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Abstract
This paper describes a comprehensive approach to construct quality meshes for implicit solvation
models of biomolecular structures starting from atomic resolution data in the Protein Data Bank
(PDB). First, a smooth volumetric electron density map is constructed from atomic data using
weighted Gaussian isotropic kernel functions and a two-level clustering technique. This enables the
selection of a smooth implicit solvation surface approximation to the Lee-Richards molecular surface.
Next, a modified dual contouring method is used to extract triangular meshes for the surface, and
tetrahedral meshes for the volume inside or outside the molecule within a bounding sphere/box of
influence. Finally, geometric flow techniques are used to improve the surface and volume mesh
quality. Several examples are presented, including generated meshes for biomolecules that have been
successfully used in finite element simulations involving solvation energetics and binding rate
constants.
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1 Introduction
Finite element simulations have become an important tool in the analysis of biomolecular
functional models, such as electrophoresis, electrostatics and diffusion influenced reaction rate
constants [42] [43] [47]. For efficient and accurate finite element solutions, adaptive and quality
meshes are a necessary first step. Quite often, people have to give up FEM because they can
not generate satisfied triangular or tetrahedral meshes to represent the geometric model for
large complicated biomolecules such as Ribosome [35] (Fig. 1), or those structures whose
active site occurs at the bottom of a narrow gorge (deep pocket) (Fig. 14).

The protein data bank (http://www.rcsb.org/pdb) [4] provides PDB format files for protein and
RNA structures, with the location of principally all the major atoms (e.g., hydrogen atoms are
not discernible via X-ray diffraction and therefore rarely present in the PDB). The summation
of kernel functions centered at each atom can be used to construct a smooth volumetric electron
density map from PDB data [5] [21]. The volumetric data is often sampled at each rectilinear
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grid point, V = {F(i, j, k)|i, j, k are indices of x, y, z coordinates in a rectilinear grid}, and the
implicit solvation surface is approximated as a level set SF (c) = {(x, y, z)| F(i, j, k) = c}, where
c is a constant [21] [27]. The computation of density maps can be made very efficient with
worst case complexity linear in the number of grid points and the number of atoms [3]. In this
paper, we describe an approach to generate quality triangular/tetrahedral meshes for complex
biomolecular structures from PDB format data, conforming to good implicit solvation surface
approximations. There are three main steps in our mesh generation process:

1. Implicit Solvation Surface – A good approximation of the implicit solvation surface
is generated from a smooth volumetric synthetic electron density map by a careful
choice of the parameter of Gaussian kernel functions.

2. Mesh Generation – The modified dual contouring method is used to generate
triangular and interior/exterior tetrahedral meshes.

3. Quality Improvement – Geometric flows are used to improve the quality of extracted
triangular and tetrahedral meshes.

The summation of Gaussian kernel functions is used to construct the density map of a
biomolecule and sampled volumetric data. A smooth implicit solvation model can be
constructed to approximate the Lee-Richards molecular surface by using weighted Gaussian
isotropic kernel functions and a two-level clustering techniques.

The dual contouring method [23] [48] [49] is selected for mesh generation as it tends to yield
meshes with better aspect ratio. In order to generate exterior meshes, we add a sphere or box
outside the biomolecular surface as an outer boundary. A variant of the dual contouring method
is developed to extract interior and exterior meshes. Our tetrahedral mesh is spatially adaptive
and attempts to preserve molecular surface features while minimizing the number of elements.
An extension step is performed to generate the exterior mesh.

The extracted triangular and tetrahedral meshes cannot be directly used for finite element
calculations, they need to be modified and improved. Since the isosurface generated from
discrete volumetric data suffers from noise, geometric flows are used to smooth the generated
surface meshes with feature preservation. The quality of extracted surface and volume meshes
is also improved.

The main contributions of this paper include: a simple and uniform treatment for approximating
implicit solvation models, a modified adaptive surface and volume mesh extraction scheme
combined with geometric flow to yield high quality meshes. The generated meshes of the
monomeric and tetrameric mouse acetylcholinesterase (mAChE) [6] [7] have been successfully
used in solving the steady-state Smoluchowski equation using a finite element method [42]
[43] [47].

The remainder of this paper is organized as follows: Section 2 reviews related previous work.
Section 3 introduces how to construct an implicit solvation surface from PDB molecular
structural data. Section 4 details our mesh generation scheme. Finally section 5 describes our
mesh quality improvement technique. Section 6 presents several molecular meshing results.

2 Previous Work
Molecular Surface Approximation

There are three different yet often used molecular interfaces [37], the van der Waals surface
(VWS), the solvent-accessible surface (SAS) and the solvent-excluded surface (SES) [12] or
sometimes called the Lee-Richards surface [26]. The VWS is simply the boundary of the union
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of balls. As introduced in [26], the SAS is an inflated VWS with a probe sphere. The SES is a
surface inside of which the probe never intrudes.

