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A B S T R A C T

We propose a new strategy to bridge point cloud denoising and surface reconstruc-
tion by alternately updating the denoised point clouds and the reconstructed surfaces.
In Poisson surface reconstruction, the implicit function is generated by a set of smooth
basis functions centered at the octnodes. When the octree depth is properly selected,
the reconstructed surface is a good smooth approximation of the noisy point set. Our
method projects the noisy points onto the surface and alternately reconstructs and
projects the point set. We use the iterative Poisson surface reconstruction (iPSR) to
support unoriented surface reconstruction. Our method iteratively performs iPSR and
acts as an outer loop of iPSR. Considering that the octree depth significantly affects
the reconstruction results, we propose an adaptive depth selection strategy to ensure
an appropriate depth choice. To manage the oversmoothing phenomenon near the
sharp features, we propose a λ-projection method, which means to project the noisy
points onto the surface with an individual control coefficient λi for each point. The
coefficients are determined through a Voronoi-based feature detection method. Experi-
mental results show that our method achieves high performance in point cloud denois-
ing and unoriented surface reconstruction within different noise scales, and exhibits
well-rounded performance in various types of inputs. The source code is available
at https://github.com/Submanifold/AlterUpdate.

© 2023 This manuscript version is made available under the CC-BY-NC-ND 4.0
license https://creativecommons.org/licenses/by-nc-nd/4.0/.

1. Introduction

Point clouds are widely applied in a wide range of geometric
applications. However, the real scanned point clouds obtained
by the sensing technologies typically contain a certain amount
of noise and outliers, which significantly reduces their shape
representation capacities. When the input point clouds are un-
oriented (i.e., no consistently oriented normals are given), ap-
plying them for surface reconstruction becomes a challenging
task. Point cloud denoising is a traditional solution for handling
low-quality inputs, which has been extensively studied for more
than two decades. The denoising techniques can be classified
into several categories. A typical idea is to project the noisy
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point set onto the estimated local surfaces. However, existing
projection-based methods either require consistently oriented
normals for robust shape fitting (e.g., MLS-projection [1, 2])
or only considers the local shape properties within a specific
neighbor scale (e.g., jet smoothing [3, 4]).

In recent years, researchers have made remarkable progress
in unoriented surface reconstruction such as VIPSS [5],
PGR [6] and iPSR [7]. Among them, iPSR iteratively per-
forms screened Poisson surface reconstruction [8] and updates
the point normals from the surface generated by the previous it-
eration. The algorithm terminates when approximating the iter-
ative fixed point or reaching the maximum number of iterations.
iPSR achieves high performance for clean inputs. However, the
sample positions are fixed during the iterative process, reducing
its performance in point clouds with large noise. Therefore, we
wonder if the point positions can also be updated to achieve a
higher reconstruction quality.

In this work, we bridge point cloud denoising and surface re-
construction by alternately updating the denoised point clouds
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and the reconstructed surfaces. Our method acts as an outer
loop of iPSR. Specifically, we project the noisy point set onto
the surface generated by iPSR in each iteration. This idea is
based on the following observations: in Poisson surface recon-
struction, the reconstructed surface is generated by the isosur-
facing of an implicit function spanned by a series of smooth
basis centered at the octnodes. When a proper octree depth is
selected, the reconstructed surface can be regarded as a good
smooth approximation of the noisy point cloud. Furthermore,
we notice that the depth selection will significantly affect the
convergence of iPSR. Accordingly, we propose an adaptive
depth selection method based on the convergence situation of
iPSR, which is judged by the normal variations in the algorithm.
To address the oversmoothing phenomenon in the sharp edges,
we propose a λ-projection method by estimating the sharpness
ratio and assigning an individual control coefficient for each
point. The coefficients are determined using a Voronoi-based
feature estimation algorithm [9].

From the point cloud denoising viewpoint, our method be-
longs to the projection-based category and iteratively projects
the noisy point set onto the surface generated by iPSR with an
adaptive depth selection strategy and a λ-projection method.
From the unoriented surface reconstruction viewpoint, our
method iteratively updates the point positions in the algorithm
(instead of updating the normals only) and achieves consider-
able improvements for noisy inputs.

We qualitatively and quantitatively examine the efficacy of
our method in point-wise noise, structured noise, outliers and
real scanned noise. The experimental results indicate that our
method achieves high performance in point cloud denoising
and unoriented surface reconstruction tasks, and shows well-
rounded performance within different shapes and noise scales.
We also verify that our approach can not be substituted by sim-
ply adjusting some parameters in iPSR or other denoising and
reconstructing approaches.

2. Related works

In this section, we provide a brief review of point cloud de-
noising and unoriented surface reconstruction techniques and
focus on the works that are most relevant to our method.

2.1. Projection-based point cloud denoising

Point cloud denoising has been extensively studied for more
than two decades due to its broad applications. Han et
al. [10] provide a systematic review involving a wide variety
of traditional approaches. A recent survey paper [11] intro-
duces more up-to-date techniques including many interesting
learning-based methods. Projection-based denoising is the most
relevant category of our method with the main idea to project
the noisy point cloud onto the local surfaces approximated by
adjacent points. A commonly used local fitting technique is the
Moving Least Squares (MLS) surfaces. The seminar work [1]
defines a C2 smooth surface through the projection procedure.
However, the sharp features may be oversmoothened due to the
smoothness property. Fleishman et al. [12] approximate the
point set by the feature-preserving piecewise smooth surfaces.

