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Abstract 
 
We describe how some simple properties of discrete one-forms directly relate to some old and new results concern-
ing the parameterization of 3D mesh data. Our first result is an easy proof of Tutte's celebrated "spring-embedding" 
theorem for planar graphs, which is widely used for parameterizing meshes with the topology of a disk as a planar 
embedding with a convex boundary. Our second result generalizes the first, dealing with the case where the mesh 
contains multiple boundaries, which are free to be non-convex in the embedding. We characterize when it is still 
possible to achieve an embedding, despite these boundaries being non-convex. The third result is an analogous em-
bedding theorem for meshes with genus 1 (topologically equivalent to the torus). Applications of these results to the 
parameterization of meshes with disk and toroidal topologies are demonstrated. Extensions to higher genus meshes 
are discussed. 
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1.  Introduction 
 
In 1963, Tutte [46] proved his celebrated "spring embedding" theorem for planar graphs. This theorem 
maintains that a 3-connected planar graph may be easily drawn in the plane by embedding the graph 
boundary as a strictly convex polygon and solving a linear system for each of the two coordinates of the 
interior vertices. The linear system forces each interior vertex to lie at the centroid of its neighbors. Tutte 
proved that the result is indeed a straight line plane drawing, and, furthermore, the faces are non-
degenerate, bounding convex regions in the plane. 
 
Tutte's simple procedure remains a popular planar graph drawing method to date. It was generalized by 
Floater [8,9], who showed that the theorem still holds when the boundary is not strictly convex (i.e. adja-
cent boundary vertices may be collinear), and when each interior vertex is positioned at a general convex 
combination of its neighbors coordinates. The method has established itself as the method of choice for 
parameterizing a three-dimensional mesh with the topology of a disk to the plane in geometric modeling 
and computer graphics, along with a multitude of variations on this theme (e.g. [6,7,23]). The main reason 
for the method's popularity is that it is computationally simple, and also guarantees an injective parame-
terization homeomorphic to a disk, meaning that the individual planar polygons are convex and do not 
intersect. The latter is crucial for the correctness of many algorithms relying on an underlying parameteri-
zation. As such, Tutte's theorem is the basis for solutions to other computer graphics problems, such as 
morphing (e.g. [11,16,23]). Many recipes exist for the convex combination weights in order to achieve 
various effects in the parameterization. Typically, it is desirable to reflect the geometry of the original 3D 
mesh in the 2D parameterization, so the 2D version should be a minimally distorted 2D version of the 3D 
original. Depending on how distortion is measured, different weights are used. For more details, see the 
recent survey by Floater and Hormann [12]. 
 
Inspired by recent work on the theory of discrete one-forms [3,18,32] and their use in mesh parameteriza-
tion [18] as well as related results in vector field visualization [36,45], we show how some properties of 
these one-forms on meshes can be used to prove the injectivity of a number of mesh parameterization al-
gorithms. 
 
In a nutshell, a one-form is essentially an assignment of a value to each edge of the mesh. A simple count-
ing argument then produces an Index Theorem for these discrete one-forms; this is a discrete analog of 
the Poincare-Hopf index theorem for smooth vector fields on surfaces. Imposing additional balancing 
conditions on the one-forms results in a linear subspace which is shown to be related to spring embed-
dings of the type described by Tutte. 
  
One-forms on meshes turn out to be a very useful tool for mesh processing. In particular, the central result 
of Tutte's planar embedding theorem, when formulated in terms of the vector valued differences along 
edges of the graph, follows as a special case of the Index Theorem with no more than simple counting 
arguments and elementary geometry. The techniques used in our proof are considerably simpler than 
those used in proofs of different versions of Tutte's theorem which evolved over the years 
[2,6,9,13,39,44]. Moreover, the same arguments allow us to relax the conditions on the embedding of the 
mesh boundary, and even allow multiple boundaries. We show that it is sufficient that the embedding is 
well behaved (in a manner to be made precise later) at the vertices along the boundaries, even if they are 
non-convex, in order that the entire embedding be well-behaved. Since the requirement of a (pre-
determined) convex boundary is the (only) major drawback of Tutte's method, this result could make 
Tutte's method even more popular than it already is. It introduces extra degrees of freedom into the solu-
tion, which may be used to produce less distorted parameterizations. 
 
While variants of Tutte's theorem for meshes with the topology of a disk (namely genus 0 with at least 
one boundary) are easy consequences of our Index Theorem, novel and more interesting results may be 
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obtained for meshes with higher genus. Particularly important results may be obtained for the toroidal 
(genus g=1) case. Since, due to the different topologies, it is impossible to map the torus homeomorphi-
cally to the plane without cutting it, the most we can hope for is a parameterization method which has this 
behavior locally. Gu and Yau [18] showed how to generate local parameterizations with so-called "con-
formal" structure. In the torus case, their parameterizations have the following properties: 1. Any con-
nected submesh having the topology of the disk is mapped to a disk in the plane. 2. Any two connected 
submeshes with non-empty intersection, all (the two submeshes and their intersection) having the topol-
ogy of the disk, are mapped to disks in the plane, such that the two parameterizations coincide, up to a 
translation of the plane, on their intersection. Gu and Yau do not prove that the resulting mappings of the 
disks to the plane are actually embeddings. Additionally Gu and Yau restricted their attention to a specific 
subset of the possible parameterizations, to triangular meshes. We apply our one-form theory to close this 
gap, providing a generalization of their basic algorithm, and prove that all these parameterizations are lo-
cally injective. This may be considered a "Tutte-like" embedding theorem for the torus.  
 
For higher genus (g>1) meshes, the situation is more complex. Any 2D parameterization must contain 2g-
2 "double wheels", which are neighborhoods of vertices whose faces wind twice around the vertex, so the 
parameterization cannot be locally injective at these vertices. While we do not yet fully understand this 
case, we are able to provide some mathematical and algorithmic insight into how to control and generate 
such parameterizations. 
 
Beyond the theoretical interest, seamless local parameterization of higher genus meshes is useful for ap-
plications such as "cut and paste" operations [4], texture mapping [27] and meshing [43].  
 
 
2.  Related Work 
 
The concept of a discrete one-form is identical to a one-cochain from simplicial cohomology [20]. In fact, 
deRham’s original work on the topology of differential forms effectively defined cochains as a way of 
discretizing differential forms[38]. Whitney showed how co-chains could be interpreted as continuous 
forms[48]. We will use the term one-form to emphasize this connection, as has been done before by oth-
ers [5,32,21,18]. 
 
In the finite-element community, methods to discretize physical equations [34,37] led to discrete equa-
tions that manipulate discrete differential forms [26,5,22,40]. This approach involves a simplicial com-
plex, as well as its dual, which is used to define the various relevant operators, such as the Hodge star. 
The relationship between discrete forms and discrete vector fields is studied in [21].  Forman studies a 
different notion of discrete vector fields [14]. 
 
Harmonic discrete one-forms over a mesh are studied by Mercat [32]. His analysis is based on simultane-
ously looking at a mesh and a perpendicular (also called semi-critical) dualization. Edge weights are de-
fined using the ratio of the length of a primal edge and its dual. As described in [35], for the special case 
of mid-perpendicular (also called circumcentric) dualizations, these ratios will result exactly in the so-
called cotangent weights. This relationship is made explicit in [21]. (These same cotangent weights can 
also be derived by computing the Dirichlet energy of a piecewise linear map [35]). In this paper, we are 
unconcerned with the conformal structure of the input mesh, thus we will deal with arbitrary edge-
weights. Edge weights can be used to define a Hodge-star operation (e.g. [32]), which among other 
things, results in a definition of co-closedness, which we use in this paper. One-forms that are both closed 
and co-closed are called harmonic. Pairs of discrete harmonic one-forms that are related by the Hodge-
star operator are used by Mercat to construct holomorphic one-forms. Mercat then shows how these dis-
crete holomorphic one-forms converge in the limit to smooth holomorphic one-forms. 
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Benjamini and Lovasz [3] prove a number of combinatorial properties of harmonic one-forms. Their work 
includes a definition equivalent to the sign-changes that we will use later in this paper. Independently, 
Lovasz [30] describes  an index theorem which we prove below in a similar way, and a Tutte-like embed-
ding theorem for the torus, which we prove in quite a different way. 
 
Gu and Yau [18] use the same notion of harmonic, but define a different discrete Hodge-star operation 
over these harmonic one-forms, which does not involve a dual mesh. They then use this definition to form 
pairs of harmonic one-forms which are used to create planar parameterizations of meshes.  
 
3.  One-Forms on Meshes and the Index Theorem 
 
In this section we first review the concept of a discrete one-form over a mesh. We then prove a discrete 
analog of the Poincare-Hopf index theorem that relates the number of singularities in the one-form to the 
Euler characteristic of the mesh.  
 
