two groups. The first group is the
correct clusters of a specific animal (e.g., the first-row cluster is for a snake, and
the second-row cluster is for fog), while the second one is clusters of animals
with similar shapes (the third-row cluster for both lions and leopards).

to group and describe these models by corresponding descrip-
tions to increase the training data.

Query clustering. They find that the ANIMAR dataset has
the following characteristics: (1) most animals in near families
have a similar appearance, (2) an animal can have many 3D
models with different densities of point clouds corresponding
to the granularity. From these remarks, they cluster 3D models
using KMeans [39] for further processing. Since there is noth-
ing specific information about the objects yet, they take a naive
approach that each object is represented by statistics on the set
of points such as mean, variance, percentile, min, and max.

The team also observed that specific local regions on the an-
imal could aid in distinguishing it from other objects. There-
fore, instead of computing statistics globally on the entire point
cloud, they divided it into smaller clouds along each dimen-
sion and performed local statistics on each cloud. Specifically,
they divided the height into five parts, the length into six parts,
and the width into two parts. Through experimentation, they
found that using 150 clusters yielded satisfactory results. The
final clustering result was divided into two groups. The first
group clustered distinct animals with their different versions. In
contrast, the second group grouped animals with similar shapes
(e.g., a group of rhinos and hippos or a group of lions and leop-
ards), as shown in Fig. 8. This step allowed them to manually
separate these classes for further data augmentation purposes to
increase the training data.

Descriptive query generation. They observe that 3D ani-
mal models are mostly context-independent, except for a few
insignificant cases like an arched angry cat. Based on this ob-
servation, they extract descriptive phrases that contain the char-
acteristics and species names of the corresponding animals. No-
tably, this information is present in the subject of the sentence
(refer to Fig. 2). By doing so, they can convert animal descrip-
tions into new text queries, which directs the model’s attention
toward these specific features.

Directly using the initial training set is insufficient to train
the model due to three main reasons: (1) the number of text
queries for model training is too small, about 350 prompts over
711 models, (2) adding context makes the training process more
difficult, (3) the number of given text queries is insufficiently
distributed for different versions of an identical animal. There-
fore, through the clustering step, they utilize queries from a 3D
model to assign them to its other versions. As a result, after
this step, they are able to increase the original dataset by nearly
three times (1100 prompts).
5.4. Etinifni Team

5.4.1. Text-Image Learning Framework
They develop a text-image learning framework for the text-

based 3D animal fine-grained retrieval (see Fig. 7), including an
image feature extractor and a text feature extractor.

Image feature extraction. For each 3D object, they extract
two views from different angles and convert the text-object re-
trieval task into a text-image retrieval task (i.e., retrieving each
3D object by retrieving its corresponding two images). They
also find that using many views extracted from 3D objects (e.g.,
12 views as in the work of Su et al. [40]) is inefficient in re-
trieval tasks as various views from an object may cause noise
and harm the model.

Blender 3 is used to set up a camera at an appropriate dis-
tance, height, and orientation to ensure comprehensive cover-
age of the object’s surface. Additionally, light is positioned at
the camera position to provide suitable illumination. They use
the horizontal view and oblique angle view of the object (de-
picted in Fig. 10). CLIP image encoder [30] is used to extract
features from view images. They are normalized and then used
for the training stage.

3https://www.blender.org

https://www.blender.org
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Fig. 9: Proposed framework of THP team.

Fig. 10: Two views of a cat are used in the proposed framework of the Etinifni
Team.

Text feature extraction. They first pre-process text by clean-
ing and fixing error prompts manually. The prompts are then
fed into the text tokenizer and encoder of the CLIP model [30]
with backbone ViT-B16 to produce feature vectors. After that,
these feature vectors are normalized and then used for the train-
ing stage.

Loss function. Since each text in the dataset can be paired
with multiple view images, inspired by the work of Tran et
al. [41], they readjust the CLIP model’s original loss function
as suitable to the newly generated dataset, as follows:

S T =
T · T τ

∥T∥∥T τ∥
; S I =

I · Iτ

∥I∥∥Iτ∥
; (3)

Logits =
T · Iτ

∥T∥∥Iτ∥
; Target = σ(c ·

S T + S I

2
), (4)

where T is the text embedding matrix, and I is the image embed-
ding matrix. From T and I, they calculate text similarity S T and
image similarity S I using the cosine similarity function. The
pairwise similarity between text and image, which are Logits,
are aimed to match the mean self-similarity (of text and image)
Target using cross-entropy loss. σ(x) is the softmax function
and c is the logit scale.