Each piece fits the point shape on one side of the sharp edge.
APSS [13] utilizes algebraic spheres to define the MLS sur-
faces, which significantly improves the quality near the high
curvature regions. RIMLS [2] applies the robust local ker-
nel regression to achieve feature preserving surface approxi-
mation. Majority of the above-mentioned techniques require
consistently oriented normals as inputs. APSS supports both
unoriented and oriented point fitting. However, normals are
necessary for achieving the high-fidelity quality. Except for
MLS projection, Cazals et al. [3, 4] estimate local shape prop-
erties through the Taylor expansion of the local height field.
Then, a denoising technique can be realized by projecting the
noisy points onto the approximated local surface. The afore-
mentioned method is named as “jet smoothing”, which does
not require normals as inputs. However, the local fitting is only
performed within a user specific neighbor scale.

Except for local surface fitting, some other approaches carry
out point projection through an optimization manner. Lipman
et al. [14] propose a parameterization-free locally optimal pro-
jection (LOP) operator, which generates a set of uniform dis-
tributed points to approximate the original shape. This tech-
nique is further improved by Huang et al. [15] through a robust
repulsion term and the adaptive density weights. Liu et al. [16]
suggest performing WLOP in an iterative manner. Preiner et
al. [17] propose a continuous WLOP formulation based on
the Gaussian mixture technique. This work significantly re-
duces the time resources of the WLOP. However, the above-
mentioned methods may lack the feature preserving mecha-
nisms and result in oversmoothing near the sharp edges. To ad-
dress this issue, Huang et al. [18] propose to detect the sharp re-
gions and carry out a point resampling operation near the sharp
edges. Lu et al. [19] propose a GMM-inspired anisotropic pro-
jection strategy, which preserves the sharp features by consid-
ering filtered normals in the objective function.

2.2. Other point cloud denoising techniques

Projection is not the only means to carry out point cloud
denoising. Digne et al. [20] and Zhang et al. [21] introduce
the bilateral filters for 3D point set filtering. Their methods
are mainly inspired by image denoising techniques. Avron et
al. [22] and Sun et al. [23] propose the L1 and L0 optimiza-
tion formulation for point set filtering based on the observa-
tion that many surfaces are piecewise smooth. Accordingly, the
sparsity of the first order information can be applied to clean
the point set. Agathos et al. [24] extend the Taubin smoothing
techniques from the mesh denoising to point clouds, and imple-
ment a fast GPU version to support large scale data. Salman et
al. [25] detect sharp features by analyzing the covariance ma-
trices of Voronoi cells. Digne et al. [26] utilize an error met-
ric based on optimal transport to achieve the feature-capturing
reconstruction and simplification. Wang et al. [27] present a
feature-preserving unoriented reconstruction pipeline and sepa-
rate the entire task into several processes, including noise scale
estimation, tangent plane detection, outlier removal, feature de-
tection and noise smoothing. Liu et al. [28] propose a feature
detection technique by the bi-tensor voting scheme. Chen et
al. [29] propose to incorporate a repulsion term with the data
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term and take into account both point distribution and feature
preservation. RFEPS [30] introduces a novel feature-line de-
tection and resample approach for CAD models.

The application of deep neural networks to geometric pro-
cessing has achieved significant success in recent years due to
the rapid advancement of 3D deep learning. Some interesting
works learn the local shape properties through point-based 3D
networks and obtain considerable results in point cloud denois-
ing and unoriented surface reconstruction [31, 32, 33, 34, 35,
36, 37, 38]. However, the above-mentioned techniques typi-
cally require abundant training data to learn the shape priors.

2.3. Surface reconstruction from unoriented point sets
Despite a long research history with a considerable number

of excellent studies [39, 40, 41, 5], surface reconstruction from
unoriented point clouds remains a challenging problem. The
main reason is that obtaining a globally consistent normal ori-
entation is always a non-trivial task. Some remarkable studies
have emerged in recent years and achieve high-fidelity recon-
struction results for clean inputs [6, 7]. However, the point po-
sitions are fixed during the algorithm, limiting their effects on
point clouds with a certain amount of noise. This is why we pro-
pose to fill this gap by updating the point positions iteratively.
In contrast with these methods, DPSR [42] proposes a differen-
tiable Poisson solver and updates the source point cloud through
the backpropagation of the Chamfer loss. However, the compu-
tational process of DPSR relies on the GPU, which results in
the high resource demand and the restricted grid resolution.

3. Method

3.1. Overview
Given an input 3D point cloud P(0) = {p1, p2, ..., pn} with

noise, our method iteratively updates the reconstructed surface
and the denoised point cloud. The two main operators in our
algorithm are the reconstruction operator and the projection op-
erator. We apply the iterative Poisson surface reconstruction
(iPSR) [7] to carry out unoriented surface reconstruction, which
takes a raw point cloud P and a user-specific octree depth d as
inputs, and generates a smooth surface S directly from the point
positions. This operation can be denoted as follows:

S = fipsr(P, d). (1)

Then, the noisy points are projected onto the surface. Instead of
directly projecting the points onto S , we propose a λ-projection
operator fpro j, which takes a point cloud P and a surface S as
inputs and projects each point pi ∈ P on S with a control coef-
ficient λi. If qi is the closest point to pi on S , then the projected
point p′i satisfies:

p′i = (1 − λi)pi + λiqi. (2)

This projection operation is denoted as follows:

P′ = fpro j(P, S ). (3)

Generally, the alternative updating process of our method can
be expressed as follows:

S (k) = fipsr(P(k), d(k)), P(k+1) = fpro j(P(k), S (k)). (4)

Our method acts as an outer loop of iPSR. Fig. 1 shows the
input point cloud P(0) and the reconstructed surfaces generated
by our method from S (0)(iPSR) to S (4). It can be seen that the
mesh quality is improved and the noise is cleaned through the
iteration.