According to the properties of molecular structures, Laug and Borouchaki used a combined
advancing front and generalized Delaunay approach to mesh molecular surfaces [25].
Algorithms were developed for sampling and triangulating a smooth surface with correct
topology [2]. Skin surfaces, introduced by Edelsbrunner in [13], have a rich combinational
structure and provide a smooth alternative to the Lee-Richard’s surface. Cheng et. al [9]
maintained an approximating triangulation of a deforming skin surface. Simplex subdivision
schemes are used to generate tetrahedral meshes for molecular structures in solving the
Poisson-Boltzmann equation [22]. Gaussian functions have been used to construct density
maps [5] [21] [33] [1] [31], from which implicit solvation models are approximated as an
isocontour [21] [27] [18]. However, it still remains a challenging problem to generate quality
and adaptive triangular and tetrahedral meshes for arbitrary molecular structures.

Mesh Generation
As reviewed in [36] [44], octree-based, advancing front based and Delaunay like techniques
were used for triangular and tetrahedral mesh generation. The octree technique recursively
subdivides the cube containing the geometric model until the desired resolution is reached
[39]. Advancing front methods start from a boundary and move a front from the boundary
towards empty space within the domain [16] [29]. Delaunay refinement is used to refine
triangles or tetrahedra locally by inserting new nodes to maintain the Delaunay criterion
(‘empty circum-sphere’) [11]. Sliver Exudation [10] was used to eliminate slivers (bad aspect
ratio). Shewchuk [40] solves the problem of enforcing boundary conformity by use of
constrained Delaunay triangulations (CDT).

The predominant algorithm for isosurface extraction from volume data is Marching Cubes
(MC) [30], which computes a local triangulation within each cube to approximate the isosurface
by using a case table of edge intersections. MC was extended to extract tetrahedral meshes
between two isosurfaces [17]. A different and systematic algorithm was proposed for interval
volume tetrahedralization [34]. By combining SurfaceNets [20] and the extended Marching
Cubes algorithm [24], octree based dual contouring [23] generates adaptive multiresolution
isosurfaces with preservation of sharp features. The dual contouring method has also been
extended to extract adaptive and quality tetrahedral meshes from volumetric imaging data
[48] [49].

Quality Improvement
Algorithms for mesh quality improvement can be classified into three categories [44] [36]:
local coarsening/refinement by inserting/deleting points, local remeshing by face/edge
swapping and mesh smoothing by relocating vertices.

Laplacian smoothing relocates vertex position at the average of the nodes (vertices) incident
to it [14]. Instead of relocating vertices based on a heuristic algorithm, the optimization
technique measures the quality of the surrounding elements to a node and attempts to optimize
it. The optimization-based smoothing yields better results, nevertheless it is more expensive
than Laplacian smoothing. Therefore, a combined Laplacian/Optimization-based approach
was recommended [8] [15]. The Laplacian operator was discretized over triangular meshes
[32], and geometric flows have been used in surface and imaging processing [38] [46].
Physically-based simulations are used to reposition nodes [28]. Anisotropic meshes are
obtained from bubble placement and equilibrium [41].
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3 Implicit Solvation Surface from volumetric Density Maps
We extract an implicit solvation surface (molecular surface) as a level set (isocontour) of the
volumetric synthetic electron density maps [3]. The implicit solvation surface is chosen to be
a good approximation of the Lee-Richards molecular surface [26] by choosing an appropriate
weighting parameter of the summation of Gaussian kernel functions.

3.1 Gaussian Density Map
As used for Poisson-Boltzmann electrostatics calculations in [22], a characteristic function f
(x) is selected to represent an ‘inflated’ van der Waals-based accessibility

(1)

where (xi, ri) are the centers and radii of the N atoms in the biomolecule, and σ is the radius of
the diffusing species, here we choose σ = 2 [43]. When σ = 0, the VWS is constructed. The
function f (x) provides a grid-based volumetric data which can be isocontoured at the isovalue
0.5 to represent the SAS. Fig. 17(a) shows one constructed geometric model of mAChE.

Molecules are often modelled as the union of hard spheres Si (atoms). The surface, denoted as
M0, of a molecule is therefore described as the boundary of the union of balls. To have the
smoothing effect at the intersection of atoms, the molecular surface is approximated by an
isocontour [5]:

(2)

with

(3)

where (xi, ri) are the center and radius of the ith atom in the biomolecule, and Bi < 0 is called
‘decay rate’, which controls the blurring effect. Note that Bi must be negative to ensure that
the density function goes to zero as || x−xi || goes to infinity. In order to make the distance
between M and M0 as uniformly as possible, we take

(4)

where C < 0 is a given constant. Now G(x) becomes

(5)
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The various presentation M(Ci) = {x ∈ ℝ3: G(x, Ci) = 1} of the molecular surface is therefore
achieved by taking C = C1,…, Cl.

As shown in Fig. 2, the different effects of C and constant Bi(= B) are studied in a two-sphere
system, one is centered at (0, 0, 0) with radius of 1.0, the other one is at (2.8, 0, 0) with radius
of 2.0. It can be observed that

• C leads to more uniform inflation than Bi.

• Small balls have more inflation than big ones.

• Large error happens around the intersection region, and error reduces gradually away
from it.

• Larger C and Bi lead to more inflation. For the same C and Bi value, e.g., −0.125,
Bi tends to introduce more inflation.

