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A B S T R A C T

The retrieval of 3D objects has gained significant importance in recent years due to its
broad range of applications in computer vision, computer graphics, virtual reality, and
augmented reality. However, the retrieval of 3D objects presents significant challenges
due to the intricate nature of 3D models, which can vary in shape, size, and texture,
and have numerous polygons and vertices. To this end, we introduce a novel SHREC
challenge track that focuses on retrieving relevant 3D animal models from a dataset
using sketch queries and expedites accessing 3D models through available sketches.
Furthermore, a new dataset named ANIMAR was constructed in this study, comprising
a collection of 711 unique 3D animal models and 140 corresponding sketch queries.
Our contest requires participants to retrieve 3D models based on complex and detailed
sketches. We receive satisfactory results from eight teams and 204 runs. Although
further improvement is necessary, the proposed task has the potential to incentivize
additional research in the domain of 3D object retrieval, potentially yielding benefits
for a wide range of applications. We also provide insights into potential areas of future
research, such as improving techniques for feature extraction and matching and creating
more diverse datasets to evaluate retrieval performance.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The rapid development of 3D technologies has produced a
remarkable number of 3D objects. Consequently, 3D object
retrieval has garnered considerable attention and is beneficial in
real-life applications [1, 2, 3], including but not limited to video
games, artistic pursuits, cinematography, and virtual reality.

∗Corresponding author
e-mail: tmtriet@fit.hcmus.edu.vn (Minh-Triet Tran )

Sketch-based 3D object retrieval aims to retrieve 3D models
from a user’s hand-drawn 2D sketch. Due to the innate intu-
itive appeal of freehand drawings, sketch-based 3D object re-
trieval has drawn a significant amount of attention and is being
utilized in numerous critical applications such as 3D scene re-
construction [4, 5, 6], 3D geometry video retrieval [7, 8, 9], and
3D augmented/virtual reality entertainment [10, 11]. However,
sketch-based 3D object retrieval poses a formidable challenge
in 3D object retrieval research, primarily due to the large dis-
crepancy between the 2D and 3D modalities: non-realistic 2D

ar
X

iv
:2

30
4.

05
73

1v
2 

 [
cs

.C
V

] 
 9

 A
ug

 2
02

3

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
https://orcid.org/0000-0002-7363-2610
https://orcid.org/0000-0003-0236-7992
https://orcid.org/0000-0002-0709-3225
https://orcid.org/0000-0001-7729-2927
https://orcid.org/0000-0002-8537-1331
https://orcid.org/0000-0002-2906-0360
https://orcid.org/0000-0002-8297-5666
https://orcid.org/0000-0001-5460-0229
https://orcid.org/0000-0001-8759-0354
https://orcid.org/0000-0003-1953-7679
https://orcid.org/0000-0003-4260-7874
https://orcid.org/0000-0003-2823-3861
https://orcid.org/0000-0002-2481-0724
https://orcid.org/0000-0003-0888-8908
https://orcid.org/0000-0001-9148-9822
https://orcid.org/0000-0003-3046-3041
https://orcid.org/0000-0003-3046-3041


2 /Computers & Graphics (2023)

sketches differ significantly from their 3D counterparts and re-
spective views.

Several SHREC challenge tracks [12, 13, 14, 15, 16, 17] have
been organized to facilitate research on sketch-based 3D ob-
ject retrieval. However, the existing datasets incorporated in
these tracks primarily comprise generic objects with simplis-
tic shapes and poses. To augment sketch-based 3D object re-
trieval research, we organize a new SHREC challenge track
dedicated to Sketch-based 3D ANIMAl model fine-grained
Retrieval (SketchANIMAR)1. This track aims to retrieve rel-
evant 3D animal models from a dataset using sketch queries
and expedites accessing 3D models through available sketches.
Previous SHREC challenge tracks have focused on a limited
number of general object categories, often lacking realism. Our
challenge track for SHREC 2023 is significantly more challeng-
ing and can simulate real-life scenarios more effectively than
its predecessors. After the challenge concluded, the dataset has
been made publicly available for academic purposes.

First, conventional 3D object retrieval tasks consider only the
object category, where the training and test samples are char-
acterized by the same category settings. Consequently, fea-
tures extracted from these methods are often optimized to fit
the seen categories while lacking generalizability for unseen
categories. Under such circumstances, the classification-based
retrieval embedding learning methods become invalid in prac-
tice. Meanwhile, open-set 3D object retrieval can address this
issue more effectively by dealing with unseen categories bet-
ter. This technique involves training retrieval and representation
models using seen-category 3D objects, with unseen-category
3D data subsequently used for retrieval. Nevertheless, our fine-
grained retrieval task requires participants to conduct an accu-
rate search to get 3D animal models whose shapes correspond
to the query, necessitating consideration of unseen categories
and poses (cf . Table 1). Compared to searching for 3D general
objects of a given category, 3D animal model fine-grained re-
trieval poses a more significant challenge due to the substantial
discrepancy in animal breeds and poses.

