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Abstract

A topological approach to identifying the “good” interpolant among the
four distinct solutions to the first–order Hermite interpolation problem for
planar quintic Pythagorean–hodograph curves is presented. An existence
theorem is proved, together with a complete analysis of uniqueness/non–
uniqueness properties. A simple formula for finding the “good” solution,
without appealing to curve fairness or energy integrals, is also presented.

1 Introduction

By virtue of their special algebraic structures, the Pythagorean-hodograph (PH)
curves exhibit significant computational advantages over “ordinary” polynomial
parametric curves for computer–aided design and manufacturing (CAD/CAM),
robotics, motion control, animation, and related applications. For example, the
arc length of a PH curve can be computed precisely by evaluating a polynomial,
and the offset curves at any fixed distance from a PH curve — employed as tool
paths in numerical–control (NC) machining — are rational curves that can be
exactly represented in CAD systems [8, 7]. Digital motion control along curved
paths, with fixed or variable feedrates (speeds), is a promising new application
context for PH curves [4, 5, 11]. The interpolation integral, which defines timed
“reference points” on a curved path in accordance with the specified feedrates,
admits an analytic reduction for PH curves, yielding real–time interpolators
that are remarkably accurate, efficient, and versatile compared to the customary
practice of approximating curved paths by linear/circular “G code” segments.
Also, in the interpolation of discrete data, PH curves produce “fairer” loci (with
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National University. The third author is supported by Post Doctoral Fellowship from IMA.
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more even curvature distributions) than ordinary polynomial curves, and they
admit exact evaluation of the bending energy integral [2, 10, 6]. The theory and
applications of PH curves have been extended in many directions. For example,
rational PH curves have offsets of lower degree than polynomial PH curves, but
are not as well–suited to motion control since their arc lengths do not depend
rationally on the curve parameter [1, 16, 17]. PH curves have also been defined
in the Minkowski metric of special relativity theory, allowing exact recovery of
two–dimensional shapes from their medial–axis transforms [13, 14].

Efficient and reliable methods for constructing, analyzing, and manipulating
PH curves are essential to their practical use in CAD/CAM and other contexts.
Although the formulation of such algorithms is more challenging than in the
linear realm of “ordinary” Bézier/B–spline forms, substantial progress has been
made. For planar PH curves, the complex-variable model [9] greatly facilitates
the formulation and implementation of such algorithms for first–order Hermite
interpolation [6] and construction of C2 splines [2]. Another approach has been
used to solve the local G2 Hermite interpolation problem [12]. A common feature
of such interpolation problems is that the non–linear nature of PH curves yields
a multiplicity of formal solutions, of which typically only one has acceptable
“shape” properties. The process of explicitly constructing all the interpolants
in order to identify the “good” solution can be unduly cumbersome.

The solution to the first–order Hermite interpolation problem for PH quintics
is fundamental to their practical use. Planar PH quintics play a role analogous
to the “ordinary” cubics in free–form design, since they provide similar shape
freedoms, inflectional capability, etc. Hermite interpolation allows one–for–one
replacement of the “ordinary” cubics by PH quintics — and the latter typically
have better curvature profiles. Moreover, by providing a designer the ability to
position the first and last two control points of a PH quintic, with the Hermite
algorithm “filling in” the middle two, one obtains an intuitive, interactive tool
for the construction and manipulation of planar PH quintics.

In this paper, we use the complex representation [9, 6, 15] for planar curves,
in which they are specified by complex–valued functions γ(t) = x(t)+i y(t) where
x(t), y(t) are real–valued functions of a real parameter t. A polynomial curve
γ(t) ∈ C[t] is called a planar PH curve if, for some polynomial σ(t) ∈ R[t], its
hodograph (derivative) γ′(t) = x′(t)+ i y′(t) satisfies the Pythagorean condition

|γ′(t)|2 = x′(t)2 + y′(t)2 = σ(t)2 .

The hodograph of any planar PH curve is generated [9] by squaring a complex
polynomial. More precisely, γ(t) is a planar PH curve if and only if

γ′(t) = w(t)χ(t)2 (1)

for some complex polynomial curve χ(t) ∈ C[t] and real polynomial w(t) ∈ R[t]
(see [3] for an alternative proof). We call the hodograph γ′(t) primitive if
x′(t) and y′(t) have no common factors. A primitive Pythagorean hodograph is
obtained by setting w(t) ≡ 1 in (1), i.e.,

γ′(t) = χ(t)2 (2)
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for a polynomial χ(t) = u(t) + i v(t) with gcd(u, v) = constant. Every primitive
PH curve is thus of odd degree. In this paper, we study Hermite interpolation by
PH quintics defined by integrating (2) with a quadratic polynomial χ(t) ∈ C[t].
This problem consists of finding a planar PH quintic γ(t) ∈ C[t] such that

γ(0) = p0 , γ(1) = p1 , γ′(0) = a , γ′(1) = b (3)

for given first–order Hermite data p0, p1, a, b ∈ C. Such curves have the form

γ(t) = p0 +
∫ t

0

χ(s)2 ds

for some quadratic complex polynomial χ(t). Setting d = p1 − p0, the Hermite
interpolation problem corresponds to finding a quadratic χ(t) ∈ C[t] such that

∫ 1

0

χ(t)2 dt = d , χ(0)2 = a , χ(1)2 = b . (4)

As is well–known, the same Hermite interpolation problem is uniquely solved
by “ordinary” planar cubics: there is a unique cubic Bézier curve r(t) such that

∫ 1

0

r′(t) dt = d , r′(0) = a , r′(1) = b .

The hodograph of this unique solution r(t) is given by

r′(t) = a(1− t)2 + m2(1− t)t + bt2 , (5)

where m = 3d− a− b, since
∫ 1

0

a(1− t)2 + m2(1− t)t + bt2 dt = 1
3 (a + m + b) = d .

This correspondence is more than just superficial — we show below that there is
a deep connection between the cubic Bézier solution and the PH quintic solutions
of the first–order Hermite interpolation problem. In fact, the interplay between
the solutions is a central theme of this paper.

It is known [6] that there are generally four distinct solutions to the quintic
PH interpolation problem. Consider first the equations χ(0)2 = a and χ(1)2 = b.
For given a, b ∈ C, these equations evidently have two solutions for each of χ(0)
and χ(1). Hence, there are four possible pairs (χ(0), χ(1)). Now let (α, β) be a
specific pair, i.e., α2 = a, β2 = b. For this pair and some z ∈ C, we may write

χ(t) = α(1− t)2 + z2(1− t)t + βt2 . (6)

By a simple computation, the condition
∫ 1

0
χ(t)2 dt = d can then be written as

[ z + 3
4 (α + β) ]2 = 5

4

[
6d− α2 − β2 + 1

4 (α + β)2
]

. (7)
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Since, for fixed α and β, equation (7) is quadratic in z, it has two solutions.
Thus, there are altogether eight possible combinations for the values of α, β, z.
However, one can easily see that if α, β, z is a solution, then −α, −β, −z is also a
solution, and these solutions define exactly the same curve, since∗ γ′(t) = χ(t)2.
Hence, there are only four distinct PH quintic Hermite interpolants — they can
be generated by solving (7) using pairs (α, β) and (α,−β) for any fixed α, β.

Figure 1: The four distinct PH quintics that interpolate given Hermite data.

Figure 1 shows an example of the four distinct PH quintic interpolants γ(t)
to given Hermite data. Only one of these four curves, the “good” solution, is a
fair curve devoid of undesired loops — the other three are clearly inappropriate
for practical applications. Our primary concern here is to develop methods
to automatically select the “good” solution. In previous studies [10, 6] this
problem was addressed by identifying the “good” solution as the one with the
least value of some integral shape measure, such as the absolute rotation number
Rabs or elastic bending energy E . The main drawback of this approach is that it
can be computationally quite expensive (and different measures may sometimes
suggest different choices). Another approach [15] was based on a comparison
with the unique “ordinary” cubic interpolant to the specified Hermite data. It
was shown that, for certain restricted Hermite data, the “good” solution could
be identified a priori on the basis of the absence of anti–parallel tangents relative
to the cubic.

2 Topological perspective

Figure 2 compares the four PH quintic interpolants in Figure 1 with the unique
“ordinary” cubic interpolant to the specified Hermite data. One immediately
sees that three of the four PH quintics differ qualitatively in shape from the cubic
because of the presence of “tight loops” — in this case, it is clearly appropriate to
identify the PH quintic that is free of such loops as the “good” solution. The key
problem is to quantify this criterion for selecting the “good” solution in such a
manner that its existence and uniqueness are guaranteed, and it can be identified
by an easily–implemented and efficient algorithm. Another remarkable feature
of the PH quintic interpolants is that the “looping” behavior persists under

∗Clearly, there are two quadratic curves (6) from α to β with middle control points z1, z2

given by the roots of (7). For brevity, we typically refer to these curves by the same symbol
χ(t) but specify which of the values, z1 or z2, is under consideration.
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small perturbations, and even for large perturbations the loops are retained,
although the solution that loops may change from one branch to another. This
behavior suggests an underlying topological explanation for the phenomenon.

Figure 2: PH quintic interpolants compared with the unique “ordinary” cubic.

Since the “ordinary” cubic Hermite interpolant behaves reasonably well and
is used extensively in practice, it is a reasonable working hypothesis that the
best PH quintic solution should be the one that closely mimics the behavior of
this cubic. According to this “principle” we would choose the second PH quintic
from the left in Figure 2 as the good solution. There are many possible means
to characterize similarity between the PH quintics and the ordinary cubic, but
the most basic characterization is purely topological in nature. In this spirit we
claim that, for two curves with the same boundary conditions to be “similar,” we
must be able to continuously deform one curve into the other (we actually deal
with the curve hodographs) under fixed end points. In topological terms, this
means that the winding number for the reverse concatenation (defined below)
of the PH quintic and ordinary cubic hodographs should be zero. To express
this criterion rigorously, we need some preliminary definitions.

Definition 2.1 Let X(t) be a complex–valued continuous curve for t ∈ [0, 1]. If
X(t) 6= 0 for t ∈ [0, 1], there is a continuous real–valued function θ(t) such that

X(t) = |X(t)| exp i θ(t)

For such an X(t), the angle variation ∆θX of X is defined by

∆θX = θ(1)− θ(0) .

Remark 2.2 If X(t) satisfies the conditions of the above definition, so does

X(t)2 = |X(t)|2 exp i 2θ(t) .

Since 2θ(t) is continuous, the angle variation of X2 is given by

∆θX2 = 2θ(1)− 2θ(0) = 2∆θX .

Definition 2.3 Let X(t) be a complex–valued continuous curve for t ∈ [0, 1]
and suppose X(t) 6= 0 for all t ∈ [0, 1] and X(0) = X(1). For such an X(t), the
winding number wind(X) is defined by

wind(X) =
1
2π

∆θX . (8)
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Definition 2.4 Let X1(t) and X2(t) be continuous complex–valued curves for
t ∈ [ 0, 1 ] and suppose that X1(0) = X2(0) and X1(1) = X2(1). The reversely
concatenated curve X1 ªX2 is defined by

(X1 ªX2)(t) =
{

X1(2t), t ∈ [0, 1
2 ] ,

X2(2− 2t), t ∈ [ 12 , 1] .

Remark 2.5 Suppose X1ªX2(t) 6= 0 for t ∈ [ 0, 1 ]. Then it is easy to see that

∆θX1ªX2 = ∆θX1 −∆θX2 , ∆θX1ªX2 = −∆θX2ªX1 ,

wind(X1 ªX2) =
1
2π

∆θX1ªX2 =
1
2π

(∆θX1 −∆θX2) .

We now fix some more notations and conventions. Let a, b, d ∈ C be given
Hermite data. We denote the unique “ordinary” cubic interpolating the given
data by r(t), while γ(t) denotes one of the four PH quintics that interpolate this
data. We call the complex plane in which r(t) and γ(t) reside the curve space.
On the other hand, the complex plane in which their hodographs r′(t) and γ′(t)
reside is the hodograph space. We now define a key concept for this paper.

Definition 2.6 (Hodograph winding number) Since r′(0) = γ′(0), r′(1) =
γ′(1) we can combine r′(t) and γ′(t) to form the reversely concatenated curve
c(t) = (r′ªγ′)(t). We call the winding number of c = r′ªγ′ with respect to the
origin the hodograph winding number and denote it† by wind(r′ ª γ′).

For the examples in Figure 2, the reversely–concatenated hodographs c(t) =
(r′ ª γ′)(t) are shown in Figure 3, with their hodograph winding numbers (8).

PSfrag replaements
0 r0

PSfrag replaements 0r0
PSfrag replaements 0 r0PSfrag replaements

0r0

Figure 3: Reversely–concatenated hodographs c(t) = (r′ ª γ′)(t) (in hodograph
space) for the ordinary cubic and PH quintics in Figure 2. From left to right, we
have wind(r′ªγ′) = −2, wind(r′ªγ′) = 0, wind(r′ªγ′) = −1, wind(r′ªγ′) = 1.