Fig. 3 shows implicit solvation models of Ribosome 30S. Compared with Fig. 3(a), proteins
inflate much more seriously in Fig. 3(e). rRNA in Fig. 3(c) and (f) looks similar, but proteins
in Fig. 3(f) look a little more inflated than Fig. 3(b). rRNA in Fig. 3(d) and (g) looks similar
too, but proteins in Fig. 3(g) are close to proteins in Fig. 3(c).

3.2 Multi-Level Gaussian Density Map
In order to model structures with varying resolution on the implicit solvation surface, we
introduce multi-level Gaussian map. First, we introduce some notation as shown in Fig. 4. Let

 denote the index set of all the atoms with . Suppose N0 is grouped

into several subsets , i = 1,2,…,n1, such that

(6)

The set , whose elements are also sets, may be further grouped into some subsets

, i = 1,2,…,n2, such that

(7)

The collection of  is denoted by N2. This hierarchical grouping process could be
repeated several times according to the molecular complex considered. In practice, two or three

iterations suffice. By using these sets  and a given sequence {pk} of p with pk > 0, the k-
level Gaussian map are defined recursively as

where 0-level Gaussian map is defined by Eqn. 5 (C = 1.0) or
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The atom group format depends on what kind of structure we want to model and mesh. For a
protein, atoms may be grouped by residues, meaning that atoms in the same residue are
classified into one group. Then the residues are grouped according to their neighborhood along
the protein backbone.

For each k-level Gaussian Map , a k-level surface is defined by

This surface encloses the surface MN for . Hence, all these  define a hierarchical

surface family. We call the surface MN as the child of , and  the parent of MN. The
enclosing relation of this hierarchical surface family is strict, meaning that the minimal distance

from MN to  is greater than zero for any . We further define the B-surface of MN

for all  as

where Bd() denotes the boundary of a region in IR3. Note that  is enclosed strictly by

.

The purpose of introducing multi-level Gaussian map is to address the structure of molecules
at a certain level. For instance, at the residue level of a protein, we dealt with each residue as
one unit and therefore the protein is considered at the residue level resolution. The sub-
structures of the residue (atoms), are not individually identifiable. Similarly, at the next higher
level, a group of residues is dealt as one unit and therefore protein is considered at even coarser
feature resolution. The goal of addressing certain level structure and un-addressing the higher
level ones is achieved by the properly selection of the parameter pk in the multi-level Gaussian
map. Basically, larger pk should be chosen to address k-level structure and smaller pk−1 is used
to un-address the (k − 1)-level structures.

Considering three levels of structures, including the atomic, the residue and the next level of
grouping, we can construct a three level Gaussian map with given p1, p2 and p3. To address
the second level structure, we need to choose p3 larger and p2 smaller, while p1 has less
influence than the second level structure. Quite often it also suffices to consider only a two-
level Gaussian map instead of three: level one is at the protein residue level, while level two
is at a coarser resolution level. Henceforth in this paper, we provide details for only two-level
Gaussian maps.

In computing implicit solvation molecular surfaces, various models are constructed by
choosing different p1 ∈ (0, ∞) and p2 ∈ (0, ∞) in the Gaussian map. To make the constructed
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model correspond to a certain level, p1 and p2 need to be selected properly. For a fixed level,
the structure at this level should be distinguishable. For instance, at the residu level, the
individual residues should be observed, while atoms may not be distinguished clearly. Fig. 5
shows constructed models of Ribosome 50S at low resolution, residue and atomic level
resolutions.

3.3 Approximation Computation
In order to obtain a good approximation to the molecular surface from the multi-level Gaussian
map, we bound the error at each level. To bound the approximation for the first level, we need

to compute the minimal distance from MN,  to its parent surface . On the other
hand, in order to have an error controlled approximation of the second level surface, we need

to compute the maximal error from MN,  to its parent surface . Hence, we need to
consider the error computation for both levels of surfaces. The error computations are based
on a point projection algorithm.

Given the surface MN, a point q ∉ MN and a unit direction n, the point projection algorithm in
the following computes a nearby intersection point p of the line q +tn (t ∈ (−∞, ∞)) with the
surface MN.

Algorithm 3.3.1 (Point Projection)
1. Compute an interval [a, b] for t, on which GN (q +tn) −1 changes sign once. This is

achieved by a linear search step in a certain range [A, B]. If (∇GN (q))T n[GN (q) −1]
< 0, search in −n direction, otherwise in −n direction. If such an interval could not be
found, the project point does not exist and return a failure signal. After the interval is
determined, set  and k = 0.

2. Compute tk+1 by the Newton iteration method

(8)

If tk+1 ∉ (a, b), replace tk+1 by .

3. Replace the interval [a, b] by [a, tk+1] if GN (q +tn) −1 changes sign over [a, tk+1],
and replace [a, b] by [tk+1, b] otherwise.

4. If |b − a| < ε (ε is a given error tolerance, we take it to be 10−4), stop the iteration and
p = q + tk+1n is the projection point, otherwise, set k = k + 1 and go back to step 2.

We specify the searching range [A, B] in step 1 of the algorithm to be [−4, 4], since the atom
diameters are around 4. Errors beyond that are not considered here. If the projection exists,
then the projection point p of point q on the surface MN in the direction n is denoted by PMN
(q, n).