Second, participants in our track challenge must solve the
considerable domain gap between sketches and 3D shapes when
dealing with differently posed animals. Furthermore, human
sketches on existing datasets tend to be semi-photorealistic and
drawn by experts. In contrast, our dataset comprises more di-
verse sketches, including abstract sketches drawn by amateurs,
semi-photorealistic sketches, and sketches in different styles
(cf . Fig. 1). As such, this task proves significantly more chal-
lenging than conventional sketch-based object retrieval tasks.
We anticipate that the sketch-based 3D animal fine-grained re-
trieval task can pave the way for a new research direction and
exciting, practical applications.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of related work. Section 3 presents
the ANIMAR dataset and the evaluation measures used in this
SHREC contest. Section 4 describes the participant statistics.
In Section 5, the methods of the participating teams are pre-
sented. The evaluation results and an in-depth analysis of their

1https://aichallenge.hcmus.edu.vn/sketchanimar

Table 1: SHREC challenge tracks for 3D object retrieval.

SHREC
Challenge Year Query

Type
Training
Category

Testing
Category

Hameed et al. [18] 2018 Image Seen Seen
Hameed et al. [19] 2019 Image Seen Seen
Li et al. [20] 2019 Image Seen Seen
Li et al. [21] 2020 Image Seen Seen
Feng et al. [22] 2022 Image Seen Unseen
Li et al. [12] 2012 Sketch Seen Seen
Li et al. [13] 2013 Sketch Seen Seen
Li et al. [14] 2014 Sketch Seen Seen
Juefei et al. [15] 2018 Sketch Seen Seen
Juefei et al. [16] 2019 Sketch Seen Seen
Qin et al. [17] 2022 Sketch Seen Seen
SketchANIMAR 2023 Sketch Unseen Unseen

performance are reported in Section 6. Finally, Section 7 con-
cludes the paper and suggests directions for future work.

2. Related Work

To recover 3D objects from a database, content-based 3D ob-
ject retrieval examines the visual contents of the objects, such
as color, texture, form, and geometric aspects. Many tracks
concentrating on similar problems have been held in previ-
ous SHREC competitions (see Table 1) to promote research on
content-based 3D object retrieval.

Several SHREC tracks concentrate on retrieving 3D items in
a database that resemble the 3D objects used as a query. The
attractiveness of sketch-based 3D object retrieval, in particu-
lar, stems from the organic and intuitive quality of freehand
sketches, and it has garnered much attention in recent years.

Li et al. [12, 13, 14] promoted this intriguing study by or-
ganizing SHREC tracks of sketch-based 3D shape retrieval.
At that time, deep learning was not popular; thus, submit-
ted solutions were based on hand-crafted features such as
Scale-Invariant Feature Transform (SIFT), Histogram of Ori-
ented Gradient (HOG), fourier descriptors, bag-of-features, and
sparse coding. After that, Juefei et al. [15, 16] extended the task
to 2D scene sketch-based 3D scene retrieval. Domain adapta-
tion algorithms, such as two-stream CNN with triplet loss, ad-
versarial training, and different data augmentation techniques,
were used to resolve the disagreement between two domains
(i.e., sketch and 3D object). In addition, a competition for
sketch-based 3D form retrieval in the wild was conducted by
Qin et al. [17], further advancing the task. They used a variety
of 3D forms, including models created by scanning genuine ob-
jects, as well as large-scale sketches created by amateur artists
with a range of sketching abilities. Furthermore, technologies,
such as point cloud and multi-view learning using various deep
learning architectures, were created to emulate actual retrieval
circumstances.

Sketch-based 3D object retrieval methods can be grouped
into two categories: model-based and view-based approaches.
Model-based methods commonly utilize 3D CNN to extract 3D
shape features directly from the original 3D representations.

https://aichallenge.hcmus.edu.vn/sketchanimar
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Fig. 1: Sketch ground-truth in ANIMAR dataset, including various sketch types and animal poses.

In the view-based approach, 2D convolutional neural networks
(CNN) are frequently used to analyze shape features from a set
of 2D view projections.

Regarding the model-based approach, Furuya et al. [23]
propose Deep Local Feature Aggregation Network (DLAN),
which extracts rotation-invariant 3D local features and aggre-
gates them in a single deep architecture. More concretely, the
DLAN uses a set of 3D geometric features invariant to local
rotation to characterize local 3D regions of a 3D model. The
DLAN then compiles the set of features into a (global) rotation-
invariant and compact feature for each 3D model. Furthermore,
an Octree-based Convolutional Neural Network (O-CNN) [24]
is also proposed for 3D shape analysis. O-CNN executes 3D
CNN operations on the octants filled by the 3D shape surface
using the average normal vectors of a 3D model sampled in the
smallest leaf octants as input.

Concerning the view-based approach, Wang et al. [25] pro-
pose two Siamese Convolutional Neural Networks for the views
and the sketches. Moreover, the loss function is designed for
within-domain and cross-domain similarities. Similarly, two
deep CNNs are proposed by Xie et al. [26] for deep feature ex-
traction of sketches and 2D projections of 3D shapes. Next, the
authors compute the Wasserstein barycenters of deep features of
multiple projections of 3D shapes to form a barycentric repre-
sentation. Last but not least, Multi-view Convolutional Neural
Network (MVCNN) [27] creates a single, compact shape de-
scriptor from data from multiple views of a 3D shape, which
improves recognition performance.

In recent competitions of 3D Shape Retrieval Contests
(SHREC) [28, 29, 17], teams achieving high performances fol-
lowed the view-based approach.

3. Dataset and Evaluation

3.1. Dataset
In this competition, we constructed a new dataset, namely

ANIMAR, which encompasses a corpus of 711 distinct 3D an-

imal models along with 140 sketch queries.

