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Abstract

Semantic segmentation of point cloud usually relies on
dense annotation that is exhausting and costly, so it attracts
wide attention to investigate solutions for the weakly su-
pervised scheme with only sparse points annotated. Exist-
ing works start from the given labels and propagate them
to highly-related but unlabeled points, with the guidance
of data, e.g. intra-point relation. However, it suffers from
(i) the inefficient exploitation of data information, and (ii)
the strong reliance on labels thus is easily suppressed when
given much fewer annotations. Therefore, we propose a
novel framework, PointMatch, that stands on both data and
label, by applying consistency regularization to sufficiently
probe information from data itself and leveraging weak la-
bels as assistance at the same time. By doing so, meaningful
information can be learned from both data and label for bet-
ter representation learning, which also enables the model
more robust to the extent of label sparsity. Simple yet ef-
fective, the proposed PointMatch achieves the state-of-the-
art performance under various weakly-supervised schemes
on both ScanNet-v2 and S3DIS datasets, especially on the
settings with extremely sparse labels, e.g. surpassing SQN
by 21.2% and 17.2% on the 0.01% and 0.1% setting of
ScanNet-v2, respectively.

1. Introduction
Semantic segmentation of 3D point clouds is crucial for

the application of intelligent robots’ understanding scenes
in the real world. Great efforts have been contributed to
the fully supervised scheme, while it requires exhausting
and costly per-point annotations (e.g. around 22.3 minutes
to annotate an indoor scene on average [5]). Thus, weakly
supervised 3D semantic segmentation now receives increas-
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Figure 1. (a), (b) the performance of PointMatch on the ScanNet-
v2 and S3DIS datasets over various weakly supervised semantic
segmentation settings: annotating 0.01%, 0.1% of points [11], 20
points per-scene [10], and “1thing1click” [26]. (c), (d) a compari-
son between previous works and the proposed approach.

ing attention, where only limited point-level annotations are
provided in each point cloud.

Recently, several approaches are proposed for weakly
supervised point cloud semantic segmentation with dif-
ferent kinds of weak labels, including projected 2D im-
age [44], subcloud-level [48], segment-level [38], and
point-level [10, 11, 26, 52] supervision. In this paper, we
focus on addressing the setting of sparse point-level labels,
which is one of the most convenient annotation schemes in
the application. The key challenge of this task is the dif-
ficulty of learning a robust model given very sparse super-
vision in the point cloud (e.g. 0.1%, 0.01% of points an-
notated in [11] and around 0.02% in [26]). Existing so-
lutions are mainly committed to alleviating the label spar-
sity by reusing limited supervision, i.e., first probing the
highly-related points [11] or super-voxels [26] and allow-
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ing them to share the same training labels. However, this
line of works are explicitly constructed on label propaga-
tion and employ point cloud data as the propagation guid-
ance, which suffers from (i) the insufficient exploitation of
data information limits the learning efficiency, and (ii) the
propagated labels strongly rely on the original annotation
scale thus the performance is easily suppressed when given
much fewer labels. Therefore, we propose to probe infor-
mation from both label and data itself for more efficient and
robust representation learning.

Recently, consistency training is acknowledged as a
powerful algorithmic paradigm for robust learning from
label-scarce data, e.g. in unsupervised/semi-supervised
learning [8, 12, 36, 50] and unsupervised/semi-supervised
domain adaptation [6, 21, 22, 35]. It works by forcing the
model to make consistent prediction under different pertur-
bations/augmentations to the input sample (named as dif-
ferent views) and the prediction in one view usually serve
as the pseudo-label of the other view. Inspired by this,
we propose a novel consistency training framework, Point-
Match, for the weakly supervised 3D semantic segmenta-
tion. Given a whole scene of point cloud with sparse labels,
PointMatch employs the per-point prediction in one view as
the other’s pseudo-label to encourage the predictive consis-
tency between two views of a scene. Such consistency facil-
itates (i) robustness to easily-perturbed low-level input fea-
ture and (ii) stronger capability in learning useful high-level
representations to keep predictive consistency. Besides, the
provided labels act as extra supervision to assist high-level
semantic feature discrimination, which also benefits the rep-
resentation learning from data. By doing so, the reliance on
the given label is relieved and more information is probed
from the point cloud data itself.