3.3.1 Minimal Error of Level One Surface—Now we assume k = 1, then the child surfaces

are atoms. Let , the minimal error from MN = SN to  is defined by
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Let , then q is on the sphere SN and p is the projection of q to the surface  in

the spherical normal direction n(q). That is, . Hence in order to compute dN,

we need to compute  for q ∈ SN.

Now we consider the computation of the minimal distance from MN to , where .
First we assume that each atom (sphere) is uniformly sampled with m vertices. This sampling
is achieved by translating a triangulated unit sphere to each of the atom center and re-scaling
it to the atom size. We obtain the unit sphere triangulation from [45]. For each vertex q on the

triangulated atom surface MN,  is computed using the point projection algorithm,
where n(q) is the spherical normal at q.

Algorithm 3.3.2 (Minimal Error computation): Set dN = 4.

for each triangle vertex q ∈ SN ∩S N0 do {

• compute PMN1 (q, n(q)), and then compute

–

(9)

• }

Table 2 shows the minimal error of our level one surface for a residue and a chain from

Ribosome 30S, where e(M) is defined as . It can be observed that the error
decreases as p increases. The algorithm for computing minimal error can also be used to
compute the maximal error by changing the min to max in (9). Maximal errors for Ribosome
30s are also listed in Table 2 for different p1 (see the second row).

3.3.2 Maximal Error of Level Two Surface—The maximal error from MN to

 is defined as

where q ∈ MN,  is the normal direction projection of q to the surface . This error

is computed as follows. Let .

Algorithm 3.3.3 (Maximal Error computation): Set dN1 = 0.

for each N ∈ N1 do {

• for each triangle vertex q ∈ SN ∩S N0 do {

– compute q̃:= PMN1 (q, n(q)), and
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–
compute  if q̃ ∈ MN1,N

– and then compute

–

–
if .

• }

}

Again, the projection points q̃ = PMN1 (q, n(q)) and  are computed by the point

projection algorithm, where the searching range [A, B] is set to be [0, 4], since we know 
enclosing MN and we are not interested in the errors that are larger than 4.

The first row of Table 3 shows the maximal errors of the second level (residue level) surfaces
for ribosome 30s, where p1 is chosen to be 0.5, p2 = 0.25, 0.5, 1.0,…, 16. The second row lists
the maximal errors of the second level (low level) surfaces for the same p1 and p2. The results
show that the errors decrease in approximately linear rate as p2 increases.

3.4 Good Approximations of Molecular Surfaces
We have discussed that it is often sufficient to consider a two-level Gaussian map to
approximate molecular surfaces. To address certain structures, p1 is taken to be a small value
to blur the higher level details, p2 is chosen to be larger to enhance the feature of the current
level structure. As we have shown in the last section, a smaller p1 leads to a larger error for the
level one surface, and a larger p2 leads to a smaller error for the second level surface. Therefore,
our strategy for obtaining a tight enclosing surface approximation is to remove the level one
error and ignore the error of the second level.

The main idea to obtain a tight level one enclosing surface  is to reduce the radii of the

atoms, such that  touches the original atoms (see Fig. 6). Suppose  is the nearest

point to the j-th atom, , and the distance from y to the atom is d j. Then we have

(10)

where K(x) = e−x2. Now we want to adjust the radius rj to r̃j, such that the new nearest point
y is on the j-th sphere. Since the dominate part of (10) is the second term of the left hand side,
we therefore require r̃j satisfying

(11)
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(12)

From this we obtain

where K−1 denotes the inverse function of K(x), Rang(K):= {y ∈ IR:y = K(x), x ∈ (0, ∞)}.
Based on this analysis, we build the following iterative algorithm for computing r̃j.

Algorithm 3.4.1 (Sphere Shrinking)—For i = 1, 2,…, n1 do the following steps:

1. Set l=0, .

2. Compute the minimal distance  from the j-th atom to the iso-surface

defined by the multi-level Gaussian map ,
using the Algorithm 4.2.

3. Compute

4.
If  (we take ε = 10−4), terminate the l loop and  are the
required results. Otherwise, set l = l + 1 and go back to step 2.

Remark: The condition  may lead to some of the atoms located in the
interior of the molecule to become untouchable. Figure 6 shows that the circle at the origin is
not touched.

The experiments show the sphere shrinking algorithm converges in a linear rate. Table 4 lists

the error  for 20 amino acids with p1 = 0.4.

Fig. 7 shows multi-resolution implicit solvation surface approximations of an ASN-THR-TYR
peptide with various p1 and p2. Fig. 7(a) shows an atomic level model, Fig. 7(a~g) are residue
level models. It can be observed that when the same p1 is selected, smaller p2 leads to fatter
surfaces. Compared with Fig. 7(g), Fig. 7(f) is more tight.

Fig. 8 shows multi-resolution implicit solvation surface approximation of Ribosome 30S. Fig.
8(a) is a low level model, the pink color shows 16S rRNA and the remaining colors are proteins.
One protein (Chain B) is separated from the whole structure. The residue level model can be
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constructed by selecting small p1 and large p2 as shown in Fig. 8(b), and the atomic level model
is constructed by selecting large p1 and small p2 as shown in Fig. 8(c).