We collected an assemblage of 186 mesh models depicting
over 50 diverse categories of animals. These models were dili-
gently sourced from an array of publicly available online re-
sources and video games, including the well-known Planet Zoo
video game2 [30]. The primary goal of our competition track
was to simulate real-life scenarios in which users endeavor to
identify and explore a diverse range of animal species. To
achieve this, we purposely concealed categorical informa-
tion during both the training and retrieval stages. Further-
more, we refined our model database by generating a series of
watertight mesh models by reducing the number of faces by
25%, 50%, and 75%, yielding a total of 525 models. Following
the work of Douze et al. [31], our 3D animal model database is
employed for both the training and retrieval phases.

From 186 original mesh models, we randomly selected 60
models for sketch image creation. For each model, we ro-
tated the model and generated 2-3 sketches from distinct view-
points, thereby producing a total of 140 sketch images to de-
scribe the 3D animal models. Notably, we intentionally chose
not to create sketches for all animal models in order to pre-
vent participants from utilizing them to train retrieval solutions.
Of the 140 sketches, 74 were aligned with their correspond-
ing models in the database, yielding a set of 297 query-model
pairs that were utilized for training purposes. The remain-
ing 66 sketches were designated as queries, resulting in 265
query-model pairs employed during the retrieval phase. Unlike
existing datasets, which primarily featured semi-photorealistic
sketches drawn by experts, our dataset comprises more di-
verse sketches, including abstract sketches drawn by ama-
teurs, semi-photorealistic sketches, and sketches in different
styles. This diversity is exemplified in Fig. 1, where the varied
nature of the sketches can be observed.

2https://www.planetzoogame.com

https://www.planetzoogame.com
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3.2. Evaluation Metrics
We provide a comprehensive evaluation of the performance

of different methods in this track. The following metrics are
utilized:

• Nearest Neighbor (NN) evaluates top-1 retrieval accu-
racy.

• Precision-at-10 (P@10) is the ratio of relevant items in
the top-10 returned results.

• Normalized Discounted Cumulative Gain (NDCG) is a
measure of ranking quality defined as

∑p
i=1

reli
log2(i+1) , where

p is the length of the returned rank list, and reli denotes
the relevance of the i-th item.

• Mean Average Precision (mAP) is the area under the
precision-recall curve. It measures the precision of meth-
ods at different levels and then takes the average. mAP is
calculated as 1

r
∑r

i=1 P(i)(R(i) − R(i − 1)), where r is the
number of retrieved relevant items, P(i) and R(i) are the
precision and recall at the position of the ith relevant item,
respectively.

• First Tier (FT) denotes the recall of the top m retrieval
results, where m is the number of relevant images in the
whole database. It measures the accuracy of retrieving the
most relevant images among all the possible matches. The
FT score is calculated as: FT = (number of relevant images
retrieved in the top m) / m.

• Second Tier (ST) denotes the recall of the top 2m retrieval
results, where m is the number of relevant images in the
whole database. It measures the ability to retrieve relevant
images within a broader set of results. The ST score is
calculated as: ST = (number of relevant images retrieved
in the top 2m) / m.

• Fallout Rate (FR) shows the ratio of non-relevant re-
trieved items in relation to the total number of non-relevant
items available. It measures the system’s ability to avoid
retrieving non-relevant items. The FR score is calcu-
lated using the formula: FR = (number of non-relevant
items retrieved) / (number of total non-relevant items in
the database)

4. Participants

Eight groups participated in the SketchANIMAR challenge
track. Each group was provided with three weeks to complete
the challenge. Throughout the contest, a total of 204 runs were
submitted. All participating groups were required to register
and submit their results along with a detailed description of
their methods. It is important to note that the organizers did
not participate in the challenge. We remark that three teams
opted not to disclose the methods they used in the competition
against the SHREC spirit, which was born to compare the per-
formance of algorithms on common data. Thus, they are not
reported in this paper. The participant details are provided be-
low (team members will be added upon acceptance):

ring 5

ring 4

ring 6

ring 2

ring 1

ring 0

ring 3

Fig. 2: 3D object represented as view sequences of 7 rings with 12 views on
each ring. The chosen latitudes were 0 (the equator), ±90 (the poles), and
±30,±60.

• TikTorch team submitted by Nhat-Quynh Le-Pham, Huu-
Phuc Pham, Trong-Vu Hoang, Quang-Binh Nguyen, and
Hai-Dang Nguyen (see Section 5.2).

• THP team submitted by Truong Hoai Phong (see Section
5.3).

• Etinifni team submitted by Tuong-Nghiem Diep, Khanh-
Duy Ho, Xuan-Hieu Nguyen, Thien-Phuc Tran, Tuan-Anh
Yang, Kim-Phat Tran, Nhu-Vinh Hoang, and Minh-Quang
Nguyen (see Section 5.4).

• V1olet team submitted by Trong-Hieu Nguyen-Mau,
Tuan-Luc Huynh, Thanh-Danh Le, Ngoc-Linh Nguyen-
Ha, and Tuong-Vy Truong-Thuy (see Section 5.5).

• DH team submitted by Hoai-Danh Vo and Minh-Hoa Doan
(see Section 5.6).