Originating from the per-point prediction in one view,
the pseudo-label should be of high quality to provide pos-
itive guidance for the other. Whereas there exist consider-
able mispredictions especially at the early learning stage.
Thus, we exploit the inherent structure of the point cloud to
improve the pseudo-label quality, via integrating the super-
point grouping information where similar points are clus-
tered by low-level features (e.g. position and color) into
the same group and are assumed to have the same se-
mantic meaning. Specifically, the grouping information is
used to correct the minor predictions that diverge from the
“mainstream” in the super-point. Despite its good prop-
erty, the super-point-aware pseudo-label actually introduces
noise from the pretext super-point generation. Therefore, to
fully utilize these two types of pseudo-labels, we design an
adaptive pseudo-labeling mechanism, where the model is
encouraged to believe the super-point-aware pseudo-label
more at the beginning, and gradually resorts to its raw pre-
diction when the model itself is reliable enough. Exten-
sive experiments and analysis on the ScanNet-v2 [5] and

S3DIS [1] dataset validate the effectiveness of the proposed
approach. As shown in Fig. 1, the proposed PointMatch
significantly surpasses the state of the art on various weakly
supervised schemes and impressively, shows great robust-
ness given extremely sparse labels.

The contributions of this paper are listed as follows:

• We propose a novel consistency training framework,
PointMatch, for the weakly supervised 3D semantic seg-
mentation, which can facilitate the network to learn robust
representation from sparse labels and point cloud data.

• We introduce super-point information to promote the
pseudo-label quality in our framework, and it is employed
in an adaptive manner to well utilize the advantages of
both two types of pseudo-label.

• Extensive experiments validate the effectiveness and su-
periority of PointMatch, and the proposed approach
achieves significant improvements beyond the state of the
art over various weakly-supervised settings.

2. Related Work

Fully Supervised 3D Semantic Segmentation Semantic
segmentation approaches for 3D point cloud can be mainly
classified into two groups: point-based and voxel-based
methods. Point-based Methods [23, 24, 30, 31, 42, 45, 49]
apply convolutional kernels to a local region of points for
feature extraction and the neighbors of a point are com-
puted from k-NN or spherical search. In the case of voxel-
based methods [4, 7, 14, 46], the points in the 3D space are
first transformed into voxel representations so that standard
CNN can be adopted to process the structured voxels. In
either point-based or voxel-based methods, feature aggre-
gation is performed in the Euclidean space, while there are
some recent works [13,15,20,32] that consider geodesic in-
formation for better feature representation. More recently,
the Transformer structure [54] is also proposed for point
clouds, as an alternative to the classic convolutional struc-
ture. However, most of the above methods are designed
for the fully-supervised scheme, while annotation on point
clouds is exhausting and costly, especially in the application
of semantic segmentation, where the scene (indoor or out-
door) point cloud is usually of a large scale. In this work,
we focus on weakly-supervised point cloud segmentation,
where only very sparse points are annotated in each scene.

Weakly Supervised 3D Semantic Segmentation Exist-
ing works explore the 3D semantic segmentation with var-
ious types of weak supervision, including 2D image [44],
subcloud-level [48], segment-level [38], and point-level su-
pervision [11, 26, 34, 52]. The first three types can be
grouped into indirect annotations [11]. The work of [44]
utilizes the annotations on the projected 2D image of a point
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Figure 2. The overview of PointMatch. (a) the input point cloud; (b) the view A augmented from the input point cloud; (c) view B generated
via another augmentation; (d) the point-wise pseudo-label; (e) the super-point-wise pseudo-label; (f) the weak supervision (“1thing1click”
setting), points in gray are unlabeled ones and other colors indicate different semantic meanings.

