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Abstract

We describe a method for multiresolution deformation of closed planar curves
that keeps the enclosed area constant. We use a wavelet based multiresolution rep-
resentation of the curves that are represented by a finite number of control points at
each level of resolution. A deformation can then be applied to the curve by modifying
one or more control points at any level of resolution. This process is generally known
as multiresolution editing to which we add the constraint of constant area. The key
contribution of this paper is the efficient computation of the area in the wavelet de-
composition form: the area is expressed through all levels of resolution as a bilinear
form of the coarse and detail coefficients, and recursive formulas are developed to
compute the matrix of this bilinear form. A similar result is also given for the bend-
ing energy of the curve. The area constraint is maintained through an optimization
process. These contributions allow a real time multiresolution deformation with area
constraint of complex curves.

Keywords: multiresolution analysis, curves, multiresolution editing, constrained defor-
mation, area preservation, wavelets.

1 Introduction

Multiresolution analysis has received considerable attention in recent years in many fields
of computer graphics, geometric modeling and visualization. It provides a powerful tool
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for efficiently representing functions at multiple levels of detail. Herein, a complex func-
tion is decomposed into a ”coarser” low resolution part, together with a collection of
detail coefficients, necessary to recover the original function. Deformation of complex
objects with a lot of detail can be tricky and expensive to compute. In a multiresolution
setting however complex objects can be edited at a chosen scale with mainly two effects:
First, modifying some low-resolution control points and add back the details modifies the
overall shape of the object. Second, modifying a set of fine detail coefficients modifies
the character of the object without affecting its overall shape.

General multiresolution editing or deformation techniques for parametric curves
have been explored in detail by Finkelstein and Salesin [12] using B-splines. In contrast,
constraint multiresolution editing techniques have not been explored so much in the past.
However, there are application areas, like computer animation, where deformations of soft
objects under constraints are needed. An example are physical based deformations that
incorporate simplified physical laws into the deformation process [22, 7]. Many physical
based deformations are related to some geometric properties of curves and surfaces, e.g.
area or volume preserving deformations for curves and surfaces simulating inelastic mate-
rial [19], or length preserving deformations (bending) in cloth simulation [1, 8]. In cases
where low computation time has priority over the physical exactness of the animation, it
could be advantageous to use geometric constraints instead of time consuming numerical
integration of physical differential equations. Fast algorithms can then be obtained by lin-
earizing the non-linear geometric constraints. This is one of the purposes of the present
paper. Other application areas could be geometric modeling with shape preservation, or
in computer vision, multi-scale representations and smoothing of boundaries of bounded
planar shapes without shrinkage [20].

The present paper introduces a wavelet based multiresolution curve editing/defor-
mation environment that allows to satisfy a non linear constraint related to the area en-
closed by a planar periodic curve. Area preservation is known as an important visual
effect for realistic-looking computer animations of deformable objects as pointed out by
Lasseter [15]. Closely related work has been previously done by Elber. In [10] he shows
how it is possible to linearize the area constraint. The displacement vector of a curve’s
control point, which defines the deformation, is decomposed into several small x- and
y-steps, such that for each step the quadratic area constraint becomes linear. The result-
ing algorithm for curve deformation is therefore interactive. Later Elber [11] developed
a MR version of that algorithm. Herein the user is able to edit a curve at an arbitrary
coarse scale. All details finer than the scale at which the editing takes place are preserved.
The editing takes place by adding a vector function defined at some scale. In contrast
with the present work, the algorithm developed in [11] is not based on a wavelet MR
analysis of the curve. In our setting the curve is first decomposed in a MR-form, and
then the editing is performed by modifying this decomposition at some scale. Therefore,
the present framework can benefit from all advantages inherent to MR-decomposition,
including compression, Level of Detail (LOD) displaying, progressive transmission and
LOD editing, while [11] aims solely at LOD editing.
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In this paper an efficient computation of the area in the wavelet decomposition form is
introduced. Herein the area is expressed through all levels of resolution as a bilinear form
of the coarse and detail coefficients. We develop recursive fomulas to compute the ma-
trices of this bilinear form. The area constraint is maintained through an optimization
process. Several deformation techniques are then introduced, which make benefit from
the multiresolution decomposition of the curve and which ensure that the enclosed area
of the curve is always kept unchanged. All presented formulas and algorithms are inde-
pendent of the particular multiresolution representation of the curve. They apply to any
kind of wavelet based multiresolution curves, e.g. B-spline wavelets. All algorithms we
present have been developed with the objective of getting a real-time interactive editing
tool. Simplicity and speed are crucial.

The paper is organized as follows. Section 2 gives the basics on multiresolution
curves. Section 3 explains how to compute efficiently the area enclosed by a curve given
in a multiresolution setting. Section 4 introduces the general method for deforming mul-
tiresolution curves subject to area constraints. Section 5 presents some extensions of the
method. Finally Section 6 concludes and gives some possible future work.

