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Abstract

In this paper, we propose a new quadrilateral remeshing method for manifolds of
arbitrary genus that is at once general, flexible, and efficient. Our technique is based
on the use of smooth harmonic scalar fields defined over the mesh. Given such a
field, we compute its gradient field and a second vector field that is everywhere
orthogonal to the gradient. We then trace integral lines through these vector fields
to sample the mesh. The two nets of integral lines together are used to form the
polygons of the output mesh. Curvature-sensitive spacing of the lines provides for
anisotropic meshes that adapt to the local shape. Our scalar field construction allows
users to exercise extensive control over the structure of the final mesh. The entire
process is performed without computing a parameterization of the surface, and is
thus applicable to manifolds of any genus without the need for cutting the surface
into patches.

Key words: quad-dominant remeshing, gradient flow tracing, harmonic fields,
harmonic 1-forms

1 Introduction

For a great many applications in computer graphics, surface meshes are used
as the fundamental representation of geometry. In practice, these meshes are
frequently generated by automated acquisition systems; laser scanning and
isosurface extraction are particularly common examples. Unfortunately, the
meshes produced by these systems are often undesirable in a number of ways.
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Fig. 1. Overview of our remeshing algorithm. From a triangulated manifold of ar-
bitrary genus, we compute a harmonic scalar field (shown by its isobars) over the
mesh. The gradient and isoparametric lines of this field guide our remeshing; two
different sampling rates are shown.

For example, they may have a size complexity far greater than required by
any particular application. Their tessellations are also frequently insensitive
to the actual shape of the surface.

These widespread problems with many raw meshes have lead to a great deal of
work aimed at automatically improving their quality. There is now a substan-
tial literature devoted to surface simplification methods that can efficiently
produce meshes with far fewer elements while preserving the shape of the
object. There are also several examples of remeshing algorithms that seek to
produce meshes that resample the surface at some desired resolution, whether
simpler or more complex than the original. The method we present here falls
into this latter category.

Our goal is to take a given triangulated manifold of arbitrary genus and to
produce a new quad-dominant mesh that both preserves the shape of the orig-
inal and obeys a spacing function provided by the user. The general approach
that we take to this problem is to compute two smooth orthogonal direction
fields over the surface. The mesh is computed by tracing integral lines through
these direction fields.

The system that we have developed is based on computing a single scalar field
over the surface. From this scalar field, we compute both the gradient and an
orthogonal vector field. Specifically, we construct harmonic scalar fields, sub-
ject to boundary constraints provided by the user. Because the direction field
we use is the gradient field of a harmonic scalar field, our direction fields are
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guaranteed (by construction) to be very smooth and to be free of extraneous
critical points.

Our approach to remeshing has several attractive properties. Unlike many
remeshing methods, it can operate on manifolds of any genus and does not
require any parameterization. It is also very efficient, processing fairly large
models in a matter of seconds, and is easily implemented. We also demonstrate
that it produces high quality output meshes and can conform quite well to
user-specified spacing requirements.

2 Related Work

The need to improve pre-existing meshes is widespread in computer graphics,
as well as most engineering disciplines that rely on finite element and re-
lated methods. Depending on the problem domain, there are numerous ways
in which a given mesh might be considered unsuitable. There might be too
many or too few polygons, too much noise in the vertex positions, too many
large angles, and so on. Consequently, a great deal of work, spanning many
disciplines, has focused on the problem of producing “good” surface meshes.
In this section, we survey the most salient results for our remeshing system.

2.1 Smoothing

Essentially all meshes scanned from real-world objects are inherently noisy.
Consequently, many methods have been developed for smoothing mesh sur-
faces. Laplacian smoothing is one of the simplest and oldest smoothing algo-
rithms [Taubin, 2000]. It both smooths the geometry of the surface as well as
the distribution of vertices, tending to produce roughly equilateral triangles.
It is also well-known to produce potentially severe shrinkage in the surface,
ultimately converging to the barycenter of the mesh. This shrinkage can be
essentially eliminated by appropriate filter design [Taubin, 1995]. The para-
metric smoothing that is characteristic of simple Laplacian smoothing can
also be removed by use of the appropriate discrete harmonic weights in the
definition of the umbrella operator [Desbrun et al., 1999]. It is from Laplacian
smoothing methods such as these that we arrive at the discretization of the
Laplacian operator ∆u used in constructing our harmonic fields.
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2.2 Simplification

The excessive density and shape-insensitive sampling of most scanned meshes
has stimulated a considerable amount of work in the area of automatic surface
simplification [Garland, 1999]. Of the many methods that have been devel-
oped, the majority have been based on either the iterative removal of ver-
tices [Schroeder et al., 1992] or edges [Hoppe, 1996, Garland and Heckbert,
1997, Lindstrom and Turk, 1998]. Other important classes of simplification
methods include those based on spatial clustering of the vertex set [Rossignac
and Borrel, 1993] and on mesh clustering [Kalvin and Taylor, 1996, Cohen-
Steiner et al., 2004].

2.3 Remeshing

Simplification methods strictly reduce the complexity of the initial mesh. In
contrast, remeshing methods are typically focused on achieving some par-
ticular target sampling density in the output mesh. This may require local
refinement in some areas of the mesh, and local coarsening in others. Remesh-
ing methods are frequently categorized as either isotropic or anisotropic to
indicate whether the desired density is a function only of position (isotropic)
or of position plus direction (anisotropic).

Some of the earliest simplification methods were in fact remeshing methods.
The retiling method developed by Turk [1992] distributed a new set of points
over the input surface, replacing the initial mesh with a tessellation of these
new vertices. Hoppe’s mesh optimization system [1993] also sought to adapt
the local mesh density in order to produce the best possible output mesh.

Several isotropic remeshing methods have been described recently in the com-
puter graphics literature. One class of methods operates by parameterizing
the surface into the plane, distributing vertices in the parameter domain, and
then tessellating these vertices in the plane [Alliez et al., 2002, 2003b]. Such
methods must both (1) cut the manifold into a disk and (2) map it into the
plane, usually via a conformal mapping.

Taking a somewhat different approach, Surazhsky and Gotsman [2003] remesh
the surface using local mesh operations and local parameterizations, obviat-
ing the need for mapping the entire manifold into the plane. They subse-
quently combined their approach with the vertex sampling scheme of Alliez et
al. [2003b], and demonstrated that this could work quite effectively on large
models [Surazhsky et al., 2003].

Sifri et al. [2003] also remesh the surface without the need for a parameteri-
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zation of the surface. They base their method on computing a scalar distance
field over the mesh, associating with each vertex its geodesic distance to a
single root vertex. They remesh the surface using an expanding front method
which produces strips of triangles aligned with the isocontours of the distance
field. In order to construct these strips, they must first segment the mesh into
regions where the distance field is monotonic.