Training phase. They split the dataset into two subsets, the
training and validation datasets, with the ratio 80% and 20%,
respectively. They trained the model for 100 epochs with a
batch size of 48. They also used the early stopping technique,
in which after 10 epochs, the training process is terminated if
the best loss on the validation dataset does not update. Cor-
responding to each best loss, they obtained the weight of the

model. They applied the AdamW optimization algorithm with
β = (0.9, 0.98), ϵ = 1e−6, and a learning rate of 1e−6. They
also applied the learning rate decay technique when training.

Retrieval phase. After obtaining the similarity score of each
text’s correspondence to all views retrieved from corresponding
3D objects, they calculate the similarity score of each piece of
text’s correspondence to all 3D objects by summing the simi-
larity score of each piece of text to two views of each 3D object
as follows:

cos (Ti,O j) = cos (Ti, I j1) + cos (Ti, I j2), (5)

where cos(Ti,Oi) is the similarity score between text Ti and 3D
object O j which is calculated by the cosine similarity function.
cos(Ti, I j1) is the similarity score between text Ti and the first
image I j1 of object O j which is calculated by cosine similarity
function. From the similarity score, they rank them in descend-
ing order and extract the corresponding IDs of 3D objects.

5.5. THP Team

5.5.1. Proposed Solution
Figure 9 depicts their proposed solution, in which the pre-

trained CLIP model [30] is used to extract visual and textual
features for each query. CLIP visual feature vectors and textual
query vectors are calculated and matched using the cosine sim-
ilarity function. For each view of the 3D object, they sum the
six highest similarity scores. Then the object score is calculated
as the maximum score of four views; each object score corre-
sponds to four sentences. They take the average of these scores
to get the final result.

2D Projection. They use four camera setups to take multiple
views of 3D objects:

• For the first camera setup, assuming the 3D object is ini-
tially solid along the z-axis, the camera is solid on the Oxy
plane and looks at the center of the object. The camera is
moved around the subject to create 12 views from a dis-
tance of 30 degrees each time.

• For the second camera setup, the camera is raised to 30
degrees above the Oxy plane and moved around to create
the next 12 views.
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Fig. 11: Proposed framework of Nero team.

• For the third camera setup, the camera is placed on the Oyz
plane and looks at the object’s center. The camera moves
like the first setup to create the next 12 views.

• Camera for the last setup is raised from the third setup to
30 degrees to create the next 12 views.

A total of 48 views are captured for each object. Despite
generating images from other directions, their tests have shown
that these 48 views provide sufficient information to observe the
object’s characteristics. By using Max Pooling to select the final
features, additional views do not reduce the model’s accuracy.

5.5.2. Data Pre-processing
Images are cropped and resized to 224x224 with padding

of 5 pixels. For each text query, they split the sentence into
small components, such as article, adjective, noun, verb, and
object, and then recombine them to make different sentences
(see Fig. 9). This helps the model increase the ability to rec-
ognize detailed descriptions in sentences. Nouns act as global
features and detailed features are shown through adjectives and
verbs. Contextual information seems to have little impact be-
cause the image has no background.

5.6. Nero Team

5.6.1. Proposed Network
Figure 11 shows the proposed network, containing four sig-

nificant components: 2D ring-view representation, CLIP visual
encoder, CLIP text encoder, and ring-view transformer encoder.

Ring-view encoder for 3D models. To utilize the given 3D
object, they extract 2D snapshots from cameras orbiting around

it. They first determine the smallest spherical hull of the object
and divide it into a fixed set of R latitudes, called rings. The
camera is then positioned at V evenly spaced positions, facing
the center of the object, which they refer to as views. This re-
sults in R × V 2D images called ring-view images. For this
work, they set V = 12 and R ranges from 0 to 6, representing
the cameras on the equator and the 30/60/90 latitudes from both
hemispheres.

CLIP visual encoder. To encode the R × V 2D images gen-
erated by the ring-view method, they leverage the CLIP Vi-
sual Encoder to obtain R × V ring-view features of the 3D an-
imal model views. The CLIP Visual Encoder is a pre-trained
deep neural network that encodes natural images into high-
dimensional feature vectors based on training on a large cor-
pus of image-text pairs. Using this pre-trained visual encoder,
they can effectively capture the relevant visual features of the
3D animal model without requiring additional training or fine-
tuning. These encoded visual features are then aggregated for
use in conjunction with the textual embeddings to perform fine-
grained retrieval tasks. The use of the CLIP Visual Encoder
enables us to leverage pre-existing, state-of-the-art visual rep-
resentations to achieve high accuracy in 3D animal model re-
trieval.