2 Multiresolution curves

Wavelets have found a wide variety of applications in the last years: numerical analysis
[2], signal analysis [18], image processing [17, 6, 16], visualization [14, 3] and com-
puter graphics [21, 13]. The wavelet based multiresolution analysis framework we want
to sketch in the present section is slightly more general than the classical multiresolution
analysis introduced by Mallat [17]. This section is not intended to give a complete pre-
sentation of multiresolution curves. More details can be found in [21, 12].

Suppose we have a certain functional spaceE and some nested linearapproximation
spacesV j ⊂ E with V 0 ⊂ V 1 ⊂ · · · ⊂ V n. Since we are dealing with closed curves,
these spaces have finite dimension. LetV j be spanned by a set of basis functions(ϕj

i )i,
calledscaling functions. A spaceW j being the complement ofV j in V j+1 is called the
detail space. Its basis functions(ψj

i )i are such that together withϕj they form a basis of
V j+1. The functionsψj

i are calledwavelets. The spaceV n can therefore be decomposed
as follows:

V n = V n−1 ⊕W n−1 = V n−2

n−1⊕
j=n−2

W j = · · · = V 0

n−1⊕
j=0

W j. (1)

Condition (1) implies that the scaling functions are refinable, that is for allj ∈ {0, . . . , n}
there must exist some matricesP j andQj such that the followingrefinement equations
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hold
ϕj−1 = (P j)T ϕj

ψj−1 = (Qj)T ϕj.
(2)

On the other hand, the ”fine” scaling functionsϕj can be constructed from the coarser
scaling functions and wavelets with the aid of some matricesAj andBj:

ϕj = (Aj)T ϕj−1 + (Bj)T ψj−1. (3)

Note that[P j | Qj] and

[
Aj

Bj

]
are both square matrices, and that


 P j Qj







Aj

Bj


 = I. (4)

(4) is sometimes referred to as thereconstruction condition. The choice of the scaling
functions determines the structure of the matricesP j, Qj, Aj, andBj . Sparse matrices
are desirable for most of the applications.

Based on this framework let amultiresolution (MR) curvec(t), t ∈ I be defined as an
element of a certain functional spaceV n. Let D2n be the dimension of the spaceV n,
with D = dim(V 0). c(t) can be written as:

c(t) =
D2n−1∑

i=0

xn
i ϕn

i = (xn)T (ϕn), (5)

wherexn is a column vector ofD2n scaling coefficientsxn
0 , . . . , x

n
D2n−1 ∈ R2. In a more

general setting, the vector of scaling coefficientsxn can be thought of as a discrete signal
with D2n samples.

The relations (2) and (3) allow now to create a low-resolution signalxn−1 with less
samples by using the low pass filter matrixAn:

xn−1 = Anxn,

whereAn is of size(D2n−1 × D2n). The details which have been lost in this filtering
process can be captured as another signaldn−1 using the high pass filter matrixBn:

dn−1 = Bnxn,

whereBn is a(D2n−1 ×D2n) matrix. The process of splitting a signalxn into a coarser
signalxn−1 and detaildn−1 is calleddecomposition. The matricesAn andBn are called
decomposition (analysis) filters. Decomposition can now recursively be repeated with the
new signalxn−1. Finally, the original signal will be decomposed into a low-resolution
signalx0 and detailsd0, . . . ,dn−1. This recursive process is known asfilter bank [17],
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see Table 1. At any intermediate level of resolutionL the original signal is decomposed
into a coarser signalxL and detailsdL, . . . ,dn−1. Note that the vectordj is of sizeD2j,
j = 0, . . . , n− 1.

Using the matricesP j and Qj, also calledreconstruction (synthesis) filters, the
original signalxn can be reconstructed recursively with

xj = P jxj−1 + Qjdj−1 for j = 1, . . . , n.

This process is calledreconstruction.

(xn) −→ (xn−1) −→ · · · (x1) −→ (x0)

↘ ↘ ↘

(dn−1) (dn−2) · · · (d0)

Figure 1: Filter bank.