3.1 Harmonic one-forms 
 
Let G=<V,E,F> be a mesh. V, E and F are the sets of vertices, edges and faces of G, containing V vertices, 
E edges and F faces respectively. In this paper we will be concerned with coherently oriented meshes 
which are closed manifolds and have genus g. Since the mesh is oriented we can use the cyclic ordering 
of the vertices to define a cyclically ordered set of half-edges. Since the orientation is coherent, the two 
“twin” half-edges incident on two adjacent faces have opposite orientations. From now on, when we say 
“oriented”, we will mean coherently oriented. 
 
For face f, ∂f is the boundary operator applied to f, yielding the set of half-edges bounding f. There is a 
well defined ordering of these half edges induced by f’s orientation. For vertex v, δv is the coboundary 
operator applied to the vertex, returning the set of half-edges emanating from v. There is a well defined 
ordering over these half edges induced by v’s orientation. 
 
Definition 3.1: A discrete one-form [G,∆z] is an assignment of a real value ∆zuv to each half edge (u,v) of 
G such that ∆zuv =  -∆zvu. A half-edge (or edge) will be called degenerate if the one-form vanishes at that 
half-edge. A face or vertex is called degenerate if all of its half-edges are degenerate, otherwise it will be 
called non-degenerate.  A one-form is called degenerate if all of its faces and vertices are degenerate, 
otherwise it is called non-degenerate. A one-form is called vanishing if at least one of its half-edges is 
degenerate, otherwise it is called non-vanishing (i.e. all its edges have non-zero values in the one-form.)♦ 
 
Since this paper will deal only with discrete one-forms, we will omit the word “discrete” from now on. As 
we will see, we will be able to characterize the scenario of Tutte's theorem in terms of non-vanishing one-
forms on a genus-0 mesh. These one-forms will have certain balances, which will constrain the behaviors 
of the one-form on faces and vertices. We now restrict our attention to this subset of one-forms. 
 
Definition 3.2: Given a set of (not necessarily symmetric) positive weights wij associated with each half 
edge in G and a one-form [G,∆z], a vertex v is called co-closed wrt w if  

0h h
h v

w z
∈δ

∆ =∑       (1) 

A face f is called closed if  
0h

h f
z

∈∂

∆ =∑                                                                       (2) 

A one-form whose faces are all closed and all vertices co-closed wrt some set of weights is called har-
monic. ♦ 
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We finish by stating a well known general theorem concerning harmonic one-forms on meshes. This theo-
rem is analogous to a classical theorem on continuous one-forms. The related fact that any vector field on 
a surface has a unique Hodge decomposition is the basis of the vector visualization techniques of Polthier 
and Preuss [36] and Tong et al. [45]. 
 
Theorem 3.3 [3,18,32]: If G is a closed oriented manifold mesh of genus g, then the linear space of har-
monic one-forms wrt some set of positive weights has dimension 2g. ♦ 
 
The reader may be convinced of the correctness of Theorem 3.3 by observing the following: The rank of 
the set of equations (1) is F-1. This is despite the fact that there are F equations, since if all but one of the 
faces are closed, then this implies that the last face must be closed too. The same is true for the set of 
equations (2) – their rank is V-1. The number of unknowns is E, hence the dimension of the solution space 
is E-(V+F-2), which, by Euler's formula, is 2g.  
 
Note that Theorem 3.3 implies that the only harmonic one-form on a closed spherical mesh is the degen-
erate (all zeros) one-form. Hence, to analyze Tutte parameterizations of disk-like meshes, we will be us-
ing one-forms which are harmonic except at boundary vertices, which may not all be co-closed. 
 
3.2 Sign Changes and Indices 
 
Of particular interest are the sign patterns of a non-vanishing one-form at the half-edges associated with a 
vertex or face of the mesh. We use these to classify the vertices and faces, as illustrated in Figure 1.  
 
Definition 3.4: Let [G,∆z] be a non-vanishing one-form. The index of a vertex v in [G,∆z] is ind(v) = (2-
sc(v))/2, where sc(v) is the number of sign changes in the values of ∆z as one traverses the half-edges of 
δv in order. The index of a face f in [G,∆z] is ind(f) = (2-sc(f))/2, where sc(f) is the number of sign 
changes in the values of ∆z as one traverses the half edges of ∂f in order. v is called a non-singular vertex 
if ind(v)=0 and a saddle vertex if ind(v)<0. If ind(v)=1, and all values of ∆z at v are positive, v is called a 
source, otherwise v is called a sink. f is called a non-singular face if ind(f)=0 and a saddle face if ind(f)<0. 
If ind(f)=1, f is called a vortex. ♦ 
 

source vertex  non-singular vertex saddle vertex  no sign changes  2 sign changes >2 sign changes index = 1  index = 0 index < 0 

e  
n ges 

non-singular face  saddle face  
2 sign changes >2 sign changes 

index = 0 index < 0 

Figure 1: Illustration of Defin
rows denote the orientation of t

 

vortex fac 
o sign chan

index = 1  
 
ition 3.4. Classification of vertices and faces by number of sign changes. Ar-
he half-edge with a positive value of the one-form.  
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Note that since (by definition) the number of sign changes at a vertex or face must be even, the index is 
always an integer. Moreover, the index can never exceed +1. When the index is negative, its magnitude 
indicates the frequency of the one-form sign changes on its half-edges. 
 
 
This notion of a non-zero index is a discretized notion of the index of a singularity of a smooth one-form.  
In the smooth case, the index of a smooth vector field at an isolated singularity is defined as the (signed) 
rotation number of the vectors as one traverses a small loop around a point where the field vanishes. The 
index of a singularity of a smooth one-form can be defined by a using some chosen metric to dualize the 
one-form to a vector field. It is easy to show that the index computed in this manner is invariant to the 
choice of metric. As is apparent in Figure 1, sources, sinks, vortices and saddles look quite like their con-
tinuous counterparts. The index 0 cases correspond, in the smooth case, to regions with no singularities. 
 
 
The following theorem now characterizes the global distribution of indices of vertices and faces of a mesh 
in terms of its genus: 
 
Theorem 3.5 (Index Theorem): If G is a closed oriented manifold mesh of genus g, then any non-
vanishing one-form [G,∆z] satisfies 

( ) ( ) 2 2
v f

ind v ind f g
∈ ∈

+ =∑ ∑
V F

−  

Proof: 

( )

1 1
2 2

1
2

1
2

( ) ( )

(2 ( )) (2 ( ))

( ) ( )

2

2 2

v f

v f

v f

ind v ind f

sc v sc f

V F sc v sc f

V F E
V F E

g

∈ ∈

∈ ∈

∈ ∈

+

= − + −

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
= + −

= + −
= −

∑ ∑

∑ ∑

∑ ∑

V F

V F

V F

 

 
The third equality is due to the total number of sign changes in the mesh (over vertices and faces) being 
equal to the number of half-edges in the mesh. To see this, consider a half edge h bordering some face f 
and co-bordering some vertex v. Consider fh, the clockwise successor to h in f, and vh, the counterclock-
wise successor to h in v. Clearly, fh and vh are half-edge mates, hence must have opposite signs in the 
one-form. Thus exactly one of these must account for a sign change with h in v and the other in f. The 
fifth equality is Euler’s formula, which can be proven independently in numerous ways, including calcu-
lations of the homology groups [15].♦ 
 
This is simply a discretized version of the Poncare-Hopf index theorem [17]. An equivalent statement of 
our Index Theorem appeared independently in [30]. A special case was obtained by Banchoff [1] and 
used by Lazarus and Verroust [28]. However, their theorem applies only to so-called null-cohomologous 
one-forms (arising from the differences of a scalar potential field defined on the mesh vertices) over a 
triangle mesh, and thus does not consider faces of non-zero index. Consequently, their summation of indi-
ces is over vertices exclusively, whereas we sum over faces as well. Indeed, in Section 4 we deal with 
non-triangular interior faces (which we need to prove are not saddles), and more importantly, with a non-
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convex exterior face (that in fact is a saddle). Furthermore, in Section 5 we deal with closed meshes of 
genus one and higher, where we will deal exclusively with one-forms which are not null-cohomologous.  
 
 
Closedness of faces and co-closedness of vertices are directly related to their indices: 
 
Corollary 3.6: If a face f is closed in a non-vanishing one-form  then ind(f) ≤ 0. If a vertex v is co-closed 
wrt to some set of positive weights, then ind(v) ≤ 0. 
 
Proof: If f were a vortex, then all of the terms of the sum in (1) would be positive and thus could not sum 
to zero. The same holds for v a source or sink. ♦ 
 
 
4.  Parameterizing a Disk 
 
Tutte's theorem may be stated as follows: 
 
Theorem 4.1 (Tutte [46]): Let G=<V,E,F> be a 3-connected planar graph with boundary vertices B⊂V 
defining a unique unbounded exterior face fe. Suppose ∂fe is embedded in the plane as a (not necessarily 
strictly) convex planar polygon, and each interior vertex is positioned in the plane as a strictly convex 
combination of its neighbors, then the straight-line drawing of G with these vertex positions is an embed-
ding. In addition, this embedding has strictly convex interior faces. ♦ 
 
A graph is called 3-connected, if it remains connected after the removal of any two vertices and their in-
cident edges. As we will see, this property is needed to preclude various types of degeneracies in the solu-
tion. 
 