CLIP text encoder. In their method for 3D animal model
retrieval, they adopt the CLIP Text Encoder model [30] to gen-
erate textual embeddings for the descriptions of the 3D models.
These embeddings are then combined with visual embeddings
for fine-grained retrieval tasks. The powerful semantic repre-
sentation capabilities of the CLIP Text Encoder enable us to
achieve better performance in distinguishing between visually
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Table 2: Leaderboard results of TextANIMAR competition. Best run results on the public test.

Team NN P@10 NDCG mAP FT ST FR
TikTorch 0.520 (1) 0.220 (2) 0.651 (1) 0.527 (1) 0.450 (1) 0.570 (1) 0.0110 (2)
Etinifni 0.400 (2) 0.236 (1) 0.628 (2) 0.482 (2) 0.370 (2) 0.500 (2) 0.0109 (1)
THP 0.280 (3) 0.192 (3) 0.541 (3) 0.380 (3) 0.300 (3) 0.430 (3) 0.0114 (3)
Nero 0.080 (4) 0.084 (4) 0.383 (4) 0.168 (4) 0.140 (4) 0.180 (4) 0.0130 (4)
Polars 0.040 (5) 0.032 (5) 0.255 (5) 0.070 (5) 0.000 (5) 0.010 (5) 0.0141 (5)

Table 3: Leaderboard results of TextANIMAR competition. Best run results on the private test.

Team NN P@10 NDCG mAP FT ST FR
TikTorch 0.460 (1) 0.238 (1) 0.647 (1) 0.525 (1) 0.440 (1) 0.585 (1) 0.0108 (1)
Etinifni 0.360 (2) 0.200 (2) 0.612 (2) 0.460 (2) 0.300 (3) 0.425 (3) 0.0114 (2)
THP 0.280 (3) 0.182 (3) 0.549 (3) 0.386 (3) 0.305 (2) 0.430 (2) 0.0116 (3)
Nero 0.100 (4) 0.098 (4) 0.398 (4) 0.183 (4) 0.145 (4) 0.210 (4) 0.0128 (4)
Polars 0.040 (5) 0.018 (5) 0.252 (5) 0.060 (5) 0.015 (5) 0.030 (5) 0.0139 (5)

similar but semantically distinct classes of 3D animal models
without requiring additional training.

Vision transformer for ring-view features. To capture the
global information of 3D animal models, they need to gather
the ring-view visual features effectively. Each ring-view fea-
ture contains the 3D model at a different angle, so they leverage
the robust Transformer architecture, which is highly effective
for a wide range of natural language processing and computer
vision tasks. Specifically, they inherit from the Vision Trans-
former and consider the Ring-View extraction a patch embed-
ding, where each ring-view is treated as a separate patch. First,
the position embeddings are added to the ring-view embeddings
to retain positional information. They then use the Transformer
encoder to process these patches and generate a final pooled
embedding for the 3D animal model. The Transformer encoder
allows the model to capture long-range dependencies between
the ring views and extract high-level features relevant for fine-
grained retrieval.

Loss function. During the training process, they employ a
variant of contrastive loss called InfoNCE [33]. They com-
pute the InfoNCE loss function not only for the prompt and
its corresponding 3D animal model but also for the prompt
and other prompts, as well as for pairs of 3D animal mod-
els. For each training data batch, they randomly sample a set
of prompts along with their corresponding 3D animal models.
Subsequently, they compute the InfoNCE loss for the follow-
ing pairs: prompt and corresponding 3D animal model, prompt
and randomly sampled prompt, 3D animal model and randomly
sampled 3D animal model. By considering all of these pairs,
they encourage the model to learn meaningful representations
that capture both the similarity and dissimilarity relationships
between prompts and 3D animal models, as well as among dif-
ferent 3D animal models. This approach yields improved re-
trieval performance and more robust representations of the 3D
animal models.

5.6.2. Retrieval Phase
To retrieve 3D animal models using text descriptions, they

first encode the textual descriptions using the CLIP Text En-

coder, resulting in a high-dimensional textual embedding. They
then calculate the similarity scores between the textual embed-
ding of the query and each of the final features of available 3D
models using a similarity metric such as cosine similarity. The
3D models are then sorted by their similarity scores in descend-
ing order, and all the models are returned in this sorted order.
This approach allows us to retrieve all relevant 3D animal mod-
els based on natural language descriptions, ranked by their sim-
ilarity to the query. By leveraging the powerful semantic repre-
sentation capabilities of the CLIP Model, they can achieve high
accuracy in the text-based retrieval of 3D animal models.