Since the filter bank applies also to the scaling coefficients of a multiresolution curve
(5), such a curve can be represented at anylevel of resolutionL ∈ {0, . . . , n} by some
coarse coefficientsxL that form approximations of the initial coefficients and by the detail
coefficientsdL, . . . ,dn−1 as follows:

c(t) = (xL)T (ϕL) + (dL)T (ψL) + · · ·+ (dn−1)T (ψn−1), L = 0, . . . , n. (6)

In the examples of this paper, we use a multiresolution representation of quadratic uni-
form parametric B-spline curves. In this setting the scaling coefficients are usually called
control pointsdefining the vertices of the so-called control polygon. The decomposition
of a curve withD2n control pointsxn

0 , . . . , x
n
D2n−1 is given by the following coarse control

points and detail coefficients:

xn−1
i = 1

4
(−xn

2i−2 + 3xn
2i−1 + 3xn

2i − xn
2i+1)

dn−1
i = 1

4
(xn

2i−2 − 3xn
2i−1 + 3xn

2i − xn
2i+1),

(7)

where all indices are taken modulo the number of control points. The reconstruction
formula is given by:

xn
2i = 3

4
(xn−1

i + dn−1
i ) + 1

4
(xn−1

i+1 − dn−1
i+1 )

xn
2i+1 = 1

4
(xn−1

i + dn−1
i ) + 3

4
(xn−1

i+1 + dn−1
i+1 ).

(8)

Figure 2 illustrates the successive coarse approximations of a quadratic B-spline curve
using the decomposition formulas (7).

Remark: If all detail coefficientsdn
i are zero then (8) corresponds to the Chaikin subdi-

vision algorithm [4].
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Figure 2: From left to right, a B-spline curve defined by 32 control points, its control
polygon (level 5), the control polygons of its coarse approximations at levels 4, 3 and 2.

3 Computing the area of a MR-curve

The present paper deals in particular with periodic planar MR-curvesc(t) = (x(t), y(t)).
Initially, at the highest level of resolution, a MR-curve is defined byD2n control points.
After a complete decomposition it is represented byD coarse control points andD(2n−1)
detail coefficients. In the following sections we want to develop a tool for area preserving
deformation of these curves. For this aim we need to be able to evaluate the area of curves
at any level of resolution. The present section derives the formulas for this computation
(Section 3.1), explains how to do the computation efficiently (Section 3.2), and gives the
actual formulas for the specific MR representation used in the examples (Section 3.3).

3.1 Area of a MR-curve

Let c(t) = (x(t), y(t)) be a periodic planar freeform curve without self-intersections and
which is sufficiently smooth so that all relevant derivatives may be defined. The (signed)
area enclosed byc(t) is then given using Green’s theorem by [10, 9]

A =
1

2

∮
x(t)y′(t)− x′(t)y(t)dt. (9)

For the following developments we need first some notations. Let us introduce the bilinear
form

I(ϕ, ψ) :=


 I(ϕi, ψj)ij


 , (10)

whereϕ andψ are two vectors of functions andI(ϕi, ψj) =
∮

ϕi(t)ψ
′
j(t)−ϕ′i(t)ψj(t)dt.

The area (9) of a multiresolution curve (6) can now be evaluated at any level of resolution
L. One obtains the bilinear equation

2A = (XL)

[
ML

]
(Y L)T , ∀L ∈ {0, . . . , n} , (11)
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whereXL andY L are the line vectors of the x- and y-coordinates resp. of allD2n coeffi-
cients (coarse and wavelet coefficients) of the MR representation of the curve, i.e.

(
XL

YL

)
= (xL,dL,dL+1, . . . ,dn−1),

and

ML =




I(ϕL, ϕL) I(ϕL, ψl)n−1
l=L

I(ψk, ϕL)n−1
k=L I(ψk, ψl)n−1

k,l=L


 =




A B

−BT C


 . (12)

The area matrixML is a skew-symmetric matrix of sizeD2n×D2n consisting of 4 main
blocks. BlocA is of sizeD2L×D2L, blockB is of sizeD2L× (D2n−D2L), and block
C is of size(D2n − D2L) × (D2n − D2L). Figure 3 illustrates the composition of the
four blocks which themselves contain several blocks each.

  M  =    L

L 
   Φ   Ψ    

L L 
   Φ   Φ    

L L Φ    ΨL+1 

L Ψ   ΨL+1 

L+1 Ψ      ΨL+1 

L Φ    Ψn-1 

n-
1 

Ψ 
  

  
 Φ

L

n-1 Ψ      Ψn-1 

L Ψ   ΨL L Ψ   Ψn-1 

Figure 3: The matrixML that appears in the area formula (11) is composed of 4 main
blocks. The yellow block which is labelled(ϕLϕL) meaningI(ϕL, ϕL) corresponds to
block A in formula (12) and involves only the scaling functionsϕL

i of level L. The red
blocks labelled(ϕLψk) involve scaling functions at levelL and wavelets of levelk, with
k varying from levelL to n−1. The elements of the green blocks are calculated with (10)
by using only the waveletsψi of level i ∈ {L, . . . , n− 1}.

The size of the 4 blocks varies with the level of resolutionL of the curve, see Figure 4.
Note that in the caseL = n (highest level of resolution), the matrix is composed of only
one block. This is the area matrix for the original curve that is expressed in terms of the
highest resolution scaling functionsϕn.
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Mn Mn−1 Mn−2 Mn−3 · · ·

Figure 4: The area matricesML with L ∈ {0, . . . , n} have the same sizeD2n ×D2n but
their decomposition into the four blocks varies with levelL.