cloud, with only single view per sample. In [48], a classi-
fier is trained first with sub-cloud labels, from which point-
level pseudo labels can be generated via class activation
mapping techniques [55]. In another way, the work of [38]
pre-generates segments/super-points to extend sparse click
annotation into segment-level supervision, and groups un-
labeled segments into the relevant nearby labeled ones for
label sharing. For point-level weak supervision, the work
of [11] proposes to use only 10% of labels by learning
gradient approximation and utilizing low-level smoothness
constraints. A harder setting with a much lower label ra-
tio, 1‰, is further investigated in [11], where a Semantic
Query Network (SQN) is proposed based on leveraging the
semantic similarity between neighboring points. Another
work OTOC [26] proposes a novel weakly supervised set-
ting, One Thing One Click (“1thing1click”), i.e., with only
one point annotated for each instance in the scene. They
employ an extra branch of network to probe the relation
between super-points and propagate labels among highly-
related ones. Besides, authors of [34] propose an active
learning approach for annotating selected super-point with
a limited budget to maximize model performance. Another
line of works is contributed to self-supervised pre-training
of 3D point clouds [10,25,33,51,53]. The pre-training usu-
ally needs weak or even no labels and provides a better net-
work initialization for the downstream tasks.

Existing point-level weakly supervised 3D semantic seg-
mentation methods act on label propagation by leveraging
the relation between points/super-points. However, the pro-
posed PointMatch takes a novel way based on consistency
regularization to better probe information in the point cloud
data itself and alleviates the reliance on the given labels.

Consistency Training Consistency training is a power-
ful algorithmic paradigm proposed for robust learning from
label-scarce data. It is constructed on enforcing the predic-
tion stability under different input transformations [47], e.g.

adversarial perturbations [28] or data augmentations [36,
50], in the manner of pseudo-labeling, i.e., using the pre-
diction of one transformation as the fitting target of the
other. Thus it combines the advantages of both consis-
tency regularization and pseudo-labeling (or self-training).
This approach has been applied in many domains, such
as semi-supervised learning (SSL) [2, 3, 36, 50], unsuper-
vised learning (USL) [8, 12], unsupervised domain adap-
tation (UDA) [6, 35], and semi-supervised domain adapta-
tion (SSDA) [21,22], all of which prove the effectiveness of
consistency training in learning high-quality representations
from label-scarce data. More recently, there are some works
extending consistency training into other tasks, such as un-
supervised domain adaptation for image segmentation [27]
and semi-supervised 3D object detection [43].

To our knowledge, it is the first time that consistency
training is applied in the weakly supervised semantic seg-
mentation of 3D point clouds. Different from the previous
works, consistency training is novelly used in a weakly-
supervised scenario where limited point-wise supervision
is provided in each training sample. In addition, our work
properly leverages the super-point grouping information in
point clouds to further improve the whole framework.

3. Methodology
3.1. Problem Definition

We first formulate the weakly supervised 3D semantic
segmentation problem, taking the indoor scene scenario as
an example. Given the point cloud P ∈ RN×D of a scene of
N points with D-dimension features, there are only partial
points annotated for training. The points with labels are
denoted as {(xl

i, yi), i ∈ L}, and other unlabeled points
are denoted as {xu

i , i ∈ U}, where L and U are two sets,
satisfying L∩U = ∅ and L∪U = ⟨N⟩ (⟨N⟩ is a short form
of {1, 2, · · · , N}, the same hereinafter). The target of f is
to predict the semantic category yi ∈ ⟨C⟩ of each point xi,
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where C is the number of possible categories. Taking the
point cloud P as input, f outputs the prediction probability
Q ∈ [0, 1]N×C over all C classes, for all N points of P.
Note that the summation of values in each row of Q is equal
to 1. Denote the weak semantic label of the whole scene as
y ∈ ⟨C⟩N and its one-hot extension as Y ∈ {0, 1}N×C . To
optimize f , a straightforward way is to compute the cross-
entropy loss Lce between Q and Y, formulated as:

Lce =
1

|L|
∑
i∈L

cross-entropy(Qi, Yi), (1)

where |L| represents the set size of L and the subscript i
indicates the row index, so Qi and Yi are two C-class dis-
tributions corresponding to the i-th point. At the inference
stage, the semantic segmentation result of a scene can be
generated from f ’s prediction, by simply choosing the class
with the highest score in each row of Q.