Kobbelt et al. [1999] explicitly “shrink wrap” a specified mesh onto the input
geometry. This method has the benefit of allowing the new connectivity to
be precisely specified; the authors demonstrate its use for remeshing with
subdivision connectivity. However, even though no global parameterization is
used, the shrink wrapping approach requires that the surface be genus 0.

One of the few anisotropic remeshing methods proposed in the computer
graphics literature, and also one of the few that produces quad-dominant
meshes, was developed by Alliez et al. [2003a]. From a smoothed version of
the curvature tensor field, they extract two vector fields corresponding to the
(smoothed) principal direction fields. The mesh is defined by tracing stream-
lines through these vector fields. All of this is done in a planar parameter
domain, again requiring that the surface be cut and conformally mapped to
the plane. The streamline tracing is complicated by the fact that the vector
fields may potentially have a large number of critical points, and the direction
fields are undefined near umbilic points.

A number of quad-oriented remeshing algorithms have been proposed in the
mesh generation literature [Bern and Eppstein, 1995, Owen, 1998]. Notable
examples of such methods include square packing [Shimada et al., 1998] and
paving [White and Kinney, 1997]. The focus of these methods is to produce
quad or quad-dominant meshes for use in finite element analysis. As such, their
goals are somewhat different than ours. They emphasize producing meshes
that will produce numerically stable simulations, whereas our focus is on pre-
serving the shape of the input manifold with an economical and well-structured
mesh.

2.4 Design of Vector Fields on Manifolds

There are several graphics applications in which it becomes necessary to allow
the user to design a vector field covering a manifold surface. This is particularly
common in texturing applications where the vector field is used to align the
texture on the surface. Typically, these systems are designed to allow the user
to specify a few constraints on the vector field, which is subsequently extended
over the entire surface automatically.

Several methods for example-driven texture synthesis on surfaces make use
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of vector fields for local texture alignment. In their lapped textures system,
Praun et al. [2000] allow the user to specify a few tangent vectors and then in-
terpolate a vector field from these constraints. Turk [2001] uses a combination
of relaxation and interpolation to fill in the vector field. Wei and Levoy [2001]
exclusively use relaxation. In contrast to these methods, Zelinka and Gar-
land [2003] also allow the user to specify source and sink points for the vector
fields, thus exerting greater control over where the singularities occur.

Zhang et al. [2004] describe a much more general system for vector field design.
In addition to allowing the user to specify critical points, they also provide a
mechanism for the user to move and/or cancel critical points.

2.5 Parameterization

The design of automatic parameterization methods has been an area of sub-
stantial interest of late and many significant advances have been made [Floater
and Hormann, 2004]. As we have already discussed, several existing remesh-
ing algorithms rely on constructing suitable parameterizations of the input
manifold. Isotropic methods in particular generally rely on conformal param-
eterizations — mappings that preserve angles.

Lévy et al. [2002] describe a technique for finding conformal mappings by least
squares minimization of a “conformal energy”. Desbrun et al. [2002] formulate
a discrete conformal parameterization (DCP) as the solution of a linear system.
These two methods are theoretically equivalent [Cohen-Steiner and Desbrun,
2002].

The linear system derived by Desbrun et al. [2002] is structurally identical
to the convex combination maps proposed by Floater [1997]. Both solve a
constrained Laplacian system. The DCP method uses the well-known dis-
crete harmonic weights [Pinkall and Polthier, 1993, Duchamp et al., 1997].
Floater [1997] originally proposed what he called “shape-preserving” weights,
but more recently developed the much simpler mean value weights [Floater,
2003].

Gu and Yau [2003] investigated the construction of a global conformal struc-
ture for a given manifold of arbitrary genus. They formalize this as finding
a holomorphic 1-form over the edges of the manifold. In fact, they construct
a basis for all such 1-forms. The linear system they solve is fundamentally
similar to the DCP system [Desbrun et al., 2002].
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3 Algorithm Overview

We assume that we are given as input a triangulated manifold mesh M =
(V, F ), composed of a set of vertices V and a set of triangles F . Each vertex
i is assigned a position xi ∈ IR3 in a 3-D Euclidean space. While we require
that the mesh be manifold, it may be of arbitrary genus, and we place no
restriction on the number of boundary curves.

At a high level, our remeshing algorithm consists of the following basic steps:

(1) Construct a piecewise-linear scalar field u : V → IR over the vertices of
M .

(2) From u derive two orthogonal piecewise-constant tangent vector fields
g1,g2 : F → IR3 over the faces of M .

(3) Form a net of polygons over the surface by tracing integral lines of the
vector fields g1 and g2.

This will produce a non-conforming quad-dominant mesh covering the input
manifold M . We conclude with an optional post-processing step.

(4) (Optional) Eliminate all T-junctions and triangulate polygons with more
than 4 vertices.

The heart of our system is thus the construction of the vector fields g1 and g2,
as they will determine the structure of the mesh. Our approach is to derive
both vector fields from a single harmonic scalar field u. We construct the
scalar field u by solving the Laplace equation ∆u = 0 subject to user-specified
constraints. We choose the first vector field g1 = ∇u to be the gradient of
this scalar field. The second orthogonal field is then g2 = Rg1, where Rg1

indicates a counter-clockwise rotation by π/2 in the local tangent plane.

Our choice of harmonic scalar fields to drive the remeshing process has a
number of important advantages. Of primary importance is that it guarantees
a high degree of smoothness. As the mesh lines will follow the field, this means
that the mesh will flow smoothly over the surface. It also simplifies the process
of tracing integral lines considerably.

Throughout the discussion that follows, we show scalar fields by texturing
isobars onto the input surface mesh. This provides a concise depiction of both
the gradient (g1) and isoparametric (g2) vector fields. Unless noted otherwise,
we show remeshing results without the optional post-process. Therefore, the
meshes shown will in general contain a number of non-conforming vertices.
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4 Building the Fields

We seek to construct a scalar function u : V → IR assigning scalar values
to each vertex of M . We assume that this function is extended into a piece-
wise linear function over the entire mesh via linear interpolation within each
triangle. Specifically, we are interested in constructing a harmonic function,
satisfying the Laplace equation ∆u = 0 subject to Dirichlet boundary condi-
tions.

Our formulation of this problem follows that proposed by Ni et al. [2004]. It
is a scalar analog of linear parameterization methods [Floater, 1997, Desbrun
et al., 2002], a connection that we will revisit in Section 9.3. For the moment,
we assume that we are provided with a set C of vertices whose values should
be constrained. These constraints may be specified by the user in order to
control the structure of the mesh, or they may be constructed automatically.
We provide the details of determining these constraints in Section 7.