5. Methods

5.1. Overview of Submitted Solutions
All submissions to our track are built upon the foundation

of view-based learning. This approach captures the essence
of each 3D object by presenting it as a sequence of ring im-
ages, as illustrated in Fig. 2. These images are acquired by
strategically maneuvering a camera around the object along a
predefined path, with each ring consisting of a series of im-
ages. In particular, when the camera’s trajectory aligns parallel
to the ground plane relative to the object, the multi-view method
demonstrates remarkable effectiveness, generating valuable im-
ages that greatly assist in extracting features for representing
three-dimensional objects.

The view-based learning shows more advantages than di-
rectly learning the point clouds. This matches well with the
settings of our challenge. The 3D objects in our dataset have
high-density point clouds with a large number of points. This
detail can make it difficult for feature extraction models on point
cloud such as PointNet [32] and PointMLP [33] when these
models usually randomly sample a specific number of points
(1024, for example) in the point cloud of 3D objects. This ap-
proach proves particularly useful in scenarios where 3D models
are not readily available for querying, but sketches of the ob-
jects are, which is often the case in real-world applications.

To facilitate the retrieval task, TikTorch, THP, and Etinifni
teams considered the problem as contrastive learning (as shown
in Sections 5.2, 5.3, 5.4). Meanwhile, V1olet team formulated
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Similarity
 score

Fig. 3: Proposed framework of TikTorch team.

the task as a classical classification problem (as depicted in Sec-
tion 5.5). On the other hand, DH team directly extracted and
compared non-deep learning features between sketch queries
and generated sketches from 3D objects (see Section 5.6).

5.2. TikTorch Team

5.2.1. Proposed Contrastive Learning Solution
To retrieve 3D objects from sketch queries, they propose a

contrastive learning framework where embedding vectors of 3D
objects and 2D sketches are learned. The embedding vectors of
similar objects and sketches should be closer to each other and
vice versa.

The overall architecture of their method is presented in Fig. 3,
containing two separate feature extractors for 3D objects and
sketch images. The extracted feature vectors are then embed-
ded in the common vector space by two Multi-layer Percep-
tron (MLP) networks. The contrastive loss used for simulta-
neous learning of the parameters for models is a customized
version of Normalized Temperature-scaled Cross Entropy Loss
(NT-Xent) [34].

Sketch feature extractor. To extract the features of sketch
images, they fine-tune EfficientNetV2-Small [35] pretrained on
ImageNet dataset [36]. The models in the EfficientNetV2 fam-
ily reduce the parameter size significantly while maintaining
competitive accuracy on many datasets, which is desirable for
simple images, especially sketch images.

3D object feature extractor. Each 3D object is represented
as a set of 3 rings, and each ring contains 12 images. The 3D
object feature extractor has two main phases: extracting the fea-
tures of each ring (ring extractor) and combining the features of
3 rings to obtain the features of the object.

In the ring extractor, they also fine-tune EfficientNetV2-
Small [35], similar to the sketch feature extractor module, to
extract the features of 12 images of each ring. These 12 feature
vectors then go through an encoder block called T-Encoder [37]
to learn the relationship between images in the same ring to de-
cide which image is essential in the current ring and which is

not. After that, they combine these vectors by simply calculat-
ing their average to get a single feature vector for each ring.

When they obtain the feature vectors of 3 rings, these vec-
tors are passed into 2 T-encoder blocks to know which ring is
useful for the model to learn the features of the current object.
Then, the vectors are averaged to get the feature vector of the
3D object.

Embedding into common space. To compute the similar-
ity between objects and sketches, their feature vectors must be
embedded into a shared space. Since the feature vectors of 3D
objects and sketches may have different dimensions, two MLP
networks with two layers are utilized. The output layer of each
network has the same number of units, ensuring that the feature
vectors are transformed into the same vector space. In addition,
a Dropout layer [38] is added to each network to prevent over-
fitting. Once the feature vectors are embedded in the common
space, the similarity between two embedding vectors, u and v,
can be computed using the cosine similarity metric.

sim (u, v) =
u · v
∥u∥ ∥v∥

(1)

Loss function. The contrastive loss function used is a cus-
tomized version of Normalized Temperature-scaled Cross En-
tropy Loss (NT-Xent) [34]. Given a mini batch of 2N samples
{xi}

2N
i=1 containing N objects and N sketches. They denote zi as

the embedding vector of the sample xi in the common space.
Let Pi be the set of indices of samples that are similar to xi in
the current mini-batch exclusive of i, i.e., (xi, x j) is a positive
pair for j ∈ Pi. Here, xi can belong to many positive pairs, such
as two 3D objects that are similar to the same sketch. The loss
function for a positive pair (xi, x j) is defined as:

li, j = − log
exp

(
sim

(
zi, z j

)
/τ

)
∑2N

k=1 I[k,i,k<Pi] exp (sim (zi, zk) /τ)
, (2)

where I[k,i,k<Pi] ∈ {0, 1} is an indicator function evaluating to 1
if and only if k , i and k < Pi, τ is a temperature parameter.
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Rotate

Fig. 4: Example of rotating a 3D object whose axis is not aligned with the
majority of objects.

Multi-view Image Random Edge RemovalCanny Edge Detection

Fig. 5: Multi-view image processing steps.

Training phase. During the training process, the optimizer
used for training was AdamW [39], along with the StepLR al-
gorithm to reduce the learning. They also applied the k-fold
cross-validation technique with k = 5.