To probe more information the limited labels and point
cloud data itself, we design a novel framework, PointMatch,
with the pipeline illustrated in Fig. 2. It conducts a con-
sistency training framework designed for weakly labeled
point clouds, and an adaptive pseudo-labeling mechanism
by incorporating the super-point information, described in
the following Sec. 3.2 and Sec. 3.3, respectively.

3.2. Consistency Training

The proposed consistency training framework focuses on
better exploitation of data itself, by encouraging the model’s
point-wise predictive consistency between two views of an
input scene, through employing the prediction in one view
as the pseudo-label of the other. Such a consistency training
approach has three advantages: (i) various augmentations
enables the network robust to different kinds of perturbation
on low-level input features; (ii) the consistency target fa-
cilitates the model’s ability in extracting high-level seman-
tic features from the point cloud data itself; (iii) the self-
training process implicitly propagates sparse training sig-
nals to unlabeled points and provide dense pseudo-labels,
which increases the learning stability.

Formally, given a point cloud P ∈ RN×D, our Point-
Match applies two different groups of data augmentations
to create its two views PA ∈ RN×D and PB ∈ RN×D,
respectively. To avoid breaking the local structure of the
point cloud too much, we perform scene-level augmenta-
tions like offsetting, scaling, rotation, flipping, jittering, etc.
The obtained two views PA and PB are then fed into the 3D
U-Net fθ for point-wise semantic prediction, where θ is the
network parameters. The network fθ outputs the per-point
probability distribution of PA, denoted as QA ∈ [0, 1]N×C ,
and similarly, QB ∈ [0, 1]N×C can be generated from PB ,
formulated as:

QA = fθ(P
A),

QB = fθ(P
B).

(2)

In the next step, we generate the pseudo-label of QB from
QA to create the self-consistency loop. Specifically, the
most-likely predictive category of each point (as well as its
confidence score) is chosen to form the pseudo-label, i.e.,
the indices of the highest value in each row of QA. How-
ever, QA is usually noisy and even contains many uncer-
tain predictions, so a direct use may provide negative guid-
ance to QB and harm the whole learning scheme. Hence,
we conduct a filtering operation to improve the pseudo-
label quality, by ignoring those predictions with confidence
lower than a threshold τ . Denote the filtering mask as
m ∈ [0, 1]N , which is generated as follows:

mi =

{
1, max(QA

i ) ≥ τ,
0, otherwise, ∀i ∈ ⟨N⟩, (3)

where i is the row index of QA and τ is set as 0.95 in our im-
plementation. Given m and the one-hot extension of QB’s
pseudo-label, represented as ŶB ∈ {0, 1}N×C , the pseudo-
labeling of QB can be conducted via a cross-entropy loss:

Lpl =
1

N

∑
i∈⟨N⟩

mi · cross-entropy(QB
i , Ŷ

B
i ). (4)

Until this point, we are working on probing information
only from point cloud data itself for a better data exploita-
tion. Then the weak labels are integrated to provide discrim-
inative semantic information, by using Y as the supervision
of QA via computing a cross-entropy loss as in Eq. 1. The
parameters θ can then be optimized by minimizing the ob-
jective loss function Ltotal as follows:

min
θ
Ltotal = min

θ
Lce + λLpl, (5)

where λ is a scalar weight for balancing the two loss func-
tions. As the learning process goes, the model exploits
the knowledge learned from the limited annotations to train
itself via forcing the predictive consistency, and mean-
while, implicitly propagates the sparse training signals to
the whole scene via pseudo-labeling.

3.3. Adaptive Pseudo-Labeling

Although the framework above facilitates the model’s ro-
bust learning subtly, we observe that there are still consid-
erable mispredictions in the obtained pseudo-labels, espe-
cially at the early learning stage. One reason is that the
previous training scheme is mainly constructed on the pre-
dictive consistency between each pair of single points, and
the inter-point relation information is learned insufficiently.
Therefore, we further exploit the super-point prior to intro-
duce local structure information of point cloud for generat-
ing pseudo-labels of higher quality.