4.1 Harmonic Scalar Fields

Our goal is to construct a scalar field u such that

∆u = ∇2u = 0 (1)

subject to the Dirichlet boundary conditions that vertices in the set C ⊂ V
of constrained vertices take on the prescribed values:

ui = ci for all i ∈ C. (2)

A function u satisfying this constrained Laplace equation is a discrete har-
monic function. An important consequence of the harmonicity of u is that it
will have no local extrema other than at constrained vertices. Furthermore, if
all constrained minima are assigned the same global minimum value and all
constrained maxima are assigned the same global maximum value, then all
the constraints will be guaranteed to be extrema in the resulting field. This is
important from the user’s perspective as it implies that the mesh will converge
precisely at the specified constraint points and will flow smoothly everywhere
else.

On a triangulated manifold, the usual discretization of the Laplacian operator
is

∆ui =
∑

j∈Ni

wij(uj − ui) (3)

where Ni is the set of vertices adjacent to vertex i and wij is a scalar weight
assigned to the directed edge (i, j) such that

∑
j wij = 1. The standard choice
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(a) Scalar field (b) Gradient field

Fig. 2. A harmonic field (shown as isobars) determined by one minimum (at left)
and one maximum (at right). The gradient field g1 (red) and the isoparametric field
g2 (blue) are both shown (with normalized magnitudes).

for the weights wij are the discrete harmonic weights

wij = −1

2
(cot αij + cot βij) (4)

where αij and βij are the angles opposite the edge. This choice of weights
guarantees that u for which ∆u = 0 has minimal Dirichlet energy [Pinkall and
Polthier, 1993, Duchamp et al., 1997]. It further has the property that ∆x
is a discretization of the Laplace-Beltrami operator, meaning that ∆x is the
gradient of the 1-ring surface area [Desbrun et al., 2002] and approximates the
mean curvature normal κ̄n [Meyer et al., 2003].

If we represent the function u by a column vector of its values at all vertices
u = [u1 u2 . . . un]T, we can rewrite the Laplacian operator as a matrix
equation:

∆u = −Lu (5)

where the matrix L has entries:

Lij =




1 if i = j,

−wij if j ∈ Ni,

0 otherwise.

(6)

We seek to solve the linear system

Au = b (7)

where

Aij =




δij if i ∈ C,

Lij otherwise.
bi =




ci if i ∈ C,

0 otherwise.
(8)
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with δij being the Kronecker delta function. This is a sparse system and any
efficient sparse linear solver can be used 1 . For very large meshes, the system
can be solved more efficiently using a simple multigrid technique [Ni et al.,
2004]. It will have a unique non-trivial solution as long as we are provided with
at least two distinct constraints. Figure 2a shows an example harmonic field
determined by exactly two constraints (one minimum and one maximum).

4.2 Constructing the Vector Fields

Having computed the scalar field u, we can now easily define both orthogonal
tangent vector fields. Recall that we wish to find g1 = ∇u and g2 = Rg1.

Let us consider a triangle (i, j, k) whose corners lie at the corresponding posi-
tions xi,xj,xk ∈ IR3. Furthermore, let n be a unit normal vector perpendicular
to the plane of the triangle. We can easily find the gradient vector g1 = ∇u
by solving the linear system:




xj − xi

xk − xj

n






g1




=




uj − ui

uk − uj

0




. (9)

Once we have the gradient field, we can construct the orthogonal vector field
g2, which we refer to as the isoparametric field. Again, for a given triangle
with unit normal n, the orthogonal vector is simply:

g2 = Rg1 = n×g1 (10)

Figure 2 shows a visualization of both the gradient and isoparametric fields
derived from the shown scalar field. Note that the vectors have been drawn
with their magnitudes normalized. And to avoid clutter we have not drawn
vectors in every triangle of the mesh.

4.3 Critical Points and Surface Topology

The field construction process that we have described is always valid, regard-
less of the topology of the input manifold. The user may specify any number
of two or more extremal points and may freely chose whether any particular
point is to be a local minimum or maximum. No matter the choice, a field u
satisfying (7) exists.

1 Our implementation uses the SuperLU library [Demmel et al., 1999].
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The Euler characteristic relates the genus g of the manifold to the number of
its vertices, edges, and faces

χ = 2− 2g = |V |− |E| + |F | (11)

By applying Morse theory, we can also relate the Euler characteristic to the
number of critical points — the minima, maxima, and saddle points 2 — of
the function u

χ = nmin − nsaddle + nmax (12)

The effect of the choice of extremal constraints is thus clear: the more extremal
points constrained by the user, the more saddle points will exist in the field.
As saddle points require extra care on the part of the remeshing procedure it
is desirable to minimize their number. One of the important properties of our
harmonic scalar fields is that they provably minimize the number of saddle
points for a given number of extremal constraints [Ni et al., 2004].

5 Flow Line Tracing

At this point, we have constructed two piecewise constant vector fields g1,g2

that are everywhere orthogonal. We will build the new surface mesh by tracing
the locally orthogonal families of integral lines of these vector fields. Our basic
approach is inspired by the tracing procedure used in the anisotropic remeshing
algorithm of Alliez et al. [2003a]. However, the details of our technique are
rather different, as we perform this tracing directly on the surface rather than
in a planar parameter domain.

The first vector field g1 is defined by the gradient of the scalar function u.
Therefore, we refer to its integral lines as the gradient flow. The integral lines
of the second vector field g2 coincide with the isoparameter lines of u, thus we
refer to them as the isoparametric flow. Both flows cover the entire surface,
and they will ultimately form the edges of the polygons in the output mesh.
Figure 3 shows a simple example of their structure.

In this section, we address the tracing of these flow lines. We use a simple and
efficient method for tracing integral lines of the vector field. The spacing of
these lines is controlled by a spacing function, locally adapted in response to
the curvature of the surface. Once both families of flow lines have been traced,
they are used to construct the output mesh. Details of this process are given
in Section 6.

2 For simplicity, we assume saddles of multiplicity 1 and no flat edges. Ni et al. [2004]
provide details on removing these restrictions.
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(a) Gradient flow (b) Isoparametric flow (c) Overlayed

Fig. 3. Tracing integral lines of the given vector fields produces the (a) gradient and
(b) isoparametric flows. They will combine (c) to form the edges of the mesh.

5.1 Tracing A Single Flow Line

A flow line is a piecewise linear curve over the surface that is an integral line
of one of our underlying vector fields. Each flow line consists of a sequence of
flow nodes connected by straight-line segments. These flow nodes, which form
the vertices of the flow lines, coincide with the intersection of the integral line
with the edges of the original mesh.

The placement of flow lines is controlled by the location of certain seed points.
Given a particular seed point, our goal is to trace out the integral line on
which it lies. We will revisit the problem of placing these seed points shortly.
For the moment, let us assume that we are given a single seed point and that
we wish to trace its corresponding integral line.