Retrieval phase. They ensemble the results of models
trained on k-fold by max-voting. The similarity between a 3D
object and a sketch image is the largest value of the similarity
score computed by the five models.

5.2.2. Data Augmentation
Generation of multi-view images for 3D objects. Before

generating batch images from 3D objects, it is essential to en-
sure axial synchronization of the objects so that the resulting
multi-view images with their corresponding camera angles are
consistent. To achieve this, they carefully examine the available
dataset and identify several objects rotated at a 90-degree angle
along the Ox axis. Then, they apply a consistent rotation to
align these objects with the majority of the dataset as in Fig. 4.

Among seven rings, as in Fig. 2, they find that the most infor-
mative views are captured from rings 2, 3, and 4, which provide
a 360-degree perspective around the object. Hence, they focus
on processing the images from these rings to extract the relevant
features and information.

To enhance the sketch-like appearance of the multi-view im-
ages, they utilize the Canny edge detector [40] to extract edge
information. They also add some noises and variations to the
edge information by randomly removing edges in the image us-
ing a traversal algorithm while preserving the underlying struc-
ture and content of the image (see Fig. 5). Figure 6 illustrates
the outcome of generating multi-view images for a 3D object.

Generation of training sketch query images. Firstly, they
cluster similar 3D objects together by some algorithms to check
the similarity between the distribution of points in the point
clouds and also the manual checking as post-processing. After
that, they identify the best-quality object in each cluster, which
usually is the most fine-grained object (i.e., the highest num-
ber of points in the point cloud). Then, when they generate a
sketch-line image for each object in this cluster and use it for

Outcome of generating multi-view images 

X12

X12

X12

ring 2

ring 4

ring 3

Fig. 6: Outcome of generating multi-view images for 3D objects. Each 3D
object is represented by a set of 3 rings, and each ring is a collection of 12
images.

Cluster

Use

Best-quality

Identify

Sketch from Best-quality

Fig. 7: Optimizing object sketches through clustering: the sketch of the best-
quality object for all objects within a group of similar 3D objects is used.

contrastive learning, they pick the image of the best-quality ob-
ject as the representative sketch (depicted in Fig. 7).

To expand training samples for contrastive learning, they de-
velop a method to generate three queries per object. Each query
is randomly chosen from rings 2, 3, and 4 (see Fig. 2) with
probabilities of 0.2, 0.6, and 0.2, respectively, as they observe
that the majority of informative queries are in ring 3. Once
a ring is selected, they randomly choose an image within that
ring from the cluster this object belongs to and apply random
Canny edge [40] or Artline [41] techniques, along with image
horizontal flip and rotation transformations. By implementing
this process, they can significantly increase the number of our
training samples from about 100 to 2500 while maintaining a
high level of quality.

5.3. THP Team

5.3.1. Architecture of Proposed Network
Fig. 8 illustrates an overview of the proposed network. To

evaluate the similarity of two given sketch images, they com-
pare the distance of global features and local features and then
combine the results.

To extract global features, they use the pre-trained CLIP
model [42]. The input of the CLIP model is the dilated Canny
edge extracted from multi-view images. After that, CLIP fea-
ture vectors of view images and sketch queries are matched us-
ing cosine similarity. The final score is calculated as the max-
imum of scores of 4 views, in which each view score is calcu-
lated by the sum of the six highest similarities.



/Computers & Graphics (2023) 7

CLIP Visual 
Encoder

HOG 
Descriptor

CLIP Visual 
Encoder

HOG 
Descriptor

Cosine Similarity

L2 Distance

Ranking

Ranking

Final result

Fig. 8: Proposed framework of THP team.

To increase local information awareness, they use the HOG
descriptor [43] on both sketch and multi-view images. The
HOG vectors are then matched using the L2 distance. They
are also ranked like CLIP feature vectors.

Finally, they combine CLIP and HOG similarity scores as
follows: Score = α * CLIP score + (1 - α) * HOG score, where
α = 0.7.

5.3.2. 2D Shape Projection
They use four camera setups to take multiple views of 3D

objects:

• For the first camera setup, assuming the 3D object is ini-
tially aligned along the z-axis, the camera is aligned on the
Oxy plane and looks at the center of the object. The cam-
era is moved around the subject to create 12 views from a
distance of 30 degrees each time.

• For the second camera setup, the camera is raised to 30
degrees above the Oxy plane and moved around to create
the next 12 views.

• For the third camera setup, the camera is placed on the
Oyz plane and looks at the object’s center. The camera is
moved like the first setup to create the next 12 views.

• Camera for the last setup is raised from the third setup to
30 degrees to create the next 12 views.

There are a total of 48 views for each object. Note that it is
possible to create images from other directions, but according
to their tests, from these 48 views, they can observe the charac-
teristics of objects.

5.3.3. Sketch Pre-processing
To reduce the domain gap, they apply Canny edge algo-

rithm [40] for each 2D projection image to create an image sim-
ilar to the sketch image because the sketch is also a special type
of edge. Both sketch and Canny edge images are then cropped
and resized to 224×224 with the padding of 5 pixels. After that,
edges are further clarified using the dilation morphology algo-
rithm. The sketch pre-processing pipeline is shown in Fig. 9.

a) Projected image b) Canny edge c) Dilation morphology

Fig. 9: Pipeline of sketch pre-processing.