In section 3.2, we will introduce the adaptive octree depth
selection strategy to determine the depth d(k) in Equation 4. In
section 3.3, we will introduce how the projection coefficient
λi is selected for each point to handle the oversmoothing phe-
nomenon near the sharp edges.

3.2. Adaptive depth selection strategy

When carrying out accurate and high-fidelity reconstruction
by the traditional Poisson surface reconstruction approach [43,
8], the octree depth is always set to a large value for support-
ing detailed isosurfacing. In the original conception, a larger
octree depth would lead to a better mesh quality, until reach-
ing the maximum depth required for the geometric complexity.
However, this situation is not the case when doing unoriented
reconstruction for noisy point clouds using iPSR. Firstly, we
will provide a brief review of the normal iteration process of
iPSR as preliminaries.

iPSR. Given an unoriented point cloud P and a user specific
octree depth d, iPSR firstly constructs an octree from P and gen-
erates a new sample set S = {s1, s2, ..., sm} based on the octree
nodes. Each sample si is assigned with an initialized normal
ni. The normals can be randomly initialized in the first itera-
tion. We denote the set of normals asN = {n1, n2, ..., nm}. iPSR
iteratively updates the sample normalsN from the surface gen-
erated by the last iteration. Specifically, an intermediate surface
is generated by inputting S and N to the screened Poisson sur-
face reconstruction [8]. Then, the normal ni of the sample si is
updated by the average normal of the adjacent face list near si

in the intermediate surface. The algorithm terminates when the
iterative fixed point is approximated or the maximum iteration
is reached. Then, a consistent and high quality triangular mesh
can be obtained from the last iteration.

In the original work of iPSR, the octree depth is manually set
to a fixed integer 10 in most experiments. However, we notice
that choosing an appropriate depth for large noise inputs can
bring about considerable advantages for this algorithm. When
the octree depth is considerably large, the convergence of iPSR
may encounter some challenges for large noise inputs and pro-
duce “lattice” surfaces, such as the middle column of Fig. 2.
Reducing the octree depth can make the convergence easier and
produce smoother surfaces. However, an extremely small depth
will result in the loss of the shape details, as shown in the teapot
mouth of Fig. 5 when doing reconstruction of depth 6. There-
fore, an appropriate depth is critical for achieving a decent per-
formance.

In this work, we propose an adaptive depth selection strat-
egy based on the convergence situation (i.e., good or bad) of
iPSR. Recall that iPSR updates the sample normals in an itera-
tive manner. In their algorithm, the average of the top 0.1% nor-
mal variations v is calculated for each iteration. This value can
be applied to judge if the algorithm has well converged. The it-
eration process of iPSR stops when v < 0.175, or the maximum

3



𝑆 0 (iPSR)Input 𝑆 1 𝑆 2 𝑆 3 𝑆 4

Fig. 1. Given the input point cloud P(0), our method iteratively performs reconstruction and projection in every step. We show the reconstructed surfaces
from S (0)(iPSR) to S (4) of our method. The surface quality is improved through the iteration.

iteration 30 is reached. Accordingly, we also apply the normal
variations to estimate the convergence situation of iPSR in the
first reconstruction of our method. Specifically, we set the can-
didate depths to be [dmin, dmax] and first perform iPSR by depth
d = dmax. If iPSR converges and stops before reaching the max-
imum normal iteration 30, or the average normal variations of
the last five iterations are less than 0.7, then iPSR converges
well at this depth and d(0) = d is set. Otherwise, d = d − 1 and
iPSR is performed again, until converges well or reaches the
minimum depth d = dmin. This approach ensures that a proper
depth is chosen at the first reconstruction.

The depth d(0) of the first reconstruction accounts for a criti-
cal role in our algorithm, and has been determined through the
above-mentioned strategy. In the subsequent reconstructions,
we can set an incremental depth list for each d(0) ∈ [dmin, dmax].
For instance, the depth list is set to [6, 6, 7, 7, 8] for d(0) = 6.
The depth increases in the following stages because the noise
magnitude becomes smaller through the alternative denoising
and reconstructing process. Additional details will be specified
in the experimental section. Once dmin and dmax are determined,
and the depth list for each intermediate depth d ∈ [dmin, dmax] is
set, we can run the dataset in batches without manually adjust-
ing the depth for each shape or reconstruction in Equation 4.
Therefore, the depth selection strategy of our method is adap-
tive.

3.3. λ-projection method

In each iteration of our method with the input point cloud P(k)

and the reconstructed surface S (k) = fipsr(P(k), d(k)), we project
each point p(k)

i ∈ P(k) onto the reconstructed surface S (k). How-
ever, if we simply project all the points onto the surface, then the
sharp edges will be smoothed into rounded corners after several
iterations. Accordingly, a λ-projection method is proposed to
combat the issue of oversmoothing near the sharp edges. The
main idea is to assign a projection coefficient λ(k)

i for each point
p(k)

i . If q(k)
i is the nearest point of p(k)

i in the surface S (k), then

the projected points p(k+1)
i satisfy:

p(k+1)
i = (1 − λ(k)

i )p(k)
i + λ

(k)
i q(k)

i . (5)

The coefficient λ(k)
i is different for each point and mainly de-

pended on its sharpness degree. In this work, a Voronoi-based
feature estimation method [9] is used to examine the sharpness
degree of all the points. Given the point cloud P(k) = {p(k)

i }ni=1,
[9] firstly computes the convolved Voronoi covariance measures
from the neighborhood of each p(k)

i . Then, the sharpness ratio
r(k)

i can be computed from the eigenvalues of the covariance
measure. The point whose sharpness ratio is larger than a cer-
tain threshold is considered as a feature point in the shape.