Accurately tracing the integral lines of an arbitrary vector field, even in the
plane, is in general a difficult problem. It requires careful use of stable numer-
ical methods (e.g., the Runge–Kutta integration used by Alliez et al. [2003a]).
Integration of the vector field directly on a 2-manifold further complicates this
process. In our specific case, the expense and complexity of sophisticated inte-
gration schemes is unnecessary. The gradient field is extremely smooth and all
integral lines converge at well-defined extremal points. The orthogonal field
consists of the isoparameter lines of a known scalar field, eliminating the need
for explicit integration entirely.

Because of the special structure of the fields we are tracing, we can use a
straightforward scheme to find the flow lines. This is both efficient and stable.
Even for meshes with hundreds of thousands of faces, all flow lines can be
traced in less than 10 seconds. Flow line tracing can also be trivially performed
directly on the triangulated surface, avoiding the need for parameterizing the
surface. Because we do not require even a local parameterization, our method
can also easily handle surfaces of arbitrary genus.
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5.1.1 Gradient Flow

A gradient flow line will always begin at a local minimum of u and then follow
the gradient field g1 = ∇u until it reaches a local maximum of u. Given
an arbitrary seed point on the surface, we must therefore trace a flow line in
both the positive and negative gradient directions until we reach the bounding
maximum and minimum, respectively.

!

"

#

(a) Regular case

!

"

#

(b) Vertex case

!

"

#

(c) Edge case

Fig. 4. Flow lines propagate through the gradient field by following the gradient
vector across triangles. Special cases arise when the flow intersects a vertex or when
the vector field converges toward an edge.

In the general case, the endpoint q of the flow line will lie along some edge of
the input mesh. The flow line will have already crossed one of the triangles
incident on this edge, and we wish to extend it across the other incident
triangle. This situation is illustrated in Figure 4a. Given that segment −→pq is
the last segment of the flow line, we wish to extend the flow line with segment−→qr. In the regular case, we can construct this segment simply by walking across
the triangle from q in the direction of the gradient vector within this triangle.
Thus both −→pq and −→qr will be parallel to the gradient vectors in their respective
triangles.

Two special cases can arise in the tracing of the gradient field. First, a flow
node may coincide with a vertex of the mesh (as in Figure 4b). In this case,
we must examine each of the triangles incident on this vertex. We advance the
flow line through the triangle in which we can move the furthest in the gradient
direction. Second, the flow field may converge on an edge (as in Figure 4c). In
this case, we cannot extend the segment −→qr through the neighboring face, and
must instead simply follow the edge connecting the two triangles. This is the
only case in which the flow fails to follow the vector field exactly. It is a fairly
uncommon occurrence, as this case typically only arises near saddle points and
our field construction automatically minimizes the number of saddle points in
the field.
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5.1.2 Isoparametric Flow

The isoparametric flow lines can be traced using an even simpler process than
the gradient flow lines. This is because they are, by definition, the isoparameter
curves of a known scalar field. Within any triangle, we can thus compute
exactly where the isoparameter lines should cross a particular edge.

This fact is also important for guaranteeing that the isoparametric flow has
the right structure. Except in the presence of open boundaries, each isopara-
metric flow line is obviously a closed curve. In a general integration scheme,
accumulated numerical error might cause a traced isoparameter line to fail to
connect with itself. We can avoid such errors entirely. Because we explicitly
follow the exact isoparameter curve, we can guarantee that the resulting curve
is always closed.

5.2 Placing Flow Lines

As mentioned previously, tracing of a specific flow begins at a seed point.
Herein, we describe how we place these seeds so as to effectively sample the
surface. This relies on the existence of two piecewise linear, positive real-
valued functions h1 and h2, defined over the vertices of the mesh, which specify
the desired spacing of the gradient and isoparametric flows, respectively. The
generation of h1 and h2 will be addressed in the next section. Here, our goal is
to place flow lines such that they obey the spacing requirements of these two
functions. That is, the distance between neighboring gradient flows is governed
by h1; and the distance between isoparametric flow lines is governed by h2.
Throughout this section, the distance between two neighboring flows is given
by the distance along the surface in the orthogonal flow direction. This is
the most relevant distance to measure, because distance along the orthogonal
direction reflects the length of the edges of the output mesh. Since h1 and
h2 are independent, our method can produce both isotropic and anisotropic
meshes.

The path of a flow line is determined completely by the underlying vector
field. Thus, we need only determine where to start tracing a flow (i.e., where
to place seed points) and when to stop. Stopping is fairly simple, so it will be
described first. Since we want flow lines to be spaced a certain distance apart
(given by either h1 or h2) we stop tracing a new flow when it gets too close to
an existing flow of the same type. To avoid exceedingly short flows, we stop
tracing a gradient flow when it gets closer than τh1 to an existing flow, where
τ is a user controllable tolerance parameter. All meshes shown in this paper
were generated with τ = 0.5, which we have found to give good results.

To place seed points, we extend the evenly spaced streamline method described
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(a) Input (b) α = 0 (c) α = 10 (d) α = 300

Fig. 5. Comparison of different values of the curvature sensitivity parameter, α. The
output meshes have the same face count, but different α values. For high α value,
notice how faces cluster near curved regions such as the dent near the mouth and
in the hair.

in [Jobard and Lefer, 1997] to work directly on a surface in 3D. First, we place a
number of initial seeds, one next to each critical point and one on each feature
corner (see §5.4). The purpose of this initial seeding is simply to provide a
starting point for the rest of the algorithm.

Once we have the initial seeds, we can begin tracing flow lines one at a time.
After each flow line is traced, we place additional seed points to either side of
it, at even intervals along the flow line. The distances from the flow line to the
newly placed seed points are given by h1 (or h2 if we are tracing isoparametric
flows). The spacing between seeds generated by the same flow is not crucial
(although a minimum number of seeds should be generated by each flow). The
important aspect here is that seeds are placed the proper distance away from
the flow, as measured along the orthogonal flow direction.

All the seeds are stored in a priority queue, with the key being the distance to
its generating flow. Each time we select the seed with the largest key, because
they are located in regions with larger value of the sampling distance function
(h1 or h2), and therefore would produce longer flow lines.

5.3 Sampling Distance Functions

The sampling distance functions h1 and h2 can be completely specified by the
user. However, usually a user desires either a uniform, isotropic mesh, or a
curvature-sensitive, anisotropic mesh (the benefits of anisotropy in remeshing
have been described extensively by Alliez, et al. [2003a]). In this section, we
provide our default functions for computing h1 and h2 from the local curvature
of the surface and two user-supplied parameters. These heuristic functions are
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chosen so that the user can easily control the overall (isotropic) density of the
output, as well as the degree of anisotropic curvature sensitivity.