A drawing is an embedding if no two edges intersect, except at vertices. 
 
Tutte constructs such an embedding by solving the following linear system for the x and y coordinate val-
ues of the vertices: 

( )

( )

1,..,

1,..,

1,..,

1,..,

j i

j i

ij j i
v N v

ij j i
v N v

x
i i

y
i i

w x x i V B

w y y i V B

x b i V B

y b i V B V

∈

∈

= = −

= = −

= = − +

= = − +

∑

∑

V

                                                                (3)                          

where the interior vertices are labeled as {1,..,V-B}, and the remaining boundary vertices as {V-B+1,..V}. 
The bi are the coordinates of the vertices of a convex polygon. The wij, associated with each half edge eij, 
are any set of positive numbers with unit row sums (hence the term convex combinations). We do not as-
sume that wij are symmetric. N(vi) is the set of vertices neighboring vi.  
 
We denote by [G,x,y] the straight line plane drawing using this solution as coordinates for the vertices, 
and call it a Tutte drawing. 
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4.1  Single Convex Boundary 
 
In Tutte's scenario, the boundary polygon, described by [bx,by] is assumed to be (not necessarily strictly) 
convex. It is well known that (3) has a unique solution [x,y]. This follows directly from the fact that the 
linear system is irreducible, and is weakly diagonally dominant with at least one strongly diagonally 
dominant row [47].  
 
Proving Tutte's theorem amounts to showing that a Tutte drawing is an embedding. We proceed in this 
direction by examining the properties of span(x,y) – all the different projections of the drawing, and con-
structing a one-form on G. For any choice of reals α and β, define for each vertex vi at position (xi, yi), the 
quantity zi≡αxi+βyi.  
 
At every interior vertex vi, we have: 

( ) ( )

( )

( )

)
j i j i

j i

j i

i i i

ij j ij j
v N v v N v

ij j j
v N v

ij j
v N v

z x y
w x w y

w x y

w z

∈ ∈

∈

∈

≡ α + β

= α +β

= (α +β

=

∑ ∑

∑

∑

                                                            (4) 

Now define the one-form ∆zij = -∆zji ≡ zj-zi.  Since the rows sum to unity, (4) implies that every interior 
vertex v of [G,∆z] is co-closed wrt w: 

0h h
h v

w z
∈δ

∆ =∑  

Furthermore, because the ∆z are differences of the z values at vertices, they must sum to zero along any 
directed closed loop in G. In particular, each face f satisfies 

0h
h f

z
∈∂

∆ =∑  

meaning [G,∆z] is closed. 
 
Figure 2 illustrates the generic structure of the one-form ∆z. Due to the convexity of the boundary B, a 
property which is preserved under linear transformations, B will generically contain one vertex with a 
maximum z and one with a minimum z. Every other vertex of B has one neighbor in B with a strictly 
greater z value, and its other neighbor in B with a strictly smaller z value. As a result, none of these other 
vertices can be sources or sinks in [G,∆z], i.e. they must have non-positive index. 
 
The following lemma concerning one-forms closely corresponds to the one forms [G,∆z] obtained from a 
Tutte drawing. 
 
Lemma 4.2: If G has genus 0 and [G,∆z] is a non-vanishing one-form such that all F faces are closed, V-
B vertices are co-closed wrt some set of positive weights and of the remaining B vertices, B-2 have index 
≤ 0, then [G,∆z] has no saddle vertices and no saddle faces. 
 
Proof: By the Index Theorem (Theorem 3.5), the sum of the indices over all of the faces and vertices on a 
spherical mesh must total +2. Due to the assumption, all the faces and V-2 vertices can contribute only 
non-positive values to this sum. The only way to achieve the sum of +2 is for all F faces and V-2 of the 
vertices to have vanishing index, and for the remaining two vertices to have the maximal index value of 
+1. In other words, [G,∆z] has no saddles (but it does have a source vertex and a sink vertex). ♦ 
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It is possible for a one-form, ∆z as constructed above from a Tutte drawing [G,x,y], to be vanishing. For 
example, if an interior edge has zero length, then it will produce a degenerate one-form in all projections. 
Such a one-form will be vanishing and Lemma 4.2 will not directly apply. Fortunately it is possible to 
slightly perturb any vanishing one-form into a non-vanishing one-form without altering the signs of the 
one-form values on the non-degenerate edges. Appendix A shows how this is achieved. In particular it 
defines a consistent perturbation with the following properties: the perturbed one-form is non-vanishing, 
no saddles are removed by the perturbation, and no new positive-indexed vertices or faces are created. 
The following three lemmas are proven in Appendix A. 
 
Lemma A.5: Let ∆z be a one-form derived from a Tutte drawing as in Section 4.1 using any α and β. 
Then there exists some consistent perturbation of ∆z. ♦ 
 
Lemma A.6: Let ∆z be a one-form derived from a Tutte drawing as in Section 4.1 using any α and β. 
Then for any consistent perturbation of ∆z, the perturbed one-form is non-vanishing and has at most two 
vertices with positive index. ♦ 
 
Lemma A.7: For any consistent perturbation, if there were sc sign changes around ∂f (δv resp.) in ∆z, ig-
noring zeros, then ind(f) ≤ 1-sc/2 (ind(v) ≤ 1-sc/2 resp.) in ∆z’. 
 
Lemma A.6 and Lemma 4.2 combined with Corollary 3.6, immediately imply: 
 
Corollary 4.3: If [G,x,y] is a Tutte drawing, then for any α, β and (any consistent perturbations of) [G,∆z] 
constructed as in (4), no vertex or interior face is a saddle in [G,∆z]. ♦ 
 
To proceed, we will need to rely on the fact that there are no degeneracies in a Tutte drawing. The follow-
ing Lemma is proved in Appendix B, using the 3-connectedness of G, and we will proceed under this as-
sumption.  
 
Lemma B.5: In a Tutte drawing there can be no face with zero area, no edge of zero length and no angle 
of 0 or π within any interior face. ♦ 
 
(For arbitrary n-gons, these notions are all distinct). Essentially this is proven by showing that if there 
were any such degeneracy, then there must exist a consistent perturbation that does result in a saddle. This 
would contradict Corollary 4.3 
 
Next, we show that the faces and vertex one-rings in the drawing [G,x,y] must be properly behaved, as 
defined below. In particular, we show that if they are not properly behaved, then there must be a 
z∈span(x,y) such that [G,∆z] has either a saddle vertex or a saddle face (which would be in contradiction 
to Corollary 4.3).  
 
 
Definition 4.4: A face f of G is called a convex face of [G,x,y] if its boundary is a simple, strictly convex 
polygon in the plane with non-zero area. ♦ 
 
Definition 4.5: Let v be a vertex of G. Let αi be the signed angles between adjacent half-edges in δv (an-
gles are measured by going the “short” way between half edges, so 0 < |αi| <π). v is called a wheel vertex 
of [G,x,y] if αi all have the same sign  and |Σαi| = 2π. 
 
Figure 3 shows some examples of non-convex faces and vertices which are not wheels. 
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Figure 2: The generic structure of a Tutte drawing, looking at the one-form which is the projection of the 
drawing along the vertical z. All vertices and faces are non-singular, except for one source and one sink on the 
boundary. Arrows mark the orientation of the half-edges possessing positive values of the one-form. 

source  

sink  

z 

 
Theorem 4.6: If [G,x,y] is a Tutte drawing, then all interior faces of G are convex. 
 
Proof: Suppose the face f of G is non-convex in [G,x,y]. Then there exists a line l in the plane that inter-
sects four or more edges of f. Rotate the drawing in the plane using using matrix  such that 

l is horizontal (see the dashed lines in Figure 3). The z

i

i i

w
z y

β −α⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟α β⎝ ⎠⎝ ⎠ ⎝ ⎠

ix

i component  represents the vertical component of 
the rotated drawing. This means that the half-edges in ∂f exhibit at least four sign changes (ignoring zero 
values). If ∆z is non-vanishing, then f is a saddle face in [G,∆z]. (By Lemma A.5, there exist consistent 
perturbations, and by Lemma A.7, for any consistent perturbation, f will remain a saddle face. If ∆z is 
vanishing, then by Lemma A.7, for any consistent perturbation, f will be a saddle face). The existence of 
this saddle contradicts Corollary 4.3. 
 
 
Theorem 4.7: If [G,x,y] is a Tutte drawing, then all interior vertices of G are wheels. 
 
Essentially we want to show that if a particular vertex v is not a wheel, then we can always find a line l 
through v that intersects four or more wedges (an angular extent between two topologically neighboring 
edges at v) of the drawing. Then, as argued above, the appropriate choice of α and β will make l horizon-
tal and v a saddle in [G,∆z], again contradicting Corollary 4.3.  
 