5.4. Etinifni Team
5.4.1. Overview of Proposed Solution

Due to the nature of the retrieval tasks, they build a deep
learning framework using the CLIP model [42] as the backbone
(See Fig. 10). The framework performs the following steps:

1. Pre-process the dataset to re-direct the 3D objects into one
single vertical orientation.

2. Extract multi-views (i.e., 12 random views around the ob-
jects in uniform angles) from the 3D objects.

3. Encode the 2D sketches and the view images of 3D objects
using the AutoEncoder built upon the ResNet50.

4. Reduce the size of the feature vectors from 512 to 128
through the projection head.

5. Compare feature vectors of sketches and the 3D objects
using the cosine similarity function. After that, they can
identify the matching pairs of sketches and 3D objects.

5.4.2. Data Pre-Processing
Resize objects: They resize the 3D objects to fit the 3D ob-

ject inside an imaginary box of 2×2×2 by re-scaling the dimen-
sions (x, y, z) of the 3D objects into the new dimension (x′, y′, z′)
not greater than 2 using the following formula:

(x′, y′, z′) =
(

2x
max (x, y, z)

,
2y

max (x, y, z)
,

2z
max (x, y, z)

)
(3)

Re-orientate objects: They re-direct the orientation of the
3D objects manually so that the 3D objects are standing (i.e., the
objects are in an erect position).
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2D Sketch

3D Object

3D Encoder

2D Encoder Projection
Head

Projection
Head

Cosine/L2
Similarity

Pairs of Sketch - Object

Fig. 10: Proposed framework of Etinifni team.

5.4.3. Multi-view Generation
They first rotate the camera as in Fig. 2. They apply 3D

image rendering at each position to provide a more accurate
and detailed view of objects. This enables the model to extract
the necessary features for retrieval with greater precision, even
where subtle variations in shape and texture can be crucial in
determining an object’s identity. Models then extract the most
detailed and accurate information possible, leading to more ro-
bust and reliable results.

5.4.4. Data Augmentation
Due to the limited available training data, data augmentation

techniques are applied to increase the number of training data:
Outline modifications:

• Thickness: is a significant attribute of 2D objects as it
plays a crucial role in defining their physical properties
and functionality. By adjusting the thickness, they gener-
ate new sketches with varying line lengths, thereby intro-
ducing diversity in the visual depiction of the objects.

• Geometry: explores the properties and relationships of
shapes, sizes, positions, and dimensions of objects in
space. By modifying the stroke of these edges, they can
generate variations in the appearance of the zigzag pat-
terns. This allows for a deeper investigation into the ge-
ometric characteristics of the objects and the effects of
stroke adjustments on their overall geometry.

Image processing:

• Random deletion: To ensure the robustness of the sketch,
they partition the 2D images into multiple blocks. Each
block is equal in size and contains a subset of pixels from
the original image. They randomly select a portion of these
blocks and remove them from the image to simulate miss-
ing strokes on the data set.

• Image compression: Because the provided query images
are of low quality, a compressor is utilized to reduce the
image quality to generate the sketches.

View extraction:

• The camera is set up at a suitable distance, height, and ori-
entation to ensure comprehensive coverage of the object’s
surface. The camera views are then randomly selected to
capture diverse angles for robust 3D reconstruction.

5.5. V1olet Team

5.5.1. Proposed Classification Approach
They formulate the retrieval task as a classical classifica-

tion problem. Notably, several potential CNNs, including Ef-
ficientNet [44], EfficientNetV2 [35], and ConvNeXt [45] are
employed to recognize whether the sketch query and 3D ob-
jects are the same class. These networks are renowned for their
remarkable feature extraction capabilities and are considered
state-of-the-art in image recognition. The used models also are
lightweight and suitable for real-life applications while achiev-
ing considerable performance.

Ensemble Solution. Figure 11 illustrates the proposed en-
semble approach by averaging the predictions of each model.
This approach effortlessly helps mitigate individual models’ po-
tential shortcomings, resulting in improved performance and ro-
bust generalization to varying data distributions.

To further improve the accuracy of models, they also uti-
lize Test Time Augmentation (TTA), which involves applying
a range of transformations such as rotations, flips, and transla-
tions to test images and averaging the results to obtain the fi-
nal prediction. Specifically, they utilize horizontal flipping to
provide additional perspectives of the original images. This
technique not only enhances generalization but also enables
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“Sketchify”

3D Object

Sketch Query
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ConvNeXt-Tiny

EfficientNetV1-
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EfficientNetV2-
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Training

Ensemble 
Averaging

Post-processing

Softmax

Output

Sketch-like images

Fig. 11: Proposed framework of V1olet team.

the model to recognize objects that may be oriented differently
from those in the training set.

Training Phase. To evaluate the performance of used mod-
els, they created a validation set by randomly leaving out 10%
of samples from each class in the training data. Pre-trained
models on ImageNet were fine-tuned using the remaining train-
ing sets. They also employed the cross-entropy loss with label
smoothing of 0.1 to prevent overfitting and improve the gen-
eralizability of models. Sketchifized multi-view images were
jointly trained with the original sketch queries to enforce net-
works to recognize them as the same class. During both train-
ing and inference, an image size of 384 × 384 was utilized.
All networks were trained for 20 epochs using the Adam opti-
mizer [46] with a learning rate of 0.0001. Finally, they selected
the models with the best validation accuracy for ensembling.