3.2 Efficient computation of the area matrices

For all n levels of resolution aD2n × D2n area matrix has to be computed. An un-
necessary high computational effort would be needed if one would calculate each matrix
using formula (12). Indeed each element of the matrices needs an evaluation of an in-
tegral of type (9). If we setN = 2n, the total number of integral evaluations would be
O(log(N) · N2). In the case of multiresolution curves based on uniform B-splines, the
integrals can be evaluated explicitly, otherwise some quadrature formula must be used.

It turns out that explicit evaluation, or the evaluation using quadrature formula, of the el-
ements given in (10) is computationally expensive. In the rest of this section, it is shown
that only the integrals in the finest level matrixMn have to be evaluated (either explicitly
or using a quadrature formula). All other elements for the resolution levelsn − 1, . . . , 0
can thereafter be computed using simple recursive formulas from the values of the inte-
grals at the finest level.

The refinement equations (2) of Section 2 state that the scaling functions and the wavelets
at levelL− 1 can be expressed in terms of the scaling functions at levelL. By bilinearity
of the functional (10) the elements of the area matrixML−1 can be computed recursively
from the area matrix of levelL by using these refinement equations.

In the case where one argument of the bilinear formI is fixed one gets the following
recursive relations (k is fixed). We call them (P) or (Q) filters depending on the refinement
filter which is used:

(P) - filter: I(ϕL−1, ψk) = (PL)T I(ϕL, ψk) (13)

(Q) - filter: I(ψL−1, ψk) = (QL)T I(ϕL, ψk). (14)

By symmetry one gets analogous formulas in the case where the first argument stays
fixed. In the case where both arguments need to be computed recursively, the refinement
equations result in the following recursive relations:

(PP) - filter: I(ϕL−1, ϕL−1) = (PL)T I(ϕL, ϕL) (PL) (15)

(PQ) - filter: I(ϕL−1, ψL−1) = (PL)T I(ϕL, ϕL) (QL) (16)
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(QQ) - filter: I(ψL−1, ψL−1) = (QL)T I(ϕL, ϕL) (QL) (17)

In order to compute now matrixML, one has just to computeMn by using the finest
scaling functions and then to apply the recurrence formulas (13) - (17) in order to compute
successively the area matricesMn−1, Mn−2, . . . , ML. This procedure is illustrated in
Figure 5 where the 4 blocks are always colored in yellow, red and green corresponding to
Figure 3.

More precisely, for eachL = n, . . . , 1 the matrixML−1 is computed by applying
the (PP), (PQ), (QQ)-filters to the submatrixI(ϕ, ϕ) of ML (yellow block in Figure 5),
and by applying the (P) and (Q)-filters to submatrixI(ϕ, ψ) (red block in Figure 5) ofML.
Note that, once theI(ψ, ψ) submatrix (green block) is computed it will not be modified
anymore during the recusive computations. This will significantly reduce the computa-
tional time. Hence the pre-computation and storage of all matrices can be avoided. Any
matrix can be rapidly recomputed when the analysis level changes during the edition pro-
cess. In addition the stability of this computation is ensured by the stability of the filter
bank process, i.e. by the stability of the chosen wavelet basis.

Mn Mn−1 Mn−2 Mn−3

(PP) (PQ)

(QQ)

(PP) (PQ)

(QQ)

(P)

(Q)

un
ch

an
ge

d
un

ch
an

ge
d

Figure 5: Recursive computation of area matrices by recursively computing the matrix
Mn−1 from Mn, Mn−2 from Mn−1 and so on.

3.3 Area matrices for the Chaikin MR-curves

Recall that the algorithms introduced in this paper work for all MR representations of
curves following the framework of Section 2. Nevertheless for completeness we include
here the area matrices for the specific MR representation based on the Chaikin subdivision
curves (i.e. a wavelet representation where the scaling functions are quadratic uniform B-
splines), used in the examples of the paper. If the MR representation is computed using
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formulas (7) and (8), then the area matrixMn equals:

Mn =
1

12




0 10 1 0 · · · 0 −1 −10
−10 0 10 1 0 · · · 0 −1

. .. .. . . ..
.. . . .. .. . 0

0
. .. .. . .. .

.. . .. . .. .
1 0 · · · 0 −1 −10 0 10

10 1 0 · · · 0 −1 −10 0




.

The coefficients ofMn are exact coefficients, obtained through an analytic integration of
the piecewise polynomial functions. The reconstruction matricesP n andQn are given
by:

P n =
1

4




3 1 0 · · · 0
1 3 0 · · · 0
0 3 1 0 · · · 0
0 1 3 0 · · · 0

. .. .. .
.. . . . .