We begin with a user-supplied isotropic sampling distance function h. This can
be either a single constant (i.e., a uniform sampling distance), or it can vary
over the mesh. A second user parameter, α governs the degree of anisotropic
curvature sensitivity. We then construct h1 and h2 by

h1 =
h

1 + α log10 (1 + κ2
n)

h2 =
h

1 + α log10 (1 + κ1
n)

(13)

where κ1
n and κ2

n are the normal curvatures of the surface in the directions of
g1 and g2, respectively. The normal curvatures are estimated by intersecting
a normal plane with the surface, in the direction of interest. We then perform
a few Laplacian smoothing steps on the curvature values to remove high-
frequency variations. Since h1 governs the spacing between flow lines through
g1, it is related to κ2

n, not κ1
n. We use the log scaling function because we have

found, empirically, that it provides a pleasing feel to the user as they vary the
sensitivity parameter α. Generally α is set to be less than 20, but can be much
higher (see Figure 5). If α = 0, then the remeshing is isotropic (h1 = h and
h2 = h).

Note that gradient flow lines converge at extrema. Thus, only a few flows
will actually get very close to the extrema, as they must obey the spacing
requirements given by h1. Even though this behavior is correct, allowing flow
lines to get closer to each other near extrema usually produces nicer results.
Therefore, by default, we decrease the isotropic spacing h slightly near all
critical points.

5.4 Features

A good number of meshes have sharp features that must be preserved when
remeshing the surface. This is particularly true of mechanical parts, but even
relatively smooth meshes, like the hand, often have sharp features (see the
base of the hand in Figure 14). Given a set of feature edges, we construct
a feature skeleton consisting of chains. A chain is a sequence of neighboring
feature edges beginning and ending at darts (vertices with only one feature
edge neighbor) or corners (vertices with at least three feature edge neighbors),
or forming a closed loop. If a chain is too short, it is considered noise and is
thrown away.

When the flow lines are traced, they may cross feature edges. In this case, a
flow node will actually lie on a feature edge, so we mark this flow node as a
“feature”. During the mesh construction phase (§6), additional edges will be

16



(a) Original (b) Field (c) Remesh

Fig. 6. Preservation of automatically detected feature lines. Notice that the sharp
edges are preserved even though the field is not necessarily aligned with them. Two
constraints have been placed, one on each of the top and bottom tips.

added to connect all the neighboring “feature” flow nodes of the same feature
chain. Note that corner vertices will automatically be preserved in the output
mesh, since they are included in the initial seeding.

Any number of methods have been proposed in the literature for detecting
feature edges (e.g., [Watanabe and Belyaev, 2001, Page et al., 2002]). Our
implementation currently uses a simple tagging scheme based on edge dihedral
angle. Figure 6 shows an example of a model containing visually essential sharp
features of non-trivial shape. As we can see, these feature lines are preserved
very well by the remeshing system, even though they are not aligned with the
flow lines.

6 Constructing the Output Mesh

Once we have a complete set of flow lines for the vector fields g1 and g2, we
are ready to construct the output mesh. The vertices of this mesh will lie
at the intersection of unique gradient and isoparametric flow lines. Its edges
will follow the flow lines themselves, thus determining the polygons as well.
Our meshing algorithm is done directly on the surface, without the help of a
parameter domain.

If we were presented with an arbitrary collection of flow lines, constructing the
output mesh in this fashion would essentially be a generalization of finding
arrangements of lines in the plane [Edelsbrunner, 1987, Guibas and Sharir,
1993]. However, the set of flow lines we have are highly structured, so we are
able to extract the mesh quite efficiently.
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6.1 Extracting Connectivity

We begin extracting the connectivity of the output mesh by computing all
intersections of gradient and isoparametric flow lines. For efficiency, we con-
sider each triangle of the input mesh separately. Within each triangle, the net
of flow lines is a (sparse) planar grid of line segments. The set of intersection
points within each triangle are easily computed. We exclude all critical points
from the set of crossings, as the flow lines either converge or diverge in these
areas. Instead, we treat critical points specially during polygon creation.

If a flow node has been marked as a “feature”, it is also added to the list of
crossings, even though two flow lines do not necessarily cross at that point.
Such crossings are called feature crossings.

Once the crossings have been detected, we must correctly identify the connec-
tions between them. For each flow line, we create a list of the crossings along
this flow line sorted by their order of occurrence. Feature crossings are ordered
by their position along the feature chain.

In the normal case each crossing will have 4 neighbors, two each along the
gradient and isoparametric flow lines. In rare cases, a crossing will have only
1 neighbor. Such dangling crossings are deleted to provide more well-formed
meshes. Also there may be normal crossings that are very close to a feature
crossing. In such cases, we eliminate the non-feature crossing by contracting
it into the feature crossing.

At this point, we have constructed a graph over the surface, as in Figure 7b.
The green knots are the crossings. And the edges connect consecutive crossings
along flow lines.

6.2 Polygon generation

Once the connectivity graph is complete (as in Figure 7b), we are ready to
generate the polygons of the output mesh (as in Figure 7c). Extracting the
faces of this graph is quite straightforward, as the flow lines provide an explicit
ordering and orientation for all edges. We traverse each face ring of the graph
in counter-clockwise order, emitting a polygon for each such ring.

Because extremal points are excluded from the crossing lists, we must gener-
ate additional polygons around each of them in order to close up the mesh.
To do this, we simply find the isoparametric flow line closest to a given ex-
tremal vertex. We extract the list of vertices along this flow line, and connect
consecutive pairs to the extremal point, forming a triangle fan.

18



(a) Field (b) Crossings (c) Remesh (d) Post-process

Fig. 7. The 3 stages of mesh generation. First, we build the set of crossings along each
flow line. Next we extract a non-conforming mesh from this net of flow crossings.
A final post-process produces a conforming mesh composed solely of triangles and
quadrilaterals.

At this point, the mesh is complete. We have generated one polygon for each
face ring of the connectivity graph and a triangle fan around each extremal
point. The vertices of the final mesh are positioned at their respective loca-
tions on the original surface (e.g., where two flow lines crossed). Therefore,
all vertices of the output are always guaranteed to lie on the original surface
mesh.

As mentioned before, the resulting mesh is generally non-conforming. There
will be so-called T-junctions where flow lines were terminated by the local
spacing control. This is quite apparent in Figure 7c. For those applications in
which non-conforming meshes are undesirable, we perform an optional post-
process to remove all T-junctions, adopting the same template-based strategy
as Alliez et al. [2003a]. We also triangulate polygons with more than 4 sides
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using a simple ear-cutting algorithm. After post-processing, the mesh consists
solely of quadrilaterals and triangles, and is strictly conforming. Figure 7 shows
an example of a mesh both (c) before and (d) after post-processing.