To be more precise, for a particular vertex v, define a map m:S1→ S1 as follows. Imagine placing the n 
edges that are incident to v evenly spaced around the unit circle (the domain of m), according to the orien-
tation of v. In the Tutte embedding, these edges each point in some direction, with adjacent edges sepa-
rated by angles αi. We use this to define the map, m, for each of the evenly spaced edges in the domain. 
Between each pair of adjacent edges along a wedge, we can complete the map m to be angularly linear. 
The map m will have some integer degree: d. Since the wedges form a cycle, we must have |Σαi|=2πd,  
 
Any non-wheel falls into one of the three distinct cases: 
 
d ≥ 2  (i.e. the edges cycle around v more than once): Then any direction +q in the drawing must have at 
least two orientation preserving (or two orientation reversing) preimages under m. So must –q. This yields 
a line l intersecting at least four wedges.  
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d = 0 (i.e. the edges must wind and unwind the same amount): By Lemma B.5, v’s neighbors cannot lie 
on a single line. Since v is in the strict convex hull of its neighbors, there must exist a vector such that 
both +q and –q pass through at least one wedge of v. But since d=0, +q must have an equal number of 
orientation preserving and reversing preimages in m. This means that +q must intersect at least two 
wedges. The same holds for –q. This yields a line l intersecting at least four wedges. 
 
d = 1 (i.e. the edges wind around once before meeting up) and there are two adjacent wedges with oppo-
site signed angles: We can find a direction +q that intersects both adjacent wedges. This direction must 
have at least one orientation preserving and one orientation reversing preimages in m. In order to sum to 
d=1 there also must be at least one more preimage. This implies that +q intersects at least three wedges. 
The opposite direction –q must also have at least one preimage in m, and thus must intersect at least one 
wedge. Thus the line l spanned by +q intersects at least four wedges. ♦ 
 
(Similar reasoning shows that the “half-ring” of interior faces around each boundary vertex maps ho-
meomorphically to a “half-disk”).  
 
 
Corollary 4.8: Two faces that share an edge are disjoint in a Tutte drawing. 
  
Proof: G is a manifold, and so each interior edge e is on the boundary of two faces. By Theorem 4.6 these 
faces are convex. And so both faces must lie either completely in the same or opposite half-plane defined 
by e. By Theorem 4.7, these two faces must also be part of a wheel in a neighborhood of the any of the 
two vertices of e. Thus these two convex faces must lie on opposite sides of e and are therefore disjoint. ♦ 
 
As a result of Corollary 4.8 we say that the drawing is locally an embedding, or, as Floater [9] calls it - 
locally injective. The following theorem establishes that a Tutte drawing is also a global embedding (or, 
what Floater calls globally injective), namely that any two faces in the drawing are disjoint. 
 
Theorem 4.9: All of the faces in a Tutte drawing are disjoint.  
 
Proof: Each point in the plane is contained in a finite number of bounded convex faces – its face count. 
We will show that this number must be one at every point inside the convex hull of the boundary vertices 
B. 
 
Each interior vertex is in the strict convex hull of its neighbors, and so cannot be an extremal vertex of 
CH(V) - the convex hull of all of the vertices of G. As a result, CH(B)=CH(V). As a result, no interior ver-
tex can be outside of CH(B). Thus the face count must be zero for any point outside CH(B). 
 
We can incrementally compute the face count for any point p inside the convex hull, by starting at any 
generic point outside of CH(B) and walking along a straight path to p. This path can cross the convex ex-
terior face fe only once at one boundary edge. Crossing this boundary edge must increment the face count 
by one. Since G is manifold, whenever the path crosses an interior edge, it must be incident to exactly two 
faces. By Theorem 4.8 these faces must be disjoint, and therefore, the edge count must remain at one. 
Hence the face count at p must be one. ♦ 
 
Corollary 4.10: No two edges of a Tutte drawing can intersect, except at a vertex. ♦ 
 
This concludes our proof of Tutte’s theorem.  
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To summarize the basic steps of the proof: Given a set of edge weights, and convex boundary mapping, 
there is a unique Tutte drawing [G,x,y]. For any projection (and any perturbation of it) we construct a 
non-vanishing one-form [G,∆z]. By Corollary 4.3, (derived from the Index thereom) due to the lack of 
sources, sinks, and vortices, there can be no saddles in any such [G,∆z]. By Theorems 4.6 and 4.7, if there 
were any non-convex faces or non-wheel vertices in [G,x,y], then we could construct such a [G,∆z] with 
saddles, which would be a contradiction. Since our drawing has all convex faces and wheel vertices, 
Corolllary 4.8 states that this implies local injectivity. This local property coupled with the convexity of 
the boundary mapping implies global injectivity in Theorem 4.9. 
 
 
 
 

 

 
Figure 3: Illustration of Definitions 4.4 and 4.5 and proof of Theorems 4.6 and 4.7. The horizontal dashed lines 
show that there always exists a line that intersects a non-wheel in more than two wedges and a non-convex face 
at more than two edges.  

 
4.2  Multiple Non-Convex Boundaries 
 
While the scenario of Tutte's theorem requires the single boundary to be convex in order that the resulting 
drawing be a planar embedding (i.e. contain only wheel vertices and convex faces), our theory permits the 
presence of non-convex vertices (so-called reflex vertices) in the boundary. In fact, we permit the pres-
ence of multiple non-convex boundaries.  
 
We can thus think of our mesh G as a topological sphere with some faces labeled as exterior. One of these 
exterior faces will be unbounded in the planar drawing, while the rest will be bounded. The boundaries of 
these exterior faces will be mapped to the plane, and impose boundary conditions in the system of equa-
tions (3). In order to produce a correctly oriented drawing, we will require that the turning number of the 
boundary of the unbounded exterior face be +2π and the turning number of the boundaries of the bounded 
exterior faces be -2π. We will also require that every reflex vertex be in the strict convex hull of its 
neighbors. As we will see, these restrictions force the drawing to be an embedding. First a few definitions. 
 
Note: our discussion here assumes that the unbounded exterior face of P is oriented clockwise, while the 
bounded exterior faces are oriented counter-clockwise. The entire discussion is, of course, also true if we 
consistently reverse these notions. 
 
Definition 4.11: Let P be a straight line mapping of an oriented polygon to the plane, with all edges hav-
ing positive length (but allowed to cross). The turning angle of P at vertex v is the external angle at v as 

non-convex face
line intersects 4 edges 

wheel vertex 
line intersects 2 wedges  non-wheel vertex non-wheel vertex

line intersects 4 wedges line intersects 4 wedges

convex face 
line intersects 2 edges  non-convex face

line intersects 4 edges 
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one traverses P consistent with its orientation. This angle is positive if the turn at v is a right turn in the 
plane and negative if the turn is a left turn. The turning number of P is the sum of the turning angles at the 
vertices of P. ♦ 
 
 
Definition 4.12: Let P be as above. A vertex v is called convex in P if the turning angle at v is non-
negative. Otherwise v is called reflex in P. ♦ 
 
Note that a bounded exterior face that is drawn as a convex polygon with turning number -2π, will in fact 
have all reflex vertices, (since these boundaries have been drawn  counterclockwise). 
 
Definition 4.13: Let P be as above. A vertex v of P is called extremum relative to a direction d in the 
plane, if the edges emanating from v all project positively or all negatively onto d. ♦ 
 
Lemma 4.14: Let P be as above with turning number +2π (-2π resp.). Denote by C its set of convex ex-
trema, and by R its set of reflex extrema with respect to any direction d. Then |C|-|R|=2 (|R|-|C|=2 resp.). 
 
Proof: Imagine a continuous "flattening" operation applied to the polygon which simply scales P by a 
factor of s along the direction orthogonal to d with decreasing s.  Since the scaling is orthogonal to d, it 
cannot change any dot products with d, and thus cannot create or remove any extrema. At the limit s→0, 
the turning angle will be +π at each v∈C, -π at every v∈R, and 0 at all other vertices. Since the total turn-
ing number is +2π (-2π resp.), this means that π(|C|-|R|) = 2π (π(|C|-|R|) = -2π resp.), namely |C|-|R|=2 
(|R|-|C|=2 resp.). ♦ 
 
In our parameterization setting, the boundary of each exterior face is mapped to the plane. This mapping 
imposes boundary conditions on the linear system of equations (3). Under this mapping (and chosen ori-
entation for G), the turning number of each external face’s boundary is well-defined, and its vertices may 
be classified as convex or reflex. 
 
Lemma 4.15: Suppose that: 1) G is an oriented 3-connected mesh of genus 0 having multiple exterior 
faces. 2) The boundary of the unbounded exterior face is mapped to the plane with positive edge lengths 
and turning number 2π. 3) The boundaries of the bounded exterior faces are mapped to the plane with 
positive edge lengths and turning number -2π. 4) [G,x,y] is the straight line drawing of G where each in-
ternal vertex is positioned as a convex combination of its neighbors. 5) In [G,x,y] the reflex vertices of all 
of the exterior face boundaries are also in the convex hull of their neighbors. Then for any α, β and [G,∆z] 
constructed as in (4), no vertex or interior face is a saddle in [G,∆z].  
 