Retrieval Phase. Given a sketch query, the ensemble aver-
aging of CNN models produces a set of softmax probabilities.
These probabilities are then used to identify whether the sketch
query and sketch-like images generated from the 3D object be-
long to the same class. The softmax probabilities also serve as
a ranking metric, allowing for sorting the retrieved 3D objects
by relevance.

5.5.2. Data Pre-processing
Figure 12 demonstrates an overview of the proposed data

pre-processing pipeline. In general, it can be divided into three
steps: Ringview extraction, color reversal, and sketchify.

Ringview extraction. Extracting multiple views of an object
can be highly advantageous for various applications, including
3D object retrieval. They extract multiple views from 7 rings
with 12 views on each ring, like Fig. 2. By providing different
perspectives of the 3D object, these multiple views can extract
more robust and detailed features to train models with greater
accuracy for 3D object retrieval. Thus, ringview processing is a
valuable technique that can improve the accuracy of models for
3D object retrieval.

Fig. 12: The proposed data pre-processing pipeline

Color reversal. It is also crucial to consider the back-
ground of the images when matching 3D objects with the query-
ing sketches. Typically, these sketches usually have a white
background, while the multiple 2D images obtained from the
ringview extraction step have a grey background. To solve this
problem, they merely flip the color of the ringview image, mak-
ing the backdrop translucent to match the background of the
target sketch queries. Therefore, the resulting images better re-
semble the sketch queries and support the further ”sketchify”
procedure.

Sketchify. Laplacian Transform is utilized to produce im-
ages that are more similar to sketches. Particularly, the Lapla-
cian Transform, as a linear operator, is applied to the gray-
scale image to generate a second-order derivative image that
enhances the edges and transitions of the image [47]. The oper-
ator produces a sketch-like version of an image by thresholding
the Laplacian image to obtain a binary edge map, which is used
to synthesize a sketch-like representation of the image. This
transformation enables more efficient comparison of the views
with the sketch query as the critical matching features become
more pronounced, facilitating accurate matching.
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Fig. 13: Proposed framework of DH team.

5.6. DH Team

5.6.1. Proposed Method
They propose a simple method to measure the distance be-

tween 2 images with fast execution speed due to the small num-
ber of computations. Based on the observation that 3D objects
with the same shape will have the same distribution of pixels
in 2D projection space, they propose dividing the image into
small parts and then comparing each area to measure the sim-
ilarity between the two images. Fig. 13 shows the proposed
framework, including four main modules: 2D sketch process-
ing, 3D model processing, image feature extraction, and feature
matching.

2D sketch processing. They crop images intending to keep
only the part containing the animals and remove the back-
ground. Since sketches in the dataset only contain the animal
and no other extraneous details in the background, they define
the animal’s bounding box as follows: First, sketches are con-
verted to binary images and then inverted. Then they find the
top and bottom image lines with the value 255. These two lines
correspond to the top and bottom edges of the bounding box.
The same method is applied to the left and right edges. After
that, they crop the part containing the animal into a square with
the size of a maximum bounding-box height and width and then
resize the image to 224 × 224.

3D model processing. They first rotate the 3D objects us-
ing the Open3D library and capture the 3D model from 21 per-
spectives. After that, view images are cropped similarly to 2D
sketches.

Image feature extraction. The images are divided into 4×4
squares, and then the ratio of total pixel values in each square to
total pixel values of the whole image is considered at the score
of the square. At the end of this step, a 16-dimensional fea-
ture vector represents an image, including the sketch and view
images.

Feature matching. Given a sketch query image Q and a 3D
model R, features are extracted to obtain f Q representing the
sketch image and f R

i , i = 1..21 representing the 21 view images
corresponding to the 3D model. The similarity score between
the sketch query Q and the 3D model R is defined as follows:

D(Q,R) = mini|| f Q − f R
i ||2. (4)

6. Results and Discussions

In our SketchANIMAR track, the submitted runs are evalu-
ated on two subsets: the public and private tests. The private
test comprised 66 sketch queries, resulting in 265 query-model
pairs. To ensure fairness and prevent potential cheating, ap-
proximately half of the private test (30 sketch queries) was ran-
domly selected and designated as the public test subset. The
leaderboard for the private test was revealed after the challenge
concluded.

Tables 2 and 3 display the leaderboard outcomes for the pub-
lic and the private test, reporting only the best-performing runs
submitted by each team. However, to ensure a fair comparison,
our analysis focuses solely on the results from the private test,
which evaluated all the submitted sketch queries.

As seen in Table 3, the TikTorch and V1olet team’s presented
methods repeatedly stood out as the top effective strategies. On
6 out of 7 performance metrics (P@10, NDCG, mAP, FT, ST,
and FR), TikTorch outperformed rival teams by a wide margin.
In terms of NN metric, the V1olet team secured the top 1 posi-
tion, indicating that this team focuses on the best search instead
of neighboring search. Meanwhile, THP took up the third posi-
tion on public and private leaderboards. Most teams achieving
high performances apply the view-base approach, which ana-
lyzes shape features from 2D view projections. For the pub-
lic test, similar findings are also shown in Table 2, excepting
that the top-1 team (TikTorch) only takes the fourth position on
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Table 2: Leaderboard results of SketchANIMAR competition. Best run results on the public test.