. . . . ..
1 0 · · · 0 3
3 0 · · · 0 1




Qn =
1

4




3 −1 0 · · · 0
1 −3 0 · · · 0
0 3 −1 0 · · · 0
0 1 −3 0 · · · 0

.. . . ..
. .. .. .

.. . . . .
−1 0 · · · 0 3
−3 0 · · · 0 1




.

4 Multiresolution area preserving deformation

Constraints can easily be incorporated into a freeform curve and surface interactive design
system if they are linear, e.g. positional, tangential or orthogonality constraints. Non lin-
ear constraints, like area, volume, convexity or physically based constraints like energy,
are more difficult to handle with, in particular because they require a high computational
effort.

In this section we will present a method of deformation of planar periodic (i.e. closed)
curves at any scale (level of resolution) that preserves the enclosed area. In an elegant and
simple way it will be possible to

• preserve the details of the curves while globally deforming its shape, or

• deform the curve at different scales,

while preserving the area enclosed by the curve.
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4.1 Overview

The deformation method mainly consists of three steps:

1. decomposition: First a decomposition of the curve down to a user specified level
of resolution is done. The curve is now represented by a coarse polygon and a set
of detail coefficients (see formula (6)).

2. deformation: Second, a deformation is defined. This deformation applies to the
control points of the coarse polygon by moving one or several of them.

3. area preservation: Last, a new curve is computed that respects the defined de-
formation and that has the same enclosed area as the original curve. To this end,
a slight correction of some coarse control points (and possibly of some detail co-
efficients), of the deformed polygon is made such that after reconstruction the new
curve satisfies the constant area constraint. This step is important, because after de-
formation of the coarse polygon in the previous step, the reconstruction generally
does not produce a curve with the same enclosed area.

Remark: Note that the area computation and area correction of the deformed curve
is applied to its multiresolution representation at levelL and not to its original represen-
tation. This implies the need of a multiresolution representation of the area, as we have
developed before in Section 3.2

For a given MR-curvec(t) and a fixed level of resolutionL at which the deformation will
be applied, let us make the following notations by leaving out the indicesL andn:

- Aref is the reference area we want to preserve, i.e. the area enclosed by the given
parametric curvec(t).

-

(
X0

Y0

)
are the coordinates after deformation of the coarse polygon and before

area preserving corrections.

- A0 = 1
2
X0MY T

0 is the corresponding new area that has to corrected.

-

(
X
Y

)
are the coordinates after correction.

- A = 1
2
XMY T is the new corresponding area.

In terms of these notations, an area preserving deformation method of an MR-curve can
now be stated as follows:

• express curvec(t) in a multiresolution basis at levelL, see formula (6).
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• define deformation by bending the coarse polygon to getX0 andY0.

• computeX andY ”close toX0 andY0” such thatA = Aref .

Let us notice that we have only one scalar constraint and at least2n vector degrees of
freedom. Hence a lot of ideas for defining a deformation satisfying this constraint can
be realized. We are not going to talk about methods decreasing artificially the degrees of
freedom with particular choices of deformations. This would however be an interesting
issue for future work.

We rather focus on a broader method using optimization, i.e. minimization of a cost
function that integrates a smoothness term and a distance term subject to the area con-
straint. The smoothness term prevents the resulting curve to have unwanted wiggles. The
distance term is needed in order to respect the defined deformation as much as possible.
Two further features of the present method are the possibility to choose between a local
or a global deformation of the curve, and the possibility to modify the details additionally
to the coarse coefficients.

4.2 Smoothness criteria

In variational design a physical model is used for the description of a ”smooth” or ”fair”
curve or surface. It is based on the minimization of the bending energy. This most widely
used fairness criteria originates from the observation that the shape of a thin elastic beam
or plate under deformation which minimizes the bending energy is always smooth, i.e.
has a visual pleasing shape.

Since the bending energy for a planar parametric curve,E =
∫

κ2(t)dt is a non-
linear functional, it is common to use instead the linearized version of the bending energy

E =

∫
|c′′(t)|2dt =

∫
x′′(t)2 + y′′(t)2dt.

Both expressions are identical if|c′(t)| ≡ 1.

In the particular multiresolution setting of this paper, the smoothness criterion needs to
be evaluated for a MR-curve (6) at any level of resolutionL ∈ {0, . . . , n}. Similar to the
area formula (11), the energy of a curve can be expressed as the following bilinear form:

E(X, Y ) =
1

2
(XLHL(XL)T + Y LHL(Y L)T )

whereHL =
∮

ϕ L′′(t)T ϕ L′′(t)dt is a symmetric matrix, for allL ∈ {0, . . . , n}. ϕL′′(t) =

[ϕL
0
′′
, . . . , ϕL

D2L−1

′′
]T denotes the line vector of the second derivatives of the basis func-

tions ofV L.
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Similar to the developments of Section 3.2 concerning the area matrix, it can be shown
that the same recurrence relations hold betweenHL−1 andHL. The computation of alln
energy matricesHL, L = 0, . . . , n − 1 can therefore recursively be done by computing
the initial matrixHn and by applying the refinement filters(P ) and(Q) (13) - (17) in
order to obtainHn−1 → Hn−2 → · · · → H0. The elements ofHn are computed using
only the finest scaling functionsϕn.