Once the sharpness ratios of the point set are calculated, the
projection coefficient λ(k)

i can be determined from the sharpness
ratio r(k)

i . We set λ(k)
i to be a continuous function of r(k)

i :

λ(k)
i = 0.1 + 0.9 × e−g(r(k)

i ), (6)

where

g(r(k)
i ) =

(max{r(k)
i − c, 0})2

σ2 . (7)

Here, c andσ are both user specific parameters, which represent
the threshold and the standard deviation, respectively. Equa-
tion 6 and 7 demonstrate that λ(k)

i ∈ (0.1, 1.0]. If r(k)
i < c, then

p(k)
i is not regarded as a feature point, max{r(k)

i − c, 0} = 0, and
λ(k)

i = 1.0, indicating that point p(k)
i is projected onto the sur-

face at q(k)
i (p(k+1)

i = q(k)
i ). If r(k)

i > c, then p(k)
i is regarded as a

feature point with a large degree of sharpness. As the sharpness
ratio r(k)

i increases, λ(k)
i will decrease, but not less than the basic

offset 0.1. σ controls the decreasing speed of λ(k)
i .

It should be noticed that the sharp edges are only considered
when the noise scale is not that large. In section 3.2, we propose
an adaptive depth selection method. Large noise will result in
a low d(0). Here, we choose a depth dsharp as threshold. When
d(k) < dsharp, the sharp edges are not taken into account in this
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Input Without adaptive 
depth selection

With adaptive 
depth selection

Fig. 2. The effectiveness of the adaptive depth selection strategy in large
noise examples. If the depth is simply set to 8, as shown in the middle col-
umn, then the resulting meshes contain “lattice” structures. By contrast,
utilizing our adaptive depth selection method brings about significant im-
provements in these examples.

iteration because of the following reasons: 1) the input point
cloud contains large noise; and 2) it is still in the early stage of
the algorithm and the top priority of this iteration is to reduce
the noise amplitude of the point cloud. When d(k) < dsharp, we
set λ(k)

i = 0.5 for all points, which not only filters the noise but
also maintains the original shape. When d(k) ≥ dsharp, Equa-
tion 6 and 7 are utilized to calculate the projection coefficient
λ(k)

i for each point.

In Fig. 3, we show the reconstructed surface of a noisy fan-
disk model with and without the λ-projection method. The re-
sults indicate that the proposed λ-projection method is helpful
in ameliorating the oversmoothing phenomenon near the sharp
edges. For further improvements to this issue, we can carry
out a point resample process near the sharp edges similar to
EAR [18] and RFEPS [30].

The normal inputs of iPSR can be either random or manually
initialized. Therefore, in the subsequent reconstructions of our
method, we initialize the point normal of p(k+1)

i as the surface
normal at q(k)

i . In this way, the convergence speed of iPSR is
significantly improved.

Without 𝜆-projection With 𝜆-projection

Fig. 3. Reconstructed mesh of a noisy fandisk model with and without the
λ-projection strategy. The results indicate that the proposed λ-projection
method can ameliorate the oversmoothing phenomenon near the sharp
edges.

4. Experiments

4.1. Overview

In the experiments, the minimum octree depth dmin is set to
6 and the maximum depth dmax is set to 8 in the adaptive depth
selection strategy of our approach. We perform five alternative
updating processes. Specifically, we use P(5) in Equation 4 as
the denoised point cloud and S (5) as the reconstructed surface.
If d(0) is calculated to be 6 based on the normal variations, then
the depths in the subsequent five reconstructions S (1) to S (5) are
set to [6, 6, 7, 7, 8]. If d(0) = 7, then the subsequent depths are
[7, 7, 8, 8, 8]. If d(0) = 8, all the iterations are carried out within
depth 8. The threshold dsharp in the λ-projection is set to 8.
Specifically, we only consider the sharp features when d = 8.

We choose the following non-data-driven and data-driven ap-
proaches as baselines and conduct qualitative and quantitative
comparisons with these methods. These approaches belong to
different categories.

RIMLS [2]: RIMLS applies the robust local kernels to the
MLS surfaces. This approach requires consistently oriented
normals as inputs. Here, the normals are estimated by PCA [44]
and oriented by Hoppe et al. [45]. The RIMLS implementation
of MeshLab [46] is used to conduct experiments.

WLOP [15]: WLOP is a locally optimal projection method
for point cloud consolidation, which generates an evenly dis-
tributed particle set of the original point cloud. We use the im-
plementation of WLOP in CGAL [47].

Jet smoothing [3, 4]: Osculating jet is an efficient poly-
nomial fitting technique to estimate the local surface proper-
ties. This technique can be applied to denoise the point cloud
through projecting the points onto the local surface shape. We
use the “jet smoothing” implementation of CGAL.

Bilateral smoothing [47]: Bilateral filter is a useful tool for
reducing the noise in point sets. We apply the CGAL imple-
mentation of the“bilateral smoothing” filter. It is worth noticing
that the CGAL implementation of bilateral smoothing is com-
bined with an edge preserving module based on the philosophy
of EAR [18], which is introduced in the official documentation
of CGAL. The bilateral smoothing of CGAL also requires nor-
mals as inputs. We estimate the normals by PCA and Hoppe et
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GTOursZero weight iPSRHalf weight iPSRInput

Fig. 4. Reconstruction of our method in point weight 1.0 and reconstructions of the iPSR in different smaller point weights. The results indicate that our
method cannot be substituted by simply adjusting the point weight of iPSR.