The PH condition is characterized by the existence of a quadratic χ(t) ∈ C
satisfying (2). Since γ′(t) is given first and χ(t) is to be found later, this problem
is identical to the path lifting problem under the branched double covering map

C −→ C , z 7−→ z2 .

†Note that this hodograph winding number is the negative of that defined in [15].
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As will be seen below, this lifted path is easier to deal with than the hodograph
itself. Similarly, given the hodograph r′(t) of the cubic r(t), we can find a curve
s(t) ∈ C satisfying the relation r′(t) = s(t)2. It is clear that s(t) is also the
lifting of r′(t) under the branched double covering map z 7−→ z2. Since γ′(t) is
the square of χ(t) and r′(t) that of s(t), we call χ(t) and s(t) the square–root
curves of γ′(t) and r′(t), respectively (see Figure 4). We call the complex plane
in which these square–root curves reside the branched double covering space.

The three spaces employed in our arguments should be carefully noted: the
curve space, the hodograph space, and the branched double covering space — for
clarity, we consistently maintain them as separate copies of the complex plane.

PSfrag replaements
� sPSfrag replaements �sPSfrag replaements � sPSfrag replaements �

s

Figure 4: Hodograph square–root curves (in branched double covering space).

Now, as alluded to above, the hodograph winding number wind(r′ªγ′) must
be zero in order for a PH quintic to be topologically equivalent to the ordinary
cubic. Thus, the following constitute the core questions addressed in this paper:

Fundamental questions

• Existence. For arbitrary Hermite data, is there at least one solution to the
Hermite interpolation problem with zero hodograph winding number?

• Uniqueness. If there is such a solution, is it unique?

• Best Selection. If there exists more than one solution with zero hodograph
winding number, which do we choose as the “good” solution?

The answers to the above questions are non–trivial. We first prove that the
answer to the existence question is always in the affirmative. But the uniqueness
question is less straightforward. For practical configurations, which predominate
in applications, the answer is in the affirmative. But in special configurations,
there may be two solutions with zero hodograph winding number. We clarify
when such uniqueness holds or fails — in the latter case, we give a well–defined
selection procedure, so the selection problem is also deemed to have been solved.

3 Fundamental facts on quadratic curves

We present here some basic results concerning the behavior of quadratic Bézier
curves (parabola segments), which serve as the “workhorses” for our topological
arguments. They appear in two different guises — as the hodographs of cubic
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Bézier curves, and as the square–root curves for the hodographs of PH quintics,
and are thus critical ingredients in nearly every step of our proofs. A quadratic
Bézier curve between complex numbers z1, z2 has the form

Qz1,µ,z2(t) = z1(1− t)2 + µ2(1− t)t + z2t
2 , t ∈ [ 0, 1 ] (9)

µ ∈ C being the middle control point. If z1, z2, µ are understood from context,
we drop the subscripts on Q. Similarly, we define the line segment

Lz1,z2(t) = z1(1− t) + z2t , t ∈ [ 0, 1 ] (10)

from z1 to z2. If there is no danger of confusion, we drop the subscripts on L.
For reasons that will subsequently be clear, we need detailed information on the
behavior of (9) and (10). Specifically, we need to identify the conditions under
which the origin lies inside the region bounded by Qz1,µ,z2(t) and Lz1,z2(t) for
t ∈ [0, 1]. To achieve this, we study when Qz1,µ,z2(t) passes through the origin.

Definition 3.1 We introduce the following sets in the complex plane:

Hz1,z2 := {λ1z1 + λ2z2 | λ1 < 0, λ2 < 0, λ1λ2 = 1
4 } ,

W 0
z1,z2

:= {λ1z1 + λ2z2 | λ1 < 0, λ2 < 0, λ1λ2 < 1
4 }

∪ {λ1z1 + λ2z2 | λ1 ≥ 0 or λ2 ≥ 0 } ,

W 1
z1,z2

:= {λ1z1 + λ2z2 | λ1 < 0, λ2 < 0, λ1λ2 > 1
4 } ,

Az1,z2 := {λ1z2 + λ2z2 | λ1 > 0 or λ2 > 0 } ,

Bz1,z2 := {λ1z1 + λ2z2 | λ1 < 0 or λ2 < 0 } .

Hz1,z2 is the locus depicted in Figure 5, while W 0
z1,z2

, W 1
z1,z2

, Az1,z2 , Bz1,z2

are the shaded regions shown in Figure 6. The following theorem identifies when
Qz1,µ,z2 passes through the origin.

Theorem 3.2 Qz1,µ,z2(t) = 0 for some t ∈ (0, 1) if and only if µ has the form
λ1z1 + λ2z2 for negative λ1, λ2 with λ1λ2 = 1

4 — i.e., µ ∈ Hz1,z2 .

Proof. Suppose Qz1,µ,z2(t∗) = 0 for some t∗ ∈ (0, 1). Then, since z1(1− t∗)2 +
µ2(1− t∗)t∗ + z2t

2
∗ = 0, we have

µ = − 1
2 [ z1(1− t∗)/t∗ + z2t∗/(1− t∗) ] .

Set λ1 = −(1 − t∗)/2t∗ and λ2 = −t∗/2(1 − t∗). Then λ1 and λ2 are negative,
and λ1λ2 = 1

4 . Conversely, suppose µ = λ1z1 + λ2z2 for negative λ1, λ2 with
λ1λ2 = 1

4 . Let t∗ = 1/(1 − 2λ1). Then, we easily infer that Qz1,µ,z2(t∗) = 0.
Also, since λ1 is a negative real number, 0 < t∗ < 1. 2

The next theorem, which is easy to verify, gives a complete answer to the
question posed above about the conditions under which the origin lies inside the
region enclosed by Qz1,µ,z2(t) and Lz1,z2(t) for t ∈ [0, 1] — see Figure 7.
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z1

z2

Hz1,z2

Figure 5: The locus Hz1,z2 is a single branch of a hyperbola.
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Figure 6: The four regions in the complex plane specified by Definition 3.1 —
W 0

z1,z2
(top left); W 1

z1,z2
(top right); Az1,z2 (bottom left); Bz1,z2 (bottom right).
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PSfrag replaements z1
z2Qz1;�;z2� Lz1;z2PSfrag replaements z1

z2Qz1;�;z2� Lz1;z2
Figure 7: Illustration of Theorem 3.3 — top left: wind(Qz1,µ,z2 ª Lz1,z2) = 0;
top right: wind(Qz1,µ,z2 ª Lz1,z2) = 0; bottom left: wind(Qz1,µ,z2 ª Lz1,z2) is
undefined; bottom right: wind(Qz1,µ,z2 ª Lz1,z2) = ±1.

Theorem 3.3 Suppose z1 and z2 are linearly independent over R. Then, clearly
Hz1,z2 , W 0

z1,z2
, W 1

z1,z2
are mutually disjoint, and C = Hz1,z2 ∪W 0

z1,z2
∪W 1

z1,z2
.

Also, 0 /∈ Az1,z2 and 0 /∈ Bz1,z2 . Moreover, we have:

(i) µ ∈ W 0
z1,z2

⇐⇒ Qz1,µ,z2(t) ∈ Az1,z2 for all t ∈ (0, 1)
⇐⇒ wind(Qz1,µ,z2 ª Lz1,z2) = 0

(ii) µ ∈ W 1
z1,z2

⇐⇒ Qz1,µ,z2(t) ∈ Bz1,z2 for all t ∈ (0, 1)
⇐⇒ wind(Qz1,µ,z2 ª Lz1,z2) = ±1

(iii) µ ∈ Hz1,z2 ⇐⇒ Qz1,µ,z2(t) = 0 for some t ∈ (0, 1)

In case (iii), wind(Qz1,µ,z2 ª Lz1,z2) is undefined.

The following theorem shows that the angle variation for the square–root curve√
Q of Q can be simply computed from the angle variation of the line segment

connecting the end points of
√

Q.

Theorem 3.4 Suppose z1 and z2 are linearly independent over R, and let Q =
Qz1,µ,z2(t). Assume further that µ /∈ Hz1,z2 . Then the angle variation ∆θ√Q of
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the square–root curve
√

Q(t) of Q(t) for t ∈ [0, 1] is well-defined and ∆θ√Q =
1
2∆θQ. Let L(t) be the line segment connecting two end points of

√
Q(t) from√

Q(0) to
√

Q(1). Then, the angle variation ∆θL of L(t) is well–defined, and
∆θ√Q = ∆θL = Arg (

√
Q(1)/

√
Q(0)), where we take −π < Arg z ≤ +π.

We also need the following lemma, whose proof is trivial.

Lemma 3.5 Let X(t), Y (t) be complex–valued functions of a real parameter
t ∈ [0, 1] and suppose that X(t) 6= 0, Y (t) 6= 0 for all t ∈ [0, 1], and X(0) = Y (0).
Then if X(1) = Y (1), wind(X2 ª Y 2) = 2 wind(X ª Y ) = 2n for some integer
n, and if X(1) = −Y (1), wind(X2 ª Y 2) = 2n + 1 for some integer n.

4 Main results: generic case

We state our key result under the following genericity condition (the remaining
technicalities will be fully addressed in the next section).

Genericity assumption: For given Hermite data a, b, d we assume that a, b
are linearly independent over R.

Now the hodograph of the ordinary cubic r(t) is a quadratic curve of the form
(5), with middle control point m given by

m = 3d− a− b . (11)

At present, we only consider the case in which r′(t) 6= 0, i.e., m 6∈ Ha,b — the
remaining case is dealt with in Section 4.3.

Recall that s(t) and χ(t) are the square–root curves of r′(t) and γ′(t), and
α, β are the square roots of a, b. After a suitable rotation, we may assume that

a = r1 e−iθ , b = r2 eiθ . (12)

for some positive r1, r2 and θ ∈ (−π/2, 0) ∪ (0, π/2). We may also assume that

α =
√

r1 e−iθ/2 , β =
√

r2 eiθ/2 . (13)

Then χ(t) is given by (6). We may also assume, without loss of generality, that
s(0) = χ(0) = α. We then have s(1) = ±β, and there exist two χ(t) such that
χ(1) = β and two χ(t) such that χ(1) = −β. We call these assumptions on a, b
and α, β the standard configuration, and consider them to hold henceforth. The
standard–configuration locations of a, b and α, β are illustrated in Figure 8.

We now outline our answers to the fundamental questions of Section 2 by
means of the hodograph winding number wind(r′ ª γ′). Our strategy is to work
mostly with square–root curves χ(t) and s(t) in the branched double covering
space, because this greatly simplifies the problem analysis. We now present our
argument through a series of reduction steps. The first reduction step concerns
the square–root curve s(t) of r′(t). Note that r′(t) is a quadratic curve from a
and b. Therefore, its behavior is completely determined by its middle control

11
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Figure 8: Locations of a, b and α, β for m ∈ W 0
a,b (left) and m ∈ W 1

a,b (right).

point m as defined in (11), which again largely governs the angle variation of
r′(t). Figure 8 depicts the two cases m ∈ W 0

a,b and m ∈ W 1
a,b. In the former

case, the absolute value of the angle variation of r′(t) is less than π; in the latter,
greater than π but less than 2π. The square–root curve s(t) of r′(t) is also drawn
in the same complex plane as in Figure 8. By our convention, s(0) = α and
s(1) = ±β. Since the angle difference between α and β is less than π/2, s(1)
must be β, in the case when m ∈ W 0

a,b. Similarly, the angle difference between
α and −β is greater than π/2 but less than π, s(1) must be −β, in the case
m ∈ W 1

a,b. These results are summarized in the following lemma.

Lemma 4.1 (Linear Reduction Lemma) Assume a, b, α, β are in standard
configuration under the genericity assumption. Assume also that s(0) = α.
Then either one of the following holds.

Case 1: If m ∈ W 0
a,b, then s(1) = β and the angle variation of s(t) is the same

as that of Lα,β(t), where Lα,β(t) is the line segment from α to β.

Case 2: If m ∈ W 1
a,b, then s(1) = −β and the angle variation of s(t) is the same

as that of Lα,−β(t), where Lα,−β(t) is the line segment from α to −β.