O(N2) is the theoretical worst case cost for this (pre-)computation. In practice it
turns out that the matricesHL are very sparse since the basis functions have a very small
support. All computations (e.g. evaluations, matrix-vector multiplications) involvingHL

are therefore ofO(N) cost.

4.3 Area preserving deformation

As mentioned in Section 4.1 the deformation of the curve is defined by a deformation of
its control polygon at some level of resolution. The new control points define a new set
of scaling coefficients. The details have not been modified. The vectors of thex andy
coordinates of these new coefficients together with all details are denoted byX0 andY0

(without index ”L”). The problem of area preserving deformation we aim to solve is now
the following optimization problem:

min
X,Y

(1− α)E(X, Y ) + αD(X, Y ) subject to A−Aref = 0. (18)

whereD(X, Y ) = (‖X −X0‖2 + ‖Y − Y0‖2) mesures the distance between the original
and the area prserving deformed curve. The scalar valueα, 0 ≤ α ≤ 1, therefore balances
between a smoother curve (small value ofα) and a curve which better respects the defined
deformation (big value ofα). The area constraint is a quadratic expression. Remember
that one of the main objectives of this method is to provide a very fast algorithm for in-
teractive deformation. Thus, instead of minimizing a quadratic cost function subject to a
quadratic constraint, we linearize the constraint for speed.

4.4 Linearizing the area constraint

The constrained minimzation problem (18) can be converted into an unconstrained prob-
lem using the technique of Lagrange multiplyers [5] defined by

max
λ

min
X,Y

(1− α)E(X,Y ) + αD(X, Y ) + λ(XMY T − 2Aref ) (19)

whereλ is the Langrangien multiplyer for the constraintXMY T − 2Aref = 0.

However, the constraint is quadratic and not linear. A solution of (19) can be found
by linearizing the area constraint as follows: The quadratic area constraint can be approx-
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imated by the following symmetric linear constraint:

X0MY T + XMY T
0 = 2(A0 +Aref ). (20)

ForX = X0 + dX andY = Y0 + dY satisfying (20) one gets2A = 2Aref + dXMdY T .
Thus, ifdXMdY T is close to 0 the area will be well approximated:A ≈ Aref .

The linearized area constraint replaces now the quadratic one in (19) and leads to the
following Lagrangien functionL(X, Y, λ):

(1− α)E(X,Y ) + αD(X,Y ) + λ(X0MY T + XMY T
0 − 2(A0 +Aref )). (21)

Instead of solving the constrained minimization problem (18) we now solve the uncon-
strained min-max problem

max
λ

min
X,Y

L(X,Y, λ). (22)

A necessary condition for the triplet(X,Y, λ) to be a solution of (22) is the vanishing of
all partial derivatives ofL with respect to the unknownsxi, yi andλ. This is equivalent to
solve the following system of linear equations:



(1− α)H + 2αId 0 MY T
0

0 (1− α)H + 2αId MT XT
0

Y0M
T X0M 0







XT

Y T

λ




=




2αXT
0

2αY T
0

2(Aref +A0)




(23)
Note that the solutionX,Y doesn’t preserve exactly the area due to the linearization (20).
In practice, some further iterations like

while |A0 −Aref | > threshold ∗ |Aref | loop

computeX andY with approximate method

(X0, Y0) ← (X, Y )

end loop,

can be used in order to increase the precision up to an arbitrary small user pre-defined
value. For example, a threshold of10−4 can generally be reached in no more than 1 or 2
iterations. This method has the advantage to treatX andY symmetrically, and it can be
shown that it is invariant under isometries: ifX0 andY0 are modified by an isometry, the
solutionX, Y follows the same isometry.
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4.5 Influence of the weigthα

In all following illustrations we will use color in order to identify the original curve (blue),
the deformed curve (green), and the final area preserving curve (red). The control poly-
gons that are shown in most of the figures correspond to the coarse polygon. They are
formed by the scaling coefficients at the resolution levelL, at which the deformation is
defined.

Figure 6 illustrates the three steps of the algorithm and shows the influence of the
weightα in formula (21). The original curve (blue) is a Chaikin subdivision curve with
32 control points (n = 5). After 2 analysis steps one gets 8 scaling coefficients and 24
detail coefficients representing the curve in the basis ofV 5 = V 3 ⊕ W 3 ⊕ W 4. The
scaling coefficients form the coarse control polygon at resolution levelL = 3.