The super-points of a scene can be generated via an un-
supervised low-level clustering by the position and color in-
formation of each point. We refer to [19] for the manner of
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super-point generation, and it is recommended for more de-
tails. Formally, given a point cloud P ∈ RN×D, we obtain
a set of super-points {S(i)}, i ∈ ⟨M⟩, where M is the num-
ber of super-point and each S(i) ∈ RS(i)×D includes S(i)

D-dimension points. Each point in P belongs to one super-
point only, so S(i) ∩ S(j) = ∅,∀i ̸= j and the summation
of all S(i) is equal to N . The obtained super-point infor-
mation is then used to improve the quality of point-wise
pseudo-label ŶB . Given point-wise predictions in each
super-point group, a voting operation is carried out to get a
“mainstream” category. The elected category is then propa-
gated to all points in this group to obtain a super-point-wise
pseudo-label ŶB

sp . An illustrative example of ŶB and ŶB
sp is

shown in Fig. 2 (d) and (e), respectively. It can be observed
that ŶB

sp tends to have higher purity. Similar to Sec. 3.2, we
preserve confident predictions to form high-quality super-
point-wise pseudo-labels. Specifically, given QB , the aver-
age probability distribution in each super-point is computed
first, of which the category with the highest score is selected
and propagated in the whole super-point. Then the filtering
mask msp is generated by checking whether the confidence
of each point is beyond a pre-defined threshold τ sp, similar
to the computation in Eq. 3.

Although the voting operation enables ŶB
sp more stable

and accurate, it suffers from the inherent noise arising from
the super-point generation process. Thus, the point-wise
pseudo-labels may have higher accuracy when the model is
strong enough. Accordingly, we further design an adaptive
combination mechanism to exploit the advantages of both.
At the early stage, the learning of fθ relies on ŶB

sp via a
cross-entropy loss Lsp

pl:

Lsp
pl =

1

N

∑
i∈⟨N⟩

msp
i · cross-entropy(QB

i , Ŷ
B
spi). (6)

As the learning goes, an adaptive weight w is adopted to
gradually incorporate Lpl (Eq. 4) and abandon Lsp

pl:

L′
pl = w · Lsp

pl + (1− w) · Lpl, (7)

where w is a scalar in the range of [0, 1] and drops from 1
to 0 gradually with an inverse decay. Formally, the adaptive
weight w at the k-th training epoch can be computed as:

w = α · k−1, k ∈ N, (8)

where α > 0 indicates the decay ratio. In this way, at
the late stage of training, fθ can be completely supervised
by the point-wise pseudo-label, so that the model can keep
from the noise in super-point grouping. The new pseudo-
labeling loss L′

pl is used to substitute the original Lpl in
Eq. 5 for the final loss function.

Table 1. MIoU (%) on the ScanNet-v2 dataset (online test set).
* means the performance of our baseline on the fully-supervised
setting. The underline indicates the previous SOTA performance
on each setting. The supervision types “subcloud” and “segment”
mean using subcloud-level and segment-level annotation, respec-
tively. “20 points” and “1thing1click” mean annotating 20 points
per scene and annotating one point in each instance, respectively.

Method Supervision MIoU

[31] PointNet++ 100% 33.9
[37] SPLATNet 100% 39.3
[40] TangentConv 100% 43.8
[23] PointCNN 100% 45.8
[24] FPConv 100% 63.9
[49] PointConv 100% 66.6
[42] KPConv 100% 68.4
[4] MinkowskiNet 100% 73.6
[13] VMNet 100% 74.6
[9] Occuseg 100% 76.4
[29] Mix3D 100% 78.1

[7] SparseConv 100% 72.5*

[48] MPRM subcloud 41.1
[38] SegGroup segment 61.1
[11] SQN 0.01% 35.9
[11] SQN 0.1% 51.6
[26] OTOC 20 points 59.4
[26] OTOC 1thing1click 69.1

PointMatch 0.01% 57.1
PointMatch 0.1% 68.8
PointMatch 20 points 62.4
PointMatch 1thing1click 69.5