7 Placing Extrema

Our remeshing method provides the user a great deal of control over the output
mesh. The alignment of quad edges and the location of singularities can both
be controlled by the user, through their selection of constraint points for the
harmonic field. Usually it is desirable to have several constraints, to ensure
that the field follows the geometric structure of the mesh, but only two (a
minimum and a maximum) are required. Placing these constraints by hand
is generally quick and painless, as the user need only click on a few locations
on the mesh. In this section we provide a few guidelines to help the user in
deciding where to place extrema for best results. Later, we discuss a way in
which the extrema can be found automatically.

The minima and maxima of the scalar field are sources and sinks for the gra-
dient field. Gradient flow lines will flow from a minimum towards a maximum.
Thus, for example, we can specify that the quad edges in the remeshing output
should flow along the mesh from one protrusion to another, or in any other
manner we choose. This gives the user a great deal of control over the way
the quad edges are aligned in the output mesh. Generally it is desirable to
place minima and maxima on the tips of protrusions, so that the gradient flow
lines follow the shape of the surface. In addition, the gradient flow lines will
converge at minima and maxima, so placing the extrema on tips of protrusions
looks more natural. For example, placing an extrema on the tip of the camel’s
snout looks better than placing it on the side of the camel’s cheek (see Figure
8).

Even greater control over the alignment of the field can be achieved by using
curve or loop constraints on the model, rather than only selecting isolated
points. A curve constraint consists of a connected sequence of vertices such
that each vertex has one or two neighbors constrained to the same value.
A loop constraint is a closed curve constraint (each vertex in the loop has
exactly two constrained neighbors). Curve and loop constraints are usually
unnecessary, but they can be useful in certain situations. For example, they
can be used to orient an otherwise lopsided field so that the isoparametric
flow lines form shortest path circles around a cylindrical portion of a mesh.
They can also be used to force the remeshing to follow the important lines of
a human face (see Figure 9). Another very important use of loop constraints
is to allow the remeshing of genus-1 surfaces without any singularities (see
Figure 10).
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(a) Snout field (b) Snout remesh

(c) Cheek field (d) Cheek remesh

Fig. 8. Different choices of constraints produce different Laplacian fields, and hence
different remeshing outputs. When placed manually, extrema should generally be
located on local feature points.

(a) (b) (c) (d)

Fig. 9. Usage of curve constraints to improve the artistic properties of the remeshing.
(a-b) Single minimum and single maximum on the top and bottom of the head. (c-d)
Lines of minima (blue) and maxima (red) have been placed on the eyes, ears, and
mouth, generating a more aesthetically pleasing remeshing result.
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(a) Input mesh with field (b) Output

Fig. 10. By placing two ring constraints on the torus, we can generate a smooth
remeshing result with no singularities. It should be noted that, since we do not make
use of the magnitudes of the gradient or isoparametric fields, the ring constraints
need not be symmetrically placed.

7.1 Semi-Automatic Constraints

Our method affords the user a significant amount of control over the remesh-
ing, since the placement of the constraints governs the flow of the generated
quad edges. However, it is often the case that this amount of control is unnec-
essary. In addition, using identical values for all extrema of the same type can
lead to slightly misplaced saddle points, or undesirable warping, on meshes
with large asymmetries (as in Figure 11). Therefore, we present a method
for automatically determining both the positions and appropriate values for
a set of constraints, with minimal user input. This method solves a Poisson
equation to determine an initial (non-harmonic) scalar field on the mesh. The
extrema of this field are extracted and used as constraints in our harmonic
field construction.

We wish to automatically construct an initial scalar field that follows the
overall shape of the mesh, from which we will extract appropriate extrema. As
mentioned in section 4.1, the magnitude of the discretized Laplace-Beltrami
operator is an approximation of the mean curvature of the surface [Meyer
et al., 2003]. We seek a scalar field f whose “curvature” matches that of the
surface. To find such a field, we solve a Poisson equation of the form

∆f = −||∆x||. (14)

Note that the sign of the right hand side is arbitrary; switching the sign would
simply reverse the roles of minima and maxima in the following discussion.

Equation (14) can be discretized and solved in exactly the same manner as
equation (1). Only the right hand side of the linear system has changed. For
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(a) (b)

(c) (d)

Fig. 11. (a-b) Using equal values for all maxima can result in slightly misshapen
fields. (c-d) By using a larger constraint value on the longer protrusion, we obtain
the desired behavior. This constraint value was obtained from our Poisson field.

the system to have a unique solution, we must specify one constraint point.
Specifying additional constraints is actually undesirable as it generally leads
to unwanted undulations in the field. We shall call the solution to equation
(14) the Poisson field. An example of such a field is shown in Figure 12a.

Assuming that the mean curvature is not everywhere zero, there will be a
unique solution to (14) if we specify a single constraint point. This initially
specified point will always be a local minimum. Furthermore, it will be the
only minimum (ignoring numerical issues). This follows directly from the dis-
cretization of (14) and the fact that ||∆x|| ≥ 0. The value of f at a vertex i
must be greater than or equal to the weighted average of its 1-ring neighbors,
for all i except the constrained vertex. Hence, the constrained vertex is the
only possible minimum, and is therefore a global minimum (note that this
also assumes the weights used in the discretization of the Laplacian operator
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(a) Poisson field (b) Before clustering (c) After clustering

(d) Harmonic field (e) Resulting remesh

Fig. 12. Overview of our constraint detection method. (a) The user places a single
constraint point (tip of the camel’s nose), and a Poisson field is generated. (b)
Due to low gradients and numerical error, multiple extrema (red dots) may occur
in locations where there should only be a single maximum. (c) The extrema are
clustered to extract a single representative maximum. (d) The 16 extracted maxima
and the original minimum are used as constraints for the Harmonic field. (e) The
rest of the remeshing algorithm remains unchanged.

are strictly positive). In addition, we have observed that the points that are
locally most distant from the constrained vertex (measured along the surface)
will tend to end up as local maxima.

While it is possible to run the remeshing process directly on the Poisson field,
this has a number of potential problems. While these fields tend to conform
very well to the shape of the surface, they can develop regions of very low
gradient, which can in turn lead to multiple extraneous local extrema (see

24



(a) Original model (b) Automatic harmonic field

(c) Remeshing output (d) Closeup of topological hole

Fig. 13. Semi-automatic constraint method demonstrated on the toilet model. Notice
that the complexity of the toilet’s shape is captured nicely. The only user specified
constraint point was in the middle of the base of the toilet. From this, six distinct
maxima were found. The toilet is, in fact, genus four. A closeup of one of the holes
(near the bottom of the inside of the basin) is shown in (d), thus demonstrating
that the semi-automatic constraint method works on higher genus models as well.