Input iPSR in depth 8 iPSR in depth 7 iPSR in depth 6 Ours GT

Fig. 5. Comparisons of iPSR at different depths with our method. The results indicate that our method cannot be substituted by simply adjusting the
depth of iPSR.

al. [45] similar to RIMLS.
PointCleanNet [32]: PointCleanNet is a representative su-

pervised learning approach for point cloud filtering. The net-
work contains an outlier detector branch and a denoiser branch
both based on PointNet [48]. The trained model provided by
the authors are directly applied to conduct the qualitative and
quantitative comparisons.

4.2. Ablation study with iPSR and PGR

Our method performs iPSR [7] in an iterative manner. There-
fore, it is necessary to validate that our method cannot be substi-
tuted by simply adjusting some parameters in iPSR. The recon-
struction results of the iPSR and ours in a noisy horse model are
illustrated in Fig. 4. In Poisson surface reconstruction, “point
weight” is an important parameter to control the degree of fit-
ting the sample points. In our method, the point weight is set to
1.0 during the alternative updating process. If the point weight
is reduced to 0.5, and iPSR is carried out only once, then the
reconstructed mesh remains to be noisy. We also show the re-
construction of iPSR in zero point weight. Setting the point
weight to zero directly in the iPSR may cause difficulties in al-
gorithm convergence. Accordingly, we manually initialize the
normals with a correct orientation. It can be seen that the zero
weight iPSR cannot achieve an on par result with our method.
Moreover, the ears of the horse are oversmoothened in the zero
weight iPSR.

Fig. 5 shows the reconstruction of our method and iPSR
within different octree depths of a noisy teapot model. In our
method, the adaptive depth selection strategy is applied, and the
depth d(0) is calculated as 8. We also show the iPSR reconstruc-
tions from octree depth 6 to 8. Although reducing the octree
depth can make the reconstruction of iPSR smoother, some de-
tails are lost due to the low depth setting, for instance, the mouth
of the teapot. Therefore, our method can not be substituted by
simply adjusting the octree depth of iPSR.

Additionally, we compare our method with another recent
unoriented reconstruction approach PGR [6]. Similar to iPSR,
the point positions are fixed during the optimization in PGR.
We set the parameter kw in PGR to 64 and conduct experiments
with four values of the parameter α: 2.0, 4.0, 8.0 and 16.0. The
purpose of adjusting α is to manage the noisy inputs. Fig. 6
shows the experiment results where we add randomized Gaus-
sian noise with a standard deviation of 1.0 × 10−2 in the input.
We also colorize the error from the reconstructed mesh to the
ground truth. It can be observed that increasing the value of α
improves the noise adaptability of PGR and the smoothness of
the generated surface. However, it also results in an increase
in the distance between the generated surface and the ground
truth mesh. On the other hand, our method iteratively updates
the point positions, resulting in good visual effects and low dis-
tance errors between the generated surface and the ground truth.

4.3. Comparison with other denoising approaches

In this section, we compare our method with the other point
cloud denoising techniques mentioned in Section 4.1 to exam-
ine the efficacy of our method. We use the famous dataset
complied by a recent study Points2Surf [33], which contains
22 well-known shapes such as Armadillo, Stanford Bunny and
Utah teapot. These shapes are normalized with the maximum
axis length to be 1.0, and 10K to 100K points are randomly
sampled from each shape. Then, the randomized Gaussian
noise is added to each sample point of the shape. The stan-
dard deviations (STD) are selected within five different levels
from 0.5 × 10−2 to 2.5 × 10−2.

Parameter settings are typically crucial for non-data-driven
denoising approaches. During the experiments, we set the pa-
rameter “filter scale” for RIMLS to 7. In WLOP, the “repre-
sentative particle number” is set to 95% of the original point
set, and the “neighbor radius” is set to 0.04. Jet smoothing
has only one parameter “neighbor size”. “Jet-small” is used to
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PGR 𝛼 = 2.0 PGR 𝛼 = 4.0 PGR 𝛼 = 8.0 PGR 𝛼 = 16.0 Ours

0

0.015

Fig. 6. Comparisons of PGR in different α values with our method. The results indicate that our method produces good visual effects and has a low
distance error between the generated surface and the ground truth.

Table 1. Quantitative comparisons on the famous dataset within different noise standard deviations (STD). We report the root mean square distance-to-
surface (RMSD) of each method. The RMSD values are multiplied by 103.

Method/STD 0.5 × 10−2 1.0 × 10−2 1.5 × 10−2 2.0 × 10−2 2.5 × 10−2

RIMLS 2.456 3.121 4.378 6.469 9.813
WLOP 3.433 3.669 4.032 4.799 6.420

Bilateral-small 2.064 2.895 4.298 6.202 8.548
Bilateral-large 3.630 4.061 4.626 5.305 6.447

Jet-small 1.994 2.752 3.837 5.350 7.248
Jet-large 2.807 3.351 4.012 4.892 6.072

PointCleanNet 2.518 3.362 4.267 5.516 7.210
Ours 1.975 2.245 2.592 3.459 4.253

represent the parameter setting 48 to the neighbor size. Mean-
while, “jet-large” is used to represent the parameter setting 96.
Three parameters, namely, “neighbor size”, “sharpness angle”
and “iters”, exist in bilateral smoothing. Increasing the sharp-
ness angle will reduce the sharpness of the results. “Bilateral-
small” is used to represent the parameter setting with neighbor
size 24, sharpness angle 25 and iters 5, whilst “bilateral-large”
is used to denote neighbour size 48, sharpness angle 50 and iters
5. Only one parameter “iters” exists in PointCleanNet, which
is set to 5 during the experiments. In our method, the Poisson
point weight is set to 1.0 in the datasets with a standard devia-
tion less than 2.0×10−2, and 0.5 otherwise. Parameters c and σ
in Equation 7 are determined as follows. Firstly, the sharpness
ratios of all points in a shape is sorted. Then, c is set to the value
of the 90% position of the sorted array, and σ is set to c/2.