Team NN P@10 NDCG mAP FT ST FR
TikTorch 0.533 (1) 0.280 (1) 0.708 (1) 0.570 (1) 0.192 (4) 0.333 (4) 0.0102 (1)
V1olet 0.467 (2) 0.213 (2) 0.613 (2) 0.411 (2) 0.317 (2) 0.492 (2) 0.0111 (2)
THP 0.433 (3) 0.207 (3) 0.601 (3) 0.399 (3) 0.300 (3) 0.450 (3) 0.0112 (3)
Etinifni 0.200 (4) 0.147 (4) 0.489 (4) 0.303 (4) 0.475 (1) 0.650 (1) 0.0121 (4)
DH 0.100 (5) 0.080 (5) 0.361 (5) 0.140 (5) 0.133 (5) 0.192 (5) 0.0130 (5)

Table 3: Leaderboard results of SketchANIMAR competition. Best run results on the private test.

Team NN P@10 NDCG mAP FT ST FR
TikTorch 0.470 (2) 0.255 (1) 0.669 (1) 0.522 (1) 0.424 (1) 0.583 (1) 0.0105 (1)
V1olet 0.500 (1) 0.232 (2) 0.640 (2) 0.453 (2) 0.379 (2) 0.534 (2) 0.0109 (2)
THP 0.409 (3) 0.226 (3) 0.608 (3) 0.421 (3) 0.333 (3) 0.504 (3) 0.0110 (3)
Etinifni 0.136 (4) 0.158 (4) 0.473 (4) 0.274 (4) 0.174 (4) 0.345 (4) 0.0119 (4)
DH 0.136 (4) 0.088 (5) 0.372 (5) 0.158 (5) 0.133 (5) 0.205 (5) 0.0129 (5)
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Fig. 14: The visualization of precision-recall curves of submissions on the pri-
vate test of teams. It can be seen that the TikTorch team achieves the best av-
erage performance with the highest area under the curve, while V1olet obtains
the highest precision at low recall (recall ≤ 0.2) among the eight teams. These
insights are compatible with results in Table 3, TikTorch and V1olet secure the
top 1 position regarding mAP and NN, respectively.

FT and ST metrics. The first two teams, TikTorck and V1olet,
achieve the top two ranks. In contrast, the performance of the
other teams (i.e., THP, Etinifni, and DH) is constant across
test sets, both private and public. Summary, the findings show
the challenges of our ANIMAR dataset when participants did
not achieve excellent performance (the best NN result is only
around 0.5, and P@10 results are smaller than 0.3). It also sug-
gests that there is room to improve the performance of this re-
search direction.

Figure 14 illustrates the precision-recall curves of submis-

sions on the private test of teams. It is clear that among the
teams, the TikTorch team has the best average performance with
the biggest area under the curve, while V1olet has the maxi-
mum precision at low recall (recall ≤ 0.2). The main differ-
ence between TikTorch’s and V1olet’s methods is that TikTorch
follows a contrastive learning approach while V1olet leverages
a classification-based one with a softmax layer. The softmax
score just implies whether an object and a sketched query be-
long to the same category and can not indicate much similarity
between them. In general, V1olet’s method works with objects
in the same category as sketched queries and is less robust to
negative samples than the contrastive learning approach. These
conclusions are consistent with Table 3 ’s findings, which show
that TikTorch and V1olet rank first in terms of mAP and NN.
Furthermore, the precision-recall curves of three teams, Tik-
Torch, V1olet, and THP, share a similar shape, which shows
the effectiveness at low recall threshold (recall ≤ 0.4) but drops
significantly at high one (recall ≥ 0.8).

In conclusion, view-based learning methods have proven ef-
fective in achieving high performance. The difficulty of feature
extraction models [32, 48] can be attributed to the high point
cloud density of the 3D objects in the ANIMAR dataset. It is
important to remember that these models often randomly sam-
ple a certain number of pointclouds (e.g., 1024). Contrarily, by
utilizing the semantic data and representation of 3D objects, the
use of view pictures obtained by moving the trajectory camera,
as demonstrated in Fig. 2, enhances feature learning. This fur-
ther demonstrates the effectiveness of the view-based learning
strategy for retrieving 3D objects.

7. Conclusion

This paper introduces a novel track for sketch-based retrieval
of fine-grained 3D animal models along with a newly con-
structed ANIMAR dataset. Our SHREC 2023 challenge track
is designed to simulate real-life scenarios and requires partic-
ipants to retrieve 3D animal models based on complex and
detailed sketches. The challenge received submissions from
eight teams; however, the evaluated results in this paper include
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methods from five of the eight teams. These submissions re-
sulted in a total of 204 runs with different approaches. The eval-
uated results of this track were satisfactory but also revealed the
difficulties of the task at hand.

In future research, we aim to expand the dataset by collect-
ing a more diverse range of 3D animal models that encompass a
wider variety of species, environmental contexts, and postures.
This can enhance the generalization capability of potential so-
lutions and improve performance on unseen 3D animal models.
Additionally, we intend to generate synthetic data and texture
to augment 3D animal models with different postures, back-
grounds, and patterns to train more effective and robust repre-
sentation models. We believe that by exploring these research
avenues, we can advance the state-of-the-art in 3D object re-
trieval.
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