By virtue of this lemma we can pretend, as far as the hodograph winding
numbers are concerned, that the square–root curve s(t) is a line segment. Hence,
the problem is reduced first to enumerating all possible configurations of the
quadratic curve χ(t) from α to ±β and the line segments also from α to ±β,
and then deciding which of these theoretical possibilities actually do or do not
occur. Figure 9 illustrates all such possibilities. For example, the top left and
top right cases depict the quadratic curve χ(t) from α to β, together with the
line segments Lα,β(t) and Lα,−β(t). Note that by Lemma 4.1 Lα,β(t) is the
proxy of s(t) when s(1) = β; and Lα,−β(t) is the proxy of s(t) when s(1) = −β.
The difference between these two cases is that in the former case the middle
control point z of χ(t) is in the region W 0

α,β , thereby making the absolute value
of the angle variation of χ(t) less than π, whereas in the latter case the middle

12
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Figure 9: Possible configurations of s(t) and χ(t). Top left: ∆θLα,β

−∆θχ = 0
and ∆θLα,−β

−∆θχ = −π. Top right: ∆θLα,β
−∆θχ = 2π and ∆θLα,−β

−∆θχ =
π. Bottom left: ∆θLα,β

− ∆θχ = π and ∆θLα,−β
− ∆θχ = 0. Bottom right:

∆θLα,β
−∆θχ = −π and ∆θLα,−β

−∆θχ = −2π.

control point z of χ(t) is in the region W 1
α,β , which makes the absolute value of

the angle variation of χ(t) greater than π.
This angle–variation information is easily translated into the hodograph

winding number. In fact, it is easy to see that the hodograph winding number
wind(r′ ª γ′) is given by

wind(r′ ª γ′) = (∆θLα,±β
−∆θχ)/π ,

where ± sign in front of β is chosen depending on whether s(t), hence the line
segment, goes from α to β or −β. The angle variations ∆θLα,±β

−∆θχ in the
branched double covering space are also depicted in the upper cases of Figure 9.
The lower cases in Figure 9 represent the same situation, but the quadratic
curve χ(t) now goes from α to −β. Thus, the corresponding hyperbola changes
from Hα,β to Hα,−β . As a result, the possible values the hodograph winding
number can take are restricted, as summarized in the following lemma.

Lemma 4.2 Besides the genericity assumption, assume further that r′(t) 6= 0
and γ′(t) 6= 0 for all t ∈ [0, 1]. If s(1) = χ(1), then

wind(r′ ª γ′) = 0 or ± 2.

On the other hand, if s(1) = −χ(1), then

wind(r′ ª γ′) = ±1.

From the above two lemmas, the existence problem can be restated as follows.

(i) If m ∈ W 0
a,b, is there at least one χ(t) such that wind(sª χ) = 0 between

two χ(t) from α to β?

13



(ii) If m ∈ W 1
a,b, is there at least one χ(t) such that wind(sª χ) = 0 between

two χ(t) from α to −β?

4.1 Existence

We now give an answer to the existence question. Obviously, the crux of the
argument involves the relation between the line segment Lα,±β(t) and χ(t) whose
most important properties are stated as follows.

Lemma 4.3 If m ∈ W 0
a,b ∪Ha,b, then at least one of the middle control points

z of χ(t) from α to β is in W 0
α,β. If m ∈ W 1

a,b ∪Ha,b, at least one of the middle
control points z of χ(t) from α to −β is in W 0

α,−β.

Proof. For the first statement, suppose neither of the middle control points z
of χ(t) from α to β is in W 0

α,β . Choose any branch of the square root of the
right hand side of (7), which can be written as λ1α+λ2β for some real numbers
λ1 and λ2, since α and β are linearly independent over R. The middle control
point z of χ(t) is given by

z = − 3
4 (α + β)± (λ1α + λ2β) .

Since both values are in Hα,β ∪W 1
α,β , λ1 and λ2 must satisfy

λ1 − 3
4 < 0 , λ2 − 3

4 < 0 ,
(
λ1 − 3

4

) (
λ2 − 3

4

) ≥ 1
4 ,

λ1 + 3
4 > 0 , λ2 + 3

4 > 0 ,
(
λ1 + 3

4

) (
λ2 + 3

4

) ≥ 1
4 . (14)

The region defined by these inequalities is shown as the shaded area in Figure 10.

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.2

0.4

0.6

λ1

λ2

Figure 10: The region defined by the inequalities (14).

So, −
√

5
4 ≤ λ1, λ2 ≤

√
5

4 and − 5
16 ≤ λ1λ2 ≤ 1

16 . Since

5
4

(
6d− a− b + 1

4 (α + β)2
)

= (λ1α + λ2β)2 ,
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we have

m = 3d− a− b = 2
5 (λ1α + λ2β)2 − 1

8 (α + β)2 − 1
2 (a + b)

=
(

2
5λ2

1 − 5
8

)
a +

(
2
5λ2

2 − 5
8

)
b +

(
4
5λ1λ2 − 1

4

)
αβ

=
(

2
5λ2

1 − 5
8 +

(
4
5λ1λ2 − 1

4

) √
r2/r1 / 2 cos θ

)
a

+
(

2
5λ2

2 − 5
8 +

(
4
5λ1λ2 − 1

4

) √
r1/r2 / 2 cos θ

)
b .

Note that since
(a/r1) + (b/r2) = 2 cos θ ,

αβ is replaced by

αβ =
√

r1r2

2 cos θ

(
a

r1
+

b

r2

)

in the above equation. Let R =
√

r2/r1 and

A =
2
5
λ2

1−
5
8
+

(
4
5
λ1λ2 − 1

4

)
1

2 cos θ
R , B =

2
5
λ2

2−
5
8
+

(
4
5
λ1λ2 − 1

4

)
1

2 cos θ

1
R

.

Since 2
5λ2

k − 5
8 ≤ − 1

2 (k = 1, 2) and 4
5λ1λ2 − 1

4 ≤ − 1
5 , A and B are negative

numbers. Moreover,

A ≤ −1
2
− 1

5
1

2 cos θ
R < −1

2
, B ≤ −1

2
− 1

5
1

2 cos θ

1
R

< −1
2

.

So,
AB > 1

4 .

Since A < 0, B < 0, and AB > 1
4 , therefore m ∈ W 1

a,b. This is a contradiction
to the assumption that m ∈ W 0

a,b ∪Ha,b.
For the second statement, we can similarly assume z satisfies the relation

z + 3
4 (α− β) = ±(λ̃1α− λ̃2β)

for some real numbers λ̃1 and λ̃2, where z is either middle control point of χ(t).
As above, we now suppose neither of the middle control points z of χ(t) from
α to −β is in W 0

α,−β . Thus, λ̃1 and λ̃2 satisfy the same condition (14). By a
similar calculation, we get

m = Ãa + B̃b,

where

Ã =
2
5
λ̃2

1−
5
8
−

(
4
5
λ̃1λ̃2 − 1

4

)
1

2 cos θ
R, B̃ =

2
5
λ̃2

2−
5
8
−

(
4
5
λ̃1λ̃2 − 1

4

)
1

2 cos θ

1
R

.

Since m ∈ W 1
a,b ∪Ha,b, Ã < 0 and B̃ < 0. Then, since 4

5 λ̃1λ̃2 − 1
4 ≤ − 1

5 ,

2
5 λ̃2

1− 5
8−

(
2
5 λ̃1λ̃2 − 1

8

)
R < Ã < 0, 2

5 λ̃2
2− 5

8−
(

2
5 λ̃1λ̃2 − 1

8

) 1
R

< B̃ < 0 . (15)
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For ease of notation, we set

M1 = 5
8 − 2

5 λ̃2
1 , M2 = 5

8 − 2
5 λ̃2

2, , N = 1
8 − 2

5 λ̃1λ̃2 .

With these M1,M2, N , expressions (15) are rewritten as

−M1 + NR < Ã < 0 , −M2 + N
1
R

< B̃ < 0 .

So, M1 > NR and M2 > N/R. By this M1M2 > N2. Note that M1,M2, N are
positive. Then,

ÃB̃ < M1M2 −N

(
M1

R
+ M2R

)
+ N2

≤ M1M2 − 2N
√

M1M2 + N2 = (
√

M1M2 −N)2 .

In addition,

0 <
√

M1M2 −N ≤ 1
2M1 + 1

2M2 −N = 1
2 − 1

5 (λ̃1 − λ̃2)2 ≤ 1
2 .

So, ÃB̃ < 1
4 . Since Ã < 0 and B̃ < 0, m ∈ W 0

a,b. This is a contradiction to the
assumption that m ∈ W 1

a,b ∪Ha,b. 2

This can be interpreted as follows. According to Lemma 4.1, the condition
m ∈ W 0

a,b implies that s(1) = β and Lemma 4.3 says that, in this case, there is
at least one χ(t) which is of the shape depicted in the top left case of Figure 9
with the corresponding line segment being Lα,β(t). Thus, in this case the angle
variation ∆θLα,β

−∆θχ is zero, which again implies that the hodograph winding
number is zero. A similar argument applies to the case when m ∈ W 1

a,b. In this
case, there is at least one χ(t) such that the angle variation ∆θLα,−β

−∆θχ is
zero, hence the hodograph winding number is zero as in the bottom left case of
Figure 9. Thus, we have the following theorem.

Theorem 4.4 (Existence Theorem) For given p0, p1, a, b ∈ C, let r(t) be the
unique cubic interpolant such that

r(0) = p0, r(1) = p1, r′(0) = a, r′(1) = b.

(i) If a, b are linearly independent over R and m = 3(p1 − p0)− a− b /∈ Ha,b

— i.e., r′(t) does not pass through the origin — there exists at least one
quintic PH interpolant γ(t) such that

γ(0) = p0, γ(1) = p1, γ′(0) = a, γ′(1) = b

with wind(r′ ª γ′) = 0.

(ii) r′(t) passes through the origin if and only if m ∈ Ha,b. In this case,
wind(r′ ª γ′) is undefined.
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4.2 Uniqueness and Non–uniqueness

Let χ(t) be the quadratic curve from α to either β or −β, depending on the
case. There are of course two such quadratic curves with the same start and
end points, and the arguments leading to Theorem 4.4 show that at least one
middle control point z of χ(t) lies in the region W 0

α,β or W 0
α,−β depending on

whether the middle control point m of r′(t) lies in W 0
a,b or W 1

a,b respectively
(see the convention on the use of terminology concerning how to distinguish the
quadratic curves by simply designating the middle control point.)

In this section, we investigate further whether such z is unique. In particular,
we need to understand whether it is possible for both the z points to lie in W 0

α,±β .
For that purpose, it is necessary to determine when z lies at the border, i.e., on
Hα,±β . However, as we shall see below, it turns out that it is easier to look at
the equivalent formulation in terms of the location of the middle control point
m of r′(t). Note that (7) can be rearranged so that the middle control point m
of r′(t) is expressed as

m = 3d− a− b

=





2
5 (z + 3

4 (α + β))2 − 1
2α2 − 1

2β2 − 1
8 (α + β)2 if z ∈ Hα,β ,

2
5 (z + 3

4 (α− β))2 − 1
2α2 − 1

2β2 − 1
8 (α− β)2 if z ∈ Hα,−β ,

which suggests the following definition.

Definition 4.5 Let ψα,β be the map from Hα,β to C defined by

ψα,β(z) = 2
5

(
z + 3

4 (α + β)
)2 − 1

2α2 − 1
2β2 − 1

8 (α + β)2.

Similarly define ψα,−β as the map from Hα,−β to C defined by

ψα,−β(z) = 2
5

(
z + 3

4 (α− β)
)2 − 1

2α2 − 1
2β2 − 1

8 (α− β)2.

Let SHα,±β be the image of Hα,±β under the map ψα,±β. In other words,

SHα,β =
{

2
5

(
z + 3

4 (α + β)
)2 − 1

2α2 − 1
2β2 − 1

8 (α + β)2 | z ∈ Hα,β

}
,

SHα,−β =
{

2
5

(
z + 3

4 (α− β)
)2 − 1

2α2 − 1
2β2 − 1

8 (α− β)2 | z ∈ Hα,−β

}
.

Note that SHα,β is a curve obtained by suitably translating and squaring
the hyperbola Hα,β followed by another translation. From this definition, it is
clear that if m ∈ SHα,β (resp. SHα,−β), there exist at least one z ∈ Hα,β (resp.
Hα,−β) which is the middle control point of the quadratic curve χ(t) from α to
β (resp. to −β). In other words, if m ∈ SHα,β (resp. SHα,−β), at least one
solution χ(t) from α to β (resp. −β) passes through the origin. In fact, the
number of solutions χ(t) passing through the origin for given m is |ψ−1

α,±β(m)|.
In order to properly understand the problem, we need the following lemmas.
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Figure 11: Proof of Lemma 4.6.

Lemma 4.6 SHα,β (resp. SHα,−β) has a single self-intersection point.

Proof. The self–intersection point occurs when there are two distinct z1, z2 ∈
Hα,β such that

(z1 + 3
4 (α + β))2 = (z2 + 3

4 (α + β))2 .