4 Mesh Generation
There are two main methods for contouring scalar fields, primal contouring [30] and dual
contouring [23]. Both of them can be extended to tetrahedral mesh generation. The dual
contouring method [48] [49] is often the method of choice as it tends to yield meshes with
better aspect ratio.

4.1 Triangular Meshing
Dual contouring [23] uses an octree data structure, and analyzes those edges that have endpoints
lying on different sides of the isosurface, called sign change edges. The mesh adaptivity is
determined during a top-down octree construction. Each sign change edge is shared by either
four (uniform case) or three (adaptive case) cells, and one minimizer point is calculated for
each of them by minimizing a predefined Quadratic Error Function (QEF) [19]:

(13)

where pi, ni represent the position and unit normal vectors of the intersection point respectively.
For each sign change edge, a quad or triangle is constructed by connecting the minimizers.
These quads and triangles provide a ‘dual’ approximation of the isosurface.

A recursive cell subdivision process was used to preserve the correct topology [49] of the
isosurface. During the cell subdivision, the function value at each newly inserted grid point
can be exactly calculated since we know the function (Gaussian functions, Eqn. (5)).
Additionally, we can generate a more accurate triangular mesh by projecting each generated
minimizer point onto the isosurface (Eqn. (2)).

4.2 Tetrahedral Meshing
The dual contouring method has already been extended to extract tetrahedral meshes from
volumetric scalar fields [48] [49]. The cells containing the isosurface are called boundary cells,
and the interior cells are those cells whose eight vertices are inside the isosurface. In the
tetrahedral mesh extraction process, all the boundary cells and the interior cells need to be
analyzed in the octree data structure. There are two kinds of edges in boundary cells, one is a
sign change edge, the other is an interior edge. Interior cells only have interior edges. In [48]
[49], interior edges and interior faces in boundary cells are dealt with in a special way, and the
volume inside boundary cells is tetrahedralized. For interior cells, we only need to split them
into tetrahedra.

4.2.1 Adding an Outer Boundary—In the biological diffusion system, we need to analyze
the field which is from infinite faraway to the molecular surface. Assume that the radius of the
circum-sphere of a biomolecule is r. The computational model can be approximated by a field
from an outer sphere S1 with the radius of (20 ~ 40)r to the molecular surface. Therefore the
exterior mesh is defined as the tetrahedralization of the interval volume between the molecular
surface and the outer sphere S1 (Fig. 9(b)). Sometimes the outer boundary is chosen to be a
cubic box as shown in Fig. 9(c).

First we add a sphere S0 with the radius of r0 (where r0 > r and r0 = 2n/2 = 2n−1) outside the
molecular surface, and generate meshes between the molecular surface and the outer sphere
S0. Then we extend the tetrahedral meshes from the sphere S0 to the outer bounding sphere
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S1. For each data point inside the molecular surface, we keep the original function value. While
for each data point outside the molecular surface, we reset the function value as the smaller
one of f (x) − α and the shortest distance from the grid point to the sphere S0. Eqn. (14) shows
the newly constructed function g(x) which provides a grid-based volumetric data containing
the biomolecular surface and an outer sphere S0.

(14)

where x0 are coordinates of the molecular geometric center. The isovalue α = 0.5 for volumetric
data generated from the characteristic function, and α = 1.0 for volumetric data generated from
the summation of Gaussian kernels.

The biomolecular surface and the outer sphere S0 can be extracted as an isosurface at the
isovalue 0, Sg(0) = {x|g(x) = 0}. All the grid points inside the interval volume Ig(0) = {x|g(x)
≤ 0} have negative function values, and all the grid points outside it have positive values.

4.2.2 Primal Mesh Extraction—Here we introduce a different scheme from the algorithm
presented in [48] [49], in which we do not distinguish boundary cells and interior cells when
we analyze edges. We only consider two kinds of edges - sign change edges and interior edges.
For each boundary cell, we can obtain a minimizer point by minimizing its Quadratic Error
Function. For each interior cell, we set the middle point of the cell as its minimizer point. Fig.
10(b) shows a simple 2D example. In 2D, there are two cells sharing each edge, and two
minimizer points are obtained. For each sign change edge, the two minimizers and the interior
vertex of this edge construct a triangle (blue triangles). For each interior edge, each minimizer
point and this edge construct a triangle (yellow triangles). In 3D as shown in Fig. 11, there are
three or four cells sharing each edge. Therefore, the three (or four) minimizers and the interior
vertex of the sign change edge construct one (or two) tetrahedron, while the three (or four)
minimizers and the interior edge construct two (or four) tetrahedra.

Compared with the algorithm presented in [48] [49] as shown in Fig. 10(a), Fig. 10(b) generates
the same surface meshes, and tends to generate more regular interior meshes with better aspect
ratio, but a few more elements for interior cells. Fig. 10(b) can be easily extended to large
volume decomposition. For arbitrary large volume data, it is difficult to import all the data into
memory at the same time. So we first divide the large volume data into some small subvolumes,
then mesh each subvolume separately. For those sign change edges and interior edges lying
on the interfaces between subvolumes, we analyze them separately. Finally, the generated
meshes are merged together to obtain the desired mesh. The mesh adaptivity is controlled by
the structural properties of biomolecules. The extracted tetrahedral mesh is finer around the
molecular surface, and gradually gets coarser from the molecular surface out towards the outer
sphere, S0. Furthermore, we generate the finest mesh around the active site, such as the cavity
in the monomeric and tetrameric mAChE shown in Fig. 17(a~b), and a coarse mesh everywhere
else.