Firstly, we quantitatively compare the quality of the denoised
point cloud in terms of the root mean square distance-to-surface
(RMSD). If P is the denoised point cloud and P′ is a densely
sampled point cloud of the ground truth mesh. Then, the RMSD
value can be calculated as follows:

RMS D(P, P′) =

√
1
N

∑
pi∈P

min
p j∈P′
||pi − p j||22. (8)

The quantitative results are shown in Table 1. The RMSD
values are multiplied by 103. The results indicate that our
method exhibits high performance in all the five noise scales
from 0.5 × 10−2 to 2.5 × 10−2. The qualitative comparisons are
shown in Fig. 7. For jet smoothing and bilateral smoothing,
we show the better performing from the small parameter set-
ting and the large parameter setting of each shape. We annotate
the RMSD value (also multiplied by 103) in the bottom of each
point set and colorize the point to surface distance from the de-
noised point cloud to the ground truth surface. The five exam-
ples belong to the dataset of different noise scales. The results
show that the generated point clouds of our method perform the
lowest error. To make the comparisons more comprehensive,
we also conduct an experiment in terms of the mean absolute
distance-to-surface (MADS) of the denoised point cloud in Ta-
ble 3, which is located in the supplementary material. The for-
mulation for calculating the MADS are given as follows:

MADS (P, P′) =
1
N

∑
pi∈P

min
p j∈P′
||pi − p j||2. (9)

Furthermore, we compare the quality of the reconstructed
mesh amongst different approaches. For WLOP, bilateral
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Input WLOP Bilateral smoothing Jet smoothing Ours

1.416 4.220 1.530 1.262 1.959 1.206

3.302 3.606 5.2174.401

6.191 6.233 4.448

PointCleanNet
11.741 5.606 6.427 6.443 6.004 3.527

GT

5.217

3.959 2.360 0.015

0

3.799 3.363 3.484 3.254 3.981 2.422

2.7124.630

RIMLS

Fig. 7. Qualitative comparisons of the denoised point clouds. We annotate the RMSD value (multiplied by 103) at the bottom of each example and colorize
the point to surface distance from the denoised point cloud to the ground truth mesh.

smoothing, jet smoothing and PointCleanNet, we use iPSR to
generate the reconstructed surfaces from the denoised point
clouds provided by their algorithms. The reason is that no con-
sistently oriented normals are required for iPSR. The L1 Cham-
fer distance (CD) and the normal consistency (NC) are used to
measure the mesh quality. Here, L1 CD means to apply the L1
sum toward all sample points, rather than utilizing the L1 dis-
tance of point positions. The formula for calculating the CD
value is presented as follows:

CD(P, P′) =
1
|P|
∑
pi∈P

min
p j∈P′
||pi − p j||2+ 1

|P′|
∑
p j∈P′

min
pi∈P
||p j − pi||2.(10)

Where P and P′ are point clouds uniformly sampled from the
reconstructed mesh and the ground truth mesh. Normal con-
sistency (NC) can also be named as the mesh cosine similarity,
which calculates the average absolute normal dot product be-
tween the sample of the ground truth mesh and the nearest point
in the sample of the reconstructed mesh.

Table 2 quantitatively compares the mesh quality in terms
of CD and NC amongst different approaches. We show the
model names, noise scales, CD and NC values in the table.

The CD values are also multiplied by 103. In each row, the red
number represents the best value amongst all methods, and the
blue number represents the second best. Our method achieves
well-rounded performance. The meshes generated by bilateral
smoothing show high NC values. However, the CD values are
typically large, indicating that the filtered point positions are far
from the ground truth. The results of jet smoothing exhibit low
CD values. However, the NC values of the generated surfaces
are not that satisfactory. This phenomenon is also shown in Fig.
15, located in the supplementary material, where we present the
qualitative results of rows 3,5 and 9 in Table 2. We also colorize
the error from the reconstructed mesh to the ground truth mesh
with a color bar. The results of our method exhibits low error
and high normal consistency. PointCleanNet achieves the low-
est CD value in the “Liberty” model. But in reality, this shape is
in the training set of PointCleanNet. To make the comparisons
more comprehensive, we also provide an evaluation based on
the F-score of the reconstructed mesh in Table 4, which is also
located in the supplementary material. The F-score is calcu-
lated as follows: Firstly, we sample a point cloud P from the
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Table 2. Quantitative comparisons of the reconstructed mesh quality. We show the Chamfer distance (CD) and the normal consistency (NC) of each
method. The CD values are multiplied by 103. The red color is used to represent the best value amongst all approaches, and the blue is used to denote the
second best. The results indicate that our method exhibits well-rounded performance.