Note that
− 3

4 (α + β) = λ1α + λ2β ,

where λ1 = λ2 = − 3
4 . Therefore, at − 3

4 (α + β), λ1 < 0, λ2 < 0, and λ1λ2 =
9
16 > 1

4 so − 3
4 (α + β) ∈ W 1

α,β . In other words, − 3
4 (α + β) lies in the left (i.e.,

convex) side of Hα,β . In Figure 11, a line through − 3
4 (α+β) is drawn. Here, ζ1

and ζ2 are defined to be the points on Hα,β at which this line meets with Hα,β .
In this example, the line is drawn in such a way that

|ζ1 + 3
4 (α + β)| > |ζ2 + 3

4 (α + β)| .

As the line rotates clockwise about the point − 3
4 (α+β), |ζ1+ 3

4 (α+β)| decreases
while |ζ2+ 3

4 (α+β)| increases until they become equal. As the rotation proceeds
beyond this point, it is easy to see that the inequality

|ζ1 + 3
4 (α + β)| < |ζ2 + 3

4 (α + β)|

persists until the line becomes horizontal. In this manner, one can easily deduce
the existence and uniqueness of the self–intersection point. 2

This lemma implies that on SHα,β (resp. SHα,−β), there exists a unique
m such that |ψ−1

α,β(m)| = 2 (resp. |ψ−1
α,−β(m)| = 2). Thus, only at the unique

self–intersection point of SHα,β (resp. SHα,−β), both cases of χ(t) pass through
the origin. At any other points on SHα,β (resp. SHα,−β), there exists only one
case of χ(t) which does not pass through the origin. At the point which is not
on SHα,β (resp. SHα,−β), neither case of χ(t) passes through the origin.

This lemma also means that SHα,β (resp. SHα,−β) divides the complex plane
C into three connected components (one bounded and two unbounded). Each of
these connected component has a crucial influence on the winding behavior of
χ(t). The following lemma, whose proof is trivial by the continuity argument,
is nonetheless one of the key ingredients in our subsequent discussion.

Lemma 4.7
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(i) Let U be an open connected component of C−SHα,β, and let m ∈ U be the
middle control point of r′(t) from a to b. Suppose z1, z2 are two middle
control points of χ(t) from α to β. Then, as m varies throughout U , z1

(resp. z2) remains in the same set once it is in W 0
α,β or W 1

α,β.

(ii) Let U be an open connected component of C − SHα,−β, and let m ∈ U
be the middle control point of r′(t) from a to b. Suppose z1, z2 are two
middle control points of χ(t) from α to −β. Then, as m varies throughout
U , z1 (resp. z2) remains in the same set once it is in W 0

α,−β or W 1
α,−β.

For fixed a and b, the number of z in W 0
α,β (resp. W 0

α,−β) depends only on the
value of m. Let us denote this number by Nα,β(m), resp. Nα,−β(m). However,
from the above lemma, this number is constant on the each open connected
component U . Let us denote this number by Nα,β(U), resp. Nα,−β(U). From
(7), we can easily deduce that the mid–point of the two middle control points
z1 and z2 of χ(t) starting from α ending at β is − 3

4 (α + β) and the distance
between z1 (or z2) and − 3

4 (α + β) is the square root of the modulus of

5
4

(
2m + a + b + 1

4 (α + β)2
)
. (16)

Since − 3
4 (α + β) is in the left side of Hα,β , at least one z is in the right side of

Hα,β , i.e., in W 0
α,β , if |m| is sufficiently large. So, for the unbounded component

U , the number of z ∈ W 0
α,β cannot be zero. We thus have the following lemma.

Lemma 4.8 If U is an unbounded open connected component of C − SHα,β

(resp. C− SHα,−β), Nα,β(U) 6= 0 (resp. Nα,−β(U) 6= 0).

For m which makes the value of (16) zero, z1 and z2 must be − 3
4 (α + β).

Thus, Nα,β(m) = 0 for such m. This implies that there exists at least one open
connected component U such that Nα,β(U) = 0. Thus, from the above lemma,
we can get the following lemma.

Lemma 4.9 If U is the bounded open connected component of C−SHα,β (resp.
C− SHα,−β), Nα,β(U) = 0 (resp. Nα,−β(U) = 0).

We will call this bounded open connected component the island.
If m goes infinitely to the right along a horizontal line, the argument of

(16) goes to 0. Thus, z1, z2 are on the line which passes through − 3
4 (α + β)

and is almost parallel to the x-axis. Since the distance between z1 (or z2) and
− 3

4 (α + β) becomes large enough, Nα,β(m) becomes 1 as m goes infinitely to
the right along a horizontal line. By similar arguments, we obtain the following.

Lemma 4.10 (Asymptotic Behavior)

If m moves to the right on a horizontal line, Nα,β(m) eventually becomes 1.

If m moves to the left on a horizontal line, Nα,β(m) eventually becomes 2.

If m moves in any direction on a vertical line, Nα,β(m) eventually becomes 2.
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Figure 12: SHα,β for m lying in the different open connected components of
C− SHα,β assuming m ∈ W 0

a,b, and thus s(t) going from α to β. Left: the case
m ∈ N 1

α,β with z1 ∈ W 0
α,β and z2 ∈ W 1

α,β . Center: the case m ∈ N 2
α,β with

z1, z2 ∈ W 0
α,β . Right: the case m ∈ N 0

α,β with z1, z2 ∈ W 1
α,β .

If m moves to the right on a horizontal line, Nα,−β(m) eventually becomes 2.

If m moves to the left on a horizontal line, Nα,−β(m) eventually becomes 1.

If m moves in any direction on a vertical line, Nα,−β(m) eventually becomes 1.

Since there are exactly three open connected components of C−SHα,β (resp.
C − SHα,−β), there exists only one open connected component U such that
Nα,β(U) = k (resp. Nα,−β(U) = k) for each k = 0, 1, 2. Let us denote the open
connected component U of C − SHα,β (resp. C − SHα,−β) with Nα,β(U) = k
(resp. Nα,−β(U) = k) by N k

α,β (resp. N k
α,−β). Then, from the above lemma,

N 1
α,β is in the right side of SHα,β , N 2

α,β is in the left side of SHα,β , N 1
α,−β is in

the left side of SHα,−β , and N 2
α,−β is in the right side of SHα,−β .

Theorem 4.11

(a) Among the three open connected components of C−SHα,β, N 0
α,β is the only

bounded component, while N 1
α,β and N 2

α,β are the unbounded components
to right and left of SHα,β respectively.

(b) Among the three open connected components of C − SHα,−β, N 0
α,−β is

the only bounded component, while N 1
α,−β and N 2

α,−β are the unbounded
components to the left and right of SHα,−β respectively.

Figure 12 depicts SHα,β for m lying in the different open connected com-
ponents of C − SHα,β assuming m ∈ W 0

a,b, thus s(t) going from α to β (note
that, under this assumption, the case for χ(t) going from α to −β need not be
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Figure 13: Analogs to the cases shown in Figure 12, when β is replaced by −β.
Left: m ∈ N 1

α,−β with z1 ∈ W 0
α,−β and z2 ∈ W 1

α,−β . Center: m ∈ N 2
α,−β with

z1, z2 ∈ W 0
α,−β . Right: m ∈ N 0

α,−β with z1, z2 ∈ W 1
α,−β .

considered as in the case wind(r′ ª γ′) = ±1). For example, in the top row
m lies to the right of SHα,β , which gives rise to the situation in which one of
the middle control points z is in W 0

α,β , while the other in W 1
α,β . The middle

row represents the case in which m lies entirely to the left of SHα,β which gives
rise to the situation in which both the middle control points z lies in W 0

α,β .
Finally, the bottom row represents the case in which m lies in the small island,
which incurs the situation in which both the middle control points z lie in W 1

α,β .
Figure 13 illustrates the analogous cases in which β is replaced by −β, with cor-
responding changes in the assumption that m ∈ W 1

a,b. Note that Figures 12 and
13 represent all the theoretical possibilities to be considered.

Our next step is to show that not all the six theoretical possibilities in
Figure 12 and 13 actually occur, and in fact we will decide which ones actually
occur and which ones don’t. For this, we need the following lemmas.

Lemma 4.12 SHα,β meets Ha,b in least at two points, and the island of SHα,β

with its boundary is entirely in the left side of Ha,b.

Proof. When m is in the island or on its boundary, then clearly both z lie in
W 1

α,β ∪Hα,β by Lemma 4.9 and the continuity argument as depicted in Figure
12. Suppose there exists an m in the island or on its boundary, such that m is
in the right side of Ha,b or on Ha,b, i.e., m ∈ W 0

a,b ∪Ha,b, then by Lemma 4.3
there exists at least one z ∈ W 0

α,β . But this is a contradiction. Therefore, none
of the points in the island or on its boundary can be in the right side of Ha,b.
In fact, we have shown that the island with its boundary is included in open set
W 1

a,b. Thus, Ha,b does not intersect the island, even in its boundary.
Let us now show that they meet in least at two points. Recall that a, b, α,

β are in standard configuration, which means that we may assume they satisfy
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(12) and (13). Ha,b has two asymptotic half lines whose arguments (i.e., angle
from the positive x–axis) are π − 1

2θ and π + 1
2θ respectively. By inspection,

it is trivial to see that SHα,β converges asymptotically to two half lines whose
arguments are 2π−θ ≡ −θ (mod 2π) and 2π+θ ≡ θ (mod 2π). Since the island
of SHα,β is in the left side of Ha,b, the asymptotic half line of SHα,β with
argument θ must meet with the asymptotic half line of Ha,b with argument
π − θ. Therefore by continuity, the curve SHα,β must meet Ha,b in one side of
the island when an orientation for the curve SHα,β is fixed. Similar argument
shows that SHα,β must meet Ha,b in the other side of island. 2

Lemma 4.13 If m ∈ W 1
a,b ∪ Ha,b, at least one middle control point z of χ(t)

from α to −β is in W 1
α,−β.

Proof. This proof is very similar to that of the second statement in Lemma 4.3.
Let z + 3

4 (α−β) = ±(λ1α−λ2β). We suppose both of z are in Hα,−β ∪W 0
α,−β .

Then, λ1, λ2 satisfy |λ1|, |λ2| ≥
√

5
4 , λ1λ2 ≤ − 5

16 . If we let R =
√

r2/r1, by the
similar calculation, we get

m = Aa + Bb,

where

A =
2
5
λ2

1−
5
8
−

(
4
5
λ1λ2 − 1

4

)
1

2 cos θ
R, B =

2
5
λ2

2−
5
8
−

(
4
5
λ1λ2 − 1

4

)
1

2 cos θ

1
R

.

Since m ∈ W 1
a,b ∪Ha,b, A < 0 and B < 0. For the ease of notation, set

M1 = 5
8 − 2

5λ2
1 , M2 = 5

8 − 2
5λ2

2 , N = 1
8 − 2

5λ1λ2 .

Since N ≥ 1
4 > 0, we can get inequalities

−M1 + NR < −M1 + NR/ cos θ = A < 0 ,

−M2 + N/R < −M2 + N/R cos θ = B < 0 .

So, M1 > NR and M2 > N/R. By this, M1M2 > N2. Then,

AB < M1M2 −N (M1/R + M2R) + N2

≤ M1M2 − 2N
√

M1M2 + N2 = (
√

M1M2 −N)2 .

In addition,

0 <
√

M1M2 −N ≤ 1
2M1 + 1

2M2 −N = 1
2 − 1

5 (λ1 − λ2)2 ≤ 1
2 .

So, AB < 1
4 . Since A < 0 and B < 0, m ∈ W 0

a,b. This is a contradiction to the
assumption that m ∈ W 1

a,b ∪Ha,b 2

Combining the above lemma with Lemma 4.3, we obtain the following.

Theorem 4.14 Assume m ∈ W 1
a,b. Then there exists exactly one middle con-

trol point z in W 0
α,−β, and exactly one middle control point z in W 1

α,−β.
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Figure 14: Illustration of Theorem 4.16 — (a): The case m ∈ W 0
a,b ∩ N 1

α,β

with z1 ∈ W 0
α,β and z2 ∈ W 1

α,β ∪ Hα,β . (b): The case m ∈ W 0
a,b ∩ N 2

α,β with
z1 ∈ W 0

α,β and z2 ∈ W 0
α,β . (c): The case m ∈ W 1

a,b ⊂ N 1
α,−β with z1 ∈ W 0

α,−β

and z2 ∈ W 1
α,−β .

Corollary 4.15 SHα,−β does not meet Ha,b, and the island of SHα,−β with its
boundary lies entirely in the right side of Ha,b.