4.2.3 Mesh Extension—We have generated meshes between the biomolecular surface and
the outer sphere S0, the next step is to construct tetrahedral meshes gradually from the sphere
S0 to the bounding sphere S1 (Fig. 9). The sphere S0 consists of triangles, so we extend each
triangle radially as shown in Fig. 12 and a prism is obtained for each extending step. The prism
can be divided into three tetrahedra. The extension step length h can be calculated by Eqn.
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(15). It is better for the sphere S0 to be triangulated uniformly since the step length is fixed for
each extending step.

(15)

where n is the step number. In Figure 12, suppose u0u1u2 is a triangle on sphere S0, and u0,
u1, u2 are the unique index numbers of the three vertices, where u1 < u0 and u1 < u2. For one
extension step, u0u1u2 is extended to v0v1v2, and the two triangles construct a prism, which
can be decomposed into three tetrahedra. In order to avoid the diagonal conflict problem, a
different decomposition method (Fig. 12(b~c)) is chosen based on the index number of the
three vertices. If u0 < u2, then we choose Fig. 12(b) to split the prism into three tetrahedra. If
u2 < u0, then Fig. 12(c) is selected

Assume there are m triangles on the sphere S0, which is extended n steps to arrive the sphere
S1. m prisms or 3m tetrahedra are generated in each extending step, and a total of 3mn tetrahedra
are constructed in the extension process. Therefore, it is better to keep coarse and uniform
triangular mesh on the sphere S0.

5. Quality Improvement
In general, the molecular surface generated by is contouring the Gaussian density function or
the characteristic function is bumpy. This is because the volume data could not be infinitely
fine due to the capacity limit of the computer, and is not smooth enough sometimes, especially
for the data generated from the characteristic function. The error of the isosurface from the
characteristic function could be as large as half of the grid size since the characteristic function
generates binary volumetric data, and could be very large relative to the atom size. Therefore,
a post-processing step for the extracted isosurface is necessary. There are three tasks for the
mesh quality improvement:

1. Denoising the surface mesh (vertex adjustment in the normal direction).

2. Improving the aspect ratio of the surface mesh (vertex adjustment in the tangent
direction).

3. Improving the aspect ratio of the volumetric mesh (vertex adjustment inside the
volume).

We use geometric partial differential equations (PDEs) to handle the first two problems.
Geometric PDEs, such as the mean curvature flow, the surface diffusion flow and Willmore
flow, have been intensively used in surface and imaging processing [46]. Here we choose the
surface diffusion flow to smooth the molecular surface because it preserves volume, and it is
especially suitable for biomoelcular meshes because it can also approximate spheres accurately
if the initial mesh is embedded and close to a sphere.

(16)

where H is the mean curvature, n⃗ is the unit surface normal vector, and Δ is the Laplace-Beltrami
operator. This flow is area shrinking and volume preserving. Furthermore, it preserves sphere
exactly and torus approximately. Suppose a molecular surface could be ideally represented by
the joining of spherical and torus surface patches [25], it is desirable to use the surface diffusion
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flow to evolve the isosurface. However, this flow could only improve the surface shape, not
the mesh regularity. In order to improve the aspect ratio, we need to add a tangent movement
in Eqn. (16). Hence the flow becomes

(17)

where v(x) is the velocity in the tangent direction T ⃗ (x).

Eqn. (17) is solved over a triangular mesh with vertices {xi} by discretizing each of its terms.

In the temporal space,  is approximated by the Euler scheme , where τ is time step-length.
 is the approximating solution at t = nτ,  is the approximating solution at t = (n + 1)τ, and

 serves as the initial value. Discretizing schemes for Δ and H in the spatial space are given
in [46], we do not go to detail here. v(x) T ⃗ (x) is approximated by

(18)

where  is defined as the mass center of all the triangles around . A mass center P of a
region V is defined by finding p ∈ V, such that

(19)

V could be a piece of surface or a volume in ℝ3. For our surface mesh case, V consists of
triangles around vertex . Then from Eqn. (19), we could derive that

(20)

where N(i) is the index set of the one ring neighbors of . Δj is the area of the triangle
[ ].  is the total of triangle areas.

Usually, people use the geometric center [46], instead of the mass center, however we found
that the mass center works better for biomolecules. The discretization leads to a linear system.
The approximated solution is obtained by solving this linear system.

After the molecular surface is smoothed and regularized, the next step is to improve the
volumetric mesh by relocating each interior vertex to the mass center of its surrounding
tetrahedra. Let pi be an interior vertex, pj be one of its neighboring vertices, then the mass
center of all tetrahedra around pi is computed by

(21)
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where Vij is the volume summation of all the tetrahedra around the edge [pi pj], Vi is the volume
summation of the tetrahedra around the vertex pi.