Proof: As illustrated in Figure 4, assume the N boundaries of [G,x,y] form one unbounded and N-1 
bounded polygonal exterior faces in the plane with Bi vertices each, of which Ci are convex extremum 
vertices, and Ri are reflex extremum vertices. Consider the one-form [G,∆z]. Since all the extremal verti-
ces of the exterior faces produce sign changes of [G,∆z] in those faces, and only those do, the indices of 
the exterior faces are 1-(Ci+Ri)/2. The interior faces are closed and the interior vertices are co-closed, 
hence their indices are ≤ 0. Having both positive and negative values of ∆z on their co-boundaries, the 
indices of the non-extremal boundary vertices are ≤ 0. Being inside the convex hull of their neighbors, the 
indices of the reflex extrema are also ≤ 0. Trivially, the convex extrema have indices ≤ 1. Denote by s the 
sum of the (negative) indices of the saddle interior faces and vertices. So the sum of the indices over the 
entire mesh is ≤ Σ(1-(Ci+Ri)/2)+ ΣCi+s . But the Index Theorem maintains that this sum is +2, implying 2 
≤ N+Σ(Ci-Ri)/2+s. Now Lemma 4.14 applied to the exterior faces implies that Σ(Ci-Ri) = 2-2(N-1) = 4-2N. 
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This means that s ≥ 0, but since, by definition s ≤ 0, we conclude that s = 0, namely, saddles do not exist 
in the interior faces or vertices. ♦ 
 
Using arguments identical to those of the previous section, we conclude: 
 
Theorem 4.16: Under the conditions of Lemma 4.15, all interior faces of [G,x,y] are convex and all inte-
rior vertices are wheels. Moreover, if all the exterior faces are embedded as disjoint simple polygons 
(edge crossings are not allowed), then all faces of [G,x,y] are disjoint. ♦ 
 
 

unbounded exterior face
index = -2
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1
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0
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Figure 4: The multiple non-convex boundary scenario. The one-form considered is the projection on the ver-
tical (namely ∆z=∆y). Arrows mark the half-edges having positive values of the one-form. Vertices are la-
beled with their indices.  

 
A natural question is whether Theorem 4.16 is of any use in practical parameterization scenarios, as 
Tutte's theorem is. Forcing the boundary vertices to form a convex shape, as in the Tutte scenario, is easy, 
but is it possible to relax that requirement, yet force these boundary reflex vertices to be in the convex 
hulls of their neighbors without compromising the same property of neighboring vertices? This seems to 
be quite difficult, since it is impossible to determine apriori which boundary vertices will be convex, and 
which reflex. Fortunately, Theorem 4.16 implies that the injectivity of the drawing is determined entirely 
by the behavior of the boundary vertices, hence we have to worry only about these. One way to do this is 
to replace the 2B linear boundary equalities in (3) with BF bilinear inequalities, where BF is the number of 
interior faces along the boundaries, expressing the fact that all the wedges formed by these faces have the 
correct orientation. This involves considerably less inequalities than what would have been required had 
Theorem 4.16 not been true, as in that case, at least F inequalities would have been required, one for each 
face. However, being inequalities (as opposed to equalities), this will introduce many degrees of freedom 
into the solution. 
 
A more practical approach is to require more of the boundary. In many applications, a conformal parame-
terization is sought, meaning one that preserves angles as much as possible in the transition from 3D to 
2D. Traditional linear conformal parameterizations use the Tutte method with cotangent weights [35], 
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however, these weights can sometimes be negative, hence are actually inappropriate for the Tutte sce-
nario. Floater [10] recently proposed to replace these cotangent weights with so-called mean-value 
weights, which are always positive and seem to result in parameterizations which are close to conformal. 
The Angle-Based Flattening (ABF) method of Sheffer and de Sturler [41] addresses the problem in the 
triangular case by solving directly for the angles of the triangles, and reconstructing the embedding from 
that. Forcing all the angles to assume values in the interval (0,π) (along with other constraints) guarantees 
that the resulting 2D triangulation is injective. This approach is non-linear, but has the advantage of a free 
boundary.  
 
Here we describe one alternative we have explored. Given a 3D triangle mesh M as input, with angles 
0<<αi<<π incident on the boundaries, and βi elsewhere, we construct an injective 2D parameterization of 
M, such that the 2D angles are as close as possible to αi and βi. Theorem 4.16 implies that in order to ob-
tain an embedding, it suffices to force the boundary angles to be close to αi, and compute the interior ver-
tices' positions by solving a linear system using mean-value weights derived from the βi. If the resulting 
boundary angles are between 0 and π, then reflex vertices will naturally be in the convex hull of their 
neighbors, hence the result an embedding. Since we do not know in advance which vertices will be reflex, 
we apply our constraint on the angles around all boundary vertices. 
  
Figure 5 shows some results of this parameterization algorithm on two 3D input meshes. The first input is 
the "ear" mesh, which is embedded as a triangulation with a non-convex boundary. Note how the 2D 
boundary has a shape very close to that of the 3D boundary and how the angles are very similar. The sec-
ond input is the "face" mesh, containing multiple boundaries ("holes"). Note that the hole corresponding 
to the "mouth" has a non-convex character in the 3D input, which is preserved in the resulting 2D embed-
ding. The third input is a hemisphere, in which three slits have been cut. The resulting 2D embedding 
takes advantage of these slits when forming the boundary for the resulting conformal parameterization. 
 
A linear system for free boundary parameterization is described by Desbrun et al. [7] for a triangulated 
mesh with single boundary. However, that method may result in drawings which are not embeddings, for 
some inputs, even when all of the interior edge weights are positive. 
 
Recent work of Karni et al [24] shows how to possibly improve on the results of Desbrun et al [7] by iter-
ating a linear system of equations.  Karni et al show how Theorem 4.16 implies that if this iteration con-
verges, then the limit drawing is guaranteed to be an embedding. 
 
The following remains an important open problem: 
Is it possible to generate a straight-line embedding of a 3-connected triangulated 3D mesh with a single 
exterior boundary face, by posing a single set of linear equations on all the 2D mesh vertex coordinates, 
including the boundary vertices, possibly coupling the x and y coordinates. The coefficients in the equa-
tions should be derived from the 3D geometry, such that if the input mesh is already a planar embedding, 
the output should be identical to the input (this is called a 2D-reproducing scheme). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) (f) 

Figure 5: Parameterizing a mesh with free boundaries: (a),(c),(e) Original 3D meshes. (b),(d),(f) 2D parameteriza-
tions of (a), (c) and (e) when boundaries (bounded and unbounded) are free but forced to have boundary angles as 
close as possible to 3D originals. Mean-value weights were used in the harmonic equations for the interior vertices. 
 
Colin de Verdiere (personal communication) has recently shown us how to prove Theorem 4.16 directly 
from Tutte’s theorem. However, his proof does not distinguish between local and global injectivity of the 
embedding. Our approach has the advantage of cleanly separating the conditions required for local injec-
tivity (Theorem 4.15) from the extra ones needed for global injectivity (simplicity of the boundaries, as in 
Theorem 4.16). 
 

 16



The proof of Colin de Verdiere proceeds as follows: Consider the convex hull of the boundary B of the 
unbounded exterior face. Since B is simple, the difference between the two is the union of simple poly-
gons. Triangulate each of these polygons, as well as the bounded exterior faces. The result is a straight-
line plane drawing of a new 3-connected graph with no unbounded exterior faces, whose boundary is em-
bedded to a convex shape. Each interior vertex in the new drawing is connected to at least all the vertices 
it was connected to in the old drawing. Each interior vertex of the old drawing is still an interior vertex in 
the new drawing. Each reflex boundary vertex of the old drawing is now an interior vertex in the new 
drawing, positioned inside the convex hull of its neighbors. Each convex boundary vertex of the old draw-
ing is now either a convex boundary vertex of the new drawing, or an interior vertex of the new drawing 
positioned inside the convex hull of its neighbors. Thus the new drawing satisfies the conditions of 
Tutte’s theorem, hence is an embedding. 
 
 
5.  Parameterizing a Torus 
 
While our use of one-forms on meshes allowed us to obtain Tutte's theorem for disks and extensions, it 
has a more natural application in the case of a toroidal mesh. This case is actually easier to analyze be-
cause, in its simplest form, there is no boundary to complicate matters. On the other hand, it is more diffi-
cult to envision a parameterization in this case, since the torus obviously cannot be mapped in an injective 
manner to the plane. The traditional solution to this is to cut the mesh along an artificial boundary to form 
a disk, and then parameterize as any other disk-like mesh. While this is certainly possible, cutting the 
mesh introduces new problems such as optimization of this boundary, and obvious discontinuities in the 
parameterization along the boundary. 
 