We are now ready to expound on the uniqueness/non–uniqueness question.
First, assume m ∈ W 0

a,b, i.e., m lies to the right of Ha,b. Then by Lemma 4.1
s(t) goes from α to β. Therefore, we are confined to the three cases in Figure 12.
Combining with Lemma 4.12 reduces this to the two cases in Figure 14(a) and
14(b). Now the shaded region in Figure 14(a) lies to the right of Ha,b and
SHα,β . If m lies in that region, one of the middle control points is in W 0

α,β , and
the other is in W 1

α,β from the first statement in Lemma 4.10. Hence, uniqueness
holds there. (Note that when m ∈ W 0

a,b ∩ SHα,β , it is clear that one middle
control point is in W 0

α,β , and the other in Hα,β by Lemma 4.3 and the definition
of SHα,β . Thus, uniqueness also holds in W 0

a,b∩SHα,β .) On the other hand, the
shaded region depicted in Figure 14(b) lies to the right of Ha,b but to the left
of SHα,β (or the upper/lower region of SHα,β). From the second and the third
statements in Lemma 4.10, this region has the property that if m lies there,
both the middle control points z are in W 0

α,β . Therefore there are two solutions
to the existence problem, which means that each represents the solution with
zero hodograph winding number wind(r′ªγ′) = 0. This is the region where the
uniqueness theorem fails.

Assume now that m ∈ W 1
a,b, i.e., m lies in the left side of Ha,b. Then by

Lemma 4.1, s(t) goes from α to −β. Therefore, we must examine the cases in
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Figure 13. However, Theorem 4.14 and Corollary 4.15 imply that there is only
one possibility, namely, the case depicted in Figure 14(c). Therefore, in this
case, the uniqueness theorem holds.

Theorem 4.16 Suppose a, b, α, β are in the form of the standard configuration.
Then, W 0

a,b is included in N 1
α,β ∪ N 2

α,β, and W 0
a,b ∩ N 1

α,β and W 0
a,b ∩ N 2

α,βare
non–empty sets. Also, W 1

a,b is included in N 1
α,−β.

(i) If m ∈ W 0
a,b ∩N 1

α,β, there exists a unique quintic PH Hermite interpolant
γ(t) such that wind(r′ ª γ′) = 0.

(ii) If m ∈ W 0
a,b ∩ N 2

α,β, there exist two quintic PH Hermite interpolants γ(t)
such that wind(r′ ª γ′) = 0.

(iii) If m ∈ W 1
a,b there exists a unique PH Hermite interpolant γ(t) such that

wind(r′ ª γ′) = 0.

4.3 Analytic continuation

Consider first the case in which uniqueness fails, i.e., the case where m ∈ W 0
a,b∩

N 2
α,β (depicted in Figure 14(b)). In this case, both the middle control points z

of χ(t) are in W 0
α,β , thereby making wind(χ ª s) = 0 for either case. On the

other hand, when m ∈ W 0
a,b∩N 1

α,β , one middle control point z of χ(t) is in W 0
α,β

and the other in W 1
α,β ∪Hα,β (see Figure 14(a)). Hence, in this case, uniqueness

holds.
The relation between these cases can be explained as follows. As m moves

from W 0
a,b ∩N 1

α,β to W 0
a,b ∩N 2

α,β , each of two branches of z is analytically con-
tinued. Thus, it is advantageous to choose the value (branch) of z obtained by
the analytic continuation of z that gives uniqueness. This idea can be precisely
formulated in the following theorem, whose proof can be found in the Appendix.

Theorem 4.17 Suppose m ∈ W 0
a,b ∪Ha,b. Then, any square root of

5
4

(
6d− a− b + 1

4 (α + β)2
)

has a non–zero real part. Let K be the square root with positive real part. Then
z = K − 3

4 (α + β) is the middle control point of χ(t) from α to β such that
z ∈ W 0

α,β. Thus if m ∈ W 0
a,b, wind(r′ ª γ′) = 0, where γ′(t) = [ α(1 − t)2 +

z2(1− t)t + βt2 ]2.

On the other hand, we know that when m ∈ W 1
a,b uniqueness holds as shown

in Figure 14(c). However, it is still important in practice to have a formula for
z. The following theorem, whose proof can be found in Appendix, gives such a
z.

Theorem 4.18 Suppose m ∈ W 1
a,b ∪Ha,b. Then, any square root of

5
4

(
6d− a− b + 1

4 (α− β)2
)
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Figure 15: Ha,b where a = r1e
−iθ, b = r2e

iθ and θ = 0; 0 < θ < 1
2π; θ = 1

2π.

has non–zero imaginary part. Let K be the root with sin 1
2θ ImK < 0. Then

z = K − 3
4 (α − β) is the middle control point of χ(t) from α to −β such that

z ∈ W 0
α,−β. Thus if m ∈ W 1

a,b, wind(r′ ª γ′) = 0, where γ′(t) = [ α(1 − t)2 +
z2(1− t)t− βt2 ]2.

Analytic Continuation on Ha,b: From the above two theorems, each of the
two solutions — one obtained when m ∈ W 0

a,b and the other when m ∈ W 1
a,b —

can be analytically continued to the solutions when m ∈ Ha,b. When m ∈ Ha,b,
r′(t) passes through the origin; thus wind(r′ ª γ′) is undefined. However, these
two continued solutions on Ha,b do not pass through the origin.

5 Non–generic case

The case not considered above is the one in which a, b are collinear. Although
the direct argument for this case can be complicated, the easier approach is to
treat it as a limiting case of the cases considered above. Here we present an
intuitive limiting argument for this case (a rigorous proof is in the Appendix).

5.1 Case 1: a and b are in the same direction

By a rotation, we may assume a and b are positive real numbers, r1 and r2.
This case can be thought as the limiting case of aθ → a = r1 and bθ → b = r2,
where aθ = r1e

−iθ and bθ = r2e
iθ. Then it is easy to see that, as θ → 0,

Haθ,bθ
→ Hr1,r2 = (−∞,−√r1r2] .

Let αθ =
√

r1e
−iθ/2, βθ =

√
r2e

iθ/2 and α =
√

r1, β =
√

r2. Then it is also easy
to see that as θ → 0

SHαθ,βθ
→ SH√

r1,
√

r2 = [−L,∞) ,

where L is 1
8 (5r1 + 5r2 + 2

√
r1r2) (note that −L < −√r1r2).

Thus the shaded region in Figure 14(b) converges to the open set C −
{x-axis}, the shaded region in Figure 14(a) disappears, and the hyperbola
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Ha,b collapses into the line (−∞,−√r1r2] while SHα,β collapses into the line
[−L,∞). Also, ψα,β : (−∞,− 4

√
r1r2] → [−L,∞) is the quadratic function

ψα,β(z) = 2
5

(
z + 3

4 (
√

r1 +
√

r2)
)2 − 1

2r1 − 1
2r2 − 1

8 (
√

r1 +
√

r2)2 .

It is easy to see that φα,β has two inverses (with multiplicity) if and only if
m ∈ [−L,−S], where −S = φα,β(− 4

√
r1r2) and −L < −S < −√r1r2. Therefore

we have the following theorem.

Theorem 5.1

(i) r′(t) passes through the origin if and only if m lies in the semi–infinite
line (−∞,−√r1r2 ]. In this case, wind(r′ ª γ′) is undefined.

(ii) If m lies in C − {x-axis}, then there are two solutions γ such that the
hodograph winding number wind(r′ ª γ′) = 0.

(iii) If m lies on the half infinite line (−√r1r2,∞) on the x-axis, then there
is the unique solution γ such that wind(r′ ª γ′) = 0. In this case, the
hodograph of the other solution passes through the origin.

The “good” solution selection formula can be obtained by taking the limiting
value — we can easily see that it is the same as in Theorem 4.17.

Theorem 5.2 Suppose a = r1, b = r2 for positive real values r1, r2 and write
α =

√
r1, β =

√
r2. If m 6∈ Ha,b = (−∞,−√r1r2], any square root of

5
4

(
6d− a− b + 1

4 (α + β)2
)

has a non-zero real part. Let K be the square root with Re(K) > 0. Then

z = K − 3
4 (α + β)

is the middle control point of χ(t) from α to β such that wind(r′ ª γ′) = 0,
where γ′(t) = [ α(1− t)2 + z2(1− t)t + βt2 ]2.

5.2 Case 2: a and b are in opposite directions

We may assume a = r1e
−iπ/2, b = r2e

iπ/2 for some positive r1, r2 and we set
α =

√
r1e

−iπ/4, β =
√

r2e
iπ/4 and define aθ = r1e

−iθ, bθ = r2e
iθ. To take the

limit, we let θ → 1
2π, so that aθ → a, bθ → b. It is then easy to verify that

Haθ,bθ
→ Ha,b = {y-axis} and SHαθ,±βθ

→ SHα,±β ,

where Re(SHα,β) < 0 and Re(SHα,−β) > 0 (SHα,β and SHα,−β are symmetric
with respect to the y-axis). In fact, the shaded region in Figure 14(a) converges
to the right half–plane Re z > 0, the shaded region in Figure 14(b) disappears,
and the shaded region in Figure 14(c) converges to the left half–plane Re z < 0.
Thus, we have the following theorem.
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Theorem 5.3 Let a, b be as defined above. Then

(i) r′(t) passes through the origin if and only if m lies on the y–axis. In this
case, wind(r′ ª γ′) is undefined.

(ii) If m lies in the open set C−{y-axis}, there exists a unique solution γ such
that wind(r′ ª γ′) = 0.

However, the selection formula can also be obtained by a limiting argument
applied to the formula given in Section 4, and this differs depending on whether
m lies in the right half plane or in the left half plane. In fact, the selection
formula when m is in the right half–plane comes from Theorem 4.17 and when m
is in the left half–plane it comes from Theorem 4.18 with θ = 1

2π. The selection
formula for the “good” solution is thus given in the following proposition.

Proposition 5.4 Let a, b, α, β be as defined above.

(i) If Re(m) ≥ 0, any square root of

5
4

(
6d− a− b + 1

4 (α + β)2
)

has non–zero real part. Let K be the root with positive real part. Then
z = K − 3

4 (α + β) is the middle control point of χ(t) from α to β such
that z ∈ W 0

α,β. Therefore, if Re(m) > 0, wind(r′ ª γ′) = 0 where γ′(t) =
[ α(1− t)2 + z2(1− t)t + βt2 ]2.

(ii) If Re(m) ≤ 0, any square root of

5
4

(
6d− a− b + 1

4 (α− β)2
)

has non–zero imaginary part. Let K be the root with negative imaginary
part. Then z = K − 3

4 (α − β) is the middle control point of χ(t) from α
to −β such that z ∈ W 0

α,−β. Therefore, if Re(m) < 0, wind(r′ ª γ′) = 0
where γ′(t) = [ α(1− t)2 + z2(1− t)t− βt2 ]2.

Analytic Continuation on y–axis: Similar analytic continuation can be
applied as in Section 4.3. From the above proposition, each of the two solutions
— one obtained when Re(m) > 0 and the other obtained when Re(m) < 0 — can
be analytically continued to the solution when Re(m) = 0. When Re(m) = 0,
r′(t) passes through the origin; thus wind(r′ªγ′) is not defined. However, these
two continued solutions on the y–axis do not pass through the origin.

6 Best selection formula

For numbers r1 > 0, r2 > 0,−π
2 < θ ≤ π

2 , let a = r1e
−iθ, b = r2e

iθ, α =√
r1e

−iθ/2, β =
√

r2e
iθ/2. For given complex number d ∈ C, let r(t) be the

cubic Bézier curve such that

r′(t) = a(1− t)2 + m2(1− t)t + bt2
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where m = 3d − a − b. Suppose r′(t) 6= 0 for all t ∈ [0, 1]. This condition is
equivalent to that m /∈ Ha,b. Let γ(t) be the quintic PH curve such that

γ′(t) = χ(t)2,

χ(t) being given by the selection rule below. Then, γ′(t) 6= 0 for t ∈ [0, 1] and

wind(r′ ª γ′) = 0 .

Selection rule: standard configuration

(i) (θ = 0) or (0 < |θ| < π/2 and m ∈ W 0
a,b) or (θ = π/2 and Re(m) > 0)

Let K be the square root of

5
4

(
6d− a− b + 1

4 (α + β)2
)

such that Re(K) > 0, and let z = K − 3
4 (α + β). Then we select χ(t) =

α(1− t)2 + z2(1− t)t + βt2.

(ii) (0 < |θ| < π/2 and m ∈ W 1
a,b) or (θ = π/2 and Re(m) < 0)

Let K be the square root of

5
4

(
6d− a− b + 1

4 (α− β)2
)

such that sin 1
2θ Im(K) < 0, and let z = K − 3

4 (α − β). Then we select
χ(t) = α(1− t)2 + z2(1− t)t− βt2.

Suppose we are given non–zero a, b not necessarily in standard configuration.
Also, suppose that we are given d such that m = 3d−a−b 6∈ Ha,b. For a non-zero
complex number z, let Arg z be the argument of z such that −π < Arg z ≤ π.
First, we need to find θ0 and θ :

(i) Find θ0 such that a = |a|eiθ0 (Not necessarily θ0 = Arg a)

(ii) Find θ such that 2θ = Arg (b/a)

Now, writing α =
√
|a|eiθ0/2, β =

√
|b|ei(θ0/2+θ), and R = e−i(θ0+θ)/2, we need

only follow the scheme below, which is easy to verify.