In the example of Figure 6 a deformation is defined by displacing one of the coarse
control points (green control polygon). Thanks to the multiresolution representation it is
possible to deform the curve at a large scale by displacing only a few number of coarse
coefficients. Reconstruction of the deformed control polygon would result in a deformed
curve (green) that is not area preserving. An area preserving curve that respects the de-
fined deformation is now computed by solving (22). Note that all computations are done
at resolution levelL = 3, i.e. the vectorsX0 andY0 contain the coefficients (scaling
and detail) of the deformed curve (green), andX andY contain the coefficients of the
area preserving deformed curve at levelL = 3 (red polygon). The last step consists of
reconstructing the curve from these coefficients (red).

The choice of the weightα in (21) and (23) is left to the user. A small value gives
preference to a smooth curve in the sense of minimal bending energy, see Figure 6(c) with
α = 0.5. A higher value ofα keeps the distance as small as possible, see Figure 6(d),
with α = 0.99.

(a) (b) (c) (d)

Figure 6: Influence of the coefficientα. (a) original curve and its coarse control polygon
(blue), n=5, L=3. (b) deformed coarse polygon and reconstructed curve without area
correction (green), L=3. (c) corrected coarse polygon and area preserving curve (red),
α = 0.5. (d) α = 0.99.

Remarks:

1. Global method. The area preserving deformation method presented in this section
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is a global method. This means that all coefficients of the curve are involved in
the computation of the area preserving curve, see (21). This can be of advantage as
shown in Figure 6(d) where the area correction (red) is a kind of symmetric growing
of the deformed curve (green) until the prescribed area is reached. However, a
better control is generally obtained using local optimization, as explained in the
next section.

2. Unwanted shift. It can happen that the area preserving curve shifts. This is a quite
natural side-effect of the global method in the case of Figure 7. The original curve
(blue) withn = 7 is decomposed until levelL = 2. One of the four coarse control
points is displaced resulting in the green curve after reconstruction. The global area
preserving method in this case leads now to a symmetrically shrinked version of the
deformed (green) curve. At the same time the resulting curve shifts away from the
original and the deformed curve. Section 5 will treat this feature.

3. Loss of details. When reconstructing a curve, more and more details are added.
These details can get lost if the detail coefficients, contained inX andY , are mod-
ified during the area preserving step (23), in particular if their absolute value de-
creases, see Figure 7(d). The next section will treat this problem.

(a) (b) (c) (d)

Figure 7: Shifting and loss of details. (a) original curve and coarse control polygon,
n = 7, L = 2. (b) deformed curve without area constraint (green). (c) deformed curve
with area constraint (red). (d) same as (c), without the green curve.

5 Localized MR-deformation under constraints

The basic idea of multiresolution deformation of curves under constraints has been intro-
duced in the previous sections. It is possible to perform an area preserving deformation
of a curve at different scales by displacing only a few coarse coefficients (control points)
at a low resolution level. Nevertheless the whole power behind the multiresolution for-
mulation of this deformation method has not entirely been exploited until now.

In the present section we will focus on two further features of the present method, namely
its ability to

- localize the deformation scheme, and to
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- make use / or not of the detail coefficients.

These new features will result from the selection of some subset of the unknowns, that
will be fixed during the optimization. Before explaining in Sections 5.1, 5.2, and 5.3 what
subsets can be fixed - and what are the corresponding effects - we begin by describing
how any given subset of the unknowns can be fixed during the optimization.

Selection of index subsetAt any level of resolution the curve is always defined by a

constant number ofD2n coefficients. Let us split the index set{1, 2, . . . , D2n} = I ∪ J
where

• I is the index set of coefficients that can be modified

• J is the index set of coefficients that stay unchanged.

The solution of (22) with respect toX(I), Y (I) andλ results in the following linear
system of equations:




(1−α)H(I, I) 0 M(I, .)Y T
0

+2α Id

0 (1−α)H(I, I) M(., I)T XT
0

+2α Id

Y0M(I, .)T X0M(., I) 0







X(I)T

Y (I)T

λ




=




2αXT
0 −

(1−α)H(I, J)X0(J)T

2αY T
0 −

(1−α)H(I, J)Y0(J)T

2(Aref +A0)
−X0(J)H(J, .)Y T

0

−X0H(., J)Y0(J)T




(24)

whereX(I) is a vector of size|I| containing the elementsxi of X with i ∈ I. Analogous
are the matrix notations:H(I, J) for example is a(|I| × |J |)-submatrix ofH containing
only the lines of indexI and the columns of indexJ .

5.1 Local deformation

Suppose the curve has been deformed at levelL by displacing one of its coarse control
points. By selectingk neighbour points on both sides of this point which are free to move
during the area correction step, the deformation can be controlled locally.