Figure 12b). In general, such regions have ill-defined gradient directions, and
produce undesirable results when remeshed. To solve this problem, we instead
extract only the most significant extrema, and construct a harmonic field (via
equation (1)) using these extrema.

We use clustering to extract the most significant extrema. The maxima are
clustered based on their proximity to one another, and a representative is
selected from each cluster. Since we are clustering maxima, we can assume
that the most significant extrema in each cluster is that with the highest
value of f . These representative extrema are used as the constrained vertices
in the subsequent harmonic field construction (Figure 12d). The only two user
inputs to this process are the initial constraint point (which generally should
be placed on the most prominent protrusion) and the cluster spacing (which
governs how close two extrema have to be before they are combined).
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An important point in the extraction of local extrema is that the value of the
Poisson field at each extremal point is used as the value of the constrained
point in the harmonic field construction. This is as opposed to setting all the
maxima to the same global value, helping to better position the saddle points,
since longer protrusions will tend to get higher field values than short ones
(see Figure 11).

The usefulness of the automatic constraint method is demonstrated on the
toilet model in Figure 13. This model has a rather complicated shape, and
unlike models with arms, the proper location of extrema is less obvious. Thus,
having an automatic method is desirable. Notice how the lines in the remeshing
output follow the shape of the bowls and pipes. Only one extrema was placed
by the user, on the base of the toilet; the remaining six extrema were found
automatically.

8 Results

We have already shown several examples of our results. To demonstrate the
flexibility of our algorithm, and the quality of the results that it generates,
we show several more complex examples in this section. Note that all out-
put meshes in this section are shown without post-processing, and thus are
generally non-conforming. All of the remeshing results were generated using
user-specified field constraints, and the specification of these constraints gen-
erally required less than 20 seconds.

Running time (sec)

Model Fig h α |Vin| |Vout| Solve Init Trace Mesh Total

sculpture 1(c) 39 4 25,382 8,434 6.4 6.7 5.0 0.6 18.7

1(d) 27 4 25,382 3,789 6.4 6.8 3.3 0.2 16.7

isis 7(c) 20 6 188,496 1,538 81.6 49.4 5.5 0.1 136.6

head 9(d) 30 4 39,955 2,376 11.6 10.3 3.6 0.1 25.6

hand 14(b) 51 4 38,218 6,070 9.9 9.3 5.0 0.2 24.4

14(c) 26 4 38,218 1,660 9.9 9.5 2.5 0.1 22.0

14(d) 12 4 38,218 473 9.9 11.7 1.4 0.0 23.0

octopus 16(c) 30 9 16,554 3,785 3.1 4.4 2.8 0.2 10.5

16(d) 21 9 16,554 2,107 3.1 5.0 2.1 0.1 10.3

bull 18(b) 29 4 5,002 3,188 9.9 1.3 1.7 0.2 13.1

Table 1
Remeshing times for several models. The isotropic spacing (h) and curvature sensi-
tivity (α) parameters are also shown.

We begin with a summary of timing results for our experimental implemen-
tation. All times were measured on a 2.66 GHz Pentium IV, with 512MB of
RAM. The results are shown in Table 1. Running times are split into several
categories. Solution time includes the assembly and solution of the Laplacian
linear system. Initialization time measures the time necessary to compute the
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(a) (b) (c) (d)

Fig. 14. Multiple remeshings of a hand capture the shape of the fingers very well,
even at low sampling rates.

sample spacing functions h1, h2 over the surface and to distribute the initial
seed points. Tracing time is the time required to actually trace all flow lines
over the mesh, and meshing time is the time taken to generate the output
polygons. All times are reported in seconds, and are exclusive of file I/O time.
Overall, our system is quite fast, requiring less than a minute to remesh any
model under 100,000 vertices.

Our first example is a mannequin hand, shown in Figure 14. We see the results
of our remeshing algorithm at three different resolutions; the exact choice of
the spacing parameter is summarized in Table 1. For this model, we placed
a single minimum in the middle of the base of the hand and maxima at the
tip of each finger. As we can clearly see, the quad edges align quite nicely
with the natural “flow” of the surface. In addition, the shape of the surface
remains well preserved even at the lowest sampling density. When producing
multiple remeshings of the same model in this way, we can improve efficiency
by computing the harmonic field (and the resulting vector fields) only once. In
this particular case, this would reduce the total time for subsequent remeshings
by roughly 50%.
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(a) Input (b) Remesh

Fig. 15. This genus-1 knot can be remeshed without any singularities. In addition,
the spacing of the quad edges adapts to the local curvature of the surface.

Despite its complicated geometry, the knot shown in Figure 15a is topologically
equivalent to a torus. Thus, as in Figure 10, we can remesh it without any
singularities (Figure 15b). Note how we can recover a model with flow lines
very similar to that of the original mesh (which is composed of triangulated
quads). However, in the remeshed version, the density of the quads can be
seen to be adapting to the local curvature of the model. For example, notice
how the mesh on the rightmost bend is denser than the mesh on the leftmost
bend, which has a larger radius of curvature. To generate this result, as with
the torus, two minimum radius loop constraints were placed at different (but
fairly arbitrary) locations along the knot.

The octopus model shown in Figure 16 presents an interesting challenge be-
cause of its long skinny tentacles. This model is particularly problematic for
remeshing methods that rely on parameterization of the surface. When flatten-
ing this surface into the plane, the long thin tentacles can result in extremely
high parametric distortions, making the task of the remesher difficult. In con-
trast, our method requires no parameterization and is therefore unaffected by
this difficulty. Nevertheless, the tentacles provide a good test of our edge trac-
ing method, as minor errors in line placement can lead to significant damage
to the shape of the tentacles. As we can see from the output meshes shown,
our method handles this surface successfully. We placed a total of only 10
extrema: 1 on the top of the head, 1 in its mouth on the underside of the
surface, and 1 at the tip of each of the 8 tentacles. In the resulting mesh, the
quad edges are well-aligned with the shape of the tentacles, and the position
of their tips is preserved. In addition, the effect of our anisotropic sampling
can be observed in the stretching of quads along the tentacles.

As we have noted previously, one of the primary advantages of our method
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(a) Input (b) Harmonic field

(c) Finer remesh (d) Coarser remesh

Fig. 16. Remeshing results on the octopus. Notice that the quad-edges are aligned
along the flow of the tentacles, and that the tips of the tentacles are preserved.

is that it does not require a parameterization of the surface. The main con-
sequence of this fact is that our method is able to easily handle manifolds of
any genus. As an example, consider the Buddha statue shown in Figure 17.
This is a genus-6 manifold which is also geometrically complex. We show two
example remeshings of this input surface. The first is actually denser than
the input. The second is significantly coarser, yet it still captures the original
shape quite well. To achieve such results on this rather complicated surface,
we needed to specify only 3 constraints. We placed a single extremum both at
the very top of the mesh and in the center of the underside of the base stand.
In order to get the best alignment of the mesh with the base, we also placed
a single ring constraint around the upper rim of the stand.