Selection rule

(i) (θ = 0) or (0 < |θ| < π/2 and m ∈ W 0
a,b) or (θ = π/2 and Re(mR2) > 0)

Let K be the square root of

5
4

(
6d− a− b + 1

4 (α + β)2
)

such that Re(KR) > 0. Let z be the complex number obtained by

z = K − 3
4 (α + β) .

Then we select χ(t) = α(1− t)2 + z2(1− t)t + βt2.
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(ii) (0 < |θ| < π/2 and m ∈ W 1
a,b) or (θ = π/2 and Re(mR2) < 0)

Let K be the square root of

5
4

(
6d− a− b + 1

4 (α− β)2
)

such that sin 1
2θ Im(KR) < 0. Let z be the complex number obtained by

z = K − 3
4 (α− β) .

Then we select χ(t) = α(1− t)2 + z2(1− t)t− βt2.

7 Closure

A topological criterion for identifying the “good” solution among the four PH
quintic interpolants to planar Hermite data has been proposed. The analysis
includes an existence theorem, together with a complete discussion of uniqueness
properties. The availability of a simple formula for finding the “good” solution,
without appealing to curve fairness integrals, is a key step in making practical
use of the many advantageous computational properties of PH curves.

8 Appendix 1: Non–generic cases

8.1 Case 1: a and b are in the same direction

Suppose that a, b 6= 0 and b = λa for some λ > 0. Without loss of generality,
we can assume that a = r1, b = r2 for some r1, r2 > 0. In this case, Hr1,r2 =
(−∞,−√r1r2] from Lemma 8.1.

Lemma 8.1 For positive real numbers r1, r2 set Hr1,r2 = (−∞,−√r1r2 ]. For
a complex number µ ∈ C, let Q(t) = r1(1 − t)2 + µ2(1 − t)t + r2t

2. Then if
µ 6∈ Hr1,r2 , the angle variation ∆θQ is zero.

Proof. From the definition of Hr1,r2 ,

Hr1,r2 =
{
λ1r1 + λ2r2 | λ1 < 0, λ2 < 0, λ1λ2 = 1

4

}
,

we need to get find range of the function f(t) = r1t+r2/4t, where t < 0. Clearly,
for all t < 0, f(t) < 0 and

r1t + r2/4t ≤ −√r1r2 .

Moreover, since lim
t→−∞

f(t) = −∞,

Hr1,r2 = (−∞,−√r1r2 ] .

If µ /∈ Hr1,r2 , then Q(t) 6= 0 for all t ∈ [0, 1] by Theorem 3.2. Then, Q(t) /∈
(−∞, 0] for all t ∈ [0, 1] from the argument below.
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(i) Im(µ) = 0: In this case, Q(t) is real for t ∈ [0, 1]. If Q(t0) < 0 for
some t0 ∈ [0, 1], then by the Intermediate Value Theorem there exists a
t1 ∈ (0, 1) such that Q(t1) = 0. Therefore, Q(t) /∈ (−∞, 0] for all t ∈ [0, 1].

(ii) Im(µ) 6= 0: Since ImQ(t) = (1 − t)tIm(µ), ImQ(t) 6= 0 for all t ∈ (0, 1).
Thus, Q(t) /∈ (−∞, 0].

Therefore, ∆θQ = Arg (r2)−Arg (r1) = 0. 2

Now suppose that m = 3d − a − b /∈ Hr1,r2 . Let α =
√

r1, β =
√

r2. Let
s(t) be the square–root curve of r′(t) such that s(0) = α. By Lemma 8.1,
∆θr′ = 0. Therefore, s(1) = β. So, by Lemma 3.5, we need to consider only
χ(t) = α(1− t)2 + z2(1− t)t + βt2 with z satisfying

(
z + 3

4 (α + β)
)2 = 5

4

(
6d− r1 − r2 + 1

4 (α + β)2
)

. (17)

Let Lα,β = α(1− t) + βt be the line segment connecting α and β. Note that if
χ(t) 6= 0 for all t ∈ [0, 1],

wind(r′ ª χ2) = 2wind(sª χ) = 2wind(Lα,β ª χ)

since ∆θs = ∆θLα,β
= 0. Thus, we need to investigate when there exists at

least one solution z of (17) such that wind(Lα,β ª χ) = 0. By Lemma 8.1, this
is equivalent to that z 6∈ Hα,β = (−∞,− 4

√
r1r2].

Let us choose the square root K of the right hand side of (17) such that
Re(K) > 0. This is possible from the following Lemma.

Lemma 8.2 Let r1, r2 be positive real numbers, and let α =
√

r1, β =
√

r2.
Suppose m = 3d− r1 − r2 /∈ Hr1,r2 . Let K be a square root of

5
4

(
6d− r1 − r2 + 1

4 (α + β)2
)

.

Then, Re(K) 6= 0.

Proof. Suppose Re(K) = 0. Then K2 ≤ 0, i.e.,

6d− r1 − r2 + 1
4 (α + β)2 ≤ 0 .

Thus, we get the following inequality

6d− 2r1 − 2r2 ≤ −r1 − r2 − 1
4 (α + β)2 ≤ −2

√
r1r2 − αβ = −3

√
r1r2 .

This is a contradiction to m = 3d− r1 − r2 /∈ Hr1,r2 = (−∞,−√r1r2]. 2

Then, two solutions z1 and z2 of Equation (17) can be written as

z1 = K − 3
4 (
√

r1 +
√

r2) , z2 = −K − 3
4 (
√

r1 +
√

r2) . (18)

Theorem 8.3 Let χ(t) = α(1−t)2+z12(1−t)t+βt2, with z1 given by (18). Let
γ(t) be a PH quintic with γ′(t) = χ(t)2. If m 6∈ Hr1,r2 = (−∞,−√r1r2], r′(t) 6=
0 and γ′(t) 6= 0 for all t ∈ [0, 1] and wind(r′ ª γ′) = 0. If m ∈ (−√r1r2,∞), z1

is the unique solution such that wind(r′ª γ′) = 0. If Im(m) 6= 0, both z1 and z2

are such solutions that wind(r′ ª γ′) = 0.
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Proof.

(i) m ∈ (−√r1r2, +∞)

In this case, since the right hand side of (17) is a real number and 3d >
r1 + r2 −√r1r2,

K2 = 5
4

(
6d− r1 − r2 + 1

4 (α + β)2
)

> 5
4

(
r1 + r2 − 2

√
r1r2 + 1

4 (α + β)2
)

= 5
4

(
(
√

r1 −√r2)2 + 1
4 (
√

r1 +
√

r2)2
)
.

So, K is a positive real number. Then, since

− 3
4 (
√

r1 +
√

r2) ≤ − 3
2

4
√

r1r2,

z2 < − 4
√

r1r2, i.e., z2 ∈ Hα,β = (−∞,− 4
√

r1r2). So, χ(t) = 0 for some
t ∈ (0, 1), where χ(t) is constructed by using z2. Now let us show that
z1 > − 4

√
r1r2. It suffices to verify that

K2 >
(

3
4 (
√

r1 +
√

r2)− 4
√

r1r2

)2
.

This fact comes from the following inequalities.

K2 − (
3
4 (
√

r1 +
√

r2)− 4
√

r1r2

)2

> 5
4

(
(
√

r1 −√r2)2 + 1
4 (
√

r1 +
√

r2)2
)− (

3
4 (
√

r1 +
√

r2)− 4
√

r1r2

)2

= − 1
4 (
√

r1 +
√

r2)2 + 5
4 (
√

r1 −√r2)2 + 3
2 (
√

r1 +
√

r2) 4
√

r1r2 −√r1r2

= r1 + r2 − 4
√

r1r2 + 3
2 (
√

r1 +
√

r2) 4
√

r1r2

= (
√

r1 −√r2)2 − 2
√

r1r2 + 3
2 (
√

r1 +
√

r2) 4
√

r1r2

> (
√

r1 −√r2)2 − 2
√

r1r2 + 3
√

r1r2 = (
√

r1 −√r2)2 +
√

r1r2 .

So, z1 /∈ Hα,β . Therefore, the angle variation is ∆θχ = 0, where χ(t) is
constructed by using z1. Thus, wind(Lα,β ª χ) = 0.

(ii) Im(m) 6= 0

In this case, Im(K2) 6= 0 since Im(d) 6= 0. So, z1, z2 are non–real numbers.
Thus, z1 /∈ Hα,β and z2 /∈ Hα,β . So, by Lemma 8.1, the angle variation
∆θχ is well defined, and ∆θχ = 0, where χ(t) is constructed by using z1

or z2. Thus, wind(Lα,β ª χ) = 0.

In any case, z1 /∈ Hα,β by the above argument. The angle variation ∆θχ of
χ(t) = α(1 − t)2 + z12(1 − t)t + βt2 is thus well defined, and clearly ∆θχ = 0
from Lemma 8.1. Thus, the winding number, wind(Lα,β ª χ) = 0. 2

Although z2 also gives zero winding number solution in some cases, the curve
shape obtained from z1 is better than that from z2.
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8.2 Case 2: a and b are in the opposite direction

Suppose that a, b 6= 0 and b = λa for some λ < 0. Without loss of generality,
we can set a = r1e

−iπ/2, b = r2e
iπ/2 for some r1, r2 > 0. Let α =

√
r1e

−iπ/4,
β =

√
r2e

iπ/4. In this case Ha,b = { yi | y ∈ R } from Lemma 8.4.

Lemma 8.4 Let a = −r1i and b = r2i for positive real numbers r1, r2. Then
Ha,b = { yi | y ∈ R } = Ri. Let Q(t) = a(1 − t)2 + µ2(1 − t)t + bt2 for some
µ ∈ C. If Re(µ) > 0 then ∆θQ = π, and if Re(µ) < 0 then ∆θQ = −π.

Proof. From the definition Ha,b =
{
(−λ1r1 + λ2r2)i | λ1 < 0, λ2 < 0, λ1λ2 = 1

4

}
we need to determine range of the function f(t) = −r1t + r2/4t, where t < 0.
Since limt→−∞ f(t) = ∞ and limt→0− f(t) = −∞, the range of f(t) is R. Thus,
Ha,b = { yi | y ∈ R } = Ri. Note that Q(0) = −r1i and Q(1) = r2i. If Re(µ) > 0,
ReQ(t) > 0 for all t ∈ (0, 1) and hence ∆θQ = π. If Re(µ) < 0, ReQ(t) < 0 for
all t ∈ (0, 1) and hence ∆θQ = −π. 2

So r′(t) = 0 for some t ∈ (0, 1) if and only if m = 3d − a − b ∈ Ri. So, we
assume that Re(m) 6= 0. Since a, b are pure imaginary values, this assumption
is equivalent to Re(d) 6= 0.

Theorem 8.5 If Re(m) 6= 0 there is a unique solution χ(t) with wind(r′ªχ2) =
0, obtained as follows:

(i) Re(m) > 0: Let K be the square root of 5
4

(
6d− a− b + 1

4 (α + β)2
)

with
Re(K) > 0, and z = K− 3

4 (α+β). Then χ(t) = α(1−t)2+z2(1−t)t+βt2.

(ii) Re(m) < 0: Let K be the square root of 5
4

(
6d− a− b + 1

4 (α− β)2
)

with
Im(K) < 0, and z = K− 3

4 (α−β). Then χ(t) = α(1−t)2+z2(1−t)t−βt2.

Proof.

(i) Re(m) > 0: From Lemma 8.4, ∆θr′ = π and if s(0) = α, then s(1) = β.
By Lemma 3.5, we need consider only χ(t) = α(1− t)2 + z2(1− t)t + βt2

with z satisfying

(
z + 3

4 (α + β)
)2 = 5

4

(
6d− a− b + 1

4 (α + β)2
)

. (19)

Consider the line segment Lα,β = α(1−t)+βt. Since ∆θs = ∆θLα,β
= 1

2π,

wind(r′ ª χ2) = 2wind(sª χ) = 2wind(Lα,β ª χ) .

We need to show that a solution z of (19) exists so that wind(Lα,βªχ) = 0.

Since Re(m) > 0, the real part of the right hand side of (19) is also positive.
Thus, any square root of the right hand side of (19) has a non–zero real
part, and we can take K as the square root of the right hand side of (19)
with Re(K) > 0. The solutions z1, z2 of (19) are then given by

z1 = K − 3
4 (α + β) , z2 = −K − 3

4 (α + β) .
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Since α, β are linearly independent over R, we can write K = λ1α + λ2β
for real numbers λ1, λ2. Substituting this into (19), we obtain

(λ1α + λ2β)2 = 5
4

(
6d− a− b + 1

4 (α + β)2
)

.

Taking the real part of this equation, we obtain

2λ1λ2
√

r1r2 = 5
4

(
2Re(m) + 1

2

√
r1r2

)

and hence Re(m) =
(

4
5λ1λ2 − 1

4

)√
r1r2. Thus λ1λ2 > 5

16 since Re(m) > 0.