Let us illustrate this principle with the ’potato’ example of Figure 8. The curve has
128(n = 7) initial control points, and the deformation resolution level isL = 4. One of
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the 16 coarse control points has been moved. Figure 8 from left to right shows the area
preserving curves obtained by leavingk = 1, 2 and5 neighbouring control points on each
side free for the area constraint deformation.

Figure 8: Local control.n = 7 andL = 4. From left to right:k = 1, k = 3, andk = 5.

5.2 Upholding the moved point

For a better/closer control of the deformation it may be useful to keep the moved point in
position. Lets take again a potato-example (n = 7, L = 3). Its multiresolution decom-
position consists of 8 scaling (coarse) coefficientsx3

k(1≤k≤8). Now suppose we move the
point x3

5 (see Figure 9) and we want to correct the curve in the extent of 2 control points
in order to keep area. We can make two different choices:

- I = {3, 4, 5, 6, 7}: x3
5 moves during the correction (Figure 9, left).

- I = {3, 4, 6, 7}: x3
5 stays in position during the correction (Figure 9, right).
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Figure 9: Left: the moved point is not kept in position; Right: it is.

5.3 Modification of detail coefficients

The technique of index subset selection gives the possibility to preserve the detail coeffi-
cients(dk

j )j,k or to modify them by choosing the setI. Different shape effects result:
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- I ∩ [D2L; D2n− 1] 6= ∅: some detail coefficient will be modified in order to satisfy
the area constraint. The left part in Figure 10 shows that the final curve lost most of
the fine details. It is smoother.

- I ∩ [D2L; D2n − 1] = ∅ ⇐⇒ I ⊆ [0; D2L − 1]: only coarse coefficients will be
modified. The right part in Figure 10 shows that the global shape is modified but
all the fine details are kept.

Figure 10: Two curves with similar coarse polygons. left: area preservation with details
changed; right: area preservation with details preserved.

Note that the extensions presented in the last three subsections can be formulated
equivalently by adding linear interpolation constraints into the minimization (18). But the
resulting system would be bigger instead of being reduced as in (24).

5.4 Results

We implemented this method in an interactive 2D graphics modeling system. The curve
can be decomposed and edited at any level of resolution. The user selects and drags a
control point of the coarse approximation of the curve with the mouse. The corresponding
area preserving deformation of the initial curve follows immediately. All computations
are done in real-time, i.e. any continuous displacement of a coarse control point by the
user leads to an immediate continuous deformation of the curve. Notice that for each small
displacement of a control point the system (24) has to be solved. The matrices are coded
as sparse matrices and solved iteratively with the bi-conjugate gradient method using a
library for sparce matrix computations. In worst case, when using global optimization
(the matrix (24) has maximal size), we reach a frame rate of more than 150 Hz with 500
control points, between 20 and 70 Hz with 2000 points and between 10 and 30 Hz with
4000 points. The frame rate mostly depends on the editing levelL (decomposition fills
the matrices) and on the the displacement speed (the faster you move the more the area
needs to be corrected).

Some complex real-world example presenting a lot of details in its shape is shown
in Figure 11. The seahorse has 512 control points. The two series of deformations are
obtained by moving one coarse control point of the abdomen to the left and to the right.
The upper row curves keep the enclosed area constant producing more realistic looking
deformations. The lower row curves don’t. Lasseter’s principle of animations [15] can
certainly be confirmed.
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Figure 11: Multiresolution deformation of a seahorse with 512 control points. The orig-
inal curve (in the middle) has been deformed by moving only one coarse control points
inside and outside the abdomen. Upper row: with area preservation. Lower row: without
area preseravtion.

6 Conclusion and future work

A method for area preserving multiresolution deformation of curves at any level of detail
has been presented. The curves under consideration are planar and periodic. The area con-
straint, which is a non-linear constraint, is maintained through an optimization process.
The constraint is linearized for speed, but it can be approached as exactly as needed. For
wavelet based multiresolution curves, we have developed a multiresolution expression of
the area constraint, which results in the computation of a sequence of area matrices. We
developed a recurrence relation for these matrices, which allows for an efficient linear
time (pre-) computation of these matrices. Real-time deformation is possible. All these
developments apply to any kind of multiresolution curves defined as in Section 2.

This paper presented a general method of multiresolution area preserving deforma-
tion. It has not been our intention to work out particular deformation schemes. Since
the coarse control polygons and detail coefficients of the curve at any scale are directly
accessible and since they are free parameters, the method offers a maximum number of
degrees of freedom for any particular deformation simulating any particular behaviour.

Currrent and future research concerns the integration of other non-linear constraints
into a multiresolution curve editing environment. Length preserving deformation for ex-
ample would allow to work with open and with 3D curves. The generalization to surfaces
is also under investigation.
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