4. Experiments

4.1. Experiment Setup

Datasets and Metric We choose two popular point cloud
datasets for the evaluation of our method, ScanNet-v2 [5]
and S3DIS [1]. The ScanNet-v2 dataset [5] contains the
3D scans of 1,613 indoor scenes of 20 semantic categories
(1,201 for training, 312 for validation, and 100 for online
test). The whole dataset includes around 243 million points
in total. The S3DIS dataset [1] contains 271 room point
clouds with 13 categories, scanned from 6 areas. Follow-
ing the official train/validation split, Area 1,2,3,4,6 are used
for training and Area 5 is used for evaluation. Besides, the
S3DIS dataset has 273 million points, i.e., around 1 million
points per scene on average, which is denser than scenes in
the ScanNet dataset. The evaluation metric for 3D seman-
tic segmentation we use is intersection-over-union, and we
report the mean result (MIoU) over all categories for com-
parison with other methods.

Implementation Details We adopt SparseConv [7] as the
3D U-Net backbone in PointMatch. The output dimension
of the SparseConv is set to 32, which is the same as in [26].
Following [16] and [26], we randomly sample 250k points
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Table 2. MIoU (%) on the ScanNet-v2 dataset validation set. *
means the performance of our baseline on the fully-supervised set-
ting. Note that SQN [11] reports only its performance of 0.1% la-
bel setting on the ScanNet-v2 validation set.

Method Supervision MIoU

[7] SparseConv 100% 72.2*

[11] SQN 0.1% 53.5
[26] OTOC 20 points 61.4
[26] OTOC 1thing1click 70.5

PointMatch 0.01% 58.7
PointMatch 0.1% 69.3
PointMatch 20 points 64.8
PointMatch 1thing1click 70.7

for too large scenes in the ScanNet-v2 dataset. We use two
different combinations of various augmentations to create
two views, randomly chosen from scaling, flipping, offset-
ting, rotation, affine transformation, position jittering, and
color jittering, with a random augmentation extent. Hyper-
parameters in our experiment τ , τ sp, ϵ, λ, and α are set
to 0.95, 0.95, 0.5, 1.0, and 1.0, respectively. The network
is trained for 512 epochs using Adam optimizer [17] with
a learning rate of 0.01 and a mini-batch size of 8 on the
ScanNet-v2 dataset and 4 for the S3DIS dataset. Consid-
ering the total number of training epochs, we replace the
epoch number k in Eq. 8 with ⌊k/64⌋ on the “1thing1click”
setting and ⌊k/32⌋ on others, which is the round-off of k
divided by 32 or 64, in order to slow the decay rate. For
the super-point generation, we follow [26] to use the mesh
segment results [5] on the ScanNet-v2 dataset and the super-
point graph partition manner proposed by [19] on the S3DIS
dataset. Note that the super-points are used in training, and
the inference stage does not rely on super-points. All exper-
iments are conducted on an Intel Xeon Gold 6226R CPU
and an NVIDIA RTX3090 GPU with 24GB memory.

4.2. Experiment Results

Evaluation on ScanNet-v2 On the ScanNet-v2 [5]
dataset, the evaluation of PointMatch is conducted on four
weakly-supervised settings, i.e., 0.01% of points anno-
tated in each scene [11], 0.1% of points annotated in each
scene [11], 20 points annotated per scene [10] (20 points),
and 1 point annotated for each instance in the scene [26]
(1thing1click). The annotated points in the first two set-
tings (0.01% and 0.1%) are randomly chosen following
[11]. The “20 points” setting is implemented following
the officially ScanNet-v2 “3D Semantic label with Lim-
ited Annotations” benchmark [10]. Annotated points in the
“1thing1click” setting are randomly chosen from each in-
stance following [26]. The average point label in this set-
ting is around 0.02% [26]. The evaluation results on the
ScanNet-v2 online test set are presented in Tab. 1. Exist-
ing weakly supervised 3D semantic segmentation methods

Table 3. MIoU (%) on the S3DIS dataset (Area-5 for validation). *
means the performance of our fully-supervised baseline. The un-
derline indicates the previous SOTA performance on each setting.