5.6.3. Training Details
They used the PyTorch framework to train the model. Specif-

ically, they used the AdamW optimizer [38] with a learning rate
of 0.0001 to optimize the model parameters. During training,
they randomly sampled a set of prompts and their correspond-
ing 3D animal models for each batch of training data. They
trained the model for 100 epochs, using a batch size of 16,
with the learning rate scheduled to decrease by a factor of 0.1
at epochs 50 and 75.

6. Results and Discussions

The TextANIMAR track evaluates submissions on two sub-
sets: the public and private tests. The private test comprises 50
text queries, leading to 188 query-model pairs. Besides, half
of the private tests (25 text queries) are randomly selected and
assigned to the public test subset to ensure fairness and prevent
cheating. The leaderboard for the private test is unveiled only
after the challenge’s conclusion.

The leaderboard results for the public and private tests are
presented in Tables 2 and 3, respectively. It is important to
note that only the top-performing runs submitted by each team
are displayed. However, for a fair comparison, we focus on
analyzing the results from the private test, which assessed all
submitted text queries.

Table 3 illustrates the performance of the submitted meth-
ods, with the TikTorch team consistently emerging as the top-
performing approach. They achieved a significant lead over
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Fig. 12: The visualization of precision-recall curves of submissions on the pri-
vate test of teams. It can be seen that the TikTorch team achieves the best
average performance with the highest area under the curve, while Etinifni ob-
tains the highest precision at a high recall (recall ≥ 0.8) among the five teams.

other teams in all performance metrics, including the public
test results (cf . Table 2). Following closely, Etinifni secured
the second position, with THP closely behind. Both of these
teams utilized CLIP encoders for image and text representa-
tion. CLIP has shown promising performance in open-world
tasks for 2D images, and its transferability to 3D point clouds
is evident in their results. It is interesting that these two teams
swap positions on FT and ST metrics, although the results are
approximate. In the public test, TikTorch and Etinifni also ob-
tained the top two rankings, with Etinifni surpassing TikTorch
in terms of P@10 and FR. The remaining three teams, THP,
Nero, and Polars, consistently performed in private and pub-
lic test sets. Hence, these results illustrate the challenges of
our ANIMAR dataset when participants did not perform excel-
lently (the best NN result is less than 0.5, and P@10 results do
not surpass 0.25). It also suggests that there is still room for
improvement in addressing this research problem.

Figure 12 displays the precision-recall curves of the submis-
sions from five teams, namely TikTorch, Etinifni, THP, Nero,
and Polars, on the private test. The graph clearly shows that
TikTorch achieved the highest average performance, as indi-
cated by the largest area under the curve. When examining
the precision at a low recall threshold (recall ≤ 0.4), the three
teams, TikTorch, Etinifni, and THP, demonstrate relatively ac-
ceptable precision levels. However, at a high recall threshold
(recall ≥ 0.8), Etinifni stands out as the most effective team
among the five, exhibiting the highest precision.

To sum up, the view-based learning technique emerged as a
successful approach for achieving high performance. It can be
explained that 3D objects in the ANIMAR dataset have high-
density point clouds leading to difficulty for feature extraction
models [28, 32]. It is worth noting that these models generally
randomly sample pointclouds (e.g., 1024). In contrast, the uti-
lization of view images captured by moving the trajectory cam-
era, as shown in Fig. 3, facilitates feature learning by leverag-
ing the semantic information and representation of 3D objects.
This further confirms the efficacy of the view-based learning
approach in 3D object retrieval.

7. Conclusion

This paper introduces a novel track for text-based retrieval of
fine-grained 3D animal models along with a newly constructed
ANIMAR dataset to complement existing content-based 3D ob-
ject retrieval tasks. Our SHREC 2023 challenge track is de-
signed to simulate real-life scenarios and has the potential to
become a significant research direction in the field of 3D object
retrieval. Despite being more challenging than previous itera-
tions, five groups successfully participated in the track, submit-
ting 114 runs of their proposed methods. The evaluated results
of this track were satisfactory, but they also revealed the diffi-
culties of the task at hand.

In the future, we will expand the dataset by collecting a more
diverse set of 3D animal models that cover a more compre-
hensive range of species, postures, and environmental contexts.
This expansion will enhance the generalization capability of po-
tential solutions and improve performance on unseen 3D animal
models. We also intend to generate synthetic data and texture
maps to augment the existing 3D animal models with differ-
ent postures, backgrounds, and patterns, enabling the training
of more robust and effective representation models. Another
focus of our future research is investigating language models
for effective text query analysis. This analysis can lead to im-
proved retrieval performance and enable useful applications for
users who are unable to draw sketches. By pursuing these av-
enues of research, we aim to enhance the state-of-the-art in 3D
object retrieval and facilitate more intuitive and user-friendly
interactions with these technologies.
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