Another way to parameterize a toroidal mesh without encountering the cutting problem, is to parameterize 
it locally, meaning injectively embed any submesh with disk topology, yet in a way such that all local 
parameterizations fit together in a seamless manner. So, while one never attempts to parameterize the en-
tire mesh, if two intersecting disk-like regions (whose intersection is also disk-like) are parameterized to 
the plane, the parameterization coincides on the intersection, possibly after an appropriate translation. See 
Figure 6.  
 
Seamless local parameterization is important for a variety of mesh processing applications, in particular 
"cutting and pasting" between meshes [4], texture mapping [27], meshing [43] and remeshing. 
 
In [18], Gu and Yau showed how seamless local parameterizations for the torus can be achieved using 
one-forms. In particular, the parameterization is driven by a pair of harmonic one-forms. Each of the two 
one-forms provides the information needed to synthesize each of the two coordinate values for the verti-
ces in the plane. Their paper did not address whether the algorithm would produce a locally-planar em-
bedding. 
 

 

Figure 6: Seamless local parameterization of disk-like submeshes of the torus. 
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Here, we prove, based on the Index Theorem (Theorem 3.5) that this algorithm will in-fact succeed in 
producing an injective parameterization. In this sense, this is a Tutte-like embedding theorem for the to-
rus. 
 
(Our theorem applies to a slightly more general case than that originally explored in [18]. Gu and Yau 
dealt specifically with special cotangent weights in their equation (1). They also only dealt with pairs of 
one-forms related by the so-called Hodge star operator, and only considered meshes with triangular faces. 
Our theorem applies to arbitrary positive weights, any pair of linearly independent harmonic one-forms, 
and applies to meshes with arbitrary sized faces.) 
 
A recent paper of Steiner and Fischer [42] makes observations similar to ours, in particular that linearly 
independent harmonic one-forms generate locally-injective parameterizations of the torus. The proofs 
they give, however, are rather complicated. Another quite different (and also more complicated) proof for 
this appeared independently in [30]. 
 
As opposed to the disk case, where we considered the planar coordinates of the embedding, and then con-
verted them to a one-form to prove Tutte's theorem, in the toroidal case the algorithm starts off with one-
forms, and then synthesizes the local embeddings from that.  
 
The algorithm begins by picking two linearly independent harmonic one-forms. Theorem 3.3 implies that 
the space of harmonic one-forms on the torus is two-dimensional. A basis for this space can be found by 
simply solving for the null-space of the matrix representing the closedness and co-closedness constraints. 
This matrix is typically quite large, but also very sparse (six entries per row on the average), hence its 
nullspace may be computed using efficient numerical methods for sparse matrices. Two linearly inde-
pendent one-forms may be then sampled from this space in a variety of ways. (Note that unlike the origi-
nal description of [18], this process does not require any mesh cutting.) 
 
To construct a local parameterization for the torus, the algorithm chooses any two linearly independent 
harmonic one-forms, ∆x and ∆y, which are linearly independent solutions to (1) and (2). Now, given a 
submesh with the topology of a disk, we assign the coordinates (0,0) in the planar parametric domain to 
an arbitrary vertex v0 of that submesh. Any other vertex is assigned coordinates by integrating (summing) 
the one-form along a directed path from v0 to v. Since the one-form is closed, it does not matter which 
path is used: 
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Because the space is two-dimensional, it does not really matter which two harmonic one-forms are used, 
as long as they are independent. Any other pair of one-forms will be a linear combination of these, mean-
ing the resulting parameterizations will be related to each other by an affine transformation.  
 
The proof that this algorithm will produce an injective mapping proceeds as follows. We begin with an 
analog of Lemma 4.2 for a torus: 
 
Lemma 5.1: If G is a closed oriented manifold mesh with genus 1 and ∆z a non-vanishing harmonic one-
form on G, then [G,∆z] has only non-singular vertices and faces. 
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Proof: By Theorem 3.5, the sum of the indices of the vertices and faces of [G,∆z] is 0. Since all vertices 
are co-closed and all faces are closed, their indices are all non-positive. Thus the only way these indices 
can sum to zero is if they are all zero. ♦ 
 
We now use Lemma 5.1 to prove the analog of Theorems 4.6 and 4.7 for the torus: 
 
Theorem 5.2: If G is a 3-connected oriented manifold mesh with genus 1, ∆x and ∆y two non-degenerate 
and linearly independent harmonic one-forms on G, and G' a submesh of G with the topology of a disk, 
then all faces of [G',x,y] are convex and all vertices of [G',x,y] are wheels, where x and y are constructed 
as in (5). 
 
Proof: Identical to the proofs of Theorems 4.6 and 4.7, using Lemma 5.1 instead of Lemma 4.2. Note that 
if the two harmonic one-forms are linearly dependent, then the whole mapping will collapse to a line. In 
this case, there exist projections for which the one-form is completely degenerate, and the arguments in 
Appendix B cannot be applied.♦ 
 
Note that if the method of (5) is run twice, each time with a different vertex as v0, the two resulting 
parameterizations will, by definition, be related to each other by a simple translation in the plane. The 
translation vector will be the coordinates of the second origin in the first parameterization (or vice versa).  
 
Theorem 5.2 is a statement of local injectivity. It can also be shown that a pair of harmonic one-forms, in 
fact creates a globally injective mapping from the universal cover of the torus to the entire plane. As a 
result, there can be no edge crossings in these parameterizations. The proof relies on Theorem 5.2, but 
also on some notions from algebraic topology, and is thus omitted. 
 
Figure 7 shows such an parameterization of a toroidal mesh, where the disk-like submesh is actually the 
entire mesh, after it was cut twice along two basis loops of the handle. Because of the periodicity of the 
torus, the resulting embedding can be used to tile the plane in a doubly-periodic seamless manner. 
 

 
(a) (b) (c) 

Figure 7: Parameterization of a torus containing 32 vertices and 64 faces. (a) 3D torus. (b) Parameterization of the 
torus to the plane using two harmonic one-forms generated with uniform weights. Vertices are numbered. The 
color coded edges along the boundary correspond. (c) Double periodic tiling of the plane using the drawing in (b). 

 
 
Although we will not prove this, we believe that a toroidal mesh with boundaries ("holes") may be locally 
parameterized in an injective embedding in a manner similar to that of Section 4.2, namely, by allowing 
some vertices along the boundaries to be non-harmonic. This will hold if these boundaries have turning 
number -2π, and the reflex vertices on the boundaries are contained in the convex hulls of their neighbors. 
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6.  Higher Genus 
 
While we have applied our Index Theorem (Theorem 3.5) only to the disk and to the genus 1 case to 
prove Tutte-like embedding theorems, the theory is applicable also to higher genus meshes, except there 
matters are more complicated. By Theorem 3.3, the dimension of the space of harmonic one-forms for 
g>1 is at least 4 and so there are many fundamentally different “pairs of harmonic one forms” that can be 
chosen from the space in order to create a parameterization.  
 
In addition, for g>1, the Index Theorem implies the existence of at least two saddle vertices and/or faces 
in every such harmonic one-form. So something must go awry when we apply the parameterization ap-
proach of Section 5.  
 
As observed by Gu and Yau [18], the “best” one can hope for is to have all of the "badness" in the param-
eterization isolated at 2g-2 vertices or faces. In this case we may have a vertex that is doubly wheel, where 
the co-boundary edges will cycle in the drawing around the vertex twice. Or we may have a face that is 
doubly convex, where the boundary edges cycle around the face twice (see the third column of Figure 3).  
At these bad spots, the embedding cannot be even locally injective. Note that if the mesh has only triangu-
lar faces, only double-wheels may occur. 
 
Here we prove that if a pair of harmonic one-forms is chosen such that it has 2g-2 such doubles, then the 
rest of the resulting parameterization is locally injective.  
 
Theorem 6.1: If G is a closed oriented 3-connected manifold mesh of genus g, and ∆x and ∆y are har-
monic one-forms on G and [G,x,y] - the corresponding drawing in the plane - contains 2g-2 vertices or 
faces that are doubly wheel/convex, then all other vertices of [G,x,y] are wheels and all faces are convex.  
 
Proof: In any projection of [G,x,y], a vertex that is doubly wheel, or face that is doubly convex, will be a 
saddle. If there are 2g-2 doubles, then the Index Theorem (Theorem 3.5) implies that there can be no 
other saddles. So all other vertices and faces are always non-singular in every projection, hence all other 
vertices must be wheels and all faces convex. ♦ 
 
Of course, since the mapping is not everywhere locally injective, it is obviously not globally injective. 
But the drawing will at least contain faces which are all oriented consistently. 
 
While we do not have a closed characterization of which two independent one-forms from the 2g-
dimensional solution space will, when used as x and y coordinates in the plane, form such an embedding, 
we can generate them using the following randomized (Las-Vegas) algorithm: 
 

1. Compute a basis of the 2g-dimensional space of harmonic one-forms on G. 
2. Select a one-form ∆x at random from the space whose basis was computed in (1), e.g. a random 

linear combination of the basis functions. When integrated, this one-form will generate the x co-
ordinate of the embedding. 