Method Supervision MIoU

[30] PointNet 100% 41.1
[41] SegCloud 100% 48.9
[40] TangentConv 100% 52.8
[23] PointCNN 100% 57.3
[19] SPGraph 100% 58.0
[4] MinkowskiNet 100% 65.4
[42] KPConv 100% 67.1
[54] PointTransformer 100% 70.4

[7] SparseConv 100% 63.7*

[18] Π Model 0.2% 44.3
[39] MT 0.2% 44.4
[52] DGCNN+CRF 0.2% 44.5
[18] Π Model 10% 46.3
[39] MT 10% 47.9
[52] DGCNN+CRF 10% 48.0
[26] OTOC 1thing1click 50.1
[11] SQN 0.01% 45.3
[11] SQN 0.1% 61.4

PointMatch 1thing1click 55.3
PointMatch 0.01% 59.9
PointMatch 0.1% 63.4

are also included for comparison, and some fully supervised
methods are also listed in the table. As shown in the table,
the proposed PointMatch consistently surpasses all existing
methods over all weakly-supervised settings. It outperforms
the state-of-the-art (SOTA) result by 21.2% on the 0.01%
setting, by 17.2% on the 0.1% setting, and by 3.0% on the
“20 points” setting. The performance on the “1thing1click”
setting is further close to the fully-supervised baseline. Note
that the work OTOC [26] takes 5 turns of iterative training
to reach the above results, which is around 1536 epochs (3
times of ours). In addition, we also provide the performance
of PointMatch on the ScanNet-v2 validation set in Tab. 2,
on four weakly-supervised settings mentioned above, which
also proves the superiority of PointMatch. Detailed results
over 20 categories are shown in supplementary materials.

Evaluation on S3DIS We also evaluate the proposed
method on the S3DIS [1] dataset to further validate the
effectiveness of the proposed method. Three weakly-
supervised settings are included for evaluation, i.e., 0.01%,
0.1%, and “1thing1click” (no official “20 points” setting
provided for S3DIS). Note that the point cloud in the S3DIS
dataset usually contains much more points than in the
ScanNet-v2 dataset. By estimate, around 0.0036% of points
are annotated in the “1thing1click” setting. The results on
these three settings are listed in Tab. 3. The SOTA methods
on both the fully-supervised and weakly-supervised settings
are presented in the table for comparison. It is observed
that the proposed PointMatch achieves the best performance
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Figure 3. Visualization of the qualitative results. We sample three scenes from the training set and their related results include, (a) upper:
input point clouds, lower: the super-point grouping, in which colors do not indicate category information; (b): two views of the input point
cloud; (c) upper: the point-wise pseudo-label at the early stage, lower: the super-point-level pseudo-label at the early stage; (d) upper:
the point-wise pseudo-label at the late stage, lower: the super-point-level pseudo-label at the late stage; (e) upper: the weakly-supervised
prediction, lower: the fully-supervised prediction; (f) upper: the weak supervision, lower: the full supervision (ground truth).

over all three settings. It surpasses the SOTA result on the
0.01% setting by a large margin of 14.6%, by 5.2% on the
“1thing1click” setting, and by 2.0% on the 0.1% setting.
Impressively, our result on the 0.1% setting is very close
to the fully-supervised baseline (63.4% v.s. 63.7%). The
above results strongly prove the effectiveness and superior-

ity of PointMatch, especially in the scenario of very sparse
annotations (0.01%). Detailed results on all 13 categories
are listed in supplementary materials.

Qualitative Results Except for the quantitative results,
we also exhibit some qualitative segmentation results of

7



Table 4. Ablative results of consistency training in PointMatch.
MIoU (%) on the ScanNet-v2 dataset validation set.