Now, z1, z2 can be expressed as

z1 =
(
λ1 − 3

4

)
α +

(
λ2 − 3

4

)
β , z2 = − (

λ1 + 3
4

)
α− (

λ2 + 3
4

)
β .

If z1, z2 are both in Hα,β ∪W 0
α,β or in Hα,β ∪W 1

α,β , then λ1λ2 ≤ 1
16 (see

Figure 16). Therefore, only one solution is in W 0
α,β , and the other solution

is in W 1
α,β . Actually, z1 ∈ W 0

α,β from the following argument.

Suppose z1 /∈ W 0
α,β . Then λ1, λ2 must satisfy the following conditions.

λ1 < 3
4 , λ2 < 3

4 ,
(
λ1 − 3

4

) (
λ2 − 3

4

) ≥ 1
4 .

Since
Re(K) = (λ1

√
r1 + λ2

√
r2)/

√
2 > 0 ,

λ1 + λ2R > 0 where R =
√

r2/r1. Thus, λ1λ2 ≤ 1
16 by Lemma 9.5 (see

Figure 16). But this is a contradiction, so z1 ∈ W 0
α,β and z2 ∈ W 1

α,β .

Let χ(t) = α(1− t)2 + z12(1− t)t + βt2. Then wind(Lα,β ª χ) = 0.

(ii) Re(m) < 0: From Lemma 8.4, ∆θr′ = −π, and if we set s(0) = α, then
s(1) = −β. So by Lemma 3.5, we need only consider χ(t) = α(1 − t)2 +
z2(1− t)t− βt2 with z satisfying

(z + 3
4 (α− β))2 = 5

4

(
6d− a− b + 1

4 (α− β)2
)

. (20)

Consider the line segment Lα,−β = α(1 − t) − βt from α to −β. Since
∆θs = ∆θLα,−β

= −π/2,

wind(r′ ª χ2) = 2wind(sª χ) = 2wind(Lα,−β ª χ) .

We need to show a solution z of (20) exists so that wind(Lα,−β ª χ) = 0.

Since Re(m) < 0, the real part of the right hand side of (20) is also
negative. Thus, any square root of the right hand side of (20) has a non–
zero imaginary part. Therefore, we can take K as the square root of the
right hand side of (20) so that Im(K) < 0.

Then two solutions z1 and z2 of (20) are given by

z1 = K − 3
4 (α− β) , z2 = −K − 3

4 (α− β) .
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Figure 16: Illustrations for the proof of Theorem 8.5.

Since α, β are linearly independent over R, there exist real numbers λ1, λ2

such that K = λ1α− λ2β. Substituting this into (20), we obtain

(λ1α− λ2β)2 = 5
4

(
6d− a− b + 1

4 (α− β)2
)

.

Taking the real part of the above equation, we get

− 2λ1λ2
√

r1r2 = 5
4

(
2Re(m)− 1

2

√
r1r2

)
(21)

and hence Re(m) =
(

1
4 − 4

5λ1λ2

)√
r1r2. Thus λ1λ2 > 5

16 since Re(m) < 0.

Now z1, z2 can be expressed as

z1 =
(
λ1 − 3

4

)
α +

(
λ2 − 3

4

)
(−β) , z2 = − (

λ1 + 3
4

)
α− (

λ2 + 3
4

)
(−β) .

If both z1 and z2 are in Hα,−β∪W 0
α,−β or in Hα,−β∪W 1

α,−β , then λ1λ2 ≤ 1
16

(see Figure 16). Therefore, only one solution is in W 0
α,−β , and the other

solution is in W 1
α,−β . Actually, z1 ∈ W 0

α,−β from the following argument.

Suppose z1 /∈ W 0
α,−β . Then, λ1, λ2 must satisfy the following conditions.

λ1 < 3
4 , λ2 < 3

4 ,
(
λ1 − 3

4

) (
λ2 − 3

4

) ≥ 1
4 .

Since
Im(K) = −(λ1

√
r1 + λ2

√
r2)/

√
2 < 0 ,

λ1 + λ2R > 0, where R =
√

r2/r1. Thus, by Lemma 9.5, λ1λ2 ≤ 1
16 (see

Figure 16). But this is a contradiction, so z1 ∈ W 0
α,−β and z2 ∈ W 1

α,−β .

Let χ(t) = α(1− t)2 + z12(1− t)t− βt2. Then wind(Lα,−β ª χ) = 0. 2

9 Appendix 2: Proofs

We present below some technical proofs for results used in the body of the paper.
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Lemma 9.1 Let z1, z2 be complex numbers. If µ ∈ W 0
z1,z2

then Qz1,µ,z2(t) ∈
Az1,z2 for t ∈ (0, 1) and if µ ∈ W 1

z1,z2
then Qz1,µ,z2(t) ∈ Bz1,z2 for t ∈ (0, 1).

Proof. For brevity we write Q(t) for Qz1,µ,z2(t). For µ = λ1z1 + λ2z2 we have

Q(t) =
(
(1− t)2 + 2λ1(1− t)t

)
z1 +

(
t2 + 2λ2(1− t)t

)
z2.

(i) Consider the first statement. Let µ ∈ W 0
z1,z2

. Then we only need check
the following three cases.

(a) λ1 ≥ 0: Since (1 − t)2 + 2λ1(1 − t)t > 0 for t ∈ (0, 1), Q(t) ∈ Az1,z2

for all t ∈ (0, 1).

(b) λ2 ≥ 0: Since t2 + 2λ2(1− t)t > 0 for t ∈ (0, 1), Q(t) ∈ Az1,z2 for all
t ∈ (0, 1).

(c) λ1 < 0, λ2 < 0, 4λ1λ2 < 1: First note that

0 < −2λ2
1−2λ2

< 1
1−2λ1

< 1.

This is clear from the following inequality.

1
1−2λ1

− −2λ2
1−2λ2

= (1−2λ2)+2λ2(1−2λ1)
(1−2λ1)(1−2λ2)

= 1−4λ1λ2
(1−2λ1)(1−2λ2)

> 0 .

If 0 < t < 1/(1− 2λ1), then

(1− t)2 + 2λ1(1− t)t = (1− t)(1− t + 2λ2t)
= (1− t)(1− (1− 2λ2)t) > 0 .

If −2λ2/(1− 2λ2) < t < 1, then

t2 + 2λ2(1− t)t = t (t + 2λ2(1− t))
= t ((1− 2λ2)t + 2λ2) > 0 .

Since (0, 1
1−2λ1

) ∪ ( −2λ2
1−2λ2

, 1) = (0, 1), Q(t) ∈ Az1,z2 for t ∈ (0, 1).

(ii) For the second statement, let µ ∈ W 1
z1,z2

. Then λ1 < 0, λ2 < 0, 4λ1λ2 > 1.
So, by similar calculations, we obtain the inequalities

0 < 1
1−2λ1

< −2λ2
1−2λ2

< 1 .

If 1/(1− 2λ1) < t < 1, then

(1− t)2 +2λ1(1− t)t = (1− t)(1− t+2λ1t) = (1− t)(1− (1−2λ1)t) < 0 .

If 0 < t < −2λ2/(1− 2λ2), then

t2 + 2λ2(1− t)t = t(t + 2λ2(1− t)) = t((1− 2λ2)t + 2λ2) < 0 .

Since (0, −2λ2
1−2λ2

) ∪ ( 1
1−2λ1

, 1) = (0, 1), Q(t) ∈ Bz1,z2 for t ∈ (0, 1). 2
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For the following proofs, let Logz denote the principal branch of log z, such
that −π < Im(Logz) ≤ π — i.e., Logz = Log|z|+ i Arg z.

Lemma 9.2 If z1, z2 are linearly independent over R, then Lz1,z2(t) 6= 0 for
t ∈ [0, 1]. The angle variation ∆θL of Lz1,z2(t) for t ∈ [0, 1] is well defined, and
∆θL = Arg (z2/z1). So, clearly |∆θL| < π.

Proof. Since z1, z2 are linearly independent over R, and 1− t and t cannot be
both zero, it is clear that Lz1,z2(t) 6= 0. By taking a proper rotation R with
respect to the origin, we can set R(z1) = r1e

−iθ, R(z2) = r2e
iθ for some positive

r1, r2, and θ ∈ (−π/2, 0)∪(0, π/2). Since L̃(t) := R(L(t)) = R(a)(1−t)+R(b)t ∈
D = {x + iy |x > 0, y ∈ R } and Logz is analytic in the domain D,

∆θL = ∆θL̃ = Im
∫

L̃
1
z dz = Arg (L̃(1))−Arg (L̃(0))

= 2θ = Arg (R(z2)/R(z1)) = Arg (z2/z1) . 2

Theorem 9.3 Let the complex numbers z1, z2 be linearly independent over R.
Then clearly the two open sets Az1,z2 and Bz1,z2 do not contain 0. If µ is not in
Hz1,z2 , the angle variation ∆θQ of Q(t) = z1(1− t)2 +µ2t(1− t)+z2t

2, t ∈ [0, 1]
is well defined, and |∆θQ| < 2π. Moreover, we have

(i) If Q(t) ∈ Az1,z2 for all t ∈ (0, 1) then |∆θQªL| = |∆θQ − ∆θL| = 0 and
|∆θQ| < π.

(ii) If Q(t) ∈ Bz1,z2 for all t ∈ (0, 1) then |∆θQªL| = |∆θQ −∆θL| = 2π and
π < |∆θQ| < 2π.

Here ∆θL is the angle variation of Lz1,z2(t) for t ∈ [0, 1].

Proof. First note that since z1, z2 are linearly independent, Hz1,z2 , W 0
z1,z2

,
and W 1

z1,z2
are mutually disjoint. If µ /∈ Hz1,z2 , ∆θQ is clearly well-defined

by Theorem 3.2. Without loss of generality we can assume that z1 = r1e
−iθ,

z2 = r2e
iθ for some positive r1, r2, and θ ∈ (−π/2, 0) ∪ (0, π/2).

(i) Suppose Q(t) ∈ Az1,z2 for t ∈ (0, 1). Since it is clear that Q(0), Q(1) ∈
Az1,z2 , Q(t) ∈ Az1,z2 for all t ∈ [0, 1]. Since Logz is analytic in Az1,z2 ,

∆θQ = Im
∫

Q
1
z dz = Arg (Q(1))−Arg (Q(0)) = 2θ = ∆θL .

In this case, |∆θQ| = |∆θL| < π.

(ii) Now suppose that Q(t) ∈ Bz1,z2 for all t ∈ (0, 1). So Q(t) ∈ D = C\{x ∈
R |x ≥ 0 } for all t ∈ [0, 1]. Let LogDz be the branch of log z such that
LogDz = Log|z|+ iArg Dz, where Arg Dz is the argument of z such that
0 < Arg Dz ≤ 2π. Then LogDz is analytic in D, and

Arg D(Q(1)) =
{

θ, θ > 0
θ + 2π, θ < 0 , Arg D(Q(0)) =

{ −θ + 2π, θ > 0
−θ, θ < 0
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So,

∆θQ = Im
∫

Q
1
z dz = Arg D(Q(1))−Arg D(Q(0)) =

{
2θ − 2π if θ > 0;
2θ + 2π if θ < 0.

Therefore, |∆θQ −∆θL| = 2π. Moreover, π < |∆θQ| < 2π. 2

Proof of Theorem 3.3. This is a simple corollary of Lemma 9.1, Theorem 9.3,
and Theorem 3.2. 2

Proof of Theorem 3.4. Clearly for µ /∈ Hz1,z2 , ∆θ√Q is well defined since√
Q(t) 6= 0 for all t ∈ [0, 1]. Moreover, since

√
Q(t)2 = Q(t), it is clear that

∆θ√Q = ∆θQ/2. Since
√

Q(0) = L(0) and
√

Q(1) = L(1) with L(t) ∈ C\{0},
|∆θ√Q −∆θL| = 2nπ for some integer n. But, since

|∆θ√Q −∆θL| ≤ |∆θ√Q|+ |∆θL| < π + π = 2π ,

|∆θ√Q −∆θL| = 0. Then, by Lemma 9.2 it is clear that

∆θ√Q = ∆θL = Arg (
√

Q(1)/
√

Q(0)) . 2

Proof of Lemma 3.5. First, suppose X(0) = Y (0) and X(1) = Y (1). Then,
since X ª Y is a closed curve,

wind(X2 ª Y 2) =
2
2π

(∆θX −∆θY ) = 2wind(X ª Y ) .

Note that the winding number of a closed curve is integer. Now, suppose X(0) =
Y (0) and X(1) = −Y (1). Then,

wind(X2 ª Y 2) =
2
2π

(∆θX −∆θY ).