Fig. 13 shows the difference of the mesh before and after quality improvement. The left column
shows the original iso-surface of an ASN-THR-TYR peptide, and the right column shows the
results after smoothing. It is obvious that after quality improvement, the surface becomes much
more smooth, and the mesh is more regular and has better aspect ratios.

Here we choose the aspect ratio (twice of the ratio of incircle radius to circumcircle radius) to
measure the quality of triangular meshes, and the surface diffusion flow to smooth the surface.
The left picture in Fig. 16 shows the improvement of the aspect ratio, and Fig. 14~15 show the
improvement of molecular surfaces. We can see that noises are removed and features are
preserved since the surface diffusion flow preserves volume and spherical geometry. The
surface error is restricted within half of the grid size for the binary data from the characteristic
function, and almost zero for the data from Gaussian density map since we have projected each
boundary vertex onto the isosurface.

In [49], the edge contraction and linear averaging method was used to improve the quality of
tetra meshes with the edge-ratio (the longest edge length over the shortest edge length) and

Joe-Liu parameter , where |V| denotes the volume, eij represents
the edge connecting vertex vi and vj) as metrics. The goal is to improve the worst parameters
in each iteration. Here we still use the same edge contraction scheme, but relocate each interior
vertex to its mass center (Eqn.(21)) since it can minimize the energy defined in Eqn.(19). From
the right picture in Fig. 16, we can see that the worst Joe-Liu parameter is improved
significantly after quality improvement. Fig. 17 and 19 show interior tetra meshes of mAChE
and Ribosome 30S.

6 Results and Conclusion
Monomeric mAChE

For efficient and accurate finite element calculations, adaptive meshes are preferred. Therefore
we generated finer meshes around the narrow gorge region since the the active site in mAChE
is at the bottom of this gorge. The extracted tetrahedral meshes of the monomer as shown in
Fig. 17 have been used in the finite element analysis of the steady-state Smoluchowski equation
(SSSE) for diffusion rate constant calculations [42] [43]. The calculated rates showed good
agreement with experimental results. Our generated surface mesh is being used in also
calculating the electrostatic potential distribution of biomolecules.

Tetrameric mAChE
We also applied our approach to generate tetrahedral meshes for the acetylcholine esterase in
tetrameric form, with two different arrangement of the monomers. Each monomer has an active
site accessible though a long narrow gorge (20 Angstrom), so there are a total of four gorges.
Fig. 18 shows the two crystal structures. In the first crystal structure, two gorges are partially
blocked, while the other two are completely accessible to solvent. In the second one, all the
four gorges are open. Similarly, we generated adaptive meshes with finer triangles around the
region of the four gorges and coarser triangles in other regions [47].

Ribosome
Ribosomes are macromolecular complexes responsible for the translation of mRNA into
protein. These complexes consist of two subunits: the larger 50S and the smaller 30S, both of
the subunits composed of rRNA and protein constituents. Atomic level, residue-level and low
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resolution structures were constructed from density maps as shown in Fig. 3 and 5. The
constructed implicit solvation models is being used in solving the Possion-Boltzmann equation
to calculate the electrostatic potential using the boundary element method. This is one
collaborating project we are working on. Fig. 19 and Fig. 1 show interior and exterior meshes
of the Ribosome 30S/50S.