Method Supervision MIoU

Fully-Sup. Version 100% 72.2

PointMatch 0.01% 58.7
w/o Consist. Training 0.01% 51.3

PointMatch 0.1% 69.3
w/o Consist. Training 0.1% 67.3

PointMatch 20 points 64.8
w/o Consist. Training 20 points 55.0

PointMatch 1thing1click 70.7
w/o Consist. Training 1thing1click 62.2

PointMatch. As shown in Fig. 3, we visualize each sample
in two rows and six columns, namely the input point cloud
(upper) and its super-point grouping (lower) in column
(a), its globally-augmented (upper) and locally-augmented
(lower) views in column (b), its point-wise (upper) and
super-point-wise (lower) pseudo-label at the early and late
stage of training in column (c) and (d), respectively, the
prediction of PointMatch under the weak (upper) and full
(lower) supervision in column (e), and the corresponding
weak label (upper) and ground truth (lower) in column (f).
Note that all results we visualize are generated under the
“1thing1click” weak supervision. It is observed that the
predictions of PointMatch under weak supervision are close
to the ground truths and the fully-supervised predictions.
More impressively, the super-point-wise pseudo-labels are
superior to the point-wise ones at the early stage, while get
inferior at the late stage of training (see red boxes in Fig. 3),
which confirms our claim. More visualization results are
presented in supplementary materials for the space limit.

4.3. Ablation Study

The proposed PointMatch mainly includes two compo-
nents, the consistency training paradigm and the adaptive
pseudo-labeling mechanism. Corresponding ablative exper-
iments are conducted for the analysis of them.

Consistency Training To validate the effectiveness of the
consistency training, we remove one branch in our frame-
work as well as the pseudo-labeling mechanism, so the re-
sultant version is a SparseConv simply trained on the weak
supervision (extended by super-point information as the
original) with a cross-entropy loss. We implement abla-
tive experiments on four weakly-supervised settings on the
ScanNet-v2 validation set. As shown in Tab. 4, removing
the consistency training results in noticeable performance
drops consistently over all weakly-supervised settings, es-
pecially on the schemes with extremely little supervision,
which strongly proves its great effectiveness.

Table 5. Ablative results of adaptive pseudo-labeling in Point-
Match. MIoU (%) on the S3DIS dataset Area-5.

Method Supervision MIoU

Fully-Sup. Version 100% 63.7

PointMatch 0.01% 59.9
w = 0 0.01% 58.4
w = 1 0.01% 56.1
w = 0.5 0.01% 54.6
k ← ⌊k/16⌋ 0.01% 58.7

PointMatch 1thing1click 55.3
w = 0 1thing1click 52.6
w = 1 1thing1click 50.2
w = 0.5 1thing1click 48.4
k ← ⌊k/32⌋ 1thing1click 53.3

Adaptive Pseudo-labeling The adaptive pseudo-labeling
mechanism plays the role of pseudo-label correction at the
early stage of training, and it is implemented with an in-
verse decay. To confirm the effectiveness of our design,
we implement four versions on two weakly-supervised set-
tings (“1thing1click” and “0.01%”) for comparison: (i) us-
ing point-wise pseudo-label only (w = 0); (ii) using super-
point-wise pseudo-label only (w = 1); (iii) using both two
pseudo-labels but in a constant manner, by setting w to 0.5
(w = 0.5); (iv) using the adaptive mechanism with a larger
decay ratio, by using ⌊k/32⌋ (“1thing1click” settings) and
⌊k/32⌋ (0.01% settings) in Eq. 8 (k ← ⌊k/16(32)⌋). Re-
sults are listed in Tab. 5. Using either type of pseudo-label
only is inferior to the adaptive combination, because both
point-wise and super-point-wise pseudo-label have their
own strengths. Using a constant weight also leads to a per-
formance drop, which proves that giving temporally differ-
ent reliance on the two pseudo-labels can better exploit their
advantages. Besides, a faster decay of the weight w also re-
sults in a slightly worse result, which is usually close to the
result of using point-wise pseudo-label only (w = 0). One
reason is that the network is unable to learn adequate infor-
mation from super-points when w drops too fast.

5. Conclusion and Discussion
We propose a novel approach, PointMatch, which intro-

duces a consistency training framework into weakly super-
vised semantic segmentation of point clouds. It works by
enforcing the predictive consistency between two views of
a point cloud via pseudo-labeling, and enables the network
to perform robust representation learning from weak label
and data itself. The pseudo-label quality is further promoted
by integrating super-point information in an adaptive man-
ner. Impressively, PointMatch achieves SOTA performance
over various weakly-supervised semantic segmentation set-
tings on both ScanNet-v2 and S3DIS datasets, and shows
strong robustness given even extremely little labels, e.g. 20
points per-scene and 0.01% of points annotated.
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