Model Noise RIMLS WLOP Bilateral-small Bilateral-large Jet-small Jet-large PointCleanNet Ours

CD↓ NC↑ CD↓ NC↑ CD↓ NC↑ CD↓ NC↑ CD↓ NC↑ CD↓ NC↑ CD↓ NC↑ CD↓ NC↑
tortuga 0.5 × 10−2 3.98 0.986 4.33 0.983 4.04 0.986 5.40 0.984 3.48 0.986 3.51 0.986 3.47 0.983 3.47 0.987

Utah teapot 0.5 × 10−2 3.76 0.978 4.52 0.973 3.68 0.980 4.60 0.974 3.57 0.975 3.65 0.975 3.61 0.971 3.46 0.978
horse 1.0 × 10−2 4.81 0.977 6.07 0.973 3.72 0.981 5.07 0.983 3.56 0.977 3.72 0.981 3.56 0.976 3.27 0.985
angle 1.0 × 10−2 5.79 0.940 7.78 0.908 4.07 0.945 6.15 0.935 3.90 0.937 4.42 0.935 4.22 0.924 3.47 0.948

Armadillo 1.5 × 10−2 9.23 0.932 6.84 0.930 6.27 0.941 9.40 0.932 5.91 0.935 6.56 0.932 5.87 0.929 5.31 0.943
xyzrgb dragon 1.5 × 10−2 14.97 0.829 9.75 0.814 5.92 0.860 8.72 0.839 5.96 0.852 7.20 0.844 6.59 0.837 5.30 0.864

hand 2.0 × 10−2 28.94 0.793 12.23 0.875 7.56 0.856 10.75 0.872 6.54 0.868 8.38 0.880 8.12 0.860 7.01 0.879
serapis 2.0 × 10−2 9.27 0.957 6.97 0.956 6.40 0.957 7.22 0.958 6.55 0.946 6.77 0.954 6.59 0.950 6.19 0.964
Liberty 2.5 × 10−2 43.42 0.613 8.81 0.801 12.39 0.713 7.75 0.791 10.30 0.715 7.29 0.778 6.11 0.805 6.42 0.813
galera 2.5 × 10−2 19.64 0.908 7.52 0.937 7.42 0.923 8.49 0.934 7.09 0.913 7.44 0.927 7.14 0.927 6.63 0.941

Input Ours

Fig. 8. Denoised results of our method in misalignment point clouds. The
results indicate that our approach effectively addresses this situation.

reconstructed mesh and a point cloud P′ from the ground truth
mesh. For each point pi in P, we measure the distance between
pi and its nearest point p′i in P′. We then measure the proportion
of points in P that have a nearest distance below a threshold of
5 × 10−3. This proportion is referred as the “precision”. Swap-
ping P and P′ allows us to assess the “recall”. The F-score,
denoted as F1, is calculated as:

F1 =
2 × precision × recall

precision + recall
. (11)

4.4. Managing different situations
In this section, we examine the ability of our method in

managing various situations including misalignment, outliers,
highly inconsistent sampling densities, noisy CAD-like models
and real scanned point clouds.

Misalignment Misalignment is a typical noise category, es-
pecially for the point clouds obtained with a scanner. Here,
we use the misalignment dataset provided by a recent bench-
mark [49] to examine the ability of our method to manage this

OursJet smoothingBilateral smoothing

WLOPRIMLSInput

Fig. 9. The results amongst different methods of a point cloud contains
both misalignment artifacts and outliers. Approximately 1K points are
randomly added in the unit cube as outliers.

type of structured noise. The point clouds are obtained with
the Blensor simulator [50] by adding some perturbations to the
camera extrinsics. Fig. 8 shows the misalignment inputs and
the denoised point clouds generated by our method. The results
indicate that the misalignment situation is efficiently managed
by our method.

Outliers and highly inconsistent sampling densities Fig. 9
shows a point cloud including both misalignment artifacts and
outliers. In this example, 1K outliers are randomly sampled
within a unit cube and added to a point set with approximately
160K points. In Poisson surface reconstruction, a few outliers
may not have significant influence on the global implicit func-
tion. Accordingly, our method performs a certain degree of ro-
bustness to outliers, whilst the other traditional approaches en-
counter some challenges to manage this situation. Jet smooth-
ing and bilateral smoothing can filter out more outliers if a large
neighbor size is utilized. For instance, setting the neighbor size
of jet smoothing to 1024 can filter out most of the outliers in
this case. However, the original shape will also be severely
oversmoothed by such a large neighbor scale. Actually, this sit-
uation can also be managed by applying iPSR to the denoised
point clouds provided by jet and bilateral smoothing, and then
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Fig. 10. Reconstructions of our method in point clouds with both noise and
highly inconsistent sampling densities. Our approach effectively addresses
this situation.

projecting the noisy points onto the surface. However, this op-
eration aligns with the underlying philosophy of our method,
which further confirms the validity of our concept.

We also conduct experiments to evaluate the performance of
our method on point clouds with highly inconsistent sampling
densities. In Fig. 10, the input point clouds contain randomized
Gaussian noise with inconsistent sampling. Notably, the sam-
pling density of one half of the shape is only 1/5 of the other
half. The results demonstrate the effectiveness of our method in
addressing this challenging issue.

Noisy CAD-like inputs The CAD-like inputs always include
rich sharp features. We have demonstrated in Section 3.3 and
Fig. 3 that the λ-projection method we proposed is helpful
for alleviating the oversmoothing phenomenon near the sharp
edges. In this section, we mainly focus on the comparisons.
We set the parameters c and σ in Equation 7 to be 0.11 and
0.05, respectively. Fig. 11 presents the qualitative comparisons
of our method with WLOP and jet smoothing in two CAD-like
models. The results illustrate that our method has a fundamen-
tal edge reconstruction capability compared with traditional de-
noising approaches with the help of the λ-projection.

To enhance the preservation of sharp edges or feature lines,
we can incorporate a point resampling process in the future. A
recent method RFEPS [30] specifically addresses this issue in
CAD-like input, with a particular focus on edge preservation.
In Figure 12, we provide qualitative comparisons between our
method and RFEPS. We utilize the source code provided by the
authors and keep the default parameters. While RFEPS demon-
strates favorable edge preservation, its applicability to general
shapes may be limited. Furthermore, we observe that the edge
point detection and sampling process of RFEPS could poten-
tially be integrated into our alternative updating process in the

WLOP Jet smoothing Ours

Fig. 11. Qualitative comparisons of our method with WLOP and jet
smoothing in the CAD-like models.

future. Enhancing the preservation of sharp features is one of
our ongoing research directions.