3. Solve for another one-form ∆y such that [G,∆x,∆y] has 2g-2 “doubles”. Since ∆x has been fixed 
in step 2, this can be written as a linear program. In this program, every pair of adjacent edges at 
the saddles of ∆x is constrained to have a positive angle (i.e. positive cross product of the two 
one-forms of those edges). If it exists, this ∆y is called a mate of ∆x. 

4. If step 3 failed, goto step 2. 
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It is easy to see that if ∆x and ∆y are mates, then any two linear combinations of ∆x and ∆y are also mates. 
Hence, in practice, it is possible to impose orthogonality of ∆x and ∆y in the linear program solved in Step 
3. 
 
We emphasize that Step 3 does indeed fail for some random choices made in Step 2, meaning there do 
exist one-forms ∆x for which there is no mate ∆y (not even the ∆y generated by applying the discrete 
Hodge star operation of [18] to ∆x). However, in practice, the linear program fails to find a mate in Step 3 
only rarely, so the algorithm usually terminates after a small number of steps. We have observed experi-
mentally, though, that this failure rate increases with the genus.  
 
The embeddings in Figure 8 were generated using this algorithm.  
 
We conclude this discussion by stating some natural questions which are left open: 
 

1. Which vertices in G can be saddles in a harmonic one-form? (We know that vertices with valence 
3 cannot be saddles, because three edges cannot generate more than 2 sign changes of the one-
form.) 

2. Which vertices in G can appear as double wheels? (We known vertices with valence ≤ 4 cannot 
be saddles since each of the four angles must be < π, yet their sum must be 4π). 

3. If a vertex can be a saddle or double wheel, how can we generate a one-form or pair of one-forms 
having this property ? 

4. Is there any natural characterization of the one-forms that have mates? 

 

 
 

 

 

Figure 8: Parameterization of the two-hole torus. Left: the 3D mesh, containing 495 triangular faces. Middle: The 
parameterization of the mesh to the plane using uniform weights. The two double-wheel vertices are marked in red 
and green. The green one appears twice along the boundary. Right: Zoom into the red double-wheel vertex. 

 
6.  Conclusion 
 
The concept of one-forms on meshes used in this paper, although simple, seems to be quite powerful. It 
unleashes a wealth of classical mathematical theory for which discrete analogs seem to exist. This is also 
related to some recent developments in polytopal graph theory [33] and planar tilings using harmonic 
functions on graphs [25]. 
 
This paper deals with the general case of asymmetric weights wij ≠ wji in (3). Many other papers (includ-
ing Tutte [46]) deal only with the symmetric case. This is appealing because then the system has a physi-
cal interpretation of a spring system, and the Tutte drawing minimizes the sum of the squares of the 
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weighted spring lengths, hence the system's energy. Some of the recipes for generating barycentric coor-
dinates for given embeddings yield symmetric weights, including the so-called cotangent weights [35]. 
However, most do not (e.g. the mean-value weights [10]), and it seems that the one-form theory presented 
here is powerful enough to deal with this. 
 
Theorem 4.16 raises hope for other possible applications. One of these is constrained parameterization 
(see e.g. [27]), which is of paramount importance for texture mapping, guaranteeing that key features of a 
texture are mapped to the corresponding features on a mesh. This problem calls for an embedding a disk-
like mesh in the plane, such that the parameterization is injective, but also satisfies positional constraints 
at a (usually small) subset of the interior vertices. The results of Section 4 indicate that if all the "prob-
lematic" regions of the mesh are embedded properly, then harmonicity will take care of the rest. In the 
scenario of Section 4 – the problematic regions are the boundary vertices, which are taken care of either 
by forcing convexity or explicit positive angles. This can be generalized to the case of constrained pa-
rametrization by considering the constrained vertices to also be "problematic" (or, in other words, part of 
a non-connected boundary), so it seems that forcing both the boundary vertices and the constrained verti-
ces to be wheels should solve the problem. However, it remains to see how this can be done in a computa-
tionally efficient  manner. First results in this direction have been obtained recently by Karni et al [24].  
 
A possible application of local parameterization of the torus is for parameterizing a disk-like mesh with a 
free boundary. Since Tutte's theorem requires a convex boundary, one common way around this is to 
"pad" the disk with a number of layers of "virtual" faces, forming a new "virtual" boundary. This larger 
mesh is embedded in the plane using the convex boundary method, and the extra padding then discarded. 
This method, due to Lee et al [29], gives the true boundary more flexibility, and it will typically end up 
being non-convex. It is, however, still influenced by the virtual boundary and the connectivity of the vir-
tual faces, hence is not artifact-free. Making use of our method for local parameterization of the torus, we 
believe it is more natural to embed the original disk within a torus, rather than a larger disk, as the torus 
seems to be the "cleanest" mesh. After solving for a harmonic one-form on the torus, this is transformed 
into an embedding of just the original disk-like submesh. This procedure eliminates boundary conditions 
entirely, hence should contain less artifacts. 
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Appendices 
 
The Appendices provide some technical theorems which simplify the main results of this paper. The theo-
rems will be formulated for the case of a mesh with a disk-like topology and convex boundary. With the 
appropriate modifications, these theorems carry over to the other cases (non-convex boundary, higher ge-
nus) as described. 
 
 

Appendix A: Perturbing a vanishing one-form into a non-vanishing one-form 
 
We will show how any (possibly vanishing) one-form on a disk-like mesh obtained from a Tutte drawing 
that contains vanishing values may be consistently perturbed into a non-vanishing one-form. Since the 
perturbation will be sufficiently small, it will not change the signs of any of the non-zero values. As a re-
sult, any such perturbation will not be able to remove any saddles from the original one-form. Moreover, 
because the perturbation is consistent, the perturbed one-form will not have any new sources, sinks or 
vortices (index +1) that were not in the original one-form. 
 
The perturbed one-from may have non co-closed vertices. But as mentioned in Section 4, the key to 
Lemma 4.2 is that all but two of the vertices have non-positive values of the one-form on their co-
boundaries. This is weaker than the co-closedness property. More formally: 
 
Definition A.1: A vertex (resp. face) is mixed in a one-form if it has at least one positive and at least one 
negative value of the one-form on its co-boundary δv (resp. boundary ∂f). ♦ 
 
Definition A.2: A one-form is called mixed if all its vertices and faces are mixed. A one-form is called 
almost mixed if all its faces are mixed and all its vertices are mixed, with the exception of at most two 
vertices. ♦ 
 
The following key Lemma follows as a special case of Theorem 2.2 of Linial et al. [31]: 
 
Lemma A.3: If G is a 2-connected oriented manifold mesh <V,E,F> and s and t any two distinct vertices 
of G, then there exists a non-vanishing one-form [G,∆f], whose faces are all closed and whose vertices, 
(except for s, which is a source, and t, which is a sink), are all co-closed with respect to some set of posi-
tive edge weights wij.♦ 
 
Clearly such a [G,∆f] is almost mixed. 
 
Denote by fe the outer face of the mesh. Tutte's method dictates that ∂fe is embedded as a non-degenerate 
convex polygon, with no two vertices coincident. For any specific choice of α and β, in the rotated Tutte 
drawing [G,w,z] (where the rotation is determined by α and β), the boundary loop ∂fe has vertices on its 
left side, and vertices on its right side. The left side has a top (and bottom) vertex, as does the right side. 
With respect to a generic choice of α and β, both sides will share their top (and bottom) vertex with each 
other. With respect to some non-generic choices of α and β, the upper or lower edges may be perfectly 
horizontal and so the two sides may not share their top (or bottom) vertices. In this case there will be a 
distinct top-left and top-right vertex. In addition, if the boundary is only weakly convex, then for a spe-
cific choice of α and β, there can also be “strictly top” and “strictly bottom” vertices that are strictly in 
between the left and right sides. (See Figure 9). 
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Definition A.4: Pick any two vertices s and t on ∂fe that are not strictly top or strictly bottom vertices. Let 
∆f be any non-vanishing almost mixed one-form with source s and sink t. Let ε be a non-zero scalar that is 
small enough such that adding ε∆f to ∆z will not to change the signs of the previously non-vanishing val-
ues of ∆z.  Any such perturbation is called a consistent perturbation. See Fig. 9 for an illustration of this. 
 
Lemma A.5: Let ∆z be a one-form derived from a Tutte drawing as in Section 4.1 using any α and β. 
Then, there exists a consistent perturbation. 
 
Proof: By Lemma A.3, for any choice of s and t, such a ∆f must exist. Additionally, since ∆z is defined 
over a finite number of edges, such an ε of sufficiently small magnitude must exist.  ♦ 
 
Lemma A.6: Let ∆z be a one-form derived from a Tutte drawing as in Section 4.1 using any α and β. 
Then, for any consistent perturbation, the resulting ∆z’ is non-vanishing and almost mixed. 
 