We have developed a quality molecular meshing approach directly from PDB molecular
structural data, with adaptivity at prescribed active sites on the molecular surface. Some of our
generated meshes have been used and continue to being used in boundary/finite element
biophysics simulations.
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Fig. 1.
Implicit solvation models of Haloarcula Marismortui large Ribosome 50S (1JJ2) subunit. The
light yellow and the pink color show 5S and 23S rRNA respectively, the remaining colors are
proteins. (a): the implicit solvation model at the medium resolution level, p1 = 0.0625, p2 =
1.0; (b) and (c): triangular meshes (16700 vertices, 33400 triangles); (d): the interior mesh
(230025 vertices, 1141575 tets); (e): an exterior mesh within a sphere (234902 vertices,
1162568 tets); (f): an exterior mesh within a bounding box (260858 vertices, 1315112 tets).
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Fig. 2.
Implicit Solvation models by choosing various C in (a) and Bi in (b). Yellow balls are two
input atoms. The correspondence between C/Bi values and these models are shown in Table
1.
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Fig. 3.
Implicit solvation models of Thermus Thermophilus small Ribosome 30S (1J5E) crystal
subunit for various Gaussian kernel parameters. The pink color shows 16S rRNA and the
remaining colors are proteins.
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Fig. 4.
The definition of multi-level surfaces.
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Fig. 5.
Implicit solvation models of Haloarcula Marismortui large Ribosome 50S (1JJ2) crystal
subunit. (a) p1 = 0.03125; (b) p1 = 0.125; (c) p1 = 0.5. p2 = 1.0. The light yellow and the pink
color show 5S and 23S rRNA respectively, the remaining colors are proteins.
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Fig. 6.
The left picture shows the inflation effect by the Gaussian map. The right one shows the tight
enclosing of atoms. The centers of the five atoms are (−2, 0, 0), (2, 0, 0), (0, −1, 0), (0, 1, 0)
and (0, 0, 0). The corresponding radii are 0.8, 0.9, 1.1, 1.3 and 1.3. The parameter p in the
Gaussian map is chosen to be 0.4. The tight approximation on the right figure is obtained by
shrinking the five radii into 0.55644, 0.72525, 0.60476, 1.04567 and 0.0 respectively. The unit
is Angstrom.
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Fig. 7.
Different effects of changing p2 and tight/non-tight approximations for an ASN-THR-TYR
peptide which consists of 49 atoms. The surface (b), (c) and (d) are the same as outer surfaces
of (e), (f) and (g) respectively. The inner surface of (e), (f) and (g) is the hard sphere model of
three residues. (a) shows the atomic level approximation of the hard sphere model, where p1
= 5.0, p2 = 1.0; (b), (e), (c) and (f) show the tight approximation of the residue level with p1 =
0.4. But different p2 are used. We choose p2 = 2.0 for (b) p2 = 0.5 for (c). It could be observed
that larger p2 leads to closer approximation. (d) and (g) show non-tight approximations using
the same p1 and p2 as (c) and (f). Comparing with (f), even larger error is observed in (g).
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Fig. 8.
Multi-resolution models of Ribosome 30S. (a) - Ribosome 30S at the low level with p1 =
0.0625, p2 = 1.0 in multi-level Gaussian map. Ribosome 30S contains 22 chains and each of
them is painted in a different color. The pink color shows 16S rRNA and the remaining colors
are proteins. The blue box shows one protein (Chain B). (b) - Chain B at the residue level with
p1 = 0.4, p2 = 5.0. It consists of 234 residues. (c) - Chain B at the atomic level with p1 = 5.0,
p2 = 1.0. It consists of 1900 atoms.
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Fig. 9.
The analysis domain of exterior meshes. (a) - ‘O’ is the geometric center of the molecule,
suppose the circum-sphere of the biomolecule has the radius of r. The box represents the
volumetric data, and ‘S0’ is the maximum sphere inside the box, the radius is r0(r0 > r). ‘S1’
is an outer sphere with the radius of r1(r1 = (20 ~ 40)r). (b) - the diffusion domain is the interval
volume between the biomolecular surface and the outer sphere ‘S1’, here we choose r1 = 5r
for visualization. (c) - the outer boundary is a cubic box.
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Fig. 10.
2D triangulation. (a) Old scheme, (b) New scheme. Blue and yellow triangles are generated
for sign change edges and interior edges respectively. The red curve represents the molecular
surface, and the green points represent minimizer points.
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Fig. 11.
Sign change edges and interior edges are analyzed in 3D tetrahedralization. (a)(b) - sign change
edge (the red edge); (c)(d) - interior edge (the red edge). The green solid points represent
minimizer points, and the red solid points represent the interior vertex of the sign change edge.
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Fig. 12.
(a) - one triangle in the sphere S0 (blue) is extended n steps until arriving the sphere S1 (red);
(b) and (c) - a prism is decomposed into three tetrahedra in two different ways.
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Fig. 13.
The surface comparison before/after quality improvement. The left column shows the original
surface of an ASN-THR-TYR peptide, and the right column shows the surface after smoothing.
The top row shows the smooth shading surfaces, and the bottom row shows snapshots of the
meshes.

Zhang et al. Page 31

Comput Aided Geom Des. Author manuscript; available in PMC 2009 October 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 14.
Comparison of mAChE (9308 vertices, 18612 triangles) before and after surface smoothing.
(a) -original; (b) - after smoothing.
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Fig. 15.
Comparison of Ribosome 30S (13428 vertices, 26852 triangles) before and after surface
smoothing. Left - original; Right - after smoothing.
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Fig. 16.
The histogram of the aspect-ratio and Joe-Liu parameter.
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Fig. 17.
Interior and exterior tetrahedral meshes of monomeric mAChE. The left two pictures conform
to the SAS with σ = 2, and the right two pictures conform to the surface constructed from
Gaussian summation with p1 = 0.25, p2 = 1.0. From left to right: (65147 vertices, 323442 tets),
(121670 vertices, 656823 tets), (103680 vertices, 509597 tets) and (138967 vertices, 707284
tets). The color shows electrostatics potential (leftmost) and color by residues (the right two).
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Fig. 18.
Interior and exterior tetrahedral meshes of tetrameric mAChE, p1 = 0.5, p2 = 1.0. The left two
pictures show the 1st crystal structure 1C2O (133078 vertices, 670950 tets), and the right two
pictures show the 2nd one 1C2B, (106463 vertices, 551074 tets). Gorges are shown in red
boxes.
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Fig. 19.
Interior and exterior tetrahedral meshes of Ribosome 30S, low resolution, p1 = 0.03125, p2 =
1.0. From left to right: (33612 vertices, 163327 tets), (37613 vertices, 186496 tets) and (40255
vertices, 201724 tets). The pink color shows 16S rRNA and other colors show proteins.
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Table 1
C (1/Angstrom2)/Bi (constant) and Implicit Solvation Models in Fig. 2

Red Green Magenta Blue

Fig. 2(a) C = −0.125 C = −0.25 C = −0.5 C = −1.0

Fig. 2(b) Bi= −0.125 Bi= −0.25 Bi= −0.5 Bi= −1.0
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