Real scanned data In Fig. 13, we examine the ability of our
approach in handling the real scanned point clouds and com-
pare our method with iPSR (run only once) and jet smoothing.
The data are provided by [49]. The surfaces of jet smoothing
are generated by feeding the denoised point clouds to iPSR. Our
method achieves decent performance. Jet smoothing even ag-
gravates the noise near the thin structures, resulting in the fail-
ure of the iPSR to converge to the correct surface for the bowl
model.

5. Conclusion

In this work, we propose an alternative denoising and recon-
structing approach for unoriented point sets and performs iPSR
in an iterative manner. An adaptive depth selection strategy is
proposed to ensure that the reconstruction is carried out within
an appropriate octree depth of iPSR. Moreover, we present a
λ-projection method to handle the challenge of oversmoothing
near the sharp edges during the iterative process. The experi-
mental results show that our method exhibits high performance
in point cloud denoising and surface reconstruction tasks and
manages various situations.

The main drawback of our method is the high time con-
sumption compared with traditional denoising techniques. Our
method performs iPSR several times and acts as an outer loop of
iPSR. iPSR itself is an iterative method for the screened Poisson
surface reconstruction. Accordingly, our method requires about
8.5min on AMD Ryzen 5 5600H CPU @ 3.3GHz to denoise
and reconstruct the bowl model of Fig. 13 with approximately
0.2M points. However, one time iPSR reconstruction is also re-
quired for other denoising approaches to generate a reliable sur-
face when no consistently oriented normals are provided. For
instance, combining jet smoothing and iPSR also takes about
105s for this model. Our method is faster than the learning-
based PointCleanNet, which requires 27min in the RTX 2080Ti
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Fig. 12. Qualitative comparisons of our method with RFEPS. While
RFEPS performs well in CAD models, its applicability to general shapes
may be limited.

GPU with 5 iters. Furthermore, the reconstruction complexity
of screened Poisson surface reconstruction is a linear function
of the point number due to the application of the conforming
cascade Poisson solver. Therefore, the time complexity of our
method is not large relative to the point number. Fig. 14 demon-
strates our reconstruction of a noisy point cloud with 1M points.
The denoising process is carried out within octree depth 10. Our
method can manage this example in about one hour.

In addition to high time consumption, our current method is
limited to a fixed number of iterations in the outer loop. In the
future, we can enhance the adaptiveness of our method by ter-
minating the denoising process dynamically with an evaluation
mechanism. To further improve the sharp feature preservation,
we can integrate the feature-line detection and resampling tech-
niques to our method.
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Method/ 0STD .5 × 10−2 1.0 × 10−2 1.5 × 10−2 2.0 × 10−2 2.5 × 10−2

2RIMLS . 2015 . 3480 . 4350 . 7804 .129
2WLOP . 2684 . 3874 . 3126 . 4508 .162
1Bilateral-small . 2721 . 2214 . 4974 . 5059 .517
2Bilateral-large . 3954 . 3269 . 3634 . 4999 .590

Jet-small 1.592 2. 2159 . 3855 . 5799 .011
2Jet-large . 2126 . 3599 . 3081 . 4636 .365
1PointCleanNet . 2979 . 3592 . 3108 . 4633 .196
1Ours .624 3.2752.6552.0741.840

the best value amongst all approaches, and the blue is used to denote the second best.
OursPointCleanNetJet-largeJet-smallBilateral-largeBilateral-smallWLOPRIMLSNoiseModel

tortuga 0.5 × 10−2 0.996 0.971 0.997 0.919 0.999 0.999 0.999 0.999
Utah 0teapot .5 × 10−2 0.991 0.931 0.995 0. 0961 . 0987 . 0979 . 0981 .989

1horse .0 × 10−2 0. 0964 .846 0.999 0. 0939 . 0997 . 0993 .993 0.998
1angle .0 × 10−2 0. 0921 .757 0.990 0.866 0.983 0. 0954 .951 0.990
1Armadillo .5 × 10−2 0. 0732 . 0855 . 0886 .616 0.909 0. 0859 .908 0.949

xyzrgb 1dragon .5 × 10−2 0. 0550 .678 0.883 0. 0660 . 0875 . 0775 .833 0.914
2hand .0 × 10−2 0. 0206 . 0413 . 0761 .522 0.835 0. 0678 .727 0.803
2serapis .0 × 10−2 0. 0759 .841 0.901 0. 0828 . 0887 . 0861 .879 0.916
2Liberty .5 × 10−2 0. 0120 . 0652 . 0606 . 0769 . 0681 .817 0.854 0.840
2galera .5 × 10−2 0. 0428 . 0793 . 0813 .698 0.833 0. 0797 .825 0.869

Supplementary material of “Alternately denoising and reconstructing unoriented point
sets”

Table  3.  Quantitative  comparisons  on  the  famous  dataset  based  on  the  mean  absolute  distance-to-surface  (MADS)  of  each  method.  The  MADS  values  are
multiplied  by  103.

  −3.  The  red  color  is  used  to  representTable  4.  Quantitative  comparisons  of  the  reconstructed  mesh  quality  based  on  the  F-score  with  the  threshold  5  ×  10
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Fig.  15.  Qualitative  comparisons  of  the  reconstructed  mesh  amongst  different  methods.  The  results  indicate  that  our  approach  exhibits  well-
rounded performance.
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