Proof: Since ∆f  is non-vanishing, and ε sufficiently small, the resulting ∆z’=ε∆f+∆z is non-vanishing. 
 
Next we prove ∆z’ is almost mixed by analyzing a small set of cases. 
 
1) Any degenerate face in ∆z is determined completely by ∆f, hence is mixed in ∆z'.  
 
2) Any non-degenerate face f is mixed in ∆z, hence for sufficiently small ε remains so in ∆z’. Hence all 
faces are mixed in ∆z’. 
 
3) The sign pattern of any degenerate vertex v in ∆z is completely determined in ∆z’ by ∆f. Since s and t 
were explicitly chosen to be non-degenerate vertices, a degenerate v cannot be one of the chosen s or t. 
Hence such v must be co-closed (with respect to some weights) in ∆f and thus mixed in ∆z’.  
 
4) Any mixed vertex in ∆z, for sufficiently small ε, must remain so in ∆z’.  
 
5) The only non-degenerate, not mixed vertices possible in ∆z are the extreme ones: the top-left (TL), bot-
tom-left (BL), top-right (TR), bottom-right (BR), strictly top (ST), and strictly bottom (SB) vertices. We 
now show that there cannot be more than two non-mixed vertices from this set in the resulting ∆z’. 

∆z + ε∆f = ∆z’

 
Figure 9: Scenario 
of the one-form. Ed

TL TR ST 

s

t

s

t

source

 sink
BL=BR

of Lemma A.6. Arrows mark the orientation of the half-edges possessing positive values 
ges without arrows have vanishing (zero) values. 
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If TL and TR coincide, then it can account for at most one non-mixed vertex in ∆z’. 
 
If TL and TR are distinct, then we use the following argument. By Lemma 4.2, there are no saddle faces 
in ∆f, and so there can be only 2 sign changes as one circles ∂fe (only at s and t). Hence ∆z’ must go in one 
direction (wlog say from left to right) along the top (resp bottom) of ∂fe (see Figure 9). Therefore, the ST 
vertices and TR will have both positive and negative values on their co-boundaries in ∆z’, hence be 
mixed. Thus TL can account for at most one non-mixed vertex. 
 
An identical argument shows that BL and BR can account for at most one non-mixed vertex.  ♦ 
 
Lemma A.7: For any consistent perturbation, if there were sc sign changes around ∂f (δv resp.) in ∆z, ig-
noring zeros, then ind(f) ≤ 1-sc/2 (ind(v) ≤ 1-sc/2 resp.) in ∆z’. 
 
Proof: The sign of a non-degenerate edge of ∆z is preserved in ∆z'. Hence the number of sign changes 
can only increase and the index only decrease. ♦ 
 
This means that this consistent perturbation cannot remove any saddles. 
 
 
For the non-convex boundary, in Lemma A.6, we choose for s and t any two boundary vertices that have 
at least one boundary edge with non-zero value in ∆z. The resulting perturbed one-form ∆z' will have the 
appropriate properties for Lemma 4.2 to apply. 
  
For the torus, (and higher genus) case we must assume that the one-form is not degenerate. Then for a 
consistent perturbation, we can choose any two non-degenerate vertices as  s and t. The resulting per-
turbed one-form ∆z' will have all mixed vertices and faces and thus appropriate for Lemma 5.1 (resp. 
Theorem 6.1) to apply. 
 
 
 
 
 

Appendix B: No degenerate vertices or faces 
 
In this appendix we prove that a Tutte embedding does not contain degenerate elements. First we define 
what these are: 
 
Definition B.1: Let ∆z be a one-form on a mesh. A degenerate corner is a (vertex, face) pair whose two 
associated edges are degenerate. ♦ 
 
For this Appendix we need a slightly stronger version of Lemma A.3, which also follows directly from a 
variant of the arguments in [31]. 
 
Lemma B.2: If G is a 2-connected oriented manifold mesh <V,E,F>, s and t any two distinct vertices of 
G, and p any directed simple path from s to t, then there exists a non-vanishing one-form [G,∆f], with all 
positive values along the half-edges of p, whose faces are all closed and whose vertices, (except for s, 
which is a source, and t, which is a sink), are all co-closed with respect to some set of positive edge 
weights wij. ♦ 
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We now prove a series of lemmas leading to the desired result. 
 
Lemma B.3: Let [G,x,y] be a Tutte drawing. Then in any projected one-form [G,∆z] there can be no non-
degenerate interior vertex participating in a degenerate corner. 
 
Proof: Let v0 be an interior vertex. Since it is non-degenerate, it must be mixed. We wish to show that if it 
participates in a degenerate corner, then we can find ∆z’ - an appropriate perturbation of ∆z of the form 
described in Lemma A.6 - which is a non-vanishing almost mixed one-form with a saddle at v0. This 
would contradict Lemma 4.2. 
 
Call the two edges of the degenerate corner e01, e02. These edges connect v0 to v1 and v2. Since G is 3-
connected, the graph G-{v0} is 2-connected. Therefore for any two vertices s and t we can find two ver-
tex-disjoint paths connecting v1 and v2 to s and t (we cannot say in advance which will be connected to 
which) such that v0 is not in either path [31]. By including all of the edges in these two paths in addition 
to the edges e01 and e02, we obtain a simple directed path from s to t that proceeds in the order [v1,v0,v2] or 
[v2,v0,v1]. See Fig. 10. By Lemma B.2, there exists ∆f: a non-vanishing almost mixed one-form with 
source s and sink t that either passes in order [v1,v0,v2] or [v2,v0,v1]. Consider ∆z’=∆z+ε∆f. This is a non-
vanishing almost-mixed one-form with non-vanishing values on the edges e01 and e02. With the proper 
choice of sign for ε, we can increases the number of sign changes around v0, creating a saddle at v0 in ∆z’. 
This contradicts Lemma 4.2. ♦ 
 
 

 
Figure 10: Scenario of Theorem B.3. Arrows mark the orientation of the half-edges possessing positive values 
of the one-form. Edges without arrows have vanishing (zero) values. 

 
Next we show that if there was any degenerate corner at an interior face, there would have to be some 
degenerate corner with a participating non-degenerate vertex. 
 
Lemma B.4: Let [G,x,y] be a Tutte drawing. Then in any projected one-form [G,∆z] there can be no de-
generate corner at an interior face. 
 
Proof: Assume (v0,f) is a degenerate corner. If it is not part of a triangle (which would have to be degen-
erate by closedness), then introduce a new edge e12 between vertices v1 and v2 (the neighbors of v0 at the 
degenerate corner); this splits f into a degenerate triangle and some remainder face. This face-split opera-
tion cannot change the 3-connectedness of G. The addition of this edge cannot change the co-closedness 
of v1 and v2. Repeat this operation for any degenerate corner. In the final G, any interior face with a de-
generate corner must be a degenerate triangle. 
 

s

∆z’

t

v2

v1v0

e01
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v1e01
v0 e02 v2

∆z
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Since [G,x,y] is not degenerate, there must be some interior face f that is not degenerate sharing an edge 
e01, between vertices v0 and v1, with a degenerate face. Either v0 or v1 must be an interior vertex, otherwise 
e01 would be an interior edge connecting two boundary vertices, which is impossible in a 3-connected 
planar graph.  
 
WLOG, v0 is an interior vertex. f has another vertex - v3 - that shares an edge e03 with v0. The one-form 
must be non-vanishing on this edge, otherwise e01 and e03 would have been a degenerate corner and f 
would have been a degenerate triangle. See Fig. 11. So v0 is an interior non-degenerate vertex at a degen-
erate corner, in contradiction of Lemma B.3. ♦ 
 
Lemma B.5: In a Tutte drawing there can be no face with zero area and no edge of zero length and no 
angle of 0 or π within any interior face. 
 
Proof: Suppose there was a face with zero area. It is then possible to pick a projection (α,β) such that the 
resulting one-form vanishes on all edges of this face. Similarly, if there is an edge e with zero length, then 
pick (α,β) such that the resulting one-form will vanish on one of the edges neighboring on e. In both 
cases, we will have a degenerate corner in the one-form, in contradiction of Lemma B.4 ♦ 
 
The proofs of Appendix B apply directly to the non-convex boundary case of Theorem 4.16. They also 
apply directly to one-forms on the torus. The equivalent to Lemma B.4 for the torus will state that in any 
(non-degenerate) harmonic one-form [G,∆z], there can be no degenerate corner. This implies no geomet-
ric degeneraces in any drawing [G’,x,y] integrated from a pair of non-degenerate harmonic one-forms. 
 
Harmonic one-forms on higher genus meshes have saddle vertices or faces and are thus more compli-
cated. In this case there will exist one-forms [G,∆z] with degenerate corners. But, in the special cases 
treated by Theorem 6.1, the saddles are all “accounted for”, so again, no degenerate corners can exist. 
 

Figure 11: The scenario of Lemma B.4. 
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