The previous example demonstrates that our technique produces stable results
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(a) Input (b) Fine remesh (c) Coarse remesh

Fig. 17. Using our method, this genus-6 Buddha statue can be remeshed without
the cutting required by parametric methods.

(a) Input (b) Field (c) Remesh

Fig. 18. Our field construction and polygon generation algorithms are stable even
on extremely irregular meshes.

even when presented with surfaces that are topologically and geometrically
complex. It is also robust in the face of poorly constructed input meshes.
Figure 18 shows a mesh, describing the surface of a bull, that is an extremely
irregular tessellation. The distribution of the vertices is obviously non-uniform
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and rather haphazard. Only a small minority of the triangles are well-shaped;
the rest all have either very large or very small angles. Despite this ill-formed
input mesh, our field construction and polygon generation algorithms both
produce pleasingly smooth results. We placed extremal constraints on the
nose, horns, feet, and tail. The resulting harmonic field, shown in Figure 18b,
is quite smooth given the input mesh. Similarly, the final mesh shown in
Figure 18c is also both smooth and faithful to the original shape of the bull.

9 Discussion

9.1 Comparison with Alternative Methods

The majority of existing remeshing and simplification techniques focus on gen-
erating new triangulated meshes from their input. In contrast, our focus is on
producing polygonal meshes consisting predominantly of quadrilaterals. The
sole alternative method with similar goals is the anisotropic quad remeshing
method recently proposed by Alliez et al. [2003a]. The meshes produced by
their method are, at a high level, structurally similar to those produced by our
own. Indeed, we have adapted some of their techniques to our setting, espe-
cially their approach of tracing integral lines through vector fields to determine
polygon connectivity.

Despite these similarities, there are also some significant differences in our
approach to the remeshing problem. First and foremost, our method requires
neither a parameterization nor any cutting of the input model. Consequently,
our method can easily handle models of arbitrary genus. In part because of
our non-parametric approach, our technique appears to be somewhat faster.
Alliez et al. report run times of about 60 seconds to remesh a model similar 3

to the hand model (Figure 14) which our method remeshes in less than 25
seconds. Our use of harmonic fields allows us to avoid some of the more delicate
aspects of their approach, especially concerning the handling of umbilic points
and integrating lines through a vector field with many critical points. And
while their method always tries to lay out the new mesh conforming to the
curvature field, we are able to provide a user with extensive control over the
flow of the mesh (e.g., Figure 9).

3 The model they use does not contain the forearm.
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9.2 Mean Value Weights

One unfortunate property of the discrete harmonic weights (4) is that they
may become negative in the presence of obtuse angles. This can result in local
extrema at unconstrained vertices. While this does not in any way impair our
remeshing process, it can be undesirable if too many additional extrema are
created. This effect can be avoided by splitting all edges opposite internal an-
gles larger than π/2. Alternatively, we can also avoid this problem by using the
mean value weights [Floater, 2003] in place of the discrete harmonic weights:

wij =
λij

∑
k∈Ni

λik

, λij =
tan(θij/2) + tan(φij/2)

‖xj − xi‖ (15)

Here θij and φij are the two angles on either side of the edge (i, j) at vertex i.
Using these weights, every edge (i, j) is guaranteed to be assigned a positive
weight [Floater, 2003], and therefore local extrema cannot occur except at
constrained vertices [Ni et al., 2004].

9.3 Conformal Structure of the Field

By construction, the vector field g1 = ∇u is the gradient field of the scalar
function u. It is natural to consider whether g2 is also the gradient field of
some scalar function defined over the manifold. In other words, we would like
to know whether there exists some function v : V → IR such that g2 = ∇v.

It is easy to see that no such continuous function v exists. The vector field g2

follows the isocontours of u, thus the integral lines of g2 are closed isocontours.
The vector field g2 is thus clearly not integrable. However, if we cut the surface
M into a polygon [Gu and Yau, 2003, Ni et al., 2004, Erickson and Har-Peled,
2002], then the vector field g2 over this cut manifold might potentially be
integrable. Even here, the function v does not necessarily exist.

Interestingly, if we relax our definition of v — if we only require that it be
continuous at edge midpoints rather than vertices — then we can find such a
function. More specifically, there exists a function v : E → IR, unique up to
an additive constant, for which g2 = ∇v [Polthier, 2000]. In this setting, we
can rewrite the relationship governing g1 and g2 as:

∇v = R∇u (16)

Notice that this is simply one way of writing the well-known Cauchy–Riemann
equations. This indicates that the mapping (x, y, z) → (u, v) is in fact a dis-
crete conformal mapping of the cut manifold into the plane. The mapping is,
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however, non-conforming as the field v is not necessarily continuous at the
vertices of the mesh.

This also means that the vector fields we compute over the surface are es-
sentially a different representation for the same kind of conformal structure
defined by Gu and Yau [2003]. Our vector fields can easily be transformed
into a pair of conjugate (albeit non-conforming) 1-forms ω, ∗ω defined over
the directed edges of the manifold as follows:

ωij = (xj − xi)
Tg1 (17)

∗ωij = (xj − xi)
Tg2 (18)

By representing our fields via piecewise constant vector fields defined over the
faces of the mesh, we avoid the need to cut the surface.

10 Conclusion

We have presented a novel algorithm for quad-dominant mesh generation. Our
method is both efficient and general. It does not require any parameterization
of the surface and can process manifolds of any genus. The resulting meshes
resample the geometry quite effectively. The user is provided control over the
flow of the quadrilaterals, via scalar field constraints, and over the local quadri-
lateral size, via a spacing function. The final mesh interpolates the original
geometry, in that all of its vertices lie on the original surface. All of this is
based on our usage of a harmonic scalar field to define the flow of the mesh
over the surface.

The technique we have described works very well. There are also a number
of interesting avenues for further work that could extend or improve its cur-
rent performance. As with many other remeshing techniques, we place sample
vertices exactly on the piecewise linear surface of the original mesh. Allowing
the system more freedom in placing vertices near but not on the surface could
provide a better fit to the original shape. There are potentially many methods
for automatically identifying extremal points. The average geodesic distance
used for capturing “isolated” points [Hilaga et al., 2001, Zhang et al., 2003] is
one particularly attractive alternative. Identifying extremal points using the
eigenvectors of the Laplacian matrix might also prove effective. Finally, we
have outlined (§9.3) the connection between our vector field construction and
a global conformal structure [Gu and Yau, 2003] over the surface. We believe
that this connection can be exploited for efficient compatible remeshing of
multiple manifolds.
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