But, since X(1) = −Y (1),

∆θX −∆θY = (Arg X(1)−Arg X(0) + 2k1π) − (Arg Y (1)−Arg Y (0) + 2k2π)
= Arg X(1)−Arg Y (1) + 2(k1 − k2)π = (2n + 1)π

for some integer k1, k2, n. Thus, wind(X2 ª Y 2) = 2n + 1. 2

Proof of Lemma 4.2. From s(t)2 = r′(t), χ(t)2 = γ′(t), and Theorem 3.4,

wind(r′ ª γ′) = 1
2π (∆θr′ −∆θγ′) = 1

2π (2∆θs − 2∆θχ) = 1
2π (2∆θL − 2∆θχ) ,

where L(t) = s(0)(1− t) + s(1)t. Thus, if s(0) = χ(0) and s(1) = χ(1) we have

wind(r′ ª γ′) = 2wind(Lχ(0),χ(1) ª χ).
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Since χ(t) is a quadratic Bézier curve, wind(Lχ(0),χ(1) ª χ) is 0 or ±1 from
Theorem 3.3. So, wind(r′ ª γ′) is 0 or ±2. Now, suppose s(0) = χ(0) and
s(1) = −χ(1). In this case, clearly

∆θL −∆θχ = (2n + 1)π

for some integer n. But, |∆θL| < π from Lemma 9.2, and |∆θχ| < 2π from
Theorem 9.3, so

|∆θL −∆θχ| ≤ |∆θL|+ |∆θχ| < 3π.

Therefore, |∆θL −∆θχ| = 1 and wind(r′ ª γ′) = ±1. 2

Proof of Lemma 4.1. First note that the middle control point of r′(t) is m.
Thus, by Theorem 9.3, m ∈ W 0

a,b implies that |∆θr′ | < π, and m ∈ W 1
a,b implies

that π < |∆θr′ | < 2π. Since ∆θs = ∆θr′/2, |∆θs| < π/2 when m ∈ W 0
a,b, and

π/2 < |∆θs| < π when m ∈ W 1
a,b. We now calculate ∆θs in terms of α, β. If

θ(t) is a continuous function of argument of s(t), then

∆θs = θ(1)− θ(0) = (Arg s(1) + 2n1π)− (Arg s(0) + 2n0π)
= Arg s(1)−Arg s(0) + 2(n1 − n0)π = Arg (s(1)/α) + 2kπ

for some integers n1, n0, k. However, since |Arg (s(1)/α)| < π and |∆θs| < π, k
must be 0. Therefore, ∆θs = Arg (s(1)/α). Now note that |Arg (β/α)| < π/2
and π/2 < |Arg (−β/α)| < π. So, if m ∈ W 0

a,b, then |Arg (s(1)/α)| = |∆θs| <

π/2, thus s(1) = β. On the other hand, if m ∈ W 1
a,b, then |Arg (s(1)/α)| =

|∆θs| > π/2, thus s(1) = −β. 2

Suppose a, b are in the form of standard configuration, i.e., a = r1e
−iθ, b =

r2e
iθ, α =

√
r1e

−iθ/2, β =
√

r2e
iθ/2 for positive r1, r2 and 0 < |θ| < π/2.

Proof of Theorem 4.17. First we need the following lemma.

Lemma 9.4 For d ∈ C, let K be given by K2 = 5
4

(
6d− a− b + 1

4 (α + β)2
)
.

Then if m = 3d− a− b ∈ W 0
a,b ∪Ha,b, we have Re(K) 6= 0.

Proof of Lemma 9.4. Suppose Re(K) = 0. Then, K2 ≤ 0 and

m = 2
5K2 − 1

2 (a + b)− 1
8 (α + β)2 = 2

5K2 − 5
8 (a + b)− 1

4αβ = − 5
8 (a + b)− ε

for some positive ε. Since

(a/r1) + (b/r2) = 2 cos θ ,

m can be rewritten as

m = − (
5
8 + 1

2ε/r1 cos θ
)
a− (

5
8 + 1

2ε/r2 cos θ
)
b .

Let A, B be such that

A = − 5
8 − ε

2r1 cos θ , B = − 5
8 − ε

2r2 cos θ .
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Since A < − 5
8 , B < − 5

8 , AB > 1
4 . This means that m ∈ W 1

a,b which contradicts
m ∈ W 0

a,b ∪Ha,b. Therefore, Re(K) 6= 0. 2

Now let K be the root with positive real part, written as K = λ1α + λ2β
for some real numbers λ1, λ2. Then

Re(λ1α + λ2β) = cos 1
2θ (λ1

√
r1 + λ2

√
r2) .

So λ1
√

r1 + λ2
√

r2 is positive. Set R =
√

r2/r1. Then, λ1 + λ2R > 0. Since

(λ1α + λ2β)2 = 5
4

(
6d− a− b + 1

4 (α + β)2
)

,

m = Aa + Bb, where

A = 2
5λ2

1 − 5
8 +

(
4
5λ1λ2 − 1

4

)
R

2 cos θ , B = 2
5λ2

2 − 5
8 +

(
4
5λ1λ2 − 1

4

)
1

2 cos θR .

Suppose z = (λ1 − 3
4 )α + (λ2 − 3

4 )β /∈ W 0
α,β . Then, λ1, λ2 satisfy

λ1 < 3
4 , λ2 < 3

4 ,
(
λ1 − 3

4

) (
λ2 − 3

4

) ≥ 1
4 .

Thus, by Lemma 9.6, A < 0, B < 0, AB > 1
4 . Therefore, m = Aa + Bb ∈ W 1

a,b.
This contradicts the hypothesis, so z ∈ W 0

α,β .
To prove Lemma 9.6, we need the following simple result (see Figure 16):

Lemma 9.5 Let R be a positive real number. If λ1, λ2 satisfy the conditions

λ1 < 3
4 , λ2 < 3

4 ,
(
λ1 − 3

4

) (
λ2 − 3

4

) ≥ 1
4 , λ1 + Rλ2 ≥ 0 ,

then λ1λ2 ≤ 1
16 .

Lemma 9.6 R > 0 and 0 < C ≤ 1 are given. Let A,B be

A = 2
5λ2

1 − 5
8 +

(
4
5λ1λ2 − 1

4

)
R
2C , B = 2

5λ2
2 − 5

8 +
(

4
5λ1λ2 − 1

4

)
1

2CR .

If λ1, λ2 satisfy the following conditions

λ1 < 3
4 , λ2 < 3

4 ,
(
λ1 − 3

4

) (
λ2 − 3

4

) ≥ 1
4 , λ1 + Rλ2 ≥ 0 ,

then A < 0, B < 0, and AB > 1
4 .

Proof of Lemma 9.6. Since λ1 + Rλ2 ≥ 0, λ1 ≥ 0 or λ2 ≥ 0.

(i) λ1 ≥ 0, λ2 ≥ 0: First note that λ1λ2 ≤ 1
16 from Lemma 9.5. Since

0 ≤ λ2
1 < ( 3

4 )2, 0 ≤ λ2
2 < ( 3

4 )2, and λ1λ2 ≤ 1
16 ,

A < − 4
10 − R

10C , B < − 4
10 − 1

10CR .

Therefore,

AB > 1
100

(
16 + 4R

C + 4
CR + 1

C2

) ≥ 1
100

(
16 + 8

C + 1
C2

) ≥ 1
4 .
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(ii) λ1 ≥ 0, λ2 < 0 : Since 0 ≤ λ2
1 < ( 3

4 )2, λ1λ2 ≤ 0,

A < 2
5λ2

1 − 5
8 < − 4

10 .

Therefore AB > 1
4 , since

B = 2
5Rλ2

(
Rλ2 + 1

C λ1

)− 5
8 − 1

8CR

< 2
5Rλ2

(
Rλ2 + λ1 +

(
1
C − 1

)
λ1

)− 5
8 ≤ − 5

8 .

(iii) λ1 < 0, λ2 ≥ 0 : Since 0 ≤ λ2
2 < ( 3

4 )2, λ1λ2 ≤ 0,

B < 2
5λ2

2 − 5
8 < − 4

10 .

Therefore AB > 1
4 , since

A = 2
5λ1

(
λ1 + R

C λ2

)− 5
8 − R

8C

< 2
5λ1

(
λ1 + Rλ2 +

(
1
C − 1

)
Rλ2

)− 5
8 ≤ − 5

8 . 2

Proof of Theorem 4.18. First we need the following lemma.

Lemma 9.7 For d ∈ C, let K be given by K2 = 5
4

(
6d− a− b + 1

4 (α− β)2
)
.

Then if m = 3d− a− b ∈ W 1
a,b ∪Ha,b, we have Im(K) 6= 0.

Proof of Lemma 9.7. Suppose Im(K) = 0. Then, K2 ≥ 0 and

m = 2
5K2 − 1

2 (a + b)− 1
8 (α− β)2 = 2

5K2 − 5
8 (a + b) + 1

4αβ = − 5
8 (a + b) + ε

for some positive ε, where ε ≥ 1
4

√
r1r2. Since

(a/r1) + (b/r2) = 2 cos θ ,

m can be rewritten as

m =
(

ε
2r1 cos θ − 5

8

)
a +

(
ε

2r2 cos θ − 5
8

)
b .

Let A,B be such that

A = − 5
8 + ε

2r1 cos θ , B = − 5
8 + ε

2r2 cos θ .

Then,
A > − 5

8 + 1
8

√
r2/r1 , B > − 5

8 + 1
8

√
r1/r2 .

Since, by the assumption, m ∈ W 1
a,b ∪Ha,b, A and B must be negative. So,

AB < 1
64

(
−5 +

√
r2/r1

)(
−5 +

√
r1/r2

)

= 1
64

(
25− 5

√
r2/r1 − 5

√
r1/r2 + 1

)
≤ 1

64 (25− 10 + 1) = 1
4 .
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This is a contradiction to m ∈ W 1
a,b ∪Ha,b. So, Im(K) 6= 0. 2

Now, let K be the square root with sin 1
2θ·ImK < 0. We write K = λ1α−λ2β

for some real numbers λ1, λ2. Then,

Im(λ1α− λ2β) = − sin 1
2θ(λ1

√
r1 + λ2

√
r2) .

So λ1
√

r1 + λ2
√

r2 is positive. Set R =
√

r2/r1. Then, λ1 + λ2R > 0. Since

(λ1α− λ2β)2 = 5
4

(
6d− a− b + 1

4 (α− β)2
)

,

m = Aa + Bb, where

A = 2
5λ2

1 − 5
8 −

(
4
5λ1λ2 − 1

4

)
R

2 cos θ , B = 2
5λ2

2 − 5
8 −

(
4
5λ1λ2 − 1

4

)
1

2 cos θR .

Then, from the hypothesis m ∈ W 1
a,b ∪Ha,b, it is clear that A < 0 and B < 0.

Suppose z = (λ1− 3
4 )α− (λ2− 3

4 )β /∈ W 0
α,−β . Then λ1, λ2 satisfy the conditions

λ1 < 3
4 , λ2 < 3

4 ,
(
λ1 − 3

4

) (
λ2 − 3

4

) ≥ 1
4 .

Thus, by Lemma 9.8, AB < 1
4 . This contradicts the hypothesis m ∈ W 1

a,b∪Ha,b

so z ∈ W 0
α,−β .

Lemma 9.8 Let R > 0 and 0 < C ≤ 1 and let A, B be given by

A = 2
5λ2

1 − 5
8 −

(
4
5λ1λ2 − 1

4

)
R
2C , B = 2

5λ2
2 − 5

8 −
(

4
5λ1λ2 − 1

4

)
1

2CR .

Also, let λ1, λ2 satisfy the following conditions

λ1 < 3
4 , λ2 < 3

4 ,
(
λ1 − 3

4

) (
λ2 − 3

4

) ≥ 1
4 , λ1 + Rλ2 ≥ 0 .

Then if A < 0, B < 0, we have AB < 1
4 .

Proof of Lemma 9.8. Let M1, M2, N be given by

M1 = 5
8 − 2

5λ2
1 , M2 = 5

8 − 2
5λ2

2 , N = 1
8 − 2

5λ1λ2 .

From the conditions on λ1, λ2, we can easily deduce that λ1λ2 ≤ 1
16 . So N is

positive. Therefore, we get the following inequalities

A > −M1 + NR , B > −M2 + N/R .

Since, by the assumption, A < 0 and B < 0,

M1 > NR , M2 > N/R .

Therefore, M1 and M2 are positive, and M1M2 > N2. Moreover,

AB < (−M1 + NR) (−M2 + N/R) = M1M2 −N (M2R + M1/R) + N2

≤ M1M2 − 2N
√

M1M2 + N2 = (
√

M1M2 −N)2 .

Therefore AB < 1
4 , since

0 <
√

M1M2 −N ≤ 1
2 (M1 + M2)−N = 1

2 − 1
5 (λ1 − λ2